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Free energy of QCD at high temperature

Eric Braaten and Agustin Nieto
Department of Physics, Ohio State University, Columbus, Ohio 43210

~Received 26 October 1995!

Effective-field-theory methods are used to separate the free energy for a non-Abelian gauge theory at hi
temperatureT into the contributions from the momentum scalesT, gT, andg2T, whereg is the coupling
constant at the scale 2pT. The effects of the scaleT enter through the coefficients in the effective Lagrangian
for the three-dimensional effective theory obtained by dimensional reduction. These coefficients can be calc
lated as power series ing2. The contribution to the free energy from the scalegT can be calculated using
perturbative methods in the effective theory. It can be expressed as an expansion ing starting at orderg3. The
contribution from the scaleg2T must be calculated using nonperturbative methods, but nevertheless it can be
expanded in powers ofg beginning at orderg6. We calculate the free energy explicitly to orderg5. We also
outline the calculations necessary to obtain the free energy to orderg6.

PACS number~s!: 11.10.Wx, 12.38.Bx
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I. INTRODUCTION

One of the most dramatic predictions of quantum chrom
dynamics~QCD! is that when hadronic matter is raised to a
sufficiently high temperature or density, it will undergo a
phase transition to a quark-gluon plasma. One of the ma
thrusts of nuclear physics in the next decade will be th
effort to study the quark-gluon plasma through relativisti
heavy-ion collisions. For this effort to be successful, it wil
be important to understand the properties of the plasma
accurately as possible. The two major theoretical tools th
have been used to study the quark-gluon plasma are latt
gauge theory and perturbative QCD. Lattice gauge theo
has the advantage that it is a nonperturbative method a
applies equally well to the quark-gluon phase and to th
hadron phase. It is an effective method for calculating th
static equilibrium properties of hadronic matter with zer
baryon density. Unfortunately, the Monte Carlo method
used in lattice gauge theory cannot be easily applied to pro
lems involving dynamical properties or to hadronic matte
that is away from thermal equilibrium or has nonzero baryo
density. These are severe restrictions, because a quark-gl
plasma that is produced in heavy-ion collisions will not be a
thermal equilibrium and it may have nonzero baryon densit
Furthermore, many of the most promising signatures for
quark-gluon plasma involve dynamical properties.

Perturbative QCD can help fill this gap, at least for th
quark-gluon phase of hadronic matter. This method can c
tainly be applied to the static equilibrium properties of
quark-gluon plasma at zero baryon density, but there are
apparent obstacles to also applying it to dynamical problem
to nonequilibrium situations, or to a plasma with nonzer
baryon density. Thus it is a powerful tool for studying vari
ous aspects of the quark-gluon plasma that might be prob
through heavy-ion collisions. However, there are potenti
difficulties in applying perturbative QCD to the quark-gluon
plasma. The method is based on treating the coupling co
stantg as a small parameter, butg(m) is a parameter that
varies rather dramatically with the momentum scalem. In
order to apply perturbative QCD, it is necessary thatg be
small at the scale of the typical momentum of a particle i
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the plasma, which is of orderT or perhaps 2pT. While this
is necesssary, it may not be sufficient. At sufficiently high
order in perturbation theory, any observable becomes sensi
tive to low-momentum gluons that interact with a large cou-
pling strengthg. In order to rigorously apply perturbative
QCD, it is essential to be able to unravel the various momen-
tum scales that play an important role in a problem. If low-
momentum contributions are important, they must be treated
using nonperturbative methods.

For a quark-gluon plasma at high temperature, there is a
hierarchy of three momentum scales that play an important
role in static properties. First, there is the scaleT of the
typical momentum of a particle in the plasma. Next, there is
the scalegT associated with the screening of color-electric
forces by the plasma. Finally, there is the scaleg2T associ-
ated with color-magnetic screening. Only recently has a
method been developed that can systematically unravel the
contributions from these various momentum scales. The
method is based on the construction of effective field theo-
ries that reproduce static observables at successively longe
distance scales. This effective-field-theory approach is based
on an old idea called ‘‘dimensional reduction’’@1,2#. Accord-
ing to this idea, the static properties of a~311!-dimensional
field theory at high temperature can be expressed in terms o
an effective field theory in three space dimensions. Dimen-
sional reduction has long been used to provide insight into
the qualitative behavior of field theories at high temperature
@1–4#. The effective-field-theory approach makes this idea
into a practical tool for quantitative calculations. In Ref.@5#,
we developed the effective-field-theory approach to dimen-
sional reduction and applied it to a scalar field with af4

