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Nondegenerate fermions in the background of the sphaleron barrier
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We consider level crossing in the background of the sphaleron barrier for nondegenerate fermions. The mass
splitting within the fermion doublets allows only for an axially symmetric ansatz for the fermion fields. In the
background of the sphaleron we solve the partial differential equations for the fermion functions. We find little
angular dependence for our choice of ansatz. We therefore propose a good approximate ansatz with radial
functions only. We generalize this approximate ansatz with radial functions only to fermions in the background
of the sphaleron barrier and argue that it is a good approximation there, too.

PACS numbs(s): 11.15.Kc, 12.15.Ji

I. INTRODUCTION lower levels, resulting finally in an identical spectrum, where
only the number of occupied levels above the Dirac sea has
The explanation of the observed baryon asymmetry of thelecreased by ond 2].
universe represents a challenging problem. Although far Previous calculations demonstrating the level crossing
from solving this highly complex problem, we know at least[15-19,12 are based on the approximation that the fermion
what features a theory must have to allow for an explanationdoublets are degenerate in méasd that the Weinberg angle
It is therefore remarkable that the standard model satisfies athay be set to zerf20,21]), allowing for a spherically sym-
three Sakharov conditions to generate the observed baryanetric ansatz for the fermion wave function. For the physical
asymmetry:C and CP violation, a first-order phase transi- situation of highly nondegenerate fermion masé&asleast
tion, and nonconservation of baryon numbgr. for the heavy flavorsanalogous calculations are far more
Here we are concerned with the violation of baryon num-involved, since the spherically symmetric ansatz is inad-
ber (or more generally fermion numbein the standard equate, and the equations of motion cannot be reduced to
model. It was discovered by 't Hodf2] as a consequence of ordinary differential equationgThis is in contrast with the
the Adler-Bell-Jackiw anomaly present in chiral gauge theo-case of instantong22].)
ries. In particular 't Hooft studied the fermion number viola-  The study of fermionic quantum corrections to the classi-
tion induced by vacuum to vacuum tunneling processes decal energy of the sphaleron barrier, performedllia—14, is
scribed by instantons, resulting in extremely small tunnelingalso based on the approximation that the fermion doublets
rates. are degenerate in mass. There the effect of the mass splitting
In Weinberg-Salam theory topologically distinct vacua areof the top-bottom doublet has been approximated by adding
separated by finite energy barriers. The height of the barrierfsalf the contribution of a degenerate doublet with the top
is given by the energy of the sphaleron, an unstable solutioquark mass and half the contribution of a degenerate doublet
of the static field equationi3,4]. Thus the sphaleron deter- with the bottom quark mass. Since the fermionic quantum
mines the minimal energy needed for a classically allowedorrections increase strongly with increasing degenerate
vacuum to vacuum transition. The probability for a transitionfermion mass, the contribution from the top quarkirsthis
is expected to be enhanced significantly, if enough energy iapproximation quite large [12—14. Consequently, the
put into the system under consideration, either in suitablsphaleron transition rate depends strongly on the quark
(future) accelerators or at high temperatures in the early unimasses. However, the sphaleron transition rate may be sen-
verse[5-14]. sitive to the treatment of the mass splitting of the heavy
While the barrier is traversed baryon number violationnondegenerate fermions. Therefore the validity of this ap-
may be seen explicitly by analyzing the corresponding Diragroximation needs to be investigated, and a more accurate
equation in the bosonic background fields. The lowest positreatment of the mass splitting is called for.
tive energy continuum state becomes continuously deformed As an initial step we here consider an axially symmetric
along the barrier until it reaches the negative energy conansatz for the fermion fields in the background of the sphale-
tinuum, passing zero energy precisely at the top of the energyn barrier. The ansatz is chosen in such a way, that it is
barrier, at the sphalerofil5—-19. Investigating the whole “almost spherically symmetric,” in the sense that the func-
spectrum of the Dirac equation shows that along the barrietions involved have little angular dependence. Because of the
in fact all levels become continuously deformed into the nexsymmetry of the sphaleron the ansatz simplifies considerably
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in the background field of the sphaleron. In this case wewvhere q, denotes the left-handed doublat, (d,), while
solve numerically the full set of partial differential equations qg abbreviates the right-handed singletag(dg), with
for the fermion functions. We then consider a set of approxisziq-zq)*_ The fermion masses are given by
mate ordinary differential equations for the fermion func-
tions, finding almost identical solutions. Because of the nu- 1
merical complexity involved in solving the full set of partial Myqg=—=f"". (")
differential equations in the background of the sphaleron bar-
rier, we consider in this general case only an approximate set The fermion equations read in dimensionless coordinates
of ordinary differential equations for radial fermion func- (chosen in units oM
tions. We argue that these equations represent a good ap-
proximation as well. N R

