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O(N) and RPN~! models in two dimensions
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| provide evidence that the 2D RP! model for N=3 is equivalent to the @{)-invariant nonlinears
model in the continuum limit. To this end, | mainly study particular versions of the models, to be called
constraint models. | prove that the constraint\RP and O(N) models are equivalent for sufficiently weak
coupling. Numerical results for the step-scaling function of the running cougfirgm(L)L are presented.
The data confirm that the constraint KI)( model is in the same universality class as theND(odel with
standard action. | show that in the weak coupling limit periodic boundary conditions for the 'RiRodel
correspond to fluctuating boundary conditions for thé\pmodel. The effect of boundary conditions on finite
size scaling curves is discussed. It is concluded, in contrast with Caraatialg that RP'"* and ON)
models share a unique universality class.

PACS numbsgs): 11.15.Ha, 05.50:q, 11.10.Lm, 64.60.Fr

I. INTRODUCTION Recently Caracciol@t al. [9—-11] argued that there is no
phase transition in the RP'* models. They claimed, based

Motivated by the close analogy with non-Abelian lattice on a finite size scaling analysis, that the'RP models how-
gauge theories in four dimensions nonlineamodels in two  ever have a weak coupling limit distinct from that of the
dimensions have been studied intensively during the last 20(N)-invariant ¢ models. They claim even further that a
years. Most important both types of models were found to bavhole sequence of universality classes can be obtained from
asymptotically fred 1]. mixed models.

Starting from the early 1980’s so-called RP* models In the following | will give evidence that rules out the
were discussed. The spins of these models are elements sfenario presented ifP—11. For a particular type of the
the real projective space M dimensions. This space can be action of the ON) and the RP'~! model | will show that the
thought of as a sphei®" ! where opposite points are iden- models are exactly equivalent for sufficiently small coupling.
tified. Hence in perturbation theory the RP' model is | discuss the scaling properties of vortices of the "RP
equivalent with the Of)-invarianto model. The fact how- model with standard action in the weak coupling regime. |
ever that the real projective space is not simply connectedive numerical results for the step-scaling function intro-
gives rise to topological defect structures similar to vorticesduced in[13] that supports that the constraint model gives
in the two-dimensiona(2D) XY model. The questions dis- the same universal results as the standard action. | show that
cussed in the literature are whether these defects inducethe differences in the finite size scaling curves for the?RP
phase transition at a finite coupling or whether these nonpeand the O(3) model found if10,11] can be partially ex-

turbative effects survive in the weak coupling limit. plained as a boundary effect.
The lattice action of the R¥®"! model mostly discussed is
> >0 [l. THE CONSTRAINT O (N) AND RPN~! MODELS
S=-B2 (58)% (1) X
o) Let me first define the models. The field variaBleis in

where(xy) is a pair of nearest neighbor points on the latticePoth cases a unit vector iR". In the case of the
ands is a unit vector inRN. An alternative way to identify O(N)-invariant model the Boltzmann weight of a configura-

- > . . tion is equal to 1 if
—s, ands, is to introduce &, gauge field g

. $8,>C 3
S=- BE Z(xy)SxSy 2
o) for all nearest neighbor pairs of sitésy) or else the Boltz-
wherez takes the values 1 of 1. mann weight is equal to 0. Iil2] Seiler and Patrascioiu
Similar models have been introduced to describe orientadiscuss the relation of the constraintN¢invariant model
tional phase transitions in nematic liquid crysti#3. These With a particular percolation problem. Based on this perco-
models have mainly been studied in three dimensions, whef@tion problem they argue that for sufficiently large the
a weak first-order phase transition is foufsge[3] and ref- constraint O(\I)-lnvarl_ant model in two dimensions becomes
erences given i4]). massless. Howev_er it should be noted that they do not pro-
The numerical study of R® ! models in 2D gave rise to ylde a proof for this scenario. In the following, in particular
much controversy. Some authgs-7] find that their results In Sec. IV, | assume that the constraint N){invariant
are consistent with a phase transition at a finite couplingmodel, analogous to the standard N){invariant lattice
while others doubt the existence of a phase transition but stifhodel at finite, is massive for alC<1.
see strong crossover effects between the strong and the weakIn the case of the R model —§X and§x are identified
coupling regimd 3,8,4]. and the constraint on the field configuration is given by
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58,]>C 4) In order to avoid classes of allowed RP! configurations
that contain no allowed Q) configurations one has to re-
for all nearest neighborsy). Equivalently one might intro- quire C>cos(/L) whereL is the extension of the lattice in
duce a gauge field,,,, taking the values-1 or 1: units of the lattice spacing. It is important to note t_ha_t ;uch
N boundary effects might well survive the continuum limit in a
Z(xy)SxSy>C. (5 finite size scaling analysis. However this boundary effect can