interaction. We demonstrated the power of this method by
using it to carry out several perturbative calculations beyond
the frontiers set by previous work. A similar approach was
developed independently by Farakoset al. @6#, who applied
it to the important problem of the electroweak phase transi-
tion. This method has also been applied to QCD@7#, and
used to resolve a long-standing problem involving the break-
down of the perturbation expansion for the free energy@8#.
These ideas have also been used to determine the asymptot
behavior of the correlator of Polyakov loop operators@9# and
3421 © 1996 The American Physical Society
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to provide a rigorous nonperturbative definition of the Deb
screening mass in non-Abelian gauge theories@10#.

Once we have understood how to resolve the contrib
tions of the various momentum scales in thermal QCD,
ymptotic freedom guarantees us that perturbation theory w
be under control in the high-temperature limit. At sufficient
high temperature, the running coupling constant will
small enough that calculations to leading order ing will be
accurate. However, in most practical applications, such
those encountered in heavy-ion collisions, the temperatur
not asymptotically large, and we must worry about highe
order corrections. The accuracy of the perturbation exp
sion can only be assessed by carrying out explicit pertur
tive calculations beyond leading order. One of the obstac
to progress in high-temperature field theory has been that
technology for perturbative calculations was not well dev
oped. Only very recently have there been any calculation
a high enough order that the running of the coupling const
comes into play. The simplest physical observable that
be calculated in perturbation theory is the free energy, wh
determines all the static thermodynamic properties of
system. The running of the coupling constant first enters
orderg4. The free energy for gauge theories at zero tempe
ture but large chemical potential was calculated to orderg4

long ago@11#. The first such calculation at high temperatu
was the free energy of a scalar field theory with af4 inter-
action, which was calculated to orderg4 by Frenkel, Saa, and
Taylor in 1992@12#. ~A technical error was later corrected b
Arnold and Zhai@13#.! The analogous calculations for gaug
theories were carried out in 1994. The free energy for QE
was calculated to ordere4 by Coriano and Parwani@14# and
the free energy for a non-Abelian gauge theory was cal
lated to orderg4 by Arnold and Zhai@13#. The calculation of
Arnold and Zhai was completely analytic, and thus rep
sents a particularly significant leap in calculational techn
ogy. The calculational frontier has since been extended
fifth order in the coupling constant by Parwani and Sin
@15# and by Braaten and Nieto@5# for thef4 field theory, by
Parwani@16# and by Andersen@17# for QED, and by Kasten-
ing and Zhai@18# for non-Abelian gauge theories. In thi
paper, we present an independent calculation of the free
ergy for a non-Abelian gauge theory to orderg5 @19#, veri-
fying the result of Kastening and Zhai. In our calculation, w
use effective-field-theory methods to simplify the calculatio
and to resolve the contributions to the free energy from
momentum scalesT andgT. We also outline the calculations
that are required to obtain the free energy to orderg6.

In Sec. II, we describe how effective field theories can
used to resolve the contributions to the free energy from
momentum scalesT, gT, andg2T. In Sec. III, we calculate
the coefficients in the Lagrangian for the effective fie
theory obtained by dimensional reduction. In Sec. IV, we u
the effective field theory to calculate the free energy f
QCD to orderg5. In Sec. V, we outline the calculations tha
would be necessary to improve the accuracy to orderg6. In
Sec. VI, we discuss the implications of our calculation f
convergence of the perturbation expansion for the free
ergy. We present some conclusions in Sec. VII. In two a
pendixes, we tabulate the analytic expressions for all
sums and integrals that arise in our calculation.
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II. SEPARATION OF SCALES IN THE FREE ENERGY

The free energy for QCD at high temperatureT includes
contributions from the momentum scalesT, gT, andg2T. In
this section, we explain how the contributions from these
three momentum scales can be unraveled by using effective
field-theory methods.

The static equilibrium properties for hot QCD are given
by the free energy densityF, which is proportional to the
logarithm of the partition function:

F52
T

V
lnZQCD, ~1!

whereV is the volume of space. In the imaginary-time for-
malism for thermal QCD, the partition function is given by a
functional integral over quark and gluon fields on a four-
dimensional Euclidean space. The Euclidean timet is peri-
odic with periodb51/T. The partition function is

ZQCD5E DAm~x,t!Dq~x,t!D q̄~x,t!

