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Nondegenerate fermions in the background of the sphaleron barrier
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We consider level crossing in the background of the sphaleron barrier for nondegenerate fermions. The mas
splitting within the fermion doublets allows only for an axially symmetric ansatz for the fermion fields. In the
background of the sphaleron we solve the partial differential equations for the fermion functions. We find little
angular dependence for our choice of ansatz. We therefore propose a good approximate ansatz with rad
functions only. We generalize this approximate ansatz with radial functions only to fermions in the background
of the sphaleron barrier and argue that it is a good approximation there, too.

PACS number~s!: 11.15.Kc, 12.15.Ji
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I. INTRODUCTION

The explanation of the observed baryon asymmetry of t
universe represents a challenging problem. Although
from solving this highly complex problem, we know at leas
what features a theory must have to allow for an explanatio
It is therefore remarkable that the standard model satisfies
three Sakharov conditions to generate the observed bar
asymmetry:C andCP violation, a first-order phase transi-
tion, and nonconservation of baryon number@1#.

Here we are concerned with the violation of baryon num
ber ~or more generally fermion number! in the standard
model. It was discovered by ’t Hooft@2# as a consequence of
the Adler-Bell-Jackiw anomaly present in chiral gauge the
ries. In particular ’t Hooft studied the fermion number viola
tion induced by vacuum to vacuum tunneling processes
scribed by instantons, resulting in extremely small tunnelin
rates.

In Weinberg-Salam theory topologically distinct vacua a
separated by finite energy barriers. The height of the barri
is given by the energy of the sphaleron, an unstable solut
of the static field equations@3,4#. Thus the sphaleron deter-
mines the minimal energy needed for a classically allow
vacuum to vacuum transition. The probability for a transitio
is expected to be enhanced significantly, if enough energy
put into the system under consideration, either in suitab
~future! accelerators or at high temperatures in the early u
verse@5–14#.

While the barrier is traversed baryon number violatio
may be seen explicitly by analyzing the corresponding Dir
equation in the bosonic background fields. The lowest po
tive energy continuum state becomes continuously deform
along the barrier until it reaches the negative energy co
tinuum, passing zero energy precisely at the top of the ene
barrier, at the sphaleron@15–19#. Investigating the whole
spectrum of the Dirac equation shows that along the barr
in fact all levels become continuously deformed into the ne
53-2821/96/53~6!/3451~9!/$10.00
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lower levels, resulting finally in an identical spectrum, where
only the number of occupied levels above the Dirac sea ha
decreased by one@12#.

Previous calculations demonstrating the level crossing
@15–19,12# are based on the approximation that the fermion
doublets are degenerate in mass~and that the Weinberg angle
may be set to zero@20,21#!, allowing for a spherically sym-
metric ansatz for the fermion wave function. For the physica
situation of highly nondegenerate fermion masses~at least
for the heavy flavors! analogous calculations are far more
involved, since the spherically symmetric ansatz is inad-
equate, and the equations of motion cannot be reduced
ordinary differential equations.~This is in contrast with the
case of instantons@22#.!

The study of fermionic quantum corrections to the classi-
cal energy of the sphaleron barrier, performed in@12–14#, is
also based on the approximation that the fermion doublet
are degenerate in mass. There the effect of the mass splittin
of the top-bottom doublet has been approximated by addin
half the contribution of a degenerate doublet with the top
quark mass and half the contribution of a degenerate double
with the bottom quark mass. Since the fermionic quantum
corrections increase strongly with increasing degenerat
fermion mass, the contribution from the top quark is~in this
approximation! quite large @12–14#. Consequently, the
sphaleron transition rate depends strongly on the quar
masses. However, the sphaleron transition rate may be se
sitive to the treatment of the mass splitting of the heavy
nondegenerate fermions. Therefore the validity of this ap
proximation needs to be investigated, and a more accura
treatment of the mass splitting is called for.

As an initial step we here consider an axially symmetric
ansatz for the fermion fields in the background of the sphale
ron barrier. The ansatz is chosen in such a way, that it i
‘‘almost spherically symmetric,’’ in the sense that the func-
tions involved have little angular dependence. Because of th
symmetry of the sphaleron the ansatz simplifies considerabl
3451 © 1996 The American Physical Society
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in the background field of the sphaleron. In this case
solve numerically the full set of partial differential equation
for the fermion functions. We then consider a set of appro
mate ordinary differential equations for the fermion fun
tions, finding almost identical solutions. Because of the n
merical complexity involved in solving the full set of partia
differential equations in the background of the sphaleron b
rier, we consider in this general case only an approximate
of ordinary differential equations for radial fermion func
tions. We argue that these equations represent a good
proximation as well.

