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O„N… and RPN21 models in two dimensions

Martin Hasenbusch
DAMTP, Silver Street, Cambridge, CB3 9EW, England

~Received 7 September 1995!

I provide evidence that the 2D RPN21 model forN>3 is equivalent to the O(N)-invariant nonlinears
model in the continuum limit. To this end, I mainly study particular versions of the models, to be called
constraint models. I prove that the constraint RPN21 and O(N) models are equivalent for sufficiently weak
coupling. Numerical results for the step-scaling function of the running couplingḡ25m(L)L are presented.
The data confirm that the constraint O(N) model is in the same universality class as the O(N) model with
standard action. I show that in the weak coupling limit periodic boundary conditions for the RPN21 model
correspond to fluctuating boundary conditions for the O(N) model. The effect of boundary conditions on finite
size scaling curves is discussed. It is concluded, in contrast with Caraccioloet al., that RPN21 and O(N)
models share a unique universality class.

PACS number~s!: 11.15.Ha, 05.50.1q, 11.10.Lm, 64.60.Fr
t

I. INTRODUCTION

Motivated by the close analogy with non-Abelian lattic
gauge theories in four dimensions nonlinears models in two
dimensions have been studied intensively during the last
years. Most important both types of models were found to
asymptotically free@1#.

Starting from the early 1980’s so-called RPN21 models
were discussed. The spins of these models are element
the real projective space inN dimensions. This space can b
thought of as a sphereSN21 where opposite points are iden
tified. Hence in perturbation theory the RPN21 model is
equivalent with the O(N)-invariants model. The fact how-
ever that the real projective space is not simply connec
gives rise to topological defect structures similar to vortic
in the two-dimensional~2D! XY model. The questions dis-
cussed in the literature are whether these defects induc
phase transition at a finite coupling or whether these nonp
turbative effects survive in the weak coupling limit.

The lattice action of the RPN21 model mostly discussed is

S52b(̂
xy&

~sWxsWy!
2, ~1!

where^xy& is a pair of nearest neighbor points on the lattic
andsW is a unit vector inRN. An alternative way to identify
2sWx andsWx is to introduce aZ2 gauge field

S52b(̂
xy&

z^xy&sWxsWy , ~2!

wherez takes the values 1 or21.
Similar models have been introduced to describe orien

tional phase transitions in nematic liquid crystals@2#. These
models have mainly been studied in three dimensions, wh
a weak first-order phase transition is found~see@3# and ref-
erences given in@4#!.

The numerical study of RPN21 models in 2D gave rise to
much controversy. Some authors@5–7# find that their results
are consistent with a phase transition at a finite couplin
while others doubt the existence of a phase transition but s
see strong crossover effects between the strong and the w
coupling regime@3,8,4#.
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Recently Caraccioloet al. @9–11# argued that there is no
phase transition in the RPN21 models. They claimed, based
on a finite size scaling analysis, that the RPN21 models how-
ever have a weak coupling limit distinct from that of the
O(N)-invariant s models. They claim even further that a
whole sequence of universality classes can be obtained from
mixed models.

In the following I will give evidence that rules out the
scenario presented in@9–11#. For a particular type of the
action of the O(N) and the RPN21 model I will show that the
models are exactly equivalent for sufficiently small coupling.
I discuss the scaling properties of vortices of the RPN21

model with standard action in the weak coupling regime. I
give numerical results for the step-scaling function intro-
duced in@13# that supports that the constraint model gives
the same universal results as the standard action. I show tha
the differences in the finite size scaling curves for the RP2

and the O(3) model found in@10,11# can be partially ex-
plained as a boundary effect.

II. THE CONSTRAINT O „N… AND RPN21 MODELS

Let me first define the models. The field variablesWx is in
both cases a unit vector inRN. In the case of the
O(N)-invariant model the Boltzmann weight of a configura-
tion is equal to 1 if

sWxsWy.C ~3!

for all nearest neighbor pairs of sites^xy& or else the Boltz-
mann weight is equal to 0. In@12# Seiler and Patrascioiu
discuss the relation of the constraint O(N)-invariant model
with a particular percolation problem. Based on this perco-
lation problem they argue that for sufficiently largeC the
constraint O(N)-invariant model in two dimensions becomes
massless. However it should be noted that they do not pro-
vide a proof for this scenario. In the following, in particular
in Sec. IV, I assume that the constraint O(N)-invariant
model, analogous to the standard O(N)-invariant lattice
model at finiteb, is massive for allC,1.