3expS 2E
0

b

dtE d3xLQCDD . ~2!

The gluon fields are periodic functions oft while the quark
and antiquark fields are antiperiodic. The Lagrangian is

LQCD5
1

4
Gmn
a Gmn

a 1q̄gmDmq, ~3!

whereGmn
a 5]mAn

a2]nAm
a1g fabcAm

bAn
c is the field strength

and g is the gauge coupling constant. All the quark fields
have been assembled into the multiple-component spinorq,
and the gauge-covariant derivative acting on this spinor is
Dm5]m1 igAm

aTa. The relevant quark flavors are all as-
sumed to be massless.

In order to make our calculations as general as possible
we will express them in terms of the group-theory factors
CA , CF , andTF defined by

f abcf abd5CAdcd, ~4!

~TaTa! i j5CFd i j , ~5!

tr~TaTb!5TFdab. ~6!

For an SU(Nc) gauge theory withnf quarks in the funda-
mental representation, these factors areCA5Nc ,
CF5(Nc

221)/(2Nc), andTF5nf /2. The dimensions of the
adjoint representation and the fermion representation are
dA5Nc

221 anddF5Ncnf , respectively.
The free energy for QCD can also be calculated using an

effective field theory in three space dimensions called elec-
trostatic QCD~EQCD!. This effective theory is constructed
so that it reproduces static gauge-invariant correlators of
QCD at distances of order 1/(gT) or larger. It contains an
electrostatic gauge fieldA0

a(x) and a magnetostatic gauge
field Ai

a(x) that can be identified, up to field redefinitions,
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with the zero-frequency modes of the gluon fieldAm
a (x,t) for

thermal QCD in a static gauge@3#. The free energy for ther-
mal QCD can be written

F5TS f E~LE!2
lnZEQCD

V D , ~7!

whereZEQCD is the partition function for EQCD:

ZEQCD5E ~LE!

DA0~x!DAi~x!expS 2E d3xLEQCDD .
~8!

The functional integral requires an ultraviolet cutoffLE .
The Lagrangian for EQCD is

LEQCD5
1

4
Gi j
aGi j

a1
1

2
~DiA0!

a~DiA0!
a1

1

2
mE
2A0

aA0
a

1
1

8
lE~A0

aA0
a!21dLEQCD, ~9!

whereGi j
a5] iAj

a2] jAi
a1gEf

abcAi
bAj

c is the magnetostatic
field strength with coupling constantgE . If the fieldsA0 and
Ai are assigned the scaling dimension 1/2, then the opera
shown explicitly in ~9! have dimensions 3, 3, 1, and 2, re
spectively. The termdLEQCD in ~9! includes all other local
gauge-invariant operators of dimension 3 and higher that
be constructed out ofA0 andAi . Static gauge-invariant cor-
relation functions in full QCD can be reproduced in EQC
by tuning the gauge coupling constantgE , the mass param-
etermE

2 , the coupling constantlE , and the parameters in
dLEQCD as functions ofg, T, and the ultraviolet cutoffLE
of EQCD. TheLE dependence of the parameters is cance
by theLE dependence of the loop integrals in the effecti
theory.

In order to calculate the free energy using EQCD, w
must also tune the coefficientf E of the unit operator, which
was omitted from the effective Lagrangian~9! but appears as
the first term in the expression~7! for the free energy. It
depends on the ultraviolet cutoffLE of EQCD in such a way
as to cancel the cutoff dependence of the partition funct
for EQCD. The coefficientf E gives the contribution to the
free energy from the momentum scaleT. The logarithm of
the partition function for EQCD includes the remaining co
tributions from the smaller momentum scalesgT andg2T.

In order to further separate the contributions from t
scalesgT and g2T, it is convenient to construct a secon
effective field theory called magnetostatic QCD~MQCD!
which contains only the magnetostatic gauge fieldAi

a(x).
The free energy for thermal QCD can be written

F5TS f E~LE!1 f M~LE ,LM !2
lnZMQCD

V D , ~10!

whereZMQCD is the partition function for MQCD:

ZMQCD5E ~LM !

