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A low-frequency, stochastic gravitational radiation background can be detected through the irregularities it
induces in pulsar arrival times. Here, we present an optimal statistical framework for analysis of timing data
from a single pulsar, correcting an error in previous treatments. Observations of PSR B1855109 yield an upper
limit ~95% confidence! of 1.031028 or ~90% confidence! 4.831029 of the closure density at frequency
4.431029 Hz. This result probably rules out cosmological models that use cosmic strings as seeds for galaxy
formation. Combined observations of four binary pulsars yield weaker limits at frequencies as low as 10212

Hz.

PACS number~s!: 97.60.Gb, 04.80.Nn, 98.80.Es
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I. INTRODUCTION

Since the experimental discovery of gravitational radi
tion @1#, it has been clear that the Universe must be fille
with a gravitational wave background~GWB!, although nei-
ther the amplitude nor the spectrum of this radiation
known. While some fraction of the GWB must be truly pri
mordial in origin @2,3#, and some due to discrete source
such as binary stellar systems@4,5#, some may also be pro-
duced in phase transitions in the early Universe@6,7# or arise
during inflation@8#. Recent analyses of cosmic string mode
@9–16# suggest that an observationally interesting level
gravitational radiation should result from the decay of strin
loops if their mass per unit length were large enough f
string models of galaxy formation to be viable.

Observations of millisecond and binary radio pulsars@17–
23# provide the tightest current limits on the energy densi
per logarithmic bandwidth of the GWB. The fluctuations i
pulse arrival times can be used to constrain the GWB
frequencies on the order of inverse years and higher, wh
the stability of binary pulsar orbits constrains the GWB
longer wavelengths. Unfortunately, recent analyses of bo
these effects contain statistical flaws; analyses of arriv
times @22,23# underestimate their experimental sensitivity
while analyses of binary orbits@21,1#, by neglecting cosmic
variance, overestimate them. For both these analyses
present an optimal alternative based on the Neyman-Pear
lemma.

II. PULSAR PERIOD FLUCTUATIONS FROM
GRAVITATIONAL RADIATION

A gravitational wave deforms the metric at the Earth o
pulsar, perturbing the observed pulsar frequency. Because
frequencies of some pulsars can be measured with a pr
sion better than 10214, even very small amounts of gravita
530556-2821/96/53~6!/3468~4!/$10.00
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tional radiation can produce detectable frequency variation
If the GWB has a constant energy density per octaveVg
relative to the closure density then the power spectrum
~power per octave bandwidth! of the resulting pulse arrival
time residuals will be@23#

Sg~ f !5
H0
2

8p4Vgf
2551.343104Vgh

2f yr21
25 ms2yr, ~1!

where H0 represents Hubble’s constant and
h5H0 /(100 km s21Mpc21). In constrast, the power spec-
trum of ‘‘white’’ observation noise falls off as 1/f . For fre-
quencies much larger than the inverse timespan of the da
the measured root-mean-square timing residuals direct
limit the quantityVgh

2 @17#. However, a more complicated
analysis is required because the pulsar timing data are fit f
the a priori unknown pulsar period and period derivative, a
procedure that absorbs nearly all harmonic content a
f&1/T, whereT represents the timespan of the data.
Stinebringet al. @22# and Kaspiet al. @23# have outlined a

technique for the rigorous analysis of pulsar timing residual
that properly accounts for this observational transfer func
tion. Following @24,25#, they calculate spectral estimators
Sm for each pulsar, withm51,2,4,8, . . . , corresponding to
frequenciesf'm/T. Using Monte Carlo simulations that ex-
actly reproduce the spacing of observations in the origina
data, they then calculatêSm&w , the expectation value of the
mth spectral estimator if only the white measurement noise
present~the strength of this measurement noise is know
from the scatter of the data within a single day!. They also
calculate^Sm(Vgh

2)&g , the expectation of themth spectral
estimator if the dominant noise source has the form of Eq
~1!. The random variablemSm /@^Sm&w1^Sm(Vgh

2)&g# is
thenx2distributed withm degrees of freedom (xm

2 ). For con-
venience, the results of@23# are reproduced in Table I.
3468 © 1996 The American Physical Society
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TABLE I. Observed and computed spectral densities of timing residuals for PSR B1855109 and PSR
B1937121 from Ref. @23#. Values of ^Sm&g correspond to a gravitational-wave background of
Vgh

251027; values for otherVgh
2 can be found by linear scaling.