In the case of the RPN21 model2sWx andsWx are identified
and the constraint on the field configuration is given by
3445 © 1996 The American Physical Society
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usWxsWyu.C ~4!

for all nearest neighborŝxy&. Equivalently one might intro-
duce a gauge fieldz^xy& taking the values21 or 1:

z^xy&sWxsWy.C. ~5!

In the following I shall show that the constrain
O(N)-invariant model and the constraint RPN21 model are
equivalent forC.cos(p/4). Let us consider a lattice where
all closed paths are contractible; i.e., all closed paths can
shrunken to an elementary plaquette by removing sing
plaquettes sequentially. A hypercubical square lattice w
open boundary conditions is an example for such a lattice

Consider the class of 2V, whereV is the number of lattice
points, configurations that arise from a given configuratio
sWx by taking either1sWx or 2sWx at each lattice point. Since

usWxsWyu5u~2sWx!sWyu5usWx~2sWy!u5u~2sWx!~2sWy!u ~6!

all configurations in such a class are either allowed or fo
bidden RPN21 configurations. Obviously a class of configu
rations that is forbidden under the RPN21 constraint contains
no configuration that is allowed under the O(N) constraint
~with the sameC). In the following I will demonstrate that
for C.cos(p/4) a class of configurations that is allowe
under the RPN21 constraint contains exactly two configura
tions allowed under the O(N) constraint, and therefore the
partition functions are equal up to a trivial factor 2V21.

Take one configuration out of an allowed class o
RPN21 configurations. Pick one sitex. Replace the spins on
the other sites by

sWy85sWy )
^uv&P path~x,y!

sgn~sWusWv!. ~7!

The result of this construction is independent of the pat
chosen if

)
^uv&P closed path

sgn~sWusWv!51 ~8!

for all closed paths on the lattice. For elementary loops co
sisting of four lattice points this is the case fo
C.cos(p/4). All other paths can be successively built u
out of elementary loops, since we have chosen a simply c
nected lattice topology. When adding an elementary loop t
sign of a loop is conserved since the sign of the product
the new links in the path is the same as for the old link
Hence the sign of any closed path is 1 forC.cos(p/4).

By construction sign(sWx8sWy8)51 for all nearest neighbor
pairs^xy&. The second allowed O(N) configuration within a
class of allowed RPN21 configurations is given by
sWx952sWx8 .

The idea behind this proof has been discussed for an
tion similar to that in Eq.~2! by Caselle and Gliozzi@6#.
However for that action the rigorous proof for a pure gaug
in the weak coupling limit is missing.

In Monte Carlo simulations one typically uses period
boundary conditions, which leads to the lattice topology of
torus. Here loops exist that wind around the torus and hen
cannot be contracted to an elementary loop.
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In order to avoid classes of allowed RPN21 configurations
that contain no allowed O(N) configurations one has to re-
quireC.cos(p/L) whereL is the extension of the lattice in
units of the lattice spacing. It is important to note that suc
boundary effects might well survive the continuum limit in a
finite size scaling analysis. However this boundary effect c
be reproduced by proper boundary conditions imposed up
the O(N) model. For C.cos(p/4) a constraint RPN21

model on a periodic lattice is equivalent to a constrai
O(N) model with fluctuating boundary conditions. Fluctuat
ing boundary conditions mean that in the partition functio
one sums over periodic as well as antiperiodic boundary co
ditions. In the case of antiperiodic boundary conditions on
identifies sW(0,y)52sW(L,y), sW(L11,y)52sW(1,y), sW(x,0)
52sW(x,L), andsW(x,L11)52sW(x,1).

III. SCALING OF THE VORTEX DENSITY FOR THE
STANDARD ACTIONS

For the standard actions of the RPN21 model similar ar-
guments apply. In the limitb→` the energy of a vortex
should win against the entropy and vortices should play
role in the continuum limit of the theory.

Let us identify a frustrated plaquette in Eq.~2! with the
center of a vortex. The classical solution of thesW field for a
fixed gauge field with two frustrated plaquettes has an ene
proportional to lnr wherer is the distance in between these
two frustrated plaquettes. Hence one can find a finiter 0 such
that the energy is larger than 2/b0 , whereb0 is the leading
coefficient in the perturbativeb function. Therefore the den-
sity of vortex pairs with a distance larger thanr 0 dies out
faster than the square of the inverse correlation length. Hen
they should not play a role in the continuum limit of the
theory.

IV. NUMERICAL RESULTS FOR THE CONSTRAINT
MODELS

In this section I show that the constraint O(N) model
reproduces universal results of the O(N)-invariants model.
Therefore I compute the step-scaling function of Ref.@13#
for three different values of the running coupling and com
pare the result with that of Ref.@13# obtained with the stan-
dard action. Furthermore I estimate the correlation length
C5cos(p/4) using the running coupling and also measu
the correlation length for both the O(N) and the RPN21

model forC,cos(p/4) to check the importance of defects in
the generation of the mass in the RPN21 case.