) ~ be reproduced by proper boundary conditions imposed upon
In the following | shall show that the constraint the ON) model. For C>cos/4) a constraint RP~1
O(N)-invariant model and the constraint RP* model are  model on a periodic lattice is equivalent to a constraint
equivalent forC>cos(/4). Let us consider a lattice where o(N) model with fluctuating boundary conditions. Fluctuat-
all closed paths are contractible; i.e., all closed paths can bigg houndary conditions mean that in the partition function
shrunken to an elementary plaquette by removing singlgne sums over periodic as well as antiperiodic boundary con-
plaquettes sequentially. A hypercubical square lattice withjitions. In the case of antiperiodic boundary conditions one
open boundary conditions is an example for such a lattice. ;. ifios S(0v) = — (L S(L+1v)=—s(1 3(x.0
Consider the class of'2 whereV is the number of lattice - ( ’y()jﬁ ( ,y),_ (L*1y) (1Y), s(x.0)
points, configurations that arise from a given configuration— — S(*L), ands(x,L+1)=—s(x,1).
s, by taking either+s, or —s, at each lattice point. Since
- . s - - - - I1l. SCALING OF THE VORTEX DENSITY FOR THE
|Sx5y| =[(- SX)Sy| =[s,(— Sy)| =[(—=s)(— Sy)l (6) STANDARD ACTIONS

all configurations in such a class are either allowed or for- For the standard actions of the RP' model similar ar-
bidden RP'~1 configurations. Obviously a class of configu- guments apply. In the limiB— the energy of a vortex
rations that is forbidden under the RP* constraint contains  should win against the entropy and vortices should play no
no configuration that is allowed under the N)( constraint  role in the continuum limit of the theory.

(with the sameC). In the following | will demonstrate that Let us identify a frustrated plaquette in E@) with the

for C>cos(m/4) a class of configurations that is allowed center of a vortex. The classical solution of théield for a
under the RP~* constraint contains exactly two configura- fixed gauge field with two frustrated plaquettes has an energy
tions allowed under the @) constraint, and therefore the proportional to Irr wherer is the distance in between these
partition functions are equal up to a trivial factof 2. two frustrated plaquettes. Hence one can find a finjtsuch
Take one configuration out of an allowed class ofthat the energy is larger thanbd/, whereby is the leading
RP'~! configurations. Pick one site Replace the spins on coefficient in the perturbativg function. Therefore the den-

the other sites by sity of vortex pairs with a distance larger thag dies out
. .. faster than the square of the inverse correlation length. Hence
s;=s, 1l Sgn(sys,)- (7)  they should not play a role in the continuum limit of the
<UU>E pathxry) theory.
The result of this construction is independent of the paths
chosen if IV. NUMERICAL RESULTS FOR THE CONSTRAINT
N MODELS
I[I  sgrisis,)=1 ®) . _
(uv) e closed path In this section | show that the constraint K)( model

reproduces universal results of theND¢invarianto model.

for all closed paths on the lattice. For elementary loops conTherefore | compute the step-scaling function of Haf]
sisting of four lattice points this is the case for for three different values of the running coupling and com-
C>cos(@/4). All other paths can be successively built up pare the result with that of Reff13] obtained with the stan-
out of elementary loops, since we have chosen a simply cortard action. Furthermore | estimate the correlation length at
nected lattice topology. When adding an elementary loop the€ = cos(r/4) using the running coupling and also measure
sign of a loop is conserved since the sign of the product ofhe correlation length for both the ®) and the RP~!
the new links in the path is the same as for the old linksmodel forC<cos(m/4) to check the importance of defects in
Hence the sign of any closed path is 1 @F cos(m/4). the generation of the mass in the P case.