In Sec. Il we briefly review the Weinberg-Salam Lagrang- (Iﬁﬂa AT Ve )QL—(mM+AmMTZ)QR=0
ian (for vanishing mixing anglefor nondegenerate fermion ®)
doublets. In Sec. Il we present our axially symmetric ansatz
for the fermions, constructed as a generalization of the usuaind
spherically symmetric ansatz. In Sec. IV we consider fermi-
ons in the background of the sphaleron. We derive the equa-
tions of motion, present the solutions of the full set of partial
differential equations, and compare with the solutions of the
set of approximate ordinary differential equations. In Sec. WwhereM is the Higgs field matrix defined by
we consider fermions in the background of the sphaleron
barrier. We present our conclusions in Sec. VI. v M(O

w)

09 t t
|E—|a&,— dr—(MM'+Am7,M"q, =0, (9

: (10

Il. WEINBERG-SALAM LAGRANGIAN

. . , andm and Am are the average fermion mass and half the
We start with the bosonic sector of the Weinberg-Salam, o differencein units of M

theory in the limit of a vanishing Weinberg angle, where the w):

electromagnetic field decouples and can be set to zero: m=(M,+Mgy)/(2My), (11
1 — _
,,%/b=—ZFZVF’U“V‘a—F(DM(D)T(D’u(D)_)\(CI)T(D_%02)2 Am (Mu Md)/(ZMW)- (12)
1) lll. ANSATZ
with the field strength tensor For the gauge and Higgs fields along the sphaleron barrier
) we take the usual spherically symmetric ansatz in the tem-
Fo,=0d,.Vo—a,V5+ge®® VoV, (20 poral gauge
and the covariant derivative 1=far) . fg(r) Lo fen)
Vi=———&4jfj+ ——(Sa—Tifa) + Fila,
1 ar ar ar 13
D,F%_EigTaVi- (3
V=0, (14
The SU(2) gauge symmetry is spontaneously broken due to
the nonvanishing vacuum expectation valuef the Higgs v . 0
field, O=—=[H(r)+i7-TK(r)]| . | (15
2 1
(@)= v @) Due to a residual gauge degree of freedom we are free to
J2\1)° choose the gaugk-=0.
To construct an appropriate ansatz for nondegenerate fer-
leading to the boson masses mions we begin by recalling the spherically symmetric an-

satz for degenerate fermions, whekxen=0 [15-19,12,23
1 containing four radial functions,
Mw=Mz=>gv, My=0v 2\, (5)
au(r,=e"""MGAGL(N) +ig-FFL(N]xn, (16
We employ the valueM,,=80 GeV,g=0.65. . ‘ a2 L
For vanishing mixing angle, considering only one fermion ar(r,t)=e "My Gr(r) +io-TFr(r)Ixn, (17)
doublet, the fermion Lagrangian reads . ) o ]
where the normalized hedgehog spingrsatisfies the spin-
%= Ui ¥*D AL+ 0ri ¥#9,0r— F(q Pug+ UrdTqy) isospin relation

— @ (dgd g, +q,Pdg), (6) oxn+ Txn=0. (18)
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The generalized axially symmetric ansatz contains the IV. SPHALERON
spherically symmetric ansatz, where the four functi@hs
F_, Ggr, and Fg now depend on the variables and 6.
Because of the presence of theterms in the field equations
(8) and (9) for Am+0, we need to “double” the ansatz by
adding terms of the same structure, but withreplaced by
T,Xn» involving the four new  and 6 dependentfunctions
AG_, AF_, AGg, andAFg. The ansatz now contains eight
functions, which are in general complex afddependent,
caused by various occurrences of the nonvanishing antico

