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A low-frequency, stochastic gravitational radiation background can be detected through the irregularities it
induces in pulsar arrival times. Here, we present an optimal statistical framework for analysis of timing data
from a single pulsar, correcting an error in previous treatments. Observations of PSREEBg®Id an upper
limit (95% confidenceof 1.0x10 8 or (90% confidence4.8X10 ° of the closure density at frequency
4.4x 107 ° Hz. This result probably rules out cosmological models that use cosmic strings as seeds for galaxy
formation. Combined observations of four binary pulsars yield weaker limits at frequencies as low'as 10
Hz.

PACS numbgs): 97.60.Gb, 04.80.Nn, 98.80.Es

[. INTRODUCTION tional radiation can produce detectable frequency variations.
If the GWB has a constant energy density per octéyg
Since the experimental discovery of gravitational radia-relative to the closure density then the power spectrum
tion [1], it has been clear that the Universe must be filled(power per octave bandwidttof the resulting pulse arrival
with a gravitational wave backgrour{@WB), although nei- time residuals will bg 23]
ther the amplitude nor the spectrum of this radiation is
known. While some fraction of the GWB must be truly pri- HS
mordial in origin[2,3], and some due to discrete sources Sg(f):Fng‘5=1.34>< 10“Qgh2fy_r§1,uszyr, (1)
such as binary stellar syster,5], some may also be pro- m
duced in phase transitions in the early Univei&&] or arise
during inflation[8]. Recent analyses of cosmic string modelswhere  H,  represents  Hubble's constant and
[9-16] suggest that an observationally interesting level ofi=Hy/(100 km s *Mpc™1). In constrast, the power spec-
gravitational radiation should result from the decay of stringtrum of “white” observation noise falls off as 1/ For fre-
loops if their mass per unit length were large enough forquencies much larger than the inverse timespan of the data,
string models of galaxy formation to be viable. the measured root-mean-square timing residuals directly
Observations of millisecond and binary radio pulddrg—  limit the quantitngh2 [17]. However, a more complicated
23] provide the tightest current limits on the energy densityanalysis is required because the pulsar timing data are fit for
per logarithmic bandwidth of the GWB. The fluctuations in the a priori unknown pulsar period and period derivative, a
pulse arrival times can be used to constrain the GWB aprocedure that absorbs nearly all harmonic content at
frequencies on the order of inverse years and higher, whilé=<1/T, whereT represents the timespan of the data.
the stability of binary pulsar orbits constrains the GWB at Stinebringet al.[22] and Kaspiet al.[23] have outlined a
longer wavelengths. Unfortunately, recent analyses of bottechnique for the rigorous analysis of pulsar timing residuals
these effects contain statistical flaws; analyses of arrivaithat properly accounts for this observational transfer func-
times [22,23 underestimate their experimental sensitivity, tion. Following [24,25, they calculate spectral estimators
while analyses of binary orbif®1,1], by neglecting cosmic S, for each pulsar, wittm=1,2,4,8 . .., corresponding to
variance, overestimate them. For both these analyses wigequencies~m/T. Using Monte Carlo simulations that ex-
present an optimal alternative based on the Neyman-Pearsawtly reproduce the spacing of observations in the original
lemma. data, they then calculat&,,),,, the expectation value of the
mth spectral estimator if only the white measurement noise is
present(the strength of this measurement noise is known
from the scatter of the data within a single gayhey also
calculate(Sm(Qgh2)>g, the expectation of thenth spectral
A gravitational wave deforms the metric at the Earth orestimator if the dominant noise source has the form of Eq.
pulsar, perturbing the observed pulsar frequency. Because tti#). The random variablenS,/[{Sp)w+(Sm(Qgh?))e] is
frequencies of some pulsars can be measured with a predheny?distributed withm degrees of freedom(fn). For con-
sion better than 10'4 even very small amounts of gravita- venience, the results ¢23] are reproduced in Table I.