The running coupling of@13# is defined by

ḡ25
2

N21
m~L !L, ~9!

wherem(L) is the mass gap on a lattice with extensionL in
spatial direction. Theb function for the running coupling
ḡ2 is given by@13#

b~g2!52
N22

2p
ḡ42

N22

~2p!2
ḡ62

~N21!~N22!

~2p!3
ḡ8•••.

~10!
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The step-scaling functions(s,u) is the discrete version of
theb function. It gives the value of the coupling after chang
of L by a factor ofs starting from a couplingu.

The simulation was done using the evident modificati
of the single cluster algorithm@14#. A bond ^xy& is called
deleted if after the reflection of one of the spinssWx or sWy the
constraintsWxsWy.C is still satisfied.

A proof of ergodicity is given in the Appendix. The simu
lation results listed in Table I are based on about 107 single
cluster updates. The correlation function was measured u
the cluster-improved estimator@16# . The mass was extracte
from the correlation function at distanceL and 2L.

Fitting the data of Table I to an ansatz

S~2,u,a/L !5s~2,u!1c~a/L !2. ~11!

I obtain s(2,1.0595)51.2589(10) from L/a>16,
s(2,0.8166)50.9150(8) from L/a>8, and
s(2,0.7383)50.8159(8) fromL/a>8. These results can be
compared with the step-scaling function obtained in@13#
s(2,1.0595)51.2641(20), s(2,0.8166)50.9176(8), and
s(2,0.7383)50.8166(9). Theslight disagreement~about 2
standard deviations! might well be explained by deviations
of the corrections to finite size scaling from the fit ansa
chosen.

The exact prediction for the mass gap given by@15#

m

LMS

5
8

e
, ~12!

TABLE I. The renormalized couplingḡ2 from the constraint
O~3! model.C gives the value of the constraint.L/a andL8/a are
the lattice extensions in spatial direction.

C L/a L8/a ḡ2(L) ḡ2(L8)

0.0515 4 8 1.0595~2! 1.2623~3!

0.0820 5 10 1.0595~2! 1.2564~3!

0.1047 6 12 1.0595~2! 1.2542~3!

0.1225 7 14 1.0595~2! 1.2540~2!

0.1371 8 16 1.0595~2! 1.2542~4!

0.1607 10 20 1.0595~2! 1.2545~3!

0.1786 12 24 1.0595~2! 1.2542~4!

0.2058 16 32 1.0595~2! 1.2559~3!

0.2255 20 40 1.0595~2! 1.2569~3!

0.2637 32 64 1.0595~2! 1.2582~6!

0.1992 4 8 0.8166~2! 0.9358~3!

0.2413 6 12 0.8166~2! 0.9234~2!

0.2663 8 16 0.8166~2! 0.9186~3!

0.2835 10 20 0.8166~2! 0.9171~2!

0.2967 12 24 0.8166~2! 0.9167~3!

0.2538 4 8 0.7383~2! 0.8373~2!

0.2924 6 12 0.7383~2! 0.8246~2!

0.3147 8 16 0.7383~2! 0.8197~3!

0.3299 10 20 0.7383~2! 0.8191~4!

0.3416 12 24 0.7383~2! 0.8174~3!

0.55 16 32 0.4491~2! 0.4759~4!

1/A2 16 32 0.2654~1! 0.2746~1!
e
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whereMS denotes the modified minimal subtraction scheme,
for N53 and the conversion factor for theL parameters

L5
e2G8~1!

4p
LMS ~13!

given in @13# allows us to give an estimate for the infinite
volume correlation length based on the measurement of the
correlation length on a finite lattice. Taking the Monte Carlo
result for the running coupling given in Table I I obtain
j50.73105 as estimate for the correlation length at
C50.55 andj50.63109 as estimate atC5cos(p/4), where
the O(3) and RP2 constraint models become identical.

In addition I performed some simulations for both the
constraint O(N) model and the constraint RPN21 model at
smallerC values such that the correlation lengthj is much
smaller than the lattice sizeL. Here I adopted the definitions
used in@9–11#.

The correlation function in the vector channel is defined
by

Gv~x,y!5^sWxsWy&. ~14!

Since naively this quantity vanishes identically under the
symmetries of the RPN21 model one considers the tensor
channel with the correlation function

Gt~x,y!5^~sWxsWy!
2&2

1

N
. ~15!