We first consider fermions in the background of the
sphaleron. Since the background field barrier is symmetric
about the sphaleron, the fermion eigenvalue is precisely zero
at the sphalerorj15-19, also for nondegenerate fermion
masses. As for degenerate fermion masses, the fermion an-
satz(19) and (20) then simplifies significantly in the back-
ground field of the sphaleron. This is due to the parity reflec-
tion symmetry of the sphaleron, for which the functidis

Mind H vanish, resulting in the decoupling of 8 of the 16

mutator[ 7-r,7,] . = 2co¥ in the equations of motion. functions. These functionss®, G?, AF!, AG? and F},

The general set of differential equations obtained WithGé, AF%Q, AG?2, can therefore consistently be set to zero.

these complex functions decouples into two parts. One pag ¢, dropping the number index on the remaining eight

contains the real and cé@ven functions together with the ¢ vions the set of partial differential equations in the vari-
imaginary and cogodd functions, while the other part con- ,paqr andp reads

tains the real and c@sodd functions as well as the imagi-

nary and coé-even functions. Thus we can consistently set 2 9 1 J

the latter part to zero. This then suggests the following pa- 0=—Gx+ Fp&—GRJr T 1+2pa—)AFR—mKGL
rametrization of the general axially symmetric ansatz, in- P P

volving 16 real functions of the variablesand p=cog¢: +AmMKAG, —2pKmAF, (21)
qu(r.ty=e""“"MHG?{GL(r,p) +icog O)GL(r,p) 1 F 2 9

. OZ—AGIIQ‘FF 1+2p(9— FR+ Fpﬁ—AGR%—mKAGL
+ig-F[FL(r,p)+icog O)FZ(r,p)1} P P
+ 1 JAGL(r,p)+icog 6)AGE(r,p) ~AMKG, ~2pKAMAF,, 22)
+i(;~f[AFi(r,p)+iCOS(@)AFE(r,p)]})Xh, O=F.+ E 3+ Zpi Fo+ E iAG —AMKAE

RTY ap) RT T gp- TR L
(19
R _ +mK(F_+2AG,)), (23
ar(r,t)=e""'MFP({Gx(r,p) +icod 6)GA(r,p)

. _ , 1 d 29
+io-T[Fx(r,p)+icog §)FA(r,p)]} 0=AFg+ T3t 2p%)AFR+ F%GR—mKAFL
+7{AGRK(r,p) +icog ) AGZ(r,p) +AMK(F_+2AG)), (24)
+ig-F[AFR(r,p)+icod ) AFE(r,p)1})xn- s 4 1 5

(20 O:G{_—FD%GL—F(].-FZD%)AFL-FI’NKGR
The choice of ansatid9) and(20) is not unique. We have +AMKAGR+ 2pK(MAFg+AMFg)
also considered alternative parametrizations of the axially
symmetric fermion ansatz. These involve different fermion —fa
functions, uniquely related to the above fermion functions. + r (GL+pAFL), (29
The crucial advantage of the anséi®) and(20) lies in the
observation, that its fermion functions have only a very weak 2 9 1 J
angular dependence in the background field of the sphaleron, 0=AG| - Fpa_AGL_ r 1+2p a—) FL
as shown below. This is in contrast to the alternative param- P P
etrizations considered by us. Recently another parametriza- —K(MAGR+AMGg), (26)

tion of the fermion ansatz, restricted to the background field

of the sphaleron, was considered[2+]. 1
The form of the ansatz already implies the boundary con- 0=—-F ——

ditions for the functions, necessary for continuous normaliz- r

able solutions of the field equations. At the origin the four — AMKAFR—2K(MAGRr+AmMGR)

functions Gy, and AG{, are finite, and their derivatives

with respect tor vanish. All other functions are zero at the " 1

origin. Whenr tends to infinity all functions have to ap- r

proach zero sufficiently fast to guarantee normalizability.