DAi
a~x!expS 2E d3xLMQCDD . ~11!
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The functional integral requires an ultraviolet cutoffLM .
The Lagrangian for MQCD is

LMQCD5
1

4
Gi j
aGi j

a1dLMQCD, ~12!

whereGi j
a is the magnetostatic field strength with coupling

constantgM . This coupling constant differs fromgE by per-
turbative corrections. The termdLMQCD includes all pos-
sible local gauge-invariant operators of dimension 5 an
higher that can be constructed out ofAi

a . Gauge-invariant
correlation functions in EQCD can be reproduced in MQCD
by tuning the gauge coupling constantgM and the parameters
in dLMQCD as functions of the parameters of EQCD (gE ,
mE
2 , lE , . . . ) and theultraviolet cutoffLM of MQCD. The

LM dependence of the parameters in the MQCD Lagrangia
is canceled by theLM dependence of the loop integrals in
MQCD.

In order to calculate the free energy using MQCD, one
must also tune the coefficientf M of the unit operator, which
was omitted from the effective Lagrangian~12! but appears
as the second term in the expression~10! for the free energy.
Its dependence on the ultraviolet cutoffLM of MQCD is
canceled by the cutoff dependence of the partition functio
for MQCD. The coefficientf M gives the contribution to the
free energy from the momentum scalegT. The contribution
from the smaller momentum scaleg2T is contained in the
logarithm of the partition function for MQCD.

By constructing the effective field theories EQCD and
MQCD, we have separated the contributions from the mo
mentum scalesT, gT, andg2T in the free energy. The gen-
eral structure of the free energy is

F5T@ f E~T,g;LE!1 f M~mE
2 ,gE ,lE , . . . ;LE ,LM !

1 f G~gM , . . . ;LM !#T, ~13!

wheref G52 lnZMQCD/V. The arbitrary factorization scales
LE andLM separate the momentum scalesT from gT and
gT from g2T, respectively. The termf E and the parameters
of EQCD ~i.e., mE

2 , gE , lE , . . . ) involve only the scale
T. They can therefore be calculated using ordinary perturb
tion theory as power series ing2(2pT), whereg(2pT) is
the running coupling constant at the scale of the lowest Ma
subara frequency 2pT. The termf M and the parameters of
MQCD (gM , . . . ) involve only the scalegT. They can be
calculated in EQCD as perturbation expansions ingE

2/mE ,
lE /mE , and other dimensionless parameters obtained b
multiplying EQCD coupling constants by appropriate power
of mE . The leading contribution tof M is proportional to
mE
3 . The termf G in ~13! can only be calculated using non-

perturbative methods, such as lattice-gauge-theory simul
tions of MQCD. Surprisingly, however,f G can be expanded
as a weak coupling expansion in powers ofg by treating the
higher dimension operators in the MQCD Lagrangian as pe
turbations@7#. The leading term is proportional togM

6 .
In summary, the free energy for QCD has the genera

structure given in~13!. The termf E is the contribution from
the scaleT. It has the formT3 multiplied by a power series
in g2(2pT) whose coefficients can be calculated using ordi
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3424 53ERIC BRAATEN AND AGUSTIN NIETO
nary perturbation theory in thermal QCD. The termf M is the
contribution from the scalegT. It has the formmE

3 multi-
plied by a power series ing(2pT) whose coefficients can be
calculated using perturbation theory in EQCD. The termf G
is the contribution from the scaleg2T. It has the formgM

6

multiplied by a power series ing(2pT) whose coefficients
can be calculated using lattice simulations of MQCD.

III. PARAMETERS IN THE EQCD LAGRANGIAN

In order to calculate the free energy using the EQCD L
grangian, the parameters in the Lagrangian~9! must be tuned
as functions ofg, T, andLE so that EQCD reproduces the
static gauge-invariant correlation functions of full QCD a
distancesR@1/T. The EQCD parameters can be determine
by computing various static quantities in full QCD, compu
ing the corresponding quantities in EQCD, and demandi
that they match. It is convenient to carry out these matchi
calculations using a strict perturbation expansion ing2. This
expansion is afflicted with infrared divergences. The dive
gences arise from long-range forces mediated by static g
ons, which remain massless in the strict perturbation exp
sion. Physically, these divergences are screened by pla
effects either at the scalegT in the case of electrostatic glu-
ons or at the scaleg2T in the case of magnetostatic gluons
The screening of electrostatic gluons can be taken into
count by summing up infinite sets of higher-order diagram

FIG. 1. One-loop Feynman diagrams for the gluon self-energ
Curly lines, solid lines, and dashed lines represent the propaga
of gluons, quarks, and ghosts, respectively.