Starting from these definitions of the correlation function one
obtains the susceptibility

x5
1

V(
x,y

G~x,y! ~16!

and

F5
1

V(
x,y

cosS 2p

L
k~x2y! DG~x,y! ~17!

with k5(1,0) ork5(0,1).
The second moment correlation length is now defined as

j5
Ax/F21

2sin~p/L !
. ~18!

In Table II some results for the constraint O(3) model are
given. It is remarkable that already forC50 the correlation
length is larger than ten. The ratio of the correlation length in
the vector and the tensor channel is aboutjv /j t53.3(1).

In Table III my results for the constraint RP2 model are
summarized. AtC50.55 there is a factor of about 103 in
between the correlation lengths of the O(3) and the RP2

TABLE II. The second moment correlation length in the vector
(jv) and tensor (j t) channel for the constraint O(3)-invariant vec-
tor model for various values of the constraintC.

C L jv j t

0.00 64 11.20~5! 3.29~6!

0.10 128 23.3~2! 6.9~2!

0.2255 400 76.7~4! 24.0~6!
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model. This means that it is practically impossible to see t
true asymptotic behavior of the constraint RP2 model in a
computer simulation.

V. FINITE SIZE SCALING AND UNIVERSALITY

In this section I shall demonstrate that the difference
the finite size scaling curves observed in@9,10# can be ex-
plained in part by the boundary effect discussed above
simulated the O(3)-invariant model with the standard action
on a square lattice using fluctuating boundary conditions
both lattice directions. For the updates of the boundary co
ditions I used the boundary flip algorithm proposed in@17#
for the Ising model and generalized to O(N) vector models
in @18#.

Most of the runs I performed atb51.4, b51.5, and
b51.6. The true correlation lengths for theseb values are
j56.90(1), j511.09(2), and j519.07(6), respectively
@16#. I used lattice sizes ranging fromL56 to L5128.
Throughout I performed 100 000 measurements. I perform
a measurement after one boundary-flip update for each dir
tion and roughlycluster-size over lattice-sizestandard
single cluster updates. In Fig. 1 the dimensionless quan
x t(2L)/x t(L) is plotted as a function ofj/L, wherej is the
infinite volume correlation length. I give the results for fluc
tuating boundary conditions~circles! and for comparison the

TABLE III. The second moment correlation length in the tenso
channelj t for the constraint RP2 model for various values of the
constraintC.

C L j t

0.50 64 4.72~2!

0.51 64 5.66~2!

0.52 128 7.10~6!

0.53 128 9.06~5!

0.55 128 16.52~7!

FIG. 1. The dimensionless quantityx t(2L)/x t(L) is given as a
function of jv(L5`)/L for the O(3) model. The data forjv are
taken from@16#. The data points with the circles are obtained wit
fluctuation boundary conditions while those with diamonds are o
tained with periodic boundary conditions.
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results with periodic boundary conditions~diamonds!. Com-
paring with Fig. 2 of@11# one has to note that Caracciolo
et al. useL/j t(L) as parameter on thex axis. My result for
periodic boundary conditions is consistent with that given in
Fig. 2~b! of @11#. The fluctuating boundary conditions re-
move the characteristic dip visible in the finite size scaling
curve for periodic boundary conditions. The finite size scal
ing curve for fluctuating boundary conditions looks qualita-
tively much like that of Fig. 2~a! of @11# ~RP2-like models!.

However a quantitative comparison, taking into accoun
the different parameters for thex axis, reveals that the dif-
ference between the finite size scaling curve of the RP2

model presented in Fig. 2~a! of @11# and that of the O(3)
model is not fully explained by the boundary effect discusse
above. This fact has to be explained by the presence of vo
tices at the finiteb values of the data given in Fig. 2~a! of
@11#.

In this context it is illuminating to compare the finite size
scaling curve of the constraint RP2 model forC,cos(p/4)
with that of the O(3) model with fluctuating boundary con-
ditions. In Fig. 2x t(2L)/x t(L) is plotted as a function of
L/j t(L) for the constraint RP

2 model as well as the standard
O(3) model with fluctuating boundary conditions. In the
case of the constraint RP2 model data forC50.5, 0.51, 0.52,
0.53, 0.55, 0.56, 0.57, and 0.59 andL58 up toL5128 are
shown. Theb values for O(3) range from 1.4 to 3.4. For
most of the data pointsL516 is used.

The two curves are clearly distinct, and the RP2 data for
different C values fall rather nicely onto a unique curve.
Furthermore the curve produced by the constraint RP2 data
is quite similar to that obtained from the action given by Eq
~1! @20#. However we should keep in mind the proof of Sec
II.