By construction sigrﬁ()’(s;)zl for all nearest neighbor The running coupling of13] is defined by
pairs(xy). The second allowed ®{) configuration within a
class of allowed RP~! configurations is given by §2=im(L)L ©)
Si=—s. N—1 |

The idea behind this proof has been discussed for an ac-
tion similar to that in Eq.(2) by Caselle and Gliozzi6]. = wherem(L) is the mass gap on a lattice with extensloim
However for that action the rigorous proof for a pure gaugespatial direction. The3 function for the running coupling
in the weak coupling limit is missing. g? is given by[13]

In Monte Carlo simulations one typically uses periodic
boundary conditions, which leads to the lattice topology of a B(g%)=— N-2 — N-2 —5 (N-1)(N-2) =
torus. Here loops exist that wind around the torus and hence 9 2 9 (277)Zg (2m)3
cannot be contracted to an elementary loop. (10
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TABLE I. The renormalized coupling? from the constraint TABLE Il. The second moment correlation length in the vector
O(3) model.C gives the value of the constraint/a andL’/a are  (&,) and tensor §;) channel for the constraint(@)-invariant vec-
the lattice extensions in spatial direction. tor model for various values of the constra®t
C L/a L'/a g%(L) g?(L") C L £, &

0.0515 4 8 1.0592) 1.26233) 0.00 64 11.2(b) 3.296)
0.0820 5 10 1.0592) 1.25643) 0.10 128 23.2) 6.92)
0.1047 6 12 1.0592) 1.25423) 0.2255 400 76.@) 24.06)
0.1225 7 14 1.0592) 1.254@2)
0.1371 8 16 1.059%) 1.25424) _
0.1607 10 20 1.0593) 1.25453) whereMS denotes the modified minimal subtraction scheme,
0.1786 12 24 1.0598) 1.25424) for N=3 and the conversion factor for the parameters
0.2058 16 32 1.0593) 1.25593) efl“’<l)
0.2255 20 40 1.0598) 1.25693) A=———Aws (13
0.2637 32 64 1.0593) 1.25826)
0.1992 4 8 0.816@) 0.93583) given in[13] allows us to give an estimate for the infinite
0.2413 6 12 0.816@) 0.92342) volume correlation length based on the measurement of the
0.2663 8 16 0.816@) 0.91863) correlation length on a finite lattice. Taking the Monte Carlo
0.2835 10 20 0.8168) 0.91712) result for the running coupling given in Tabll | obtain
0.2967 12 24 0.8168) 0.91673) £=0.7<10° as estimate for the correlation length at
0.2538 4 8 0.7383) 0.83732) C=0.55 and¢=0.6x 10° as estimate &€ = cos(@/4), where
0.2924 6 12 0.7383) 0.8242) the O(3) and RP constraint models become identical.
0.3147 8 16 0.7383) 0.81973) In addition | performed some simulations for both the
0.3299 10 20 0.7383) 0.81914) constraint ON) model and the constraint RP! model at
0.3416 12 24 0.7382) 0.81743) smallerC values such that the correlation lengths much
0.55 16 32 0.449P) 0.47594) smaller than the lattice side. Here | adopted the definitions
12 16 32 0.26541) 0.27461) used in[9-11].

The correlation function in the vector channel is defined

by

The step-scaling functiow-(s,u) is the discrete version of Gv(x,y)=(§x§y). (14)
the B function. It gives the value of the coupling after change
of L by a factor ofs starting from a couplingi. Since naively this quantity vanishes identically under the

The simulation was done using the evident modificationsymmetries of the RF"* model one considers the tensor
of the single cluster algorithrfil4]. A bond (xy) is called ~ channel with the correlation function

deleted if after the reflection of one of the spgsor s, the - 1
’ Gi(xY)=((8,:8)%) — - (15

constraint§x§y>C is still satisfied.

