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Production of pseudoscalar Higgs bosons iey collisions
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We investigate the production of a pseudoscalar Higgs bésbasing the reactiorey—eA’ at anee
collider with a center-of-mass energy of 500 GeV. Supersymmetric contributions are included which provide a
substantial enhancement to the cross section for most values of the symmetry-breaking parameters. We find
that, despite the penalty incurred in converting one of the beams into a source of backscattered photons, the
ey process is a promising channel for the detection ofAfe

PACS numbsgs): 14.80.Cp, 12.60.Jv, 13.16q

I. INTRODUCTION p
(1) =[~3(5)*mfcotBCo(t, my ,m?)
The Higgs sector in supersymmetric extensions of the —3(—$)?m3tanBCy(t,m3 ,m3)
standard model contains charged Higgs bosons as well as b 2 .
additional neutral Higgs bosorfd]. Among the latter is a —(=1)"m7tanBCo(t,my, m?)

pseudoscalar particle usually denot® In this paper, we
calculate the production cross section for #ftin the pro-
cessey—eAL. Contributions to this process arise from tri- + 2mym,g,,Colt,mz ,m32)]. 2
angle and box diagrams. The triangle contributions consist of

diagrams in which the\® and photon are on-shell external Here,m, andm, are the top and bottom quark mass®s,is
particles and the remaining particle is a virtual photon orthe r lepton massin; andm, are the chargino masses,y is
Z%in thet channel. Sincé=0 is in the physical region, the theW mass, and taBis a ratio of vacuum expectation values
photon pole contribution dominates td8 pole contribution  [1]. The chargino coupling constargs; andg,, depend on
in this set of diagram$2]. Moreover, because of the off- the elements of two ® 2 unitary matriced) andV which

diagonal structure of th&® couplings to other bosons, the diagonalize the chargino mass matkx where[3]
particles in the loop are either quarks, leptons, or charginos.

Here, we present the top quark, bottom quarkepton and M \/Emwsin,B
the two chargino contributions to the photon pole amplitude. X= \/Em cosB

The box diagrams have a more complex particle structure, W K
with leptons, charginos, neutralinos, and scalar leptons in thgnd which are chosen to ensure thmtandm, are positive.
loops. Like thez® pole, these diagrams are nonsingular atFor jllustrative purposes, we assume that the symmetry-
t=0, and should not contribute a sizable correction to thEbreaking parameterM and M are real and consider two
photqn pole terms. They are not included in the present CabasesMM>m\2Nsin2,8 andM . <mé;sin28. The couplings in
culation. these cases are

+2mym; g;5Co(t,m3,m?)

: ()

Mw +m,sin2B)
=———(m,+m;sin28),
911 mz_mz( 2t mysin2g

Il. THE CROSS SECTION FOR A° PRODUCTION 1 2
The amplitude for the production of &P of momentum _ Mw N in2 4
k' and ane of momentump’ in the collision of ane of 922~ mzl_mg(ml msin2g), @
momentump and a+y of momentumk and polarization
£,(k) by the exchange of & in thet channel is for Mu> m\z,\,sinZ,B, and
My .
gu:W(—mfr m;sin2g),
P dia® _ A1) ‘ 12
SO — Sinawmwu(p )yuu(p) t suvaﬁsv( ) My
O20= — —5——(—my+mysin2B), ©)
X(P=p") kg, 1) m3—ms
for Mu< m\z,vsin2,8. Notice that these couplings are symmet-
wheret=—(p—p’)?, and ric in my, m, and, unlike theA®-top coupling, there is no
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enhancement factor o, ,/my, [4]. We takem;=m,. Because of the reality dfl andu, m; andm;, in Egs.(4) and(5) are
subject to certain constraints discussed bel6y The scalar functiotCy(t,m3 ,m?) is [6]

1

1
2 2\ — 4
Colt:Ma.m )_iw?f AP

Since one of the external particles is a photon, this function can be expressed in terms of inverse trigonometric or hyperbolic

functions[1,7] as

meILatp-p FRZF M’ ©

Co(t,mi,m?)= ! C s ol 7
o(t,mz,m?)= (t—m2) 2 m2/ |’ (7)
where
1dx i (8)
C(,B)zf 7In[1—ﬂx(1—x)—|s]
0
( 2
2 arcsin?( \/ —g” , B=0,
5\ 12
={ =2 arcsir( \/;” , 0=pB=4, 9)
B 2 w? . \/E -
= === - =4,
\ 2 arccos?é \/; ) 5 2i arccos ik B
|
The cross section is given by To complete the calculation of the cross section for the
ey process, it is necessary to fold the cross section(E2),
do(ey—ehy) o with the distributionF,(x) of backscattered photons having
d(—t)  64ns? %ﬂ S (100 momentum fraction [9] to obtain
and we have 108 (3 i
4 /i ) UT:gfmz dSFy(g) eyHeAO(S)! (13)
D |///|2:“—(SZJFUZ)L”{L")| (11) A
spin - SInZHWm\ZN (_t) ’

where s=—(p+k)? and u=—(p’—k)2. The presence of

the 1t in Eq.(11) means it is necessary to introduce a cutoff  This

with S=xs. Here, we have taken the usual upper limit on the
allowedx value,x=0.83.