In Sec. II we briefly review the Weinberg-Salam Lagran
ian ~for vanishing mixing angle! for nondegenerate fermion
doublets. In Sec. III we present our axially symmetric ans
for the fermions, constructed as a generalization of the us
spherically symmetric ansatz. In Sec. IV we consider ferm
ons in the background of the sphaleron. We derive the eq
tions of motion, present the solutions of the full set of part
differential equations, and compare with the solutions of
set of approximate ordinary differential equations. In Sec
we consider fermions in the background of the sphale
barrier. We present our conclusions in Sec. VI.

II. WEINBERG-SALAM LAGRANGIAN

We start with the bosonic sector of the Weinberg-Sal
theory in the limit of a vanishing Weinberg angle, where t
electromagnetic field decouples and can be set to zero:

Lb52
1

4
Fmn
a Fmn,a1~DmF!†~DmF!2l~F†F2 1

2v
2!2

~1!

with the field strength tensor

Fmn
a 5]mVn

a2]nVm
a1geabcVm

bVn
c ~2!

and the covariant derivative

Dm5]m2
1

2
igtaVm

a . ~3!

The SU(2)L gauge symmetry is spontaneously broken due
the nonvanishing vacuum expectation valuev of the Higgs
field,

^F&5
v

A2
S 01D , ~4!

leading to the boson masses

MW5MZ5
1

2
gv, MH5vA2l. ~5!

We employ the valuesMW580 GeV,g50.65.
For vanishing mixing angle, considering only one fermio

doublet, the fermion Lagrangian reads

L f5q̄Lig
mDmqL1q̄Rig

m]mqR2 f ~u!~ q̄LF̃uR1ūRF̃†qL!

2 f ~d!~ d̄RF†qL1q̄LFdR!, ~6!
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where qL denotes the left-handed doublet (uL ,dL), while
qR abbreviates the right-handed singlets (uR ,dR), with
F̃5 i t2F* . The fermion masses are given by

Mu,d5
1

A2
f ~u,d!v. ~7!

The fermion equations read in dimensionless coordinates
~chosen in units ofMW)

S i ]

]t
1 is i

]

]xi
1
1

2
taVi

as i DqL2~mM1DmMtz!qR50

~8!

and

S i ]

]t
2 is i

]

]xi DqR2~mM†1DmtzM
†!qL50, ~9!

whereM is the Higgs field matrix defined by

F5
v

A2
M S 01D , ~10!

andm andDm are the average fermion mass and half the
mass difference~in units ofMW):

m5~Mu1Md!/~2MW!, ~11!

Dm5~Mu2Md!/~2MW!. ~12!

III. ANSATZ

For the gauge and Higgs fields along the sphaleron barrie
we take the usual spherically symmetric ansatz in the tem
poral gauge

Vi
a5

12 f A~r !

gr
«ai j r̂ j1

f B~r !

gr
~d ia2 r̂ i r̂ a!1

f C~r !

gr
r̂ i r̂ a ,

~13!

V0
a50, ~14!

F5
v

A2
@H~r !1 i tW• r̂ K~r !#S 01D . ~15!

Due to a residual gauge degree of freedom we are free to
choose the gaugef C50.

To construct an appropriate ansatz for nondegenerate fe
mions we begin by recalling the spherically symmetric an-
satz for degenerate fermions, whereDm50 @15–19,12,23#,
containing four radial functions,

qL~rW,t !5e2 ivtMW
3/2@GL~r !1 isW • r̂ FL~r !#xh , ~16!

qR~rW,t !5e2 ivtMW
3/2@GR~r !1 isW • r̂ FR~r !#xh , ~17!

where the normalized hedgehog spinorxh satisfies the spin-
isospin relation

sW xh1tWxh50. ~18!
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The generalized axially symmetric ansatz contains th
spherically symmetric ansatz, where the four functionsGL ,
FL , GR , and FR now depend on the variablesr and u.
Because of the presence of thetz terms in the field equations
~8! and ~9! for DmÞ0, we need to ‘‘double’’ the ansatz by
adding terms of the same structure, but withxh replaced by
tzxh , involving the four new (r andu dependent! functions
DGL , DFL , DGR , andDFR . The ansatz now contains eight
functions, which are in general complex andu dependent,
caused by various occurrences of the nonvanishing antico
mutator@tW• r̂ ,tz#152cosu in the equations of motion.