Il. PULSAR PERIOD FLUCTUATIONS FROM
GRAVITATIONAL RADIATION
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TABLE I. Observed and computed spectral densities of timing residuals for PSR B0858nd PSR
B1937+21 from Ref. [23]. Values of (S.), correspond to a gravitational-wave background of
Q4h?=10"7; values for othef)4h? can be found by linear scaling.

Pulsar m f Sh (Sw (Swg
(yr'h (uSyr ) (uSyr ) (usyr )
B1855+09 1 0.14 0.622 3.08 112.
2 0.29 0.170 3.68 4.32
4 0.58 0.824 2.53 0.23
8 1.15 2.37 2.37 0.059
B1937+21 1 0.12 207 0.087 238
2 0.24 8.84 0.071 8.03
4 0.49 0.218 0.071 0.242
8 0.98 0.067 0.071 0.008

By comparing the measured valuesSyf to the expected H1. For a given pulsar we can then define a likelihood ratio
values under the hypothesis HO that arrival time variations
are only due to observation noise, and under the hypothesis H 2( mSy
H1 that the arrival time variations are due to observation fN(x|Qgh2) m:1,2,4,gxm (Sm>w+(Sn(Qgh2)>g

noise plus a given level of GWB noise, it is possible to place L= Fu(x]0) ms,

an upper limit on the strength of the GWB noise. Unfortu- N Xﬁq _>

nately, having obtained the spectral estimators, b2#hand m=1248""\ (Sm)w

[23] proceed incorrectly in calculating this limit. Their pro- 2

cedure is most clearly explained in App. A 3], and we According to the Neyman-Pearson testf if(x| ) is abso-

summarize it here briefly. - ;
. - lutel hen the h h H1 -
In order to compare the probability of obtaining a spectral-Utey continuous orx, then the hypothesis can be re

timat | than the ob . der the t jected at some confidence level-k(c) if L<c. The
ES ngtﬁees:s? H%r%enrd H‘in the % ?9“’599) un ler de V\{)O b.lcomplement of the confidence(c) is the probability that
: yf) . » €y definé a "normalized probabilyy i pe rejectedii.e., the probability the observations will
ity” & for a given observation which is the ratio of the . - : ;
. ; ) yield L=c) even if H1 is true.
probability of observing a valu&,, or less given H1 to the In simple cases the dependenceaobn ¢ can be calcu-
probability of observing a valu§,, or less given HO. Then,

. o o . lated analytically. In practice, we determindor a givena
noting that the individual values @&, are statistically inde- and Qgh2 via numerical integration. Using the data from

pendent, they define the total normalized probability; of ; :
the entire set of observations as the product of the individuz£23]’ the residuals from PSR B18599 yield

normalized probabilities?,;=11;7% , and take .7, to be Qgh2< 1.0x10° 8 (95% confidence
the confidence with which H1 can be rejected. However, this
“normalized probability” is not formally a probability at all Qgh2< 4.8<10°° (90% confidence

(see for exampld26]); for example, note that neither the
2 nor the 7, is restricted to values less than unity. As a Note that since the values Osm(ﬂghz))g are derived using
consequence, the quantity-17,,; does not represent a con- Eq. (1), these limits are strictly true only for the assumed
fidence level in the usual sense of being the likelihood thatodel of a constant gravitational wave energy density per
one has avoided an “error of the second kin®7] and octave, but because nearly all the power of the test comes
rejected H1 even though it is true. from the S; estimator, the Ilimit on Q4(f) at