FIG. 2. Two-loop Feynman diagrams for the gluon self-energ
The solid blob represents the sum of the one-loop gluon self-ene
diagrams shown in Fig. 1.
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in the perturbation expansion, but the screening of magne
static gluons can only be taken into account using nonper
bative methods. Fortunately, it is not necessary to treat
effects of screening in a physically correct way in order
determine the parameters in the EQCD Lagrangian. The
rameters take into account the effects of large momenta
order T, and they are therefore insensitive to the infrar
effects associated with screening. We can therefore sim
ignore screening and remove the infrared divergences in
strict perturbation expansion by imposing any convenient
frared cutoff. As long as we use the same infrared cutoff
EQCD and in full QCD, we can determine the EQCD param
eters by matching strict perturbation expansions in the t
theories. Note that we are using the strict perturbation exp
sion simply as a device for determining the parameters in
EQCD Lagrangian.

A. Gauge coupling constant

For the calculation of the free energy to orderg5, we
require the EQCD gauge coupling constantgE only to
leading-order ing2. At this order, we can simply readgE off
from the Lagrangian of the full theory. We substitut
A0(x,t)→ATA0(x) in the QCD Lagrangian~3! and compare
*0

bdtLQCD with LEQCD in ~9!. We find that, to leading order
in g2,

gE
25g2T. ~14!

There is no dependence on the factorization scaleLE at this
order. The coupling constantgE could be calculated to
higher-order ing2 by matching scattering amplitudes in ful
QCD with the corresponding ones in EQCD.

B. Mass parameter

In this subsection, we calculate the coefficientmE
2 of the

A0
aA0

a term in the EQCD Lagrangian to next-to-leading ord
in g2. The physical interpretation ofmE is that it is the con-
tribution to the electric screening massmel from large mo-
menta of orderT. The parametermE

2 can be determined by
matching the strict perturbation expansions for the elect
screening mass in full QCD and in EQCD. Beyond leadi
order ing, the electric screening mass becomes sensitive
magnetostatic screening and requires a nonperturbative d
nition @10#. However, in the presence of an infrared cuto
mel can be defined in full QCD by the condition that th

y.
ors

y.
gy

FIG. 3. One-loop Feynman diagrams for the free energy.

FIG. 4. Two-loop Feynman diagrams for the free energy.
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53 3425FREE ENERGY OF QCD AT HIGH TEMPERATURE
propagator for the fieldA0
a(t,x) at spacelike momentum

K5(k050,k) has a pole atk252mel
2 . It is the solution to

the equation

k21P~k2!50 at k252mel
2 , ~15!

whereP(k2) is them5n50 component of the gluon sel
energy tensor evaluated atk050: P00

ab(k050,k)
5P(k2)dab. In EQCD with an infrared cutoff, the electri
screening massmel gives the location of the pole in th
propagator for the fieldA0

a(x). Denoting the self-energ
function byPE(k

2)dab, mel is the solution to

k21mE
21PE~k2!5 0 at k252mel

2 . ~16!

By matching the expressions formel obtained by solving~15!
and ~16!, we can determine the parametermE

2 .
We calculate the electric massmel in the full theory using

a strict perturbation expansion ing2 and using dimensiona
regularization with 322e spatial dimensions to cut off bot
infrared and ultraviolet divergences. The self-energy func
P(k2) can be expanded in a loop expansion

P~k2!5P~1!~k2!1P~2!~k2!1•••, ~17!

with P (1)(k2) andP (2)(k2) being given by the diagrams i
Figs. 1 and 2, respectively. We can simplify Eq.~15! by
expandingP(k2) as a Taylor expansion aroundk250. This
is justified by the fact that the leading-order solution to~15!
gives a value ofk2 that is of orderg2T2. The deviation of
k2 from 0 should therefore be treated as a perturbation
order to get the strict perturbation expansion formel

2 in pow-
ers ofg2. The resulting expression for the electric screen
mass to next-to-leading order ing2 is

FIG. 5. Three-loop Feynman diagrams for the free energ
-

l

ion

in

ng

mel
2'P~1!~0!1P~2!~0!2P~1!~0!

dP~1!

dk2
~0!. ~18!