A proof of ergodicity is given in the Appendix. The simu-
lation results listed in Table | are based on about diagle ~ Starting from these definitions of the correlation function one
cluster updates. The correlation function was measured usir@Ptains the susceptibility
the cluster-improved estimatpt6] . The mass was extracted 1
from the correlation function at distan¢eand 2. X= vxz;/ G(x,y) (16)

Fitting the data of Table | to an ansatz ’

and
S(2,u,a/l)=0a(2,u)+c(alL)?. (11 1 o

F:VXE cos(Tk(x—y) G(x,Y) (17
| obtain 0¢(2,1.0595}1.2589(10) from L/a=16, Y
0(2,0.8166)0.9150(8) from L/a=8, and  \ith k=(1,0) ork=(0,1).
0(2,0.7383)=0.8159(8) fromL/a=8. These results can be  The second moment correlation length is now defined as
compared with the step-scaling function obtained[13] IF=1
o(2,1.0595)=1.2641(20), o(2,0.8166)=0.9178), and _ W1 19
0(2,0.7383)=0.8169). Theslight disagreementabout 2 2sin(w/L)

standard deviationsmight well be explained by deviations .
of the corrections to finite size scaling from the fit ansatz In Table Il some results for the constraint O(3) model are
chosen. given. It is remarkable that already far=0 the correlation

The exact prediction for the mass gap given[ ] length is larger than ten. The ratio of the correlation length in
the vector and the tensor channel is abguté,=3.3(1).
In Table 1ll my results for the constraint RAmodel are
, (12)  summarized. AtC=0.55 there is a factor of about 1@n
between the correlation lengths of the O(3) and the? RP

m

>
n
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TABLE Ill. The second moment correlation length in the tensor

channelg, for the constraint RP model for various values of the '
constraintC. 4

2.8 } *0(3) fluctuating boundaries & @b J

O constraint RP2; C <cos(pi/4) +4 @
C L &t + P
&
0.50 64 4.7R2) 24r ® 1
0.51 64 5.66) ) -
=
0.52 128 7.106) 520 . &
0.53 128 9.06b) = . §
0.55 128 16.57) 16 &
+
+ e&
model. This means that it is practically impossible to see the 12| - + &%
true asymptotic behavior of the constraint RRodel in a o 44 o e
computer simulation. 0.8 . . . .
0.10 0.20 0.30 0.40 0.50 0.60
E_t(LyL

V. FINITE SIZE SCALING AND UNIVERSALITY

In this section | shall demonstrate that the difference in FIG. 2. x:(2L)/x«(L) is plotted as a function df/£,(L) for the
the finite size scaling curves observed[®10] can be ex- constraint RP mpdel as well as the O(3) mode_l with fluctuating
plained in part by the boundary effect discussed above. lpoundary conditions. In the case of the constraint Rfvdel data
simulated the 8)-invariant model with the standard action for ©=0-5, 0.51, 0.52, 0.53, 0.55, 0.56, 0.57, and 0.59lard® up
on a square lattice using fluctuating boundary conditions iff® |- =128 are shown. The values for O(3) range from 1.4 to
both lattice directions. For the updates of the boundary cons-4- For most of the data points=16 is used.
ditions | used the boundary flip algorithm proposed 17|
for the Ising model and generalized to KD( vector models results with periodic boundary conditiofdiamondg. Com-
in [18]. paring with Fig. 2 of[11] one has to note that Caracciolo

Most of the runs | performed gB=1.4, B=1.5, and et al. useL/&(L) as parameter on the axis. My result for
B=1.6. The true correlation lengths for theBevalues are periodic boundary conditions is consistent with that given in
£=6.901), £€=11.092), and £=19.016), respectively Fig. 2(b) of [11]. The fluctuating boundary conditions re-
[16]. | used lattice sizes ranging froh=6 to L=128. move the characteristic dip visible in the finite size scaling
Throughout | performed 100 000 measurements. | performegurye for periodic boundary conditions. The finite size scal-
a measurement after one boundary-flip update for each direghg curve for fluctuating boundary conditions looks qualita-
tion and roughlyclustersize wer lattice-sizestandard tively much like that of Fig. ) of [11] (RP?like models.
single cIuster_updates. In Fig. 1 _the dimensionles_s quantity However a quantitative comparison, taking into account
xi(2L)/x(L) is plotted as a function of/L, whereg is the e gifferent parameters for theaxis, reveals that the dif-