We have reexamined the data presente@3}, using the  f~1/T=4.4x 10 ° Hz does not depend strongly on this as-
Neyman-Pearson test. As discussedd], this is the opti- sumption.
mal test for distinguishing between simple hypothgsesse The 95% confidence limit ongh2< 1.0x10 8 is six
with no free parameteysThe problem of estimating an up- times tighter than the limit quoted [23], and corresponds to
per limit on the GWB can be formulated as the successiva dimensionless straif28] at 4.4x10 ° Hz of 3x 10 4
comparision of simple hypotheses, the hypothesis H1 that th&his limit is derived using only the timing residuals of PSR
arrival time variations are due to measurement error plus 81855+09 and is the best limit that pulsar timing can cur-
GWB contribution of strengtmghz, and the hypothesis HO rently place on the GWB. As can be seen in Table |, the
that the arrival times variations are due to measurement errambserved S; and S, are significantly larger for PSR
alone. The upper limit on the strength of the GWB is deter-B1937+21 than for PSR B185509. Since gravitational ra-
mined by finding the value c>§flgh2 for which our ability to  diation is quadrupole in nature, and these two pulsars are
reject H1 becomes unacceptably low. close together in the sky, the GWB should contribute to the

The Neyman-Pearson test can be formulated as followsming residuals of the two pulsars at a similar level, and the
[27]. Given a random variabbe=x;,X,, . . .Xy (correspond- observed values d§,, for the two pulsars should be of the
ing to N observationswhich has a probability density func- same order of magnitude.g., column six of Table)! If one
tion fy(x|8) where 6 is a parameter that distinguishes the assumes a GWB Witlﬂgh2=10*8, the probability of ob-
two hypotheses; in our cage=0 for HO and 49:!)gh2 for  serving values 0§, as high as those obtained from the PSR
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TABLE Il. Orbital period variations of four binary pulsar3. TABLE Ill. Summary of 95% confidence limits on the energy
- - _ density per octave of the stochastic gravitational background radia-
Pulsar PredictedPy, ObservedP,, AP, /Py tion.
10 %57t 10 %57t 10 Pyrs?t
Frequency range Upper limit o!ngh2

BO655+64° 0 0.0(3) 0.01.0 — —

B1534+12° -0.1924 —0.175(17) 0.1615) f~4.4<107" Hz 1.0x10

B1855+-09¢ 0 0.6(1.2) 0.1636) 10 % Hz=f<4.4x10° Hz 0.04

B1913+16° ~2.40258  —2.408(11) 0.0612) 10 Hz=f<10""* Hz 0.5

8Numbers in parentheses are uncertainties in last digits quoted.
bRef. [35], and unpublished data of Arzoumanian and Thorsetfulsars.

(1995. Let HO be the hypothesis that the measurements
‘Ref.[35]. X;= 6Py /Py, for the pulsars are only caused by the measure-
Ref.[23]. ment errorse;. Let H1 be the hypothesis that there is an
*Ref. [36]. additional variances?(Q4h?)=2Q,H3 due to the GWB.
fincludes kinematic correction to account for differential galactic The probability densityfi(ximghz) of obtaining a given
acceleration. measurement x; is standard normal, with variance

e?+s(Q4h?), and the likelihood ratio for the Neyman-
B1937+21 data is<10 °, leading us to conclude that the Pearson test is
PSR B193#21 residuals are dominated by a noise process

other than the GWB. This is not surprising, given that PSR H f(%;|Q4h?)
B1937+21 is significantly younger than PSR B18569, fn(x|Qgh?) =14 "I
and, in fact, the observed noise level for PSR B1937 is EENCOEE : ()
consistent with extrapolations from observations of slower N IT fixl0)
i=1,4

pulsarg[29]. Because of this excess noise, the timing residu-

als of PSR B193%21 contain no information about the ; :
GWB not already provided by PSR B18589; however, a where here_ the_ prod_uc_t runs over the four pulsars listed in
Table 1. This yields limits of

number of recently discovered millisecond pulsars appear to

have a timing stability comparable or better than that of PSR Q,h?<0.04 (95% confidenck
B1855+09, so the limits orﬂgh2 are likely to continue to g
improve. Q4h?<0.02  (90% confidenck

in the range 10! Hz=f<10"° Hz (D <10 ! for all
four pulsars in Table )l Only the distant PSR B193316 is