Since all functions depend only on 0§, we need to con- 1 d 24

sider only the rang@ e [0,7/2]. For all functions the deriva- 0=—AF ——{3+ ZP%) AF -+ %GL"_AmKFR

tive with respect tod then vanishes at the boundariés 0

and 0= w/2. +mKAFg. (28

17 29

fa

(FL+AG,), (27)
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FIG. 1. The “good” left-handed functionsG,_ (solid), AG, FIG. 3. Same as Fig. 2 fakG, .

(dotted, andF| (dasheg, in the background field of the sphaleron

with normalizationG, (0)=1, in the exact calculation for three val- tions. Let us therefore inspect this source term more closely
ues of the angle (6=0, =/4, andw/2) and in the approximate and split it into two termss=a; —a,, with
calculation, with the mass parametens-0.5 andAm=0.25. Any

of the three visible lines consists of four individual lines. a;=—KF_ (30

Inspection of the equations shows that only three equa"Zlnd
tions, Egs.(21), (22), and(25), containp-dependent terms, a,=2KAG (31)
when the terms involving the partial derivative with respect 2 L

to p, present in all .eight equatigns, are not considered. Inf a;=a,, the source term vanishes. We now argue that
fact only three functions occur with a prefactor These are  and a, are approximately equal. Setting the bad functions
Fr.,AFg, andAF, . If these three functions are small, then , AF., andAF, equal to zero, and neglecting terms with

the ansatz is approximately spherically symmetric in theprefactors 1, for larger Egs.(26) and (27) reduce to
sense that all functions have little angular dependence. In the

following we show that this is indeed the case.

Let us denote the three functioky,AFg, andAF, as
b, as “bad” functions, and the other five functions gsas and
“good” functions. First we note that we could set all three
bad functions consistently equal to zero, if the source term F{=—2K(MAGg+AmMGg).

AG/=K(mMAGR+AMGyR),

With the proper boundary conditions at infinity we thus find
s=—K(FL+2AG) (29 for large r for the solutions the desired behavior,
F.=—-2AG_, i.e., the source term vanishes there. On the
other hand, for small the source term vanishes, since the
function K vanishes. In the intermediate region the size of
the source term needs numerical analysis.

We have solved the set of partial differential equations in

for the bad function$r andAFg in Egs.(23) and(24) did
vanish. Then the five good functiogswere pure radial func-

Sphaleron the background of the sphaleron numerically for various val-
1.07 ' ' '
sk Am§m=.25 ] Sphaleron
.\ Am/m=.5 - . ; ;
el -~ Am/m=75 | 0.00
& i ] -0.02[ " ]
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FIG. 2. The “good” left-handed functios, in the background 0 2 4 6 8 10

field of the sphaleron in the approximate calculation, for the fixed
average massn=0.5 and three values of the mass difference
Am/m=0.25(solid), Am/m=0.50(dotted, Am/m=0.75(dashed FIG. 4. Same as Fig. 2 fd¥_.
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FIG. 5. Same as Fig. 2 fdBg. FIG. 6. The source terrs=a;—a, (solid), and its individual

partsa; (dotted and a, (dashedl in the background field of the
ues of the average massand the mass differenaem. Let sphaleron in the approximate calculation, with the mass parameters
us consider a typical numerical result. In Fig. 1 we show the"=0.5 andAm=0.25.

“good” left-handed functionsG, , AG., andF, , with nor- Thus the exact calculation and the radial approximation
malization G (0)=1, for three values of the angl®  regyt in almost identical results, and the bad functions are
(6=0, /4, andw/2) for the mass parametens=0.5 and  yery small, indeed. We are therefore free to present in the
Am=0.25. Thed dependence of the functions is too small 10 fo|iowing only results obtained with the approximate calcu-
be seen in the figure, being on the order of 10The cor-  |ation. In Figs. 2-4 we show the same good left-handed
responding bad left-handed functidr, is very small, in-  functions,G, , AG, andF, as in Fig. 1 for the same value
deed. For the case considered it is less tharl6 ", i.e., 2 of the average masa=0.5, but for three different values of
orders of magnitude smaller than the good functions, with,e mass differencéym=0.25, 0.5, and 0.75. Figure 5 is the
almost no¢ dependence at all. _ . corresponding figure for the good right-handed function

