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The decay constants for the strong off-shell B’ -+ Bp and D’ + Dp decays are calculated in 
the framework of light cone QCD sum rules. The results are shown to be in agreement with the 
predictions of the “classical” sum rules method, and with those of the vector dominance model. 
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I. INTRODUCTION 

Determination of the various characteristics of the 
heavy flavored hadrons experiments requires information 
about the physics at large distance. Although th& exclu- 
sive decays of heavy flavored hadrons are often easier to 
measure experimentally, for the interpretation of the data 
one needs accurate estimations of form factors and other 
matrix elements. There exists a number of nonperturba- 
tive approaches for such calculations. Among these, the 
QCD sum rules [l] are one of the most powerful methods. 

The aim of this work is the determination of the 
B*(D*) + B(D)p coupling constant in the ftamework 
of QCD sum rules. Here we use an alternative to the 
“classical” sum rules method, namely the QCD sum rules 
on light cone 131. This approach is interesting in several 
respects: First, all the symmetries of the theory, such 
as gauge, Lorentz, and conformal invariances [4,5], are 
preserved in the coordinate space. Second, the covariant 
light cone expansion in powe:s of “I~“, which is com- 
pletely different from the usual Wilson operator product 
expansion (OPE) based on the T product of currents at 
small distances, allows us to separate the higher twist ef- 
fects. It is well known that the OPE on the light cone 
is performed oSer the twist of the operators, instead of 
dimensions, and the main contribution comes corn the 
operators with minimal twist. Matrix elements of nonlo- 
cal operators sandwiched between a hadronic state and 
the vacuum give hadron wave function of increasing twist. 
The advantage of this approach is that it provides addi- 
tional information about high-energy asymptotics of car- 
relation functions in QCD,~whi& is accutiulated in the 
wave functions. The high energy behavior of these func- 
tions is dictated by the approximate conformal invariance 
of QCD. 

This method was successfully applied for estimating 
the decay rate of the radiative decay C + py [6], nucleon 
magnetic moments, the strong couplings grr.n,~, gpu,, [7], 
form factors of semileptonic and radiative B-D meson de- 
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cays [SI, the couplings ~B*B~, ~D.D- [9], and the nAy* 
form factors [lo]. 

In the present paper we calculate the strong coupling 
constants, SB.+ and ~D.D~, using the light cone sum 
rule. The paper is organized as follows: In Sec. II we 
derive,the light cone sum rule for the B*(D*) + B(D)p 
coupling constants. Section III is devoted to the analysis 
of th& sum rules ind discussions. 

According to the QCD sum rule ideology, for the cal- 
culation of the SB.+ coupling constant it is necessary 
to construct a suitable correlation function in hadronic 
and quark-gluon languages. For this purpose, let us con- 
sider the following correlator function information about 
high-energy asymptotics of correlation function 

II. CALCULATION OF THE gB.Bp AND gD.Dp 
COUPLING CONSTANTS 

F = i P 
J 

d4z&” 

~(~(~,E)ITI~(x)~~~(~),~(O)~~~~(O)}IO). (1) 

Here 1(, and b are the light and beauty quark fields. 
When the p meson is on the rnas8 shell, q2 = rn:, the 

correlation function (1) depends on two variables, p2 and 
(P+d=. 

The correlator (1) in quark language can be calculated 
in the deep Euclidian region where both variables p2 and 
(p + 9)’ are negative and large, so that’ the heavy quark 
is sufficiently far off-shell. Therefore we can use the per- 
turbative expansion of its propagator in the external field 
with slowly varying fluctuations inside the p meson. The 
leading contribution is represented by the diagram in Fig. 
1. For the calculation of this diagram we use the free- 
heavy quark propagator: 

(O[T{&)b(O)}lO) = is,“(z) = J &~~k’$$. 

(2) 

Substituting Eq. (2) in Eq. (l), for the leading contri- 
bution, we get 
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FIG. 1. Diagrams contributing to the correlation function 
Eq. (1). Solid lines represent quarks, wavy lines external 
currents. 

F,=i !ge&!g s xk+A 4Wrdlc + ~b)~75(3) 

Thus, in general we deal with matrix elements of gauge- 
invariant nonlocal operators, sandwiched between the 
vacuum and the meson states. These matrix elements 
define meson wave functions on the light cone. From Eq. 
(3) it follows that we need two matrix elements: 

(P(~,~)l~.(~)7,7~~75~(0)10) (4) 

and 

ML w~)7P~7s~(o)lw (5) 

For the calculation of the matrix element (4), we use the 
Fierz identity 

and get 

MA W(5)7,7~75~(W 

= -~,~x~~P~Q~~~I~~~~~xP~~~~l~~ 
~+swb(P~ ~I~(~h4w)~ (6) 