The general set of differential equations obtained wit
these complex functions decouples into two parts. One p
contains the real and cosu-even functions together with the
imaginary and cosu-odd functions, while the other part con-
tains the real and cosu-odd functions as well as the imagi-
nary and cosu-even functions. Thus we can consistently se
the latter part to zero. This then suggests the following p
rametrization of the general axially symmetric ansatz, in
volving 16 real functions of the variablesr andp5cos2u:

qL~rW,t !5e2 ivtMW
3/2
„$GL

1~r ,p!1 icos~u!GL
2~r ,p!

1 isW • r̂ @FL
1~r ,p!1 icos~u!FL

2~r ,p!#%

1tz$DGL
1~r ,p!1 icos~u!DGL

2~r ,p!

1 isW • r̂ @DFL
1~r ,p!1 icos~u!DFL

2~r ,p!#%…xh ,

~19!

qR~rW,t !5e2 ivtMW
3/2
„$GR

1~r ,p!1 icos~u!GR
2~r ,p!

1 isW • r̂ @FR
1~r ,p!1 icos~u!FR

2~r ,p!#%

1tz$DGR
1~r ,p!1 icos~u!DGR

2~r ,p!

1 isW • r̂ @DFR
1~r ,p!1 icos~u!DFR

2~r ,p!#%…xh .

~20!

The choice of ansatz~19! and~20! is not unique. We have
also considered alternative parametrizations of the axia
symmetric fermion ansatz. These involve different fermio
functions, uniquely related to the above fermion function
The crucial advantage of the ansatz~19! and~20! lies in the
observation, that its fermion functions have only a very wea
angular dependence in the background field of the sphaler
as shown below. This is in contrast to the alternative param
etrizations considered by us. Recently another parametri
tion of the fermion ansatz, restricted to the background fie
of the sphaleron, was considered in@24#.

The form of the ansatz already implies the boundary co
ditions for the functions, necessary for continuous normali
able solutions of the field equations. At the origin the fou
functionsGR,L

1 and DGR,L
1 are finite, and their derivatives

with respect tor vanish. All other functions are zero at the
origin. When r tends to infinity all functions have to ap-
proach zero sufficiently fast to guarantee normalizabilit
Since all functions depend only on cos2(u), we need to con-
sider only the rangeuP@0,p/2#. For all functions the deriva-
tive with respect tou then vanishes at the boundariesu50
andu5p/2.
e
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IV. SPHALERON

We first consider fermions in the background of the
sphaleron. Since the background field barrier is symmetric
about the sphaleron, the fermion eigenvalue is precisely zero
at the sphaleron@15–19#, also for nondegenerate fermion
masses. As for degenerate fermion masses, the fermion an-
satz ~19! and ~20! then simplifies significantly in the back-
ground field of the sphaleron. This is due to the parity reflec-
tion symmetry of the sphaleron, for which the functionsf B
and H vanish, resulting in the decoupling of 8 of the 16
functions. These functions,FL

1 , GL
2 , DFL

1 , DGL
2 and FR

1 ,
GR
2 , DFR

1 , DGR
2 , can therefore consistently be set to zero.

After dropping the number index on the remaining eight
functions the set of partial differential equations in the vari-
ablesr andp reads

052GR81
2

r
p

]

]p
GR1

1

r S 112p
]

]pDDFR2mKGL

1DmKDGL22pKmDFL , ~21!

052DGR81
1

r S 112p
]

]pDFR1
2

r
p

]

]p
DGR1mKDGL

2DmKGL22pKDmDFL , ~22!

05FR81
1

r S 312p
]

]pDFR1
2

r

]

]p
DGR2DmKDFL

1mK~FL12DGL!, ~23!

05DFR81
1

r S 312p
]

]pDDFR1
2

r

]

]p
GR2mKDFL

1DmK~FL12DGL!, ~24!

05GL82
2

r
p

]

]p
GL2

1

r S 112p
]

]pDDFL1mKGR

1DmKDGR12pK~mDFR1DmFR!