Here and below, we use the symbol' to denote an equality
that holds only in the strict perturbation expansion. The one-
loop diagrams that contribute toP (1)(k2) are shown in Fig.
1. Evaluating this function and its first derivative atk250 in
Feynman gauge, we obtain

P~1!~0!'Zg
2g2$2~12e!CA~I 122J 1!24TF~ Ĩ 122J̃ 1!%,

~19!

dP~1!

dk2
~0!'g2H 22CAFI 21

2~12e!~112e!

322e
J 2

2
8~12e!

322e
K 2G

12TFFĨ 21
4~112e!

322e
J̃ 22

16

322e
K̃ 2G J .

~20!

The sum integralsI n , J n , K n Ĩ n , J̃ n , andK̃ n are de-
fined in Appendix A. The renormalization of the coupling
constant using the modified minimal subtraction (MS)
scheme is accomplished by substituting

Zg
2512

11CA24TF
3

g2

~4p!2
1

e
~21!

into the expression forP (1)(0). Thetwo-loop diagrams that
contribute toP(k2) are shown in Fig. 2. This function evalu-
ated atk250 is

P~2!~0!'g4$4~12e!CA
2@22I 2J 11eI 1I 2

14~12e!I 1J 2#

18CATF@2I 2J̃ 12eĨ 1I 224~12e!Ĩ 1J 2#

18~12e!CFTF~I 12Ĩ 1!~ Ĩ 224J̃ 2!%. ~22!

The sum integrals in~19!, ~20!, and ~22! can be evaluated
analytically using methods developed by Arnold and Zhai
@13#, and they are given in Appendix A. The three quantities
appearing in~18! reduce to

.

FIG. 6. One-loop Feynman diagrams for the logarithm of the
partition function of EQCD.
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P~1!~0!'Zg
2g2T2H 13CAF11S 2z8~21!

z~21!
12ln

L

4pTD eG1
1

3
TFF11S 122ln212

z8~21!

z~21!
12ln

L

4pTD eG J , ~23!

dP~1!

dk2
~0!'

g2

~4p!2 H 2
5

3
CAF1e 2

1

5
12g12ln

L

4pTG1
4

3
TFF1e 2114ln212g12ln

L

4pTG J , ~24!

P~2!~0!'
g4

~4p!2
T2H 23CA

2F1e 1112g12
z8~21!

z~21!
14ln

L

4pTG1
2

3
CATFF1e 1222ln212g12

z8~21!

z~21!

14ln
L

4pTG22CFTFJ , ~25!

whereg is Euler’s constant,z(z) is the Riemann zeta function, andL is the scale of dimensional regularization. Inserting these
expressions into~18!, we find that the strict perturbation expansion formel

2 to orderg4 is

mel
2'

1

3
g2~L!T2HCA1TF1eFCAS 2z8~21!

z~21!
12ln

L

4pTD1TFS 122ln212
z8~21!

z~21!
12ln

L

4pTD G1FCA
2 S 531

22

3
g

1
22

3
ln

L

4pTD1CATFS 32
16

3
ln21

14

3
g1

14

3
ln

L

4pTD1TF
2 S 432

16

3
ln22

8

3
g2

8

3
ln

L

4pTD26CFTFG g2

~4p!2 J . ~26!

Note that all the poles ine have canceled. In the order-g2 term, we have kept terms of ordere for later use. The expression
~26! depends onL explicitly through logarithms ofL/4pT and implicitly through the coupling constantg2(L). The scale of
the coupling constant can be shifted from the dimensional regularization scaleL to an arbitrary renormalization scalem by
using the solution to the renormalization group equation for the running coupling constant:

g2~L!5g2~m!F11
2~11CA24TF!

3

g2

~4p!2
ln

m

L G . ~27!

After making this shift in the scale of the coupling constant, the only remaining dependence onL occurs in the terms of order
e. In these terms,L can be identified with the factorization scaleLE that separates the scalesT andgT.

The expression~26! for mel
2 is an expansion in powers ofg2. It does not include ag3 term, in contrast to the expression for

mel
2 that correctly incorporates the effects of the screening of electrostatic gluons@20#. This g3 term arises because theg4

correction includes a linear infrared divergence that is cut off at the scalegT. Since we have used dimensional regularization
as an infrared cutoff, power infrared divergences such as this linear divergence have been set equal to 0.