In the following section an attempt is made to explain this
puzzling observation.

r

b-

FIG. 2. x t(2L)/x t(L) is plotted as a function ofL/j t(L) for the
constraint RP2 model as well as the O(3) model with fluctuating
boundary conditions. In the case of the constraint RP2 model data
for C50.5, 0.51, 0.52, 0.53, 0.55, 0.56, 0.57, and 0.59 andL58 up
to L5128 are shown. Theb values for O(3) range from 1.4 to
3.4. For most of the data pointsL516 is used.
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VI. IS THERE A PHASE TRANSITION?

In order to understand the phase structure of the RPN21

models one might, in analogy with the Kosterlitz-Thoule
~KT! scenario of the XY model @19#, discuss the
renormalization-group~RG! flow of the models in a two-
dimensional parameter space. In addition to the coupl
g2 one might introduce a coupling parameterm for the
plaquette-term, controlling the density of vortices:

S52
1

g2(̂xy&
zxysWxsWy1 lnm(

p
zp , ~19!

wherezp5)^xy&Ppzxy .
I will make no attempt here to derive the RG flow equ

tions. However certain qualitative features and their con
quences seem to be evident:~a! For (g2,0) the standardb
function of the O(N) model is recovered;~b! vortices cause
disorder. Therefore a nonvanishingm should amount to a
positive contribution in the derivative ofg2 with respect to
the logarithm of the cutoff scale and hence accelerate
flow towards strong coupling.

Statement~a! rules out that a possible phase transition
the RPN21 model is KT like, since the fixed point of the KT
transition is purely Gaussian. Furthermore statement~b!
rules out any fixed point that might occur at a finitem.

Still we have to explain why Monte Carlo simulations an
strong coupling expansions seem to be in favor of a ph
transition. It seems plausible that in analogy with the K
flow equationsm is irrelevant for small couplingg2 but be-
comes relevant above some threshold valuegt

2 . That means
abovegt

2 the RG trajectories are driven off from the reno
malized trajectory of the O(N)-invariant model.

VII. CONCLUSIONS

I have proven that the constraint O(N) and constraint
RPN21 model become equivalent forC.cos(p/4). Using
the renormalized couplingḡ25m(L)L I estimated the corre-
lation length atC5cos(p/4) to be aboutj50.63109 for
both models withN53. For C values being smaller, such
that j!1000, the models display huge differences. Th
means that the asymptotic behavior of the constraint R2

model practically cannot be observed in a computer simu
tion. I argue that a similar scenario holds for models with
standard action. Asb→` vortices in the RPN21 model
should vanish and the RPN21 becomes equivalent to an
O(N) model by the virtue of a gauge fixing.
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On lattices with periodic boundary conditions one has to
notice that paths winding around the lattice are not contract-
ible. The effect of such loops in the RPN21 model amount to
fluctuating boundary conditions in the equivalent O(N)
model. I demonstrated numerically that this fact partially ex-
plains the differences found in the finite size scaling curves
for the O(3) and RP2 models observed in@10,11#.

Note added. My conclusions are confirmed by work of
Niedermayer, Weisz, and Shin@21#, which came to my
knowledge after the present work was finished.
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APPENDIX

In the following I prove that the single cluster algorithm
applied to the constraint O(N)-invariant model is ergodic.

It is sufficient to show that any allowed configuration can
be transformed in a finite number of cluster-update steps to
the configurationsW5(1,0, . . . ,0) for all sites.

Let us consider anN52 (XY) model with a bond depen-
dent constraintC^xy& . Assume that the spins are distributed
in an angle range@0,ak# with respect to the 1 axis.~The
largest range to start with is@0,2p#.)

Take a reflection axis which has an angleak/2 with the
1 axis. Per construction none of the sitesx with fx.ak/2 is
connected via a frozen bond with a sitey with fy,ak/2.
Hence all spins can be moved into the range@0,ak11# with
ak115ak/2 using a finite number~smaller or equal the num-
ber of sites! of cluster updates. Iterating this process, in a
finite number of steps all spins can be put into the range
@0, min arc cos(C^xy&)#. Now take for each site a reflection
axis with ax5fx/2. Per construction all these clusters are
single site clusters.

We hence constructed a sequence of a finite number o
cluster updates that transforms an arbitrary configuration to
the s5(1,0) for all sites configuration.

For generalN this procedure can be iterated. Consider the
Nth and (N21)th component as an embeddedXY model.
Remove the Nth component. Go ahead until
s5(1,0, . . . ,0) for all sites is reached.
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