1
12 f A
r

~GL1pDFL!, ~25!

05DGL82
2

r
p

]

]p
DGL2

1

r S 112p
]

]pDFL

2K~mDGR1DmGR!, ~26!

052FL82
1

r S 312p
]

]pDFL2
2

r

]

]p
DGL2mKFR

2DmKDFR22K~mDGR1DmGR!

1
12 f A
r

~FL1DGL!, ~27!

052DFL82
1

r S 312p
]

]pDDFL2
2

r

]

]p
GL1DmKFR

1mKDFR . ~28!
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Inspection of the equations shows that only three eq
tions, Eqs.~21!, ~22!, and ~25!, containp-dependent terms,
when the terms involving the partial derivative with respe
to p, present in all eight equations, are not considered.
fact only three functions occur with a prefactorp. These are
FR ,DFR, andDFL . If these three functions are small, the
the ansatz is approximately spherically symmetric in t
sense that all functions have little angular dependence. In
following we show that this is indeed the case.

Let us denote the three functionsFR ,DFR , andDFL as
b, as ‘‘bad’’ functions, and the other five functions asg, as
‘‘good’’ functions. First we note that we could set all thre
bad functionsb consistently equal to zero, if the source ter

s52K~FL12DGL! ~29!

for the bad functionsFR andDFR in Eqs.~23! and ~24! did
vanish. Then the five good functionsg were pure radial func-

FIG. 1. The ‘‘good’’ left-handed functions,GL ~solid!, DGL

~dotted!, andFL ~dashed!, in the background field of the sphalero
with normalizationGL(0)51, in the exact calculation for three val
ues of the angleu (u50, p/4, andp/2) and in the approximate
calculation, with the mass parametersm50.5 andDm50.25. Any
of the three visible lines consists of four individual lines.

FIG. 2. The ‘‘good’’ left-handed functionGL in the background
field of the sphaleron in the approximate calculation, for the fix
average massm50.5 and three values of the mass differen
Dm/m50.25~solid!, Dm/m50.50~dotted!, Dm/m50.75~dashed!.
a-

ct
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n
e
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tions. Let us therefore inspect this source term more closely
and split it into two terms,s5a12a2 , with

a152KFL ~30!

and

a252KDGL . ~31!

If a15a2 , the source term vanishes. We now argue thata1
and a2 are approximately equal. Setting the bad functions
FR ,DFR , andDFL equal to zero, and neglecting terms with
prefactors 1/r , for larger Eqs.~26! and ~27! reduce to

DGL85K~mDGR1DmGR!,

and

FL8522K~mDGR1DmGR!.

With the proper boundary conditions at infinity we thus find
for large r for the solutions the desired behavior,
FL522DGL , i.e., the source term vanishes there. On the
other hand, for smallr the source term vanishes, since the
function K vanishes. In the intermediate region the size of
the source term needs numerical analysis.

We have solved the set of partial differential equations in
the background of the sphaleron numerically for various val-

d
e

FIG. 3. Same as Fig. 2 forDGL .

FIG. 4. Same as Fig. 2 forFL .
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53 3455NONDEGENERATE FERMIONS IN THE BACKGROUND OF THE . . .
ues of the average massm and the mass differenceDm. Let
us consider a typical numerical result. In Fig. 1 we show t
‘‘good’’ left-handed functions,GL , DGL , andFL , with nor-
malization GL(0)51, for three values of the angleu
(u50, p/4, andp/2) for the mass parametersm50.5 and
Dm50.25. Theu dependence of the functions is too small
be seen in the figure, being on the order of 1024. The cor-
responding bad left-handed functionDFL is very small, in-
deed. For the case considered it is less than 531024, i.e., 2
orders of magnitude smaller than the good functions, w
almost nou dependence at all.

These results suggest to approximate all functions by
dial functions. We have therefore obtained a new set of
dinary differential equations by integrating out theu depen-
dence in the energy density, before variation with respec
the fermion functions. The resulting equations then diff
only in prefactors for the three bad functions, apart from t
absence of the partial derivatives with respect top. In block
form the approximate set of differential equations reads

S g8
b8 D5S A B

C DD S gbD , ~32!

whereA is a 535 matrix,B is a 533 matrix, etc. The vector
Cg represents the source terms of the good functionsg for
the bad functionsb. ~It is identical in both sets of equations.!
These source terms arems, Dms, and zero forFR , DFR ,
andDFL , respectively, with the sources defined in Eq.~29!.