In order to match with expression~26!, we have to calculate the screening mass in EQCD using the strict expansion in
g2. SincemE

2 is treated as a perturbation parameter of orderg2, the only scale in the self-energy functionPE(k
2) is k2. After

Taylor expanding in powers ofk2, there is no scale in the dimensionally regularized integrals, and so they all vanish. Th
solution to Eq.~16! for the screening mass is therefore trivial:

mel
2'mE

2 . ~28!

Comparing~26! and ~28!, we find that, in the limite→0, the parametermE
2 is given by

mE
2 ue505

1

3
g2~m!T2HCA1TF1FCA

2 S 531
22

3
g1
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3
ln

m

4pTD1CATFS 32
16

3
ln21
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3
g1
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3
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m

4pTD
1TF

2 S 432
16

3
ln22

8

3
g2

8

3
ln

m

4pTD26CFTFG g2

~4p!2 J . ~29!

At this order ing2, there is no dependence on the factorization scaleLE . The order-e terms inmE
2 will also be required later

in the calculation. These terms are

]mE
2

]e
ue505

1

3
g2T2HCAS 2z8~21!

z~21!
12ln

LE

4pTD1TFS 122ln212
z8~21!

z~21!
12ln

LE

4pTD J . ~30!
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This expression depends explicitly on the factorization sca
LE .

C. Coefficient of the unit operator

In this subsection, we calculate the coefficient of the un
operator f E to next-to-next-to-leading order ing2. The
physical interpretation off E is that f ET is the contribution to
le

it

the free energy from large momenta of orderT. The param-
eter f E is determined by calculating the free energy as a stri
perturbation ing2 in both full QCD and EQCD, and match-
ing the two results.

In the full theory, the free energy has a diagrammat
expansion that begins with the one-loop, two-loop, an
three-loop diagrams shown in Figs. 3, 4, and 5, respective
Evaluating the diagrams in the Feynman gauge, we obtain
ing

d using
al regu-

3 and is

t

on to
F'2~12e!dAI 0812dFĨ 081dAZg
2g2@~12e!2CAI 1

212~12e!TFĨ 1~ Ĩ 122I 1!#1dAg
4HCA

2~12e!2F2~11e!I 1
2
I 2

2
1

2
M0,02M2,22G1CATF~12e!@28I 1I 2Ĩ 122eM̃0,01~11e!N 0,014M̃22,2#1TF

2@8~11e!I 2Ĩ 1
212eN 0,0

24N 2,22#12CFTF~12e!@2~12e!~I 1
224I 1Ĩ 11Ĩ 1

2!Ĩ 212M̃0,02~11e!N 0,012~12e!M̃1,21#J . ~31!

The symbol' is a reminder that the strict perturbation ing2 does not give a physically correct treatment of the screen
effects of the plasma. The sum integrals in~31! are given in Appendix A. To orderg4, the renormalization of the coupling
constant is accomplished in theMS scheme by substituting~21! for Zg in the orderg2 term. The final result is

F'2
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2
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z~23! D1CFTFS 1054 224ln2D G S g2

~4p!2D
2J . ~32!

In EQCD, the free energy is given by the expression~7!. We calculate lnZEQCD using the strict perturbation expansion in
which gE

2 andmE
2 are treated as perturbation parameters and both infrared and ultraviolet divergences are regularize

dimensional regularization. Since diagrams with massless propagators and with no external legs vanish in dimension
larization, the only contribution to lnZEQCDwhich does not vanish comes from the countertermd f E which cancels ultraviolet
divergences proportional to the unit operator. The resulting expression for the free energy is simply

F'~ f E1d f E!T. ~33!

The counterterm can be determined by calculating the ultraviolet divergences in lnZEQCD. If we use dimensional regulariza-
tion together with a minimal subtraction renormalization scheme in the effective theory, thend f E is a polynomial ingE

2 ,
mE
2 , and the other parameters in the Lagrangian for EQCD. The only combination of parameters that has dimension

of orderg4 is gE
2mE

2 . Thus the leading term ind f E is proportional togE
2mE

2 . The coefficient is determined by a two-loop
calculation that is a trivial part of the three-loop calculation in Sec. IV. The result for the counterterm is

d f E52
dACA

4~4p!2
gE
2mE

2 1

e
. ~34!