These results suggest to approximate all functions by raG . The functionsG, andGg are the only functions which
dial functions. We have therefore obtained a new set of oryq not vanish in the limittm=0. All other functions, which
dinary differential equations by integrating out thedepen-  \,anish forAm=0, are approximately proportional tom as
dence in the energy density, before variation with respect tQgep, in Figs. 3 and 4. Finally in Fig. 6 we demonstrate the
the fermion functions. The resulting equations then diﬁerapproximate cancellation of the source termsanda,, re-

only in prefactors for the three bad functions, apart from the;ygnsible for the fact that the bad functions are very small.
absence of the partial derivatives with respecptdn block

form the approximate set of differential equations reads V. SPHALERON BARRIER
g’ A Bl\/g Let us now consider nondegenerate fermions in the back-
b’)~\Cc D/\b/’ (32 ground of the sphaleron barrier. Along the barrier we expect

a smooth transition of one fermion level from the positive
whereA is a 5<5 matrix, B is a 5<3 matrix, etc. The vector continuum to the negative continuum. In the case of degen-
Cg represents the source terms of the good functiprisr  erate fermion masses, all fermion levels change along the
the bad function. (It is identical in both sets of equations. barrier to the respective next lower leyaP], thus only one
These source terms ames, Ams, and zero forFg, AFg, level crosses zero, and the spectrum exhibits no crossing of
andAF_, respectively, with the sourcedefined in Eq(29).  any two levels. Expecting the same qualitative behavior of

Solving the approximate set of ordinary differential equa-the spectrum in the case of nondegenerate masses, the lowest
tions leads to results almost identical to those of the fullfree fermion level, corresponding to the lower mass fermion
partial differential equations. This is demonstrated in Fig. 1,0f the doublet, then should cross zero.
where also the approximate good left-handed functions In the general background of the sphaleron barrier the full
G_., AG_, and F_, with normalization G (0)=1, are ansatz, Eqs(19) and(20), is needed. The background fields
shown. The difference of the approximate functions and thalong the barrier may be taken from the extremal path cal-
exact functions is too small to be seen in the figure, being orulations[19] or, as done here, from the gradient approach
the order of 10°. The bad left-handed functiohF, is less [23]. The set of partial equations for the 16 real fermionic
then 10°4. functions of the variables andp reads

0=wFLl_ 1;%11} i 2 1 1y . 1 1, 2
=wFg GR+rp&pGR+r 1+2p(9p AFR—M(KG{+HF{)—Am(—KAG[+HAF{)—-2pKmAF{, (33
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oszZ—GZ'JrE 1+2p— GZ——iAFl—Am(—KAGZ+HAFZ)—m(KGZ+HF2—2KAF1) (34)
RTOR T 7 pap R™ Yy gp~'R L L L L L)

1 1 1 J 2 2 J 1 1 1 1 1 2
0=wAFR=AGK + 1| 1+2p 50 |FRt p- AGK—m(~KAGL+HAFD) ~Am(KGL+ HF) - 2pKAMAFE, (35)

_ 2 A2 1 2_%_ 1 _ 2 2\ 2 2 1
0=wAFZ—AGR + 1+2p 55 2GR T 55 FR— M(—KAGE+HAFY) — Am(KGE+ HFE - 2KAFY), (36)

1
0=wGr+FL + = - 1+2p p)AG%— MHG! —KF})— Am(HAGL +KAF)—2pKmAGZ, (37)

2+2p— )Fl—l
ap

0=wG2HFZ 4+ =[3+2p 2 |F2+ 2 L AGL- AM(HAGE + KAF?) —m(HG? — KF?— 2KAG! 38
TObRTFR T p&p RT ¥ p~CR m( L L)~ m(HGL L L), (38)

0=wAGE+AFL + = (2+2p p)AFl——(1+2p p)G%—Am(HGﬁ—KFﬁ)—m(HAGﬁJrKAF{)—ZpKAmAGZ,
(39

0= AGZ+AF2'+l 342 7 AF2+EiGl— HAG2+KAF2)—Am(HG?—KF?—2KAG! 40
=wAbp RTT p(?p R rap r—M( L ) m( L L L), (40)