infinite volume correlation length. | give the results for fluc- ference between the finite size scaling curve of the? RP
tuating boundary conditiongircleg and for comparison the model presented in Fig.(8 of [11] and that of the O(3)

model is not fully explained by the boundary effect discussed
above. This fact has to be explained by the presence of vor-
@ tices at the finiteB values of the data given in Fig(& of
. , @ ] [11].
;g:f::;tc'n&zﬁ:ﬁzzes . In this context it is illuminating to compare the finite size
- scaling curve of the constraint RRnodel for C<cos(/4)
| with that of the O(3) model with fluctuating boundary con-
== ditions. In Fig. 2x4(2L)/x(L) is plotted as a function of
L/&,(L) for the constraint RPmodel as well as the standard
* O(3) model with fluctuating boundary conditions. In the
10l -y T i case of the constraint RRmodel data folC=0.5, 0.51, 0.52,
@ 0.53, 0.55, 0.56, 0.57, and 0.59 ahe& 8 up toL=128 are
® shown. Theg values for O(3) range from 1.4 to 3.4. For
& most of the data points =16 is used.
08 : : . . The two curves are clearly distinct, and the Rifata for
00 04 08 gL 12 16 different C values fall rather nicely onto a unique curve.
Furthermore the curve produced by the constraint BRta
FIG. 1. The dimensionless quantify(2L)/x,(L) is given as a IS quite similar to that obtained from the action given by Eq.
function of £,(L=c)/L for the O(3) model. The data faf, are (1) [20]. However we should keep in mind the proof of Sec.
taken from[16]. The data points with the circles are obtained with Il.
fluctuation boundary conditions while those with diamonds are ob-  In the following section an attempt is made to explain this
tained with periodic boundary conditions. puzzling observation.

14 |

%CLGL)
P
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VI. IS THERE A PHASE TRANSITION? On lattices with periodic boundary conditions one has to
notice that paths winding around the lattice are not contract-
ible. The effect of such loops in the RP! model amount to
fluctuating boundary conditions in the equivalent N)(
model. | demonstrated numerically that this fact partially ex-

lains the differences found in the finite size scaling curves
or the O(3) and RP models observed if10,11.

Note added My conclusions are confirmed by work of

Niedermayer, Weisz, and Shif21], which came to my

In order to understand the phase structure of th&' RP
models one might, in analogy with the Kosterlitz-Thouless
(KT) scenario of the XY model [19], discuss the
renormalization-grougRG) flow of the models in a two-
dimensional parameter space. In addition to the couplin
g2 one might introduce a coupling parametgr for the
plaguette-term, controlling the density of vortices:

1 R knowledge after the present work was finished.
S=- _22 ZyySxSyt InME Zy, (19 g P
9" (xy) P
wherez, =11y e pZyy - ACKNOWLEDGMENTS
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disorder. Therefore a nonvanishing should amount to a

positive contribution in the derivative a@f? with respect to

the logarithm of the cutoff scale and hence accelerate the APPENDIX

flow towards strong coupling. . . .
Statementa) rules out that a possible phase transition in !N the following I prove that the single cluster algorithm

the RPY~! model is KT like, since the fixed point of the KT applied to the constraint ®f)-invariant model is ergodic.

transition is purely Gaussian. Furthermore statemgmt Itis sufficient_to sh_ov_v that any allowed configuration can

rules out any fixed point that might occur at a finjte be transformed ina finite number of cluster-update steps to
Still we have to explain why Monte Carlo simulations and the configuratiors=(1,0,. . .,0) for all sites.

strong coupling expansions seem to be in favor of a phase Let us consider aN=2 (XY) model with a bond depen-

transition. It seems plausible that in analogy with the KT-dent constrainC,,. Assume that the spins are distributed

flow equationsu is irrelevant for small coupling?® but be-  in an angle rang¢0,«,] with respect to the 1 axigThe

comes relevant above some threshold vajfie That means  largest range to start with [9,2].) _

aboveg? the RG trajectories are driven off from the renor- ~ Take a reflection axis which has an anglg’2 with the

malized trajectory of the Q)-invariant model. 1 axis. Per construction none of the sitewith ¢,> /2 is
connected via a frozen bond with a sijewith ¢, <a,/2.