In addition to the rotation of the neutron star, binary pul-sensitive to waves with 103? Hz<=f<10 ! Hz. In this
sar systems provide a second “clock”: the binary orbit itself. range, we have the limit§95%) Qghzs 0.5 and (90%)
Most binary pulsars have white dwarf or neutron star com{lghzs 0.1. Note that in contrast to our results from milli-
panions, and the orbits in these systems are expected to Becond pulsar timing, these limits are weaker than those pre-
very clean. Changes in the orbital period can be calculatesliously claimed[21,1].
precisely from general relativity30] and, in many cases,
such changes are negligibly small. IV. DISCUSSION

Gravitational waves will perturb the apparent orbital fre- o o
quency, just as they do the pulsar frequency. However, be- We he_lve usgd pulsar timing data to _se_t new limits on the
cause no fit for an unknown orbital period derivatif?g is stochastic gravitational background radiation at very low fre-

required, measurements of pulsar orbits can be used to coﬂybelni'ﬁst' t1r']he limits ‘Zre s.LtJm'marlze(tj n Tgltt)leblll.l It is rt]r?
strain waves with wavelengths as long as the distdhde able that the energy density 1S constrained to be lowel than

- . . the critical density over the wide range 18
the pulsar. If{(6Py/Py)?) is the variance of the observed ~7 .
: : . Hz=f=<4.4X10" " Hz, or almost 19 octaves in frequency.
Py, fluctuations, then for frequencies betwen! and 71 d y

; NP ’ The limits atf~4.4x10"° Hz are the the strongest limits
it has been shown thdd(f)=<3zHq “((6Py/Py)%) [21]. on the current energy density in gravitational radiation at any

Order-of-magnitude limits onf have been obtained frequency.(Limits at lower frequencies from studies of an-
from the observed, for PSR B1913-16 (corrected for the isotropy in the microwave background measure the energy
general relativistic orbital decay21,1]. However, these lim-  density at the epoch of last scatterifg1].)
its on ()4 are overly strong as they account for neither the  Qur limits on the strength of the GWB place strong con-
observational uncertainties, nor for the fact that any contristraints on cosmic string models of the microwave back-
bution to 6P, /Py, from the GWB will be Gaussian distrib- gound anisotropy or galaxy formation. Cosmic strings, one-
uted (cosmic variance Here, we present a simple rigorous dimensional space-time defects predicted by some grand
limit on the GWB for D '<f<T~!, again using the unified theories, are characterized by a mass per unit length
Neyman-Pearson test. There are now three other binary pul:. They lose energy through the emission of gravitational
sars withP, measurements of similar quality to that of PSR radiation at a rate that depends pn Thus limits on the
B1913+16 (see Table )l and we use the data from all four GWB constrainy, and, therefore, the viability of certain

lll. BINARY PERIOD FLUCTUATIONS
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string models. Using a simple model in which waves aremoving
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strings  have  been constructed  with

emitted primarily in the fundamental mode, Bennett andGu/c®>~4x10 ® [33], while a string explanation of the

Bouchet[15] found a relation between the present logarith-

measured anisotropies in the microwave background radia-

mic gravitational wave density and the string mass per unition requiresGu/c?~2x 10" ° [34]. All of these models are

length:

Q4h?=(0.014+0.004 Gp/c?. (4)

Our limit on Qgh2 from PSR B1855-09 corresponds there-
fore to the limits Gu/c?<1.0x10°® (95% and
Gul/c?<4.8<10° 7 (90%). These bounds are much tighter

difficult to reconcile with our observed limits oﬁghz, and
cosmic string calculations that include multi-mode radiation
and the effects of radiation produced during the matter era
[16], are likely to increase rather than decrease the discrep-
ancy between the GWB observations and the valueg of
required by string models.

than the limits from studies of primordial nucleosynthesis

[16].
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