Solving the approximate set of ordinary differential equ
tions leads to results almost identical to those of the f
partial differential equations. This is demonstrated in Fig.
where also the approximate good left-handed functio
GL , DGL , and FL , with normalizationGL(0)51, are
shown. The difference of the approximate functions and
exact functions is too small to be seen in the figure, being
the order of 1023. The bad left-handed functionDFL is less
then 1024.

FIG. 5. Same as Fig. 2 forGR .
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Thus the exact calculation and the radial approximation
result in almost identical results, and the bad functions are
very small, indeed. We are therefore free to present in the
following only results obtained with the approximate calcu-
lation. In Figs. 2–4 we show the same good left-handed
functions,GL , DGL , andFL , as in Fig. 1 for the same value
of the average massm50.5, but for three different values of
the mass difference,Dm50.25, 0.5, and 0.75. Figure 5 is the
corresponding figure for the good right-handed function
GR . The functionsGL andGR are the only functions which
do not vanish in the limitDm50. All other functions, which
vanish forDm50, are approximately proportional toDm as
seen in Figs. 3 and 4. Finally in Fig. 6 we demonstrate the
approximate cancellation of the source termsa1 anda2 , re-
sponsible for the fact that the bad functions are very small.

V. SPHALERON BARRIER

Let us now consider nondegenerate fermions in the back-
ground of the sphaleron barrier. Along the barrier we expect
a smooth transition of one fermion level from the positive
continuum to the negative continuum. In the case of degen-
erate fermion masses, all fermion levels change along the
barrier to the respective next lower level@12#, thus only one
level crosses zero, and the spectrum exhibits no crossing of
any two levels. Expecting the same qualitative behavior of
the spectrum in the case of nondegenerate masses, the lowes
free fermion level, corresponding to the lower mass fermion
of the doublet, then should cross zero.

In the general background of the sphaleron barrier the full
ansatz, Eqs.~19! and~20!, is needed. The background fields
along the barrier may be taken from the extremal path cal-
culations@19# or, as done here, from the gradient approach
@23#. The set of partial equations for the 16 real fermionic
functions of the variablesr andp reads

FIG. 6. The source terms5a12a2 ~solid!, and its individual
partsa1 ~dotted! and a2 ~dashed! in the background field of the
sphaleron in the approximate calculation, with the mass parameters
m50.5 andDm50.25.
05vFR
12GR

181
2

r
p

]

]p
GR
11

1

r S 112p
]

]pDDFR
22m~KGL

11HFL
1!2Dm~2KDGL

11HDFL
1!22pKmDFL

2 , ~33!
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05vFR
22GR

281
1

r S 112p
]

]pDGR
22

2

r

]

]p
DFR

12Dm~2KDGL
21HDFL

2!2m~KGL
21HFL

222KDFL
1!, ~34!

05vDFR
12DGR

181
1

r S 112p
]

]pDFR
21

2

r
p

]

]p
DGR

12m~2KDGL
11HDFL

1!2Dm~KGL
11HFL

1!22pKDmDFL
2 , ~35!

05vDFR
22DGR

281
1

r S 112p
]

]pDDGR
22

2

r

]

]p
FR
12m~2KDGL

21HDFL
2!2Dm~KGL

21HFL
222KDFL

1!, ~36!

05vGR
11FR

181
1

r S 212p
]

]pDFR
12

1

r S 112p
]

]pDDGR
22m~HGL

12KFL
1!2Dm~HDGL

11KDFL
1!22pKmDGL

2 , ~37!

05vGR
21FR

281
1

r S 312p
]

]pDFR
21

2

r

]

]p
DGR

12Dm~HDGL
21KDFL

2!2m~HGL
22KFL

222KDGL
1!, ~38!

05vDGR
11DFR

181
1

r S 212p
]

]pDDFR
12

1

r S 112p
]

]pDGR
22Dm~HGL

12KFL
1!2m~HDGL

11KDFL
1!22pKDmDGL

2 ,

~39!

05vDGR
21DFR

281
1

r S 312p
]

]pDDFR
21

2

r

]

]p
GR
12m~HDGL

21KDFL
2!2Dm~HGL

22KFL
222KDGL

1!, ~40!