2 1
0=wF +Gl'——p—Gl—— 1+2p—p)AFL+m(KG —HFR) +AM(KAGE—HAFR) + 2pK(mAFZ+AmF3)

ap
2 fa 1 2
LHPAFD)+ = (FL—pAGY), (41)
1 2
0=wF?+G>'—=|1+2p p)e +——pAFL+m(KGZ HF2)+ Am(KAGEZ— HAF2)— 2K(mAF:+AmFL)
1 fg 2 1
~AFh+ 2(FE+AGD, (42
1 1 1 2 2 1 1 1 1 1
0=wAFl+AG!' - 1+2p—p F2 ——p—pAG —m(KAGA+HAFR) — Am(KGE+HFY), (43)

0=wAF2+AG? — M(KAG2+HAF2)— Am(KGZ+HF2), (44)

= 1+2 J AGZ+2 07F1
pp L r(9pL

1
1+2p—p)A62 M(HGL+KFE) — AmM(HAGL+KAFR) +2pK(MAGE+AmG3)

1 1/ 1
0=wG{—F.'— 2+2p p

f
—pAGE>—TB<G&+pAFE>, (45)

2 2 1 J 2 _ 2 1 2 2 2 2 1 1
0=wG~Ff'~ =|3+2p—|F - AGL—m(HGR+KFR)—Am(HAGR+KAFR)—ZK(mAGR+AmGR)

ap ap
—fa o L 2 1
+ = (FE+AG]) + = (=G +AF)), (46)
0=wAG]—AF{'— 2+2p p)AFL+ (1+2p p) —Am(HGE—KF&)—m(HAGL—KAFR), (47)

0= AGZ—AFZ'—E 312p— AFZ—E Gi—-A 2—KF3)—m(HAGA—KAF3

r ap
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These equations are analogous in structure to the equaet of 16 ordinary differential equations has resisted a nu-
tions in the sphaleron background, with all relevant featuresnerical solution along the full sphaleron barrier. Only by
“doubled.” Now six equations contairp-dependent terms setting 2 of the 16 radial functions explicitly to zero, namely
(apart from the terms containing partial derivatives with re-the supposedly small bad function$s? andAG%, we have
spect top). These are Eq¥33), (35), (37), (39), (41), and  succeeded in constructing the fermion solution along the
(45). And six functions occur with a prefactqr, these are  sphaleron barrie(Note, thatAGE has no source term.
FZ,AF2, AF?, G3,AG%, andAG?, the six “bad” func- Without the solution of the partial diffential equations to
tions, b. The other ten functions are the “good” functions, compare with, the quality of the approximate solution is not

g. Again, if the bad functions are small, all functions haveknown along the full barrier, away from the sphaleron. At the
little angular dependence, and an approximation with radiasphaleron the approximation is excellent, and it should re-

functions only will be good. main good close to the sphaleron. Away from the sphaleron,
Let us therefore inspect the two source terms for the bathowever, we can at least make a consistency check for the
functions, radial approximation used, by inspecting the source terms
) 5 1 s, ands, in this approximation. Numerical analysis shows
s1=HG[—KF{—-2KAG, (49 that the source terms are indeed small. In Fig. 7 we show as
) ) 1 a typical example along the barrier the source tebmsind
S;=KG[+HF{—2KAF{, (50 b, for the Chern-Simons numbéXcs=0.4 and the mass

parametersn=0.5 andAm=0.25. While the cancellation of
the source terma; anda, remains as good along the barrier
as it is at the sphalerafshown in Fig. 8, the cancellation of

occurring in Eqs(38), (40), and in(34), (36), respectively,
and split these two source terms accordings{e-a, —a,,

with the additional source termts; andb, is even much better.
_ 2 2 This indicates that the bad functions are indeed small com-
a;=HG{ —KF{, (51 ) . S
pared to the good functions. The radial approximation there-
a,=2KAG!, (52) fore should be good along the full sphaleron barrier.