cross section is plotted in Fig. 1 for

in the calculation of the total cross section. One approach ®1u>m3sin28 and in Fig. 2 for Mu<misin2s. The

obtain a finite cross section is to use the effective photon o

Hashed line in each panel is the contribution from the top and

Weizs';'n:ker-WiIIiarr_ls approximation for the _exchangeql Pho- yottom quarks and thelepton. For large ta8, the r contri-
ton [8]. Here, we integrate thg exact amplitude and IMPOS§)tion is important. This is illustrated in the {r 20 panel
an angular cutoff. The expression for the total cross section iS¢ Fig. 1, where the dot-dashed line is the contribution from

4 w2 d (Mm2+y)
_ @ femy Gy, MaTY)
O'eyﬂeAO(S) 64775in20Wm\%an(smi) y (2 2 S
(ma+y)?
t— | Z,(=y)I?, (12

where 7 is an angular cutoff. We investigated the effect of
varying »=sir?(6,y/2) by comparing the standard model
cross section with and without tH# exchange. Fob,,, as
large asm/6, theZ® contribution is only 3%—4% of the total.
The result scales approximately as the logarithmyofand
we usen=10"° in the figures.

the top and bottom quarks. In Fig. 1, the solid lines are
m; =250 GeV andm, the largest value consistent with the
constraint (n; —m,)=my2(1+ sin2B), which is needed to
ensure thaM and n are real. Similarly, in Fig. 2, the solid
lines correspond ton; =250 GeV andm, the largest value
consistent with €, —m,)=my\/2(1—sin2B). Unlike the

M u>mg,sin28 case, whemM u<ma sin28, it is possible for

m; and m, to be equal for ta@=1 provided the
m;,my,=m,. These values ofMm; and m, are within the
range of chargino masses found in studies of minimal super-
symmetric model$10]. In most cases, the inclusion of the
chargino contribution leads to a significant increase in the
cross section, especially for the larger values of3tan
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FIG. 1. Cross sections for the
production of A° are shown for
various values of tgf and anee
center-of-mass energy of 500 GeV
when Mu>misin28. In each
case, the solid line corresponds to
chargino massesn; =250 GeV
and m, the largest value consis-
tent with the restriction rf,
—my)=my\2(1+sin2B). The
dashed line is the standard two
Higgs doublet contribution with-
out charginos, and the dot-dashed
line in the taB=20 panel is the
two Higgs doublet result without
the 7 contribution. The dotted
lines are the cross sections for the
production of a backgroundb
with invariant massm, . In these
graphs, the angular cutoffy is
taken to be 10°.
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To assess the observability of this process, we assume thig@n in theey center of mass. We find that an angular cut of
the dominantA, decay isA,—bb. For my<2m,, this ig- |cosA|<0.98 on both thd and theb reduces the background
nores some contribution from chargino pair decay, but this i$b cross section by about a factor of 10 while leaving the
relatively small since in all but one of the examples we conbb signal fromA° decay_essentially unchanged. More re-
sider, the lowest chargino mass exceed$20 GeV. Even strictive cuts on thé andb angles can further suppress the
above the top thresholdpb decay dominates when background, but at the expense of a significant decrease in
tan3~ 20[11]. The dotted lines in Figs. 1 and 2 are the crossthe signal[12]. The cut shown appears to be optimal.
sections for the direct production of a backgroumd of
invariant massn, in ey collisions subject to an angular cut

on theb andb direction relative to that of the incident pho- ~ We would like to point out that th@y cross sections
calculated here are very likely to be much larger than those

IIl. DISCUSSION
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of the related procesge— yA° at 500 GeV. We have collisions[14]. In that case, the background arises from the

checked this for the production of the standard model Higg$rocessyy—bb and it is effectively suppressed by imposing

boson using the completestandard modglcalculation of  an angular cut. With our choice of chargino masses, a com-

ee—yH? [7] and the photon pole contribution to parison of the tad= 20 cross sections iay production and

ey—eHC. At an ee center-of-mass energy of 500 GeV, we yy production[14] reveals a larger signal in they mode.

find the cross sectionr(ee— yH®) for the production of a Both channels are likely to be important in searches for the

200 GeVH? is 0.08 fb, whereagr(ey—eH%)=5.9 fb for  A°,

the same Higgs-boson mass. To the extent that the photon pole contribution can be
This enhancement is implicit in a previous calculation ofisolated, this method of searching for tA& has the advan-

scalar Higgs-boson productiof8] where the Weizszker-  tage that the contributions from supersymmetry are signifi-

Williams approximation is used for thechannel photon to- cant and limited to one type of supersymmetric particle.

gether with the on-shelH— yy amplitude. This is essen- Should one observe a cross section larger than any standard

tially equivalent to settingy=0 in the parentheses of Eq. model prediction, the case for the presence of chargino con-

(12) and usingmZ as the cutoff in the remaining integral tributions is rather strong.

[13]. Our comparison of the approximate results of Ri]

with an exact calculation suggests that the Weikea _ ACKNOWLEDGMENTS

Williams approach tends to overestimate the cross section.
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