05vFL
11GL

182
2

r
p

]

]p
GL
12

1

r S 112p
]

]pDDFL
21m~KGR

12HFR
1 !1Dm~KDGR

12HDFR
1 !12pK~mDFR

21DmFR
2 !

1
12 f A
r

~GL
11pDFL

2!1
f B
r

~FL
12pDGL

2!, ~41!

05vFL
21GL

282
1

r S 112p
]

]pDGL
21

2

r

]

]p
DFL

11m~KGR
22HFR

2 !1Dm~KDGR
22HDFR

2 !22K~mDFR
11DmFR

1 !

1
12 f A
r

~GL
22DFL

1!1
f B
r

~FL
21DGL

1!, ~42!

05vDFL
11DGL

182
1

r S 112p
]

]pDFL
22

2

r
p

]

]p
DGL

12m~KDGR
11HDFR

1 !2Dm~KGR
11HFR

1 !, ~43!

05vDFL
21DGL

282
1

r S 112p
]

]pDDGL
21

2

r

]

]p
FL
12m~KDGR

21HDFR
2 !2Dm~KGR

21HFR
2 !, ~44!

05vGL
12FL

182
1

r S 212p
]

]pDFL
11

1

r S 112p
]

]pDDGL
22m~HGR

11KFR
1 !2Dm~HDGR

11KDFR
1 !12pK~mDGR

21DmGR
2 !

1
12 f A
r

~FL
12pDGL

2!2
f B
r

~GL
11pDFL

2!, ~45!

05vGL
22FL

282
1

r S 312p
]

]pDFL
22

2

r

]

]p
DGL

12m~HGR
21KFR

2 !2Dm~HDGR
21KDFR

2 !22K~mDGR
11DmGR

1 !

1
12 f A
r

~FL
21DGL

1!1
f B
r

~2GL
21DFL

1!, ~46!

05vDGL
12DFL

182
1

r S 212p
]

]pDDFL
11

1

r S 112p
]

]pDGL
22Dm~HGR

12KFR
1 !2m~HDGR

12KDFR
1 !, ~47!

05vDGL
22DFL

282
1

r S 312p
]

]pDDFL
22

2

r

]

]p
GL
12Dm~HGR

22KFR
2 !2m~HDGR

22KDFR
2 !. ~48!
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These equations are analogous in structure to the eq
tions in the sphaleron background, with all relevant featu
‘‘doubled.’’ Now six equations containp-dependent terms
~apart from the terms containing partial derivatives with r
spect top). These are Eqs.~33!, ~35!, ~37!, ~39!, ~41!, and
~45!. And six functions occur with a prefactorp, these are
FR
2 ,DFR

2 , DFL
2 , GR

2 ,DGR
2 , andDGL

2 , the six ‘‘bad’’ func-
tions, b. The other ten functions are the ‘‘good’’ functions
g. Again, if the bad functions are small, all functions hav
little angular dependence, and an approximation with rad
functions only will be good.

Let us therefore inspect the two source terms for the b
functions,

s15HGL
22KFL

222KDGL
1 , ~49!

s25KGL
21HFL

222KDFL
1 , ~50!

occurring in Eqs.~38!, ~40!, and in ~34!, ~36!, respectively,
and split these two source terms according tos15a12a2 ,
with

a15HGL
22KFL

2 , ~51!

a252KDGL
1 , ~52!

ands25b12b2 , with

b15KGL
21HFL

2 , ~53!

b252KDFL
1 . ~54!

If both source terms are small, then the bad functions
small, and consequently the angular dependence of all
fermion functions is small.

Because of its great complexity, we have not yet
tempted to solve the full set of 16 coupled partial different
equations numerically. Instead we have from the beginn
resorted to the study of the approximate set of 16 ordin
differential equations, obtained by integrating out the angu
dependence in the energy density. But even this approxim

FIG. 7. The source terms25b12b2 ~solid!, and its individual
partsb1 ~dotted! and b2 ~dashed! in the background field of the
sphaleron barrier at the Chern-Simons numberNCS50.4 in the ap-
proximate calculation, with the mass parametersm50.5 and
Dm50.25.
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set of 16 ordinary differential equations has resisted a nu-
merical solution along the full sphaleron barrier. Only by
setting 2 of the 16 radial functions explicitly to zero, namely
the supposedly small bad functionsDGL

2 andDGR
2 , we have

succeeded in constructing the fermion solution along the
sphaleron barrier.~Note, thatDGL