Let us then discuss the level crossing along the sphaleron
barrier, as obtained with the approximate radial set of equa-

ands,=b;—b,, with ) ) \ -
tions. In Fig. 8 we present the fermion eigenvalue along the

b,=KG2+HFZ, (53)  barrier for an average massrmof=2 and for several values of
the mass difference\m=0.5, 1.0, and 1.5. The eigenvalue
b,=2KAF;. (54)  starts from the positive continuum at the lower m&ss,

1.0, and 0.5, respectivelyand reaches the negative con-
If both source terms are small, then the bad functions arénuum at the corresponding negative value. The bigger the
small, and consequently the angular dependence of all 1&ass splitting, i.e., the smaller the lower mass, the later the
fermion functions is small. fermion level leaves the continuum to become bound, analo-

Because of its great complexity, we have not yet at-gous to the case of degenerate fermion makk&49,23.

tempted to solve the full set of 16 coupled partial differential For degenerate fermion masses the fermion wave function
equations numerically. Instead we have from the beginnings determined by the hedgehog spingy, giving both iso-
resorted to the study of the approximate set of 16 ordinangpin components of the fermion doublet an equal amplitude
differential equations, obtained by integrating out the angulaalong the sphaleron barrier. For nondegenerate fermion
dependence in the energy density. But even this approximataasses this is no longer the case. Let us define the up part of

the fermion wave function along the barrier as
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FIG. 7. The source terr,=b;—b, (solid), and its individual
partsb, (dotted and b, (dashed in the background field of the FIG. 8. The fermion eigenvalue along the sphaleron barrier in
sphaleron barrier at the Chern-Simons numige=0.4 in the ap-  the approximate calculation, for the fixed average nmass2 and
proximate calculation, with the mass parametens=0.5 and three values of the mass differencAm/m=0.75 (solid),
Am=0.25. Am/m=0.50 (dotted, Am/m=0.25 (dashegl
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FIG. 9. The up part of the fermion wave function along the  F|G. 10. The fermion eigenvalue along the sphaleron barrier in
sphaleron barrier in the approximate calculation, for the fixed averthe approximate calculation for the average mass2 and the
age massm=2 and three values of the mass difference mass differenceAm=1 (solid), compared to the fermion eigen-
Am/m=0.75(solid), Am/m=0.50(dotted, Am/m=0.25(dashedl  yalue for degenerate fermion massesifor 1 andAm=0 (dotted,

andm=2 andAm=0 (dashegl
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symmetric ansatz, containing 16 real functions of the two
] . . variablesr andp=cogé. The structure of the ansatz chosen
where P projects out the upper isospin com.pone(rrﬂlOte is based on the structure of the spherically symmetric ansatz,
that this definition of the up part is not gauge invarigfor  \yhich represents its simple limit for vanishing mass splitting.
degenerate fermions the up part is everywhere one-half. Fofhs particular parametrization has the great advantage, that
nondegenerate fermions the up part along the barrier depengl§eads to fermion functions with little angular dependence
on the size of the mass splitting, as shown in Figfd® the  , the background of the sphaleron, aelipposedly also
mass parameters employed also in Fig.The up part domi- along the full sphaleron barrier.
nates slightly in the vicinity of the sphaleron and clearly |4 the background field of the sphaleron the proposed an-
disappears when the vacua are reached. Remarkably, thgt, simplifies considerably. It leads to a set of eight partial
point where the down part equals the up part only dependgjfferential equations. We have solved these equations nu-
onm and not onAm. ) _ _merically, finding that the resulting fermion functions have
We finally address the question as to which mass mainly,ery |ittle angular dependence. The reason lies in the struc-
determines the eigenvalue along the barrier in the physicg|;re of the equations for this particular choice of ansatz. Only
;ituation of nondegenerate fermion masses. Close to the Cofyree functions occur with an angular dependent prefactor
tinuum clearly the !o_w_er mas®— Am, is the relevant f_er_m- p (apart from partial derivative termsand there is a single
ion mass. In the vicinity of the sphaleron, however, it is thesoyrce term for these three functions. Since this source term
average massn, which matters. In fact, the average massijs small, these three functions, which introduce explicit an-

m of the nondegenerate case mostly leads to an excellegyjar dependence into the equations, are small, and conse-
approximation for the fermion eigenvalue in the vicinity of

the sphaleron, when employed in the far simpler calculations

with degenerate fermion mass. This is demonstrated in Fig. Barrier
10, where we compare the nondegenerate case?2,
Am=1 with the degenerate cases=1, Am=0 andm=2, of ' ' '