By definition, the matrix element proportional to, g,,= in 
Eq. (6) is equal to zero. The first term in Eq. (6), 
following [2], can be defined as 

The matrix element (5) can be defined by the following 
expression [ll]: 

The function +l(u, rZ), whose leading twist is two, de- 
scribes the distribution of the fraction of the total mo- 
40)l0). 

mentum carried by the quark in the transversely po- 
larized p meson. In [ll], it is shown that the function 
gl(u,& contains the contributions coming from the op- 
erators of twist two and three. The twist-three opera- 
tor contributions are due to the gluon exchange in Fig. 
1, and it is described by three-particle quark-antiquark- 
gluon wave functions of the transversely polarized vector 
mesons (see, for example, [2,11]). In this work, we do not 
consider these contributions and take into account only 
the leading twist operators. In this accuracy, we take 
gl(u) = 6u(l - u) [ll], in our numerical calculations. 

In [ll] it is shown that the contributions to the 
transversal g1 can be expressed in terms of the longi- 
tidunal wave function $11 with leading twist 7 = 2 defined 
as 

where B = 1 - 2). 
In (7) and (8), u is the difference in the fractions of the 

p meson momentum carried by the quark and antiquark, 
and p is the renormalization point of the wave function. 

Using Eqs. (3), (7), Andy we get for F,, 

F&q) = l’dzL/ $$$i(p-k+“q)z--& 

Writing zp in the momentum space as zp = -i&, and 

performing the integrations over CC and k variables, we 

get 

Fp = +.+qpad? (10) 

where F is an invariant function of variables p2 and (p + 
q)2, and has the following explicit form: 

F(p’, (p + q@) = i’du{; ~$‘~$zl;l;;i’ 

+2f,l4d% $9 l 
rni - (p + p.q . 

Now we apply the double Bore1 transformation 

(11) 
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2,/1’)/M,2 
2r= 

” !!,mo3 

-p’ + ,, -p’+ rn, 

@ _ l):(k _ 1)! (-P2)” ($) 4-?fT (-6) k 

to Eq. (11). For this purpose we use the exponential representation: 

Here we would like to present the technical details of our calculation. Let us frst consider the lirst term in Eq. (11): 

Fl = 1 
I 2 0 

1 du%fpw71(% P2) 
b; - CP + Pm’ 

In the denominator, going into the Eucledian region, we note 

(P + uq)2 = (1 - “)P2 + u(p + q)2 + m@(l - u). 

Then using Eq. (13), we get the expression 

(14) 

Fl = 1 
1 ca 

J J du 0 daae- a[m:+pl(l-u)+(P+q)au+m~u(l-u)l 

2 0 

msfpw7dw2). (15) 

Applying the double Bore1 transformation and using 

B&p(p2)e-“+u) = S[l - aM2(1 - u)] 

(for more detail see [12]) we obtain 

After performing integrations over a and u we get the following expression: 

1 1 
FI = Z~d,~,g& ~‘1 M2M,2 ~,-~lm:+m~u(l-u)llY=M,M:M t 

- 

phetb! second term in Eq. (ll), we follow the same procedure and we get the final result for the invariant function 

Since the mass of B* and B mesons are practically equal, we can take M2 = M’* = 2Mz (see also [ll]). In this 
case ti = l/2 and the invariant function Fthe”’ becomes 

Fthe”‘(M.“) = 
e-&(m:++) 

4M2 
* t 

~msf,m,glg(l/2,C1’)/M,Z + 2f,31(1/2,p2) 
1 

At this point we subtract the continuum contribution by replacing the exponential factor .e~-(‘“:+“‘:/~)/~: by 

.z--(“‘:/~~+“‘~~~) - e?O/M: [9] where sg is the continuum threshold in the B channel, so = 36 GeV’. So, for the 
theoretical part we get 

F(M,z) = & e -&+4+&4 _ ,-so/M: ~mafpmpg1g(1/+ U,141(1/2,~~) (17) 
* 

Note that u = l/2 corresponds to the case where the probabilities of the tiactions of the p meson momentum carried 
by quark and antiquark are equal. 