2 has no source term.!
Without the solution of the partial diffential equations to

compare with, the quality of the approximate solution is not
known along the full barrier, away from the sphaleron. At the
sphaleron the approximation is excellent, and it should re-
main good close to the sphaleron. Away from the sphaleron,
however, we can at least make a consistency check for the
radial approximation used, by inspecting the source terms
s1 and s2 in this approximation. Numerical analysis shows
that the source terms are indeed small. In Fig. 7 we show as
a typical example along the barrier the source termsb1 and
b2 for the Chern-Simons numberNCS50.4 and the mass
parametersm50.5 andDm50.25. While the cancellation of
the source termsa1 anda2 remains as good along the barrier
as it is at the sphaleron~shown in Fig. 6!, the cancellation of
the additional source termsb1 andb2 is even much better.
This indicates that the bad functions are indeed small com-
pared to the good functions. The radial approximation there-
fore should be good along the full sphaleron barrier.

Let us then discuss the level crossing along the sphaleron
barrier, as obtained with the approximate radial set of equa-
tions. In Fig. 8 we present the fermion eigenvalue along the
barrier for an average mass ofm52 and for several values of
the mass difference,Dm50.5, 1.0, and 1.5. The eigenvalue
starts from the positive continuum at the lower mass~1.5,
1.0, and 0.5, respectively!, and reaches the negative con-
tinuum at the corresponding negative value. The bigger the
mass splitting, i.e., the smaller the lower mass, the later the
fermion level leaves the continuum to become bound, analo-
gous to the case of degenerate fermion masses@18,19,23#.

For degenerate fermion masses the fermion wave function
is determined by the hedgehog spinorxh , giving both iso-
spin components of the fermion doublet an equal amplitude
along the sphaleron barrier. For nondegenerate fermion
masses this is no longer the case. Let us define the up part o
the fermion wave function along the barrier as

FIG. 8. The fermion eigenvalue along the sphaleron barrier in
the approximate calculation, for the fixed average massm52 and
three values of the mass differenceDm/m50.75 ~solid!,
Dm/m50.50 ~dotted!, Dm/m50.25 ~dashed!.
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^PC,PC&

^C,C&
, ~55!

where P projects out the upper isospin component.~Note
that this definition of the up part is not gauge invariant.! For
degenerate fermions the up part is everywhere one-half. F
nondegenerate fermions the up part along the barrier depe
on the size of the mass splitting, as shown in Fig. 9~for the
mass parameters employed also in Fig. 8!. The up part domi-
nates slightly in the vicinity of the sphaleron and clearl
disappears when the vacua are reached. Remarkably,
point where the down part equals the up part only depen
onm and not onDm.

We finally address the question as to which mass main
determines the eigenvalue along the barrier in the physic
situation of nondegenerate fermion masses. Close to the c
tinuum clearly the lower mass,m2Dm, is the relevant ferm-
ion mass. In the vicinity of the sphaleron, however, it is th
average massm, which matters. In fact, the average mas
m of the nondegenerate case mostly leads to an excell
approximation for the fermion eigenvalue in the vicinity o
the sphaleron, when employed in the far simpler calculatio
with degenerate fermion mass. This is demonstrated in F
10, where we compare the nondegenerate casem52,
Dm51 with the degenerate casesm51, Dm50 andm52,
Dm50. Having the same average mass, the fermion eige
values in the nondegenerate case, and in the second deg
erate case, agree very well in the vicinity of the sphaleron.
Fig. 11 we present the slope of the fermion eigenvalue at t
sphaleron as a function of the mass difference, for three v
ues of the average mass,m50.5, 1, and 2. We observe that
the slope is fairly independent of the mass differenceDm for
not too large values of the average massm.

VI. CONCLUSION

We have considered level crossing in the background fie
of the sphaleron barrier for fermion doublets with nondege
erate masses. The mass splitting necessitates a genera
ansatz for the fermions, possessing only axial symmetry. W
have proposed a particular parametrization of the axial

FIG. 9. The up part of the fermion wave function along the
sphaleron barrier in the approximate calculation, for the fixed ave
age massm52 and three values of the mass differenc
Dm/m50.75~solid!, Dm/m50.50~dotted!, Dm/m50.25~dashed!.
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symmetric ansatz, containing 16 real functions of the two
variablesr andp5cos2u. The structure of the ansatz chosen
is based on the structure of the spherically symmetric ansatz
which represents its simple limit for vanishing mass splitting.
This particular parametrization has the great advantage, tha
it leads to fermion functions with little angular dependence
in the background of the sphaleron, and~supposedly! also
along the full sphaleron barrier.