Hence all spins can be moved into the ran@ey,+ 1] with
ay+1= oy /2 using a finite numbesmaller or equal the num-

| have proven that the constraint @ and constraint ber of site$ of cluster updates. Iterating this process, in a
RPY"1 model become equivalent foE>cos¢r/4). Using finite number of steps all spins can be put into the range
the renormalized coupling?=m(L)L | estimated the corre- [0, min arc cosC(xy))]. Now take for each site a reflection
lation length atC=cos(r/4) to be abouté=0.6x10° for  axis with a,= ¢,/2. Per construction all these clusters are
both models withN=3. For C values being smaller, such single site clusters.
that ¢<1000, the models display huge differences. This We hence constructed a sequence of a finite number of
means that the asymptotic behavior of the constraint RPcluster updates that transforms an arbitrary configuration to
model practically cannot be observed in a computer simulathe s=(1,0) for all sites configuration.
tion. | argue that a similar scenario holds for models with a For generaN this procedure can be iterated. Consider the
standard action. Ag3—o vortices in the RP~! model Nth and (N—1)th component as an embeddsd model.
should vanish and the RP! becomes equivalent to an Remove the Nth component. Go ahead until
O(N) model by the virtue of a gauge fixing. s=(1,0,...,0) for all sites is reached.

VIl. CONCLUSIONS

[1] A.M. Polyakov, Phys. Lett59B, 79 (1975; E. Brezin and J. [7] H. Kunz and G. Zumbach, Phys. Lett. 357, 299 (199J);

Zinn-Justin, Phys. Rev. Let86, 691(1976; Phys. Rev. Bl4, Phys. Rev. B46, 662(1992.
3110(1976. [8] S. Solomon, Y. Stavans, and E. Domany, Phys. 1dt?B, 373
[2] P.A. Lebwohl and G. Lasher, Phys. Rev6A426(1972. (1981).
[3] S. Duane and M.B. Green, Phys. Let3B, 359(198J). [9] S. Caracciolo, R.G. Edwards, A. Pelissetto, and A.D. Sokal, in
[4] C. Chiccoli, P. Pasini, and C. Zannoni, PhysicalA8 298 Lattice '92, Proceedings of the International Symposium, Am-
(1988. sterdam, The Netherlands, 1992, edited by J. Smit and P. van
[5] S. Solomon, Phys. LetflOOB, 492 (1981). Baal [Nucl. Phys. B(Proc. Supp). 30, 815(1993].

[6] M. Caselle and F. Gliozzi, Phys. Lett47B, 132(1984. [10] S. Caracciolo, R.G. Edwards, A. Pelissetto, and A.D. Sokal,



3450 MARTIN HASENBUSCH 53

Phys. Rev. Lett71, 3906(1993. [16] U. Wolff, Nucl. Phys.B334, 581 (1990 .
[11] S. Caracciolo, R.G. Edwards, A. Pelissetto, and A.D. Sokal, if17] M. Hasenbusch, Physica 207, 423 (1993.
Lattice '93 Proceedings of the International Symposium, Dal-[18] A.P. Gottlob and M. Hasenbusch, J. Stat. PIi%.919(1994.
las, Texas, edited by T. Drapet al. [Nucl. Phys. B(Proc.  [19] See, for example, J.M. Kosterlitz and D.J. Thouless, J. Phys. C

Suppl) 34, 129(1994)]. N _ 6, 1181(1973; J.M. Kosterlitz,ibid. 7, 1046(1974; J.V. Jose
[12] E. Seiler and A. Patrascioiu, inattice '92[9], p. 184. L.P. Kadanoff, S. Kirkpatrick, and D.R. Nelson, Phys. Rev. B
[13] M. Luscher, P. Weisz, and U. Wolff, Nucl. PhyB359, 221 16, 1217(1977.

(1991).

[20] A. Sokal (private communication
B[21] F. Niedermayer, P. Weisz, and D.-S. Shin, Phys. Re{tolbe
published.

[14] U. Wolff, Phys. Rev. Lett62, 361(1989 .
[15] P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phys. Lett.
245 522 (1990.