Now we need the physical part of the sum rules. Saturating Eq. (1) by B’ and B mesons we get the expression for 
the physical part, 
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F,(P, 4 = ~rcxpc+w;;Po 
mPfB’fB4 QPBP 

mb 
CP2 - %3: )NP + d2 - mil (18) 

I 
Here q and e are the four-momentum and the polariza- 
tion vector of the p meson; p is the four-momentum of 
B*(D*) meson. In deriving Eq. (18), we use the follow- 
ing definitions: 

(19) 

Applying the double Bore1 transformation to Eq. (18), 
and equating the physical invariant function to the the- 
oretical one, Eq. (17), we obtain the sum rule for the 
coupling constant g*.&,: 

gs*a,fB*fB = 
4M4m 
~exp(m;. + nz$/2M:)Ftheor. 
ma.mg 

(20) 

In numerical calculations we use the following expres- 
sions for the p meson wave functions [ll]: 

h(u,$) = 6u(l - u)[l + az(# - l/5) + . ..I> (21) 

a(u,$) = Wl- 4, (22) 

where 

and 5 = 2u - 1, 0 = k(llN, - 2nf) and the anomalous 

dimension 7~ is given by [13] 

The coefficients in the Gegenbauer expansion Eq. (21) 
at low scale, a,(@~), should be determined by a certain 
nonperturbative method, or should be extracted from the 
experimental data. We use the model given in [2J for 
p meson wave functions. At & = 1 GeV’ this model 
predicts 

a&; = 1 GeV’) = -1.25. 

Using this value, at $ = rn; scale we find that a~($ = 

rn:),= -0.85 at A@) = 225 MeV. For the determination 
of the coupling constant gDeD,,, we make the following 
replacements: b + c, B’ + D’, B + D, and a~($) + 

4g). 

III. NUMERICAL ANALYSIS AND DISCUSSION 

The aim of the present work is to determine the cou- 
pling constants gB.Bp and gD*Dp. In the numerical anal- 
ysis we have used the following input parameters: 

rn,, = 4.64.8 GeV [14,15], 

rn, = 1.3-1.4 GeV [l, 141, 

VIZ~.(~.) = 5.324 (2.10) GeV~, 

rnqq = 5.278 (1.864) GeV [16], 

f; = 0.2 [2], f, = mp/(9.44Tr)“z [l]. 

According to the QCD sum rules method we have to 
find a region of M.” where gpBpfp fs does not practi- 
cally depend on M.“, and at the same time the continuum 
contribution remains under control, i.e., it constitutes 
about 30-40% of the bare loop contribution. 

The M,” dependence of gB.+fB* fB at so - 36 GeV 
is presented in Fig. 2. The best stability region is 
10 GeV’ 5 M.” 5 20 GeV’, and the prediction is 

gB*BpfB.fB = 0.33. (23) 

Performing the similar calculations for gD.D,,fD. fD we 
get (Fig. 3) 

gD.DpfD.fD = 0.57 (24) 

in the stability region 4 GeV’ 5 M.” 5 6 GeV’, and at 
so = 6 GeV’. Now let us compare the results (21) and 
(22) with the predictions on these coupling constants in 
the framework of “classical sum rules &hod.” In [17], 

10 

M2(GeV2) 

FIG. 2. The dependence of the coupling constant 
gpBpfp fB on the Bore1 parameter square Ms. Solid line 
corresponds to first set and dashed line to second set of values 
of the leptonic decay constants. 
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FIG. 3. The same as in Fig. 2 but for the ~D-D,,~D*~D 
case. 

we find that 

SB.BpfB.fB = 0.40, 

SPDpfPfD = 0.41. (25) 

We see that the results obtained in these two ap- 
proaches (the light cone and the classical sum rule) are 
close. The differences are due to the higher twist effects. 

For determination of the coupling constants from Eqs. 
(23) and (24), we use the following two sets of values for 
the leptonic decay constants: 
(1) fm = 140 MeV [9,18], 

jB. = 160 MeV [18], 

Jo = 170 i 10, MeV [9,18], 

Jo. = 240 i 20 MeV [9], (26) 
(2) Jo = 198 f 15 MeV [19,20,21], 

jp = 213 MeV [19], 

Jo = 180 MeV [19,20,21], 

jp = 258 MeV [19]. (27) 

Using Eqs. (23) and (24) and the values of leptonic 
decay constants we obtain 

(1) SEPBp = 15, 

SD*Dp=l4r 

(2) SB.Bp = 9, 

gp& = 12. 

For the calculations of the decay constants in the tist 
set, we used the values of c- and b-quark masses as rn, = 
1.3 GeV and ma = 4.8 GeV, and rn, = 1.42 GeV and 
rn,, = 4.6 GeV for the second set. 

Finally, we would like to compare our results with 
the predictions of the vector dominance model (VDM). 
For the SB-BP and gD.Dp coupling constants, VDM pre- 
dicts a value gB.Bp = gDeDp = 2 = 16 [22], where 
fr = 133 MeV is the pion decay constant. We see that if 
we choose the tist set of values of the leptonic decay con- 
stants fs and fr,, our predictions for gB.+ and gD.Dp 
coupling constants are in very good agreements with the 
VDM predictions. 

In conclusion, the coupling constants gB.Bur gB.BK., 
gD.DK., and gD.Dw can be easily obtained by using the 
similar calculations. 
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