In the background field of the sphaleron the proposed an
satz simplifies considerably. It leads to a set of eight partial
differential equations. We have solved these equations nu
merically, finding that the resulting fermion functions have
very little angular dependence. The reason lies in the struc
ture of the equations for this particular choice of ansatz. Only
three functions occur with an angular dependent prefacto
p ~apart from partial derivative terms!, and there is a single
source term for these three functions. Since this source term
is small, these three functions, which introduce explicit an-
gular dependence into the equations, are small, and conse

r-
e

FIG. 10. The fermion eigenvalue along the sphaleron barrier in
the approximate calculation for the average massm52 and the
mass differenceDm51 ~solid!, compared to the fermion eigen-
value for degenerate fermion masses form51 andDm50 ~dotted!,
andm52 andDm50 ~dashed!.

FIG. 11. The slope of the fermion eigenvalue at the sphaleron in
the approximate calculation, as a function of the mass difference
Dm for three values of the average mass,m50.5 ~solid!, m51
~dotted!, m52 ~dashed!.
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quently all eight functions have only little angular depe
dence.

We have then proposed an approximate ansatz with ra
functions only. Integrating out the angular dependence in
energy density, leads to a new approximate set of ordin
differential equations. Solving these numerically, we fin
that the solutions are in excellent agreement with those of
full calculation. Thus we have an excellent radial approxim
tion for nondegenerate fermion masses at the sphaleron.

In the general case of fermions in the background of t
sphaleron barrier, we have found the same structure of
equations as in the sphaleron case, but with all relevant
tures ‘‘doubled,’’ since the ansatz no longer simplifies. As y
we have only solved the approximate set of ordinary diffe
ential equations, obtained by integrating out the angular
pendence in the energy density~and then setting two of the
small functions explicitly to zero!. Without the solution of
the set of partial differential equations to compare with, w
do not know the quality of the approximation away from th
sphaleron. However, we have made a consistency check
evaluating the two source terms for the six functions, whi
introduce explicit angular dependence into the equatio
Since the source terms are small, these functions are sm
and consequently all functions have only little angular d
pendence. We therefore argue, that the radial approxima
employed should be good along the full barrier.

Considering level crossing along the barrier, we have o
served that the fermion mode which crosses zero energ
the sphaleron reaches the continua at the lower ferm
mass, as expected. In the vicinity of the sphaleron the eig
value for nondegenerate fermions with average massm and
mass differenceDm, is mainly determined by the averag
massm. There the nondegenerate eigenvalue may be w
n-
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approximated by an eigenvalue obtained with the far simpler
calculations, involving only degenerate fermions with an av-
erage massm.

Let us end by addressing the question of fermionic quan-
tum corrections to the classical energy of the sphaleron bar-
rier, which motivated our study. In@12–14# the effect of the
mass splitting of the top-bottom doublet has been approxi-
mated by adding half the contribution of a degenerate dou-
blet with the top quark mass and half the contribution of a
degenerate doublet with the bottom quark mass. We note that
this approximation@12–14#, if naively applied to individual
levels, is good for the valence level near the sphaleron. How-
ever, we cannot simply extrapolate this result for the fermion
valence level to the general case of the fermionic quantum
corrections, involving the full fermion spectrum.

For degenerate fermions, the fermionic quantum correc-
tions to the sphaleron energy increase strongly with increas-
ing fermion mass@12–14#. Also for nondegenerate fermions
the quantum corrections due to the heavy top quark should
influence the sphaleron transition rate significantly. There-
fore a better treatment of the mass splitting of the heavy
nondegenerate fermions in evaluating the fermionic quantum
corrections is desirable.

The exact evaluation of the full fermion spectrum for non-
degenerate fermions, based on solving sets of partial differ-
ential equations, however, appears technically very involved.
In contrast, approximating the fermion wave functions by
radial functions, appears to make a more accurate study of
the fermionic quantum corrections feasible. The good quality
of such a radial approximation for the valence level has been
shown here~see also@24#!. The importance of the sphaleron
transition rate certainly deserves considering such an im-
proved treatment.
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