Pulsar m f Sm ^Sm&w ^Sm&g
(yr21) (ms2 yr21) (ms2 yr21) (ms2 yr21)

B1855109 1 0.14 0.622 3.08 112.
2 0.29 0.170 3.68 4.32
4 0.58 0.824 2.53 0.23
8 1.15 2.37 2.37 0.059

B1937121 1 0.12 207 0.087 238
2 0.24 8.84 0.071 8.03
4 0.49 0.218 0.071 0.242
8 0.98 0.067 0.071 0.008
By comparing the measured values ofSm to the expected
values under the hypothesis H0 that arrival time variatio
are only due to observation noise, and under the hypoth
H1 that the arrival time variations are due to observat
noise plus a given level of GWB noise, it is possible to pla
an upper limit on the strength of the GWB noise. Unfort
nately, having obtained the spectral estimators, both@22# and
@23# proceed incorrectly in calculating this limit. Their pro
cedure is most clearly explained in App. A of@23#, and we
summarize it here briefly.

In order to compare the probability of obtaining a spect
estimate no larger than the observedSm( j ) under the two
hypotheses H0 and H1, they define a ‘‘normalized proba
ity’’ P for a given observation which is the ratio of th
probability of observing a valueSm or less given H1 to the
probability of observing a valueSm or less given H0. Then,
noting that the individual values ofSm are statistically inde-
pendent, they define the total normalized probabilityP tot of
the entire set of observations as the product of the individ
normalized probabilities,P tot5) iP i , and take 12P tot to be
the confidence with which H1 can be rejected. However, t
‘‘normalized probability’’ is not formally a probability at all
~see for example@26#!; for example, note that neither th
P nor theP tot is restricted to values less than unity. As
consequence, the quantity 12P tot does not represent a con
fidence level in the usual sense of being the likelihood t
one has avoided an ‘‘error of the second kind’’@27# and
rejected H1 even though it is true.

We have reexamined the data presented by@23#, using the
Neyman-Pearson test. As discussed in@27#, this is the opti-
mal test for distinguishing between simple hypotheses~those
with no free parameters!. The problem of estimating an up
per limit on the GWB can be formulated as the success
comparision of simple hypotheses, the hypothesis H1 that
arrival time variations are due to measurement error plu
GWB contribution of strengthVgh

2, and the hypothesis H0
that the arrival times variations are due to measurement e
alone. The upper limit on the strength of the GWB is det
mined by finding the value ofVgh

2 for which our ability to
reject H1 becomes unacceptably low.

The Neyman-Pearson test can be formulated as follo
@27#. Given a random variablex5x1 ,x2 , . . .xN ~correspond-
ing toN observations! which has a probability density func
tion f N(xuu) whereu is a parameter that distinguishes th
two hypotheses; in our caseu50 for H0 andu5Vgh
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H1. For a given pulsar we can then define a likelihood ratio

L5
f N~xuVgh

2!

f N~xu0!
5

)
m51,2,4,8

xm
2 S mSm

^Sm&w1^Sm~Vgh
2!&g

D
)

m51,2,4,8
xm
2 S mSm

^Sm&w
D .

~2!

According to the Neyman-Pearson test, iff N(xuu) is abso-
lutely continuous onx, then the hypothesis H1 can be re-
jected at some confidence level 12a(c) if L<c. The
complement of the confidencea(c) is the probability that
H1 will be rejected~i.e., the probability the observations will
yield L<c) even if H1 is true.