. . . F ——m=.5
Am=0. Having the same average mass, the fermion eigen- e m=1
values in the nondegenerate case, and in the second degen- — -1 ---.-m=2 3
erate case, agree very well in the vicinity of the sphaleron. In = i
Fig. 11 we present the slope of the fermion eigenvalue at the a E
sphaleron as a function of the mass difference, for three val- Z TR .
ues of the average mass=0.5, 1, and 2. We observe that 3 g i
the slope is fairly independent of the mass differeaoe for ° -3F T
not too large values of the average mass i

—4F ) . . ) b
VI. CONCLUSION 0.0 0.2 0.4 0.6 0.8 1.0
Am/m

We have considered level crossing in the background field
of the sphaleron barrier for fermion doublets with nondegen-  FiG. 11. The slope of the fermion eigenvalue at the sphaleron in
erate masses. The mass splitting necessitates a generalizeé approximate calculation, as a function of the mass difference
ansatz for the fermions, possessing only axial symmetry. Wam for three values of the average mass=0.5 (solid), m=1
have proposed a particular parametrization of the axiallydotted, m=2 (dasheil
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quently all eight functions have only little angular depen-approximated by an eigenvalue obtained with the far simpler
dence. calculations, involving only degenerate fermions with an av-
We have then proposed an approximate ansatz with radig@rage masm.
functions only. Integrating out the angular dependence in the Let us end by addressing the question of fermionic quan-
energy density, leads to a new approximate set of ordinaryum corrections to the classical energy of the sphaleron bar-
differential equations. Solving these numerically, we findrier, which motivated our study. IfL.2—14 the effect of the
that the solutions are in excellent agreement with those of thenass splitting of the top-bottom doublet has been approxi-
full calculation. Thus we have an excellent radial approxima-mated by adding half the contribution of a degenerate dou-
tion for nondegenerate fermion masses at the sphaleron. blet with the top quark mass and half the contribution of a
In the general case of fermions in the background of thelegenerate doublet with the bottom quark mass. We note that
sphaleron barrier, we have found the same structure of thinis approximatiorf12—14, if naively applied to individual
equations as in the sphaleron case, but with all relevant fedevels, is good for the valence level near the sphaleron. How-
tures “doubled,” since the ansatz no longer simplifies. As yetever, we cannot simply extrapolate this result for the fermion
we have only solved the approximate set of ordinary differ-valence level to the general case of the fermionic quantum
ential equations, obtained by integrating out the angular decorrections, involving the full fermion spectrum.
pendence in the energy dens{gnd then setting two of the For degenerate fermions, the fermionic quantum correc-
small functions explicitly to zeno Without the solution of tions to the sphaleron energy increase strongly with increas-
the set of partial differential equations to compare with, weing fermion mas$12—14. Also for nondegenerate fermions
do not know the quality of the approximation away from thethe quantum corrections due to the heavy top quark should
sphaleron. However, we have made a consistency check bgfluence the sphaleron transition rate significantly. There-
evaluating the two source terms for the six functions, whichfore a better treatment of the mass splitting of the heavy
introduce explicit angular dependence into the equationmondegenerate fermions in evaluating the fermionic quantum
Since the source terms are small, these functions are smatiprrections is desirable.
and consequently all functions have only little angular de- The exact evaluation of the full fermion spectrum for non-
pendence. We therefore argue, that the radial approximatiodegenerate fermions, based on solving sets of partial differ-
employed should be good along the full barrier. ential equations, however, appears technically very involved.
Considering level crossing along the barrier, we have obin contrast, approximating the fermion wave functions by
served that the fermion mode which crosses zero energy aadial functions, appears to make a more accurate study of
the sphaleron reaches the continua at the lower fermiothe fermionic quantum corrections feasible. The good quality
mass, as expected. In the vicinity of the sphaleron the eigeref such a radial approximation for the valence level has been
value for nondegenerate fermions with average mmassid  shown hergsee alsd24]). The importance of the sphaleron
mass differenceAm, is mainly determined by the average transition rate certainly deserves considering such an im-
massm. There the nondegenerate eigenvalue may be welproved treatment.
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