When expressing this counterterm in terms of the parametersg andT of the full theory, we must take into account the fact tha
mE
2 multiplies a pole ine. Thus in addition to expression formE

2 given in~29!, we must also include the terms of ordere which
are given by~30!. The counterterm~34! is therefore

d f E52
p2dA
9 S g2

~4p!2D
2

T3F12CA
2 S 1e 12

z8~21!

z~21!
12ln

LE

4pTD112CATFS 1e 1122ln212
z8~21!

z~21!
12ln

LE

4pTD G . ~35!

Note that minimal subtraction in the effective theory is not equivalent to minimal subtraction in the full theory. In additi
the poles ine in ~35!, there are finite terms that depend on the factorization scaleLE .

Matching ~32! with ~33! and using the expression~35!, we conclude thatf E to orderg4 is
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whereg(m) is the coupling constant in theMS renormaliza-
tion scheme at the scalem. We have used~27! to shift the
scale of the running coupling constant fromLE to an arbi-
trary renormalization scalem, and we have identified the
explicit factors ofL that remain with the factorization scal
LE .

D. Evolution of EQCD coupling constants

The effective Lagrangian~9! for EQCD can be expresse
as a sum over all local operators that respect the symme
of the theory:

f E~LE!1LEQCD5(
n

Cn~LE!O n , ~37!

where we have included the unit operator with coefficie
f E as one of the operatorsO n . The coefficientsCn are the
generalized coupling constants of the effective theory. B
cause of ultraviolet divergences, the effective theory must
regularized with an ultraviolet cutoffLE . The ultraviolet
divergences in the effective theory include power ultravio
divergences proportional toLE

p , p51,2, . . . , andlogarith-
mic divergences proportional to ln(LE). The power diver-
gences are artifacts of the regularization scheme and hav
physical content. If they are not removed as part of the re
larization procedure, they must be canceled by power div
gences in the coupling constantsCn . In contrast, the loga-
rithmic ultraviolet divergences are directly related
logarithms ofT in the full theory, and therefore represent re
physical effects. It is convenient to use a regularization p
cedure for the effective theory in which power ultraviol
divergences are automatically subtracted, such as dim
sional regularization. In this case, they need not be canc
by power divergences in the coupling constants. The dim
sions of a coupling constant can then only be taken up
powers of the temperatureT. The coupling constantCn must
be proportional toT32dn, wheredn is the scaling dimension
of the corresponding operatorO n . The dimensionless facto
multiplying T32dn in the coupling constantCn can be com-
puted as a perturbation series ing2(T), with coefficients that
are polynomials in ln(T/LE). The dependence onLE is gov-
erned by a ‘‘renormalization group equation’’ or ‘‘evolutio
equation’’ of the form

LE

d

dLE
Cn~LE!5bn~C!, ~38!
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where the beta functionbn has a power series expansion in
the coupling constantsCm . These equations follow from the
condition that physical quantities must be independent of th
arbitrary scaleLE . SinceCn is proportional toT

32dn, every
term in the expansion of its beta function must be propor
tional toT32dn. In particular, a term likeCm1

Cm2
•••Cmk

can

appear only if the dimensionsdmi
of the corresponding op-

eratorsOmi
satisfy

(
i51

k

~32dmi
!532dn . ~39!

The condition~39! is very restrictive, particularly if the
effective Lagrangian is truncated to the super-renormalizabl
terms that are given explicitly in~9!. It implies that the only
terms that can appear in theb function for the coefficient
f E of the unit operator aregE

2mE
2 , lEmE

2 , and a cubic poly-
nomial in gE

2 andlE . SincemE
2 , gE

2 , andlE are of order
g2, g2, and g4, respectively, the only term of orderg4 is
gE
2mE

2 . We can determine its coefficient by calculating the
ultraviolet divergences in the strict perturbation expansion
for the free energy in the effective theory. These divergence
do not appear in~33!, because the ultraviolet poles ine have
canceled against infrared poles ine. We can calculate the
ultraviolet divergences by using a different regularization for
infrared divergences. Alternatively, since we have alread
calculatedf E explicitly to orderg

4, we can simply differen-
tiate ~36! and use the fact thatLE(d/dLE) f E must be pro-
portional to gE

2mE
2 . Using gE

25g2T and the leading-order
expression formE

2 in ~29!, we find that the evolution equation
is

LE

d

dLE
f E52

dACA

~4p!2
gE
2mE

21O~g6T3!. ~40!

Theb function formE
2 must be a quadratic polynomial in

gE
2 andlE