In simple cases the dependence ofa on c can be calcu-
lated analytically. In practice, we determinec for a givena
and Vgh

2 via numerical integration. Using the data from
@23#, the residuals from PSR B1855109 yield

Vgh
2,1.031028 ~95% confidence!,

Vgh
2,4.831029 ~90% confidence!.

Note that since the values of^Sm(Vgh
2)&g are derived using

Eq. ~1!, these limits are strictly true only for the assumed
model of a constant gravitational wave energy density per
octave, but because nearly all the power of the test comes
from the S1 estimator, the limit on Vg( f ) at
f;1/T54.431029 Hz does not depend strongly on this as-
sumption.

The 95% confidence limit ofVgh
2,1.031028 is six

times tighter than the limit quoted in@23#, and corresponds to
a dimensionless strain@28# at 4.431029 Hz of 3310214.
This limit is derived using only the timing residuals of PSR
B1855109 and is the best limit that pulsar timing can cur-
rently place on the GWB. As can be seen in Table I, the
observed S1 and S2 are significantly larger for PSR
B1937121 than for PSR B1855109. Since gravitational ra-
diation is quadrupole in nature, and these two pulsars are
close together in the sky, the GWB should contribute to the
timing residuals of the two pulsars at a similar level, and the
observed values ofSm for the two pulsars should be of the
same order of magnitude~e.g., column six of Table I!. If one
assumes a GWB withVgh

251028, the probability of ob-
serving values ofSm as high as those obtained from the PSR
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B1937121 data is,1025, leading us to conclude that th
PSR B1937121 residuals are dominated by a noise proce
other than the GWB. This is not surprising, given that PS
B1937121 is significantly younger than PSR B1855109,
and, in fact, the observed noise level for PSR B1937121 is
consistent with extrapolations from observations of slow
pulsars@29#. Because of this excess noise, the timing resid
als of PSR B1937121 contain no information about the
GWB not already provided by PSR B1855109; however, a
number of recently discovered millisecond pulsars appea
have a timing stability comparable or better than that of P
B1855109, so the limits onVgh

2 are likely to continue to
improve.

III. BINARY PERIOD FLUCTUATIONS

In addition to the rotation of the neutron star, binary pu
sar systems provide a second ‘‘clock’’: the binary orbit itse
Most binary pulsars have white dwarf or neutron star co
panions, and the orbits in these systems are expected t
very clean. Changes in the orbital period can be calcula
precisely from general relativity@30# and, in many cases
such changes are negligibly small.

Gravitational waves will perturb the apparent orbital fr
quency, just as they do the pulsar frequency. However,
cause no fit for an unknown orbital period derivativeṖb is
required, measurements of pulsar orbits can be used to
strain waves with wavelengths as long as the distanceD to
the pulsar. If^(d Ṗb /Pb)

2& is the variance of the observe
Ṗb fluctuations, then for frequencies betweenD21 andT21

it has been shown thatVg( f )<
1
2H0

22^(d Ṗb /Pb)
2& @21#.

Order-of-magnitude limits onVg have been obtained
from the observedṖb for PSR B1913116 ~corrected for the
general relativistic orbital decay! @21,1#. However, these lim-
its on Vg are overly strong as they account for neither t
observational uncertainties, nor for the fact that any con
bution to d Ṗb /Pb from the GWB will be Gaussian distrib-
uted ~cosmic variance!. Here, we present a simple rigorou
limit on the GWB for D21, f,T21, again using the
Neyman-Pearson test. There are now three other binary
sars withṖb measurements of similar quality to that of PS
B1913116 ~see Table II! and we use the data from all fou

TABLE II. Orbital period variations of four binary pulsars.a

Pulsar PredictedṖb ObservedṖb D Ṗb /Pb

10212ss21 10212ss21 10210 yrs21

B0655164b 0 0.0(3) 0.0~1.0!
B1534112c 20.1924 20.175(17) 0.15~15!
B1855109d 0 0.6(1.2) 0.18~36!
B1913116e 22.40258 22.408(11)f 0.06~12!

aNumbers in parentheses are uncertainties in last digits quoted
bRef. @35#, and unpublished data of Arzoumanian and Thors
~1995!.
cRef. @35#.
dRef. @23#.
eRef. @36#.
fIncludes kinematic correction to account for differential galac
acceleration.
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pulsars.
Let H0 be the hypothesis that the measurement

xi5d Ṗb /Pb for the pulsars are only caused by the measure
ment errorsei . Let H1 be the hypothesis that there is an
additional variancesi

2(Vgh
2)52VgH0

2 due to the GWB.
The probability densityf i(xi uVgh

2) of obtaining a given
measurement xi is standard normal, with variance
ei
21si

2(Vgh
2), and the likelihood ratio for the Neyman-

Pearson test is

L5
f N~xuVgh

2!

f N~xu 0!
5

)
i51,4

f i~xi uVgh
2!

)
i51,4

f i~xi u0!

, ~3!

where here the product runs over the four pulsars listed i
Table II. This yields limits of

Vgh
2,0.04 ~95% confidence!,

Vgh
2,0.02 ~90% confidence!,

in the range 10211 Hz& f&1029 Hz (D21&10211 for all
four pulsars in Table II!. Only the distant PSR B1913116 is
sensitive to waves with 10212 Hz& f&10211 Hz. In this
range, we have the limits~95%! Vgh

2<0.5 and ~90%!
Vgh

2<0.1. Note that in contrast to our results from milli-
second pulsar timing, these limits are weaker than those pr
viously claimed@21,1#.

IV. DISCUSSION

We have used pulsar timing data to set new limits on the
stochastic gravitational background radiation at very low fre
quencies. The limits are summarized in Table III. It is no-
table that the energy density is constrained to be lower tha
the critical density over the wide range 10212

Hz< f<4.431027 Hz, or almost 19 octaves in frequency.
The limits at f;4.431029 Hz are the the strongest limits
on the current energy density in gravitational radiation at an
frequency.~Limits at lower frequencies from studies of an-
isotropy in the microwave background measure the energ
density at the epoch of last scattering@31#.!

Our limits on the strength of the GWB place strong con-
straints on cosmic string models of the microwave back
gound anisotropy or galaxy formation. Cosmic strings, one
dimensional space-time defects predicted by some gran
unified theories, are characterized by a mass per unit leng
m. They lose energy through the emission of gravitationa
radiation at a rate that depends onm. Thus limits on the
GWB constrainm, and, therefore, the viability of certain

.
ett

tic

TABLE III. Summary of 95% confidence limits on the energy
density per octave of the stochastic gravitational background radia
tion.

Frequency range Upper limit onVgh
2

f;4.431029 Hz 1.031028

10211 Hz< f<4.431029 Hz 0.04
10212 Hz< f<10211 Hz 0.5
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string models. Using a simple model in which waves a
emitted primarily in the fundamental mode, Bennett an
Bouchet@15# found a relation between the present logarith
mic gravitational wave density and the string mass per u
length:

Vgh
25~0.01460.004!Gm/c2. ~4!

Our limit onVgh
2 from PSR B1855109 corresponds there-

fore to the limits Gm/c2<1.031026 ~95%! and
Gm/c2<4.831027 ~90%!. These bounds are much tighte
than the limits from studies of primordial nucleosynthes
@16#.

Cosmic strings are of particular interest as possible se
for the condensation of galaxies or clusters of galaxies. Co
densation around loops of string requiresGm/c2.1026 @32#.
Models in which structure forms by accretion in the wake
re
d
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nit

r
is

eds
n-

of

moving strings have been constructed with
Gm/c2;431026 @33#, while a string explanation of the
measured anisotropies in the microwave background rad
tion requiresGm/c2'231026 @34#. All of these models are
difficult to reconcile with our observed limits onVgh

2, and
cosmic string calculations that include multi-mode radiatio
and the effects of radiation produced during the matter e
@16#, are likely to increase rather than decrease the discre
ancy between the GWB observations and the values ofm
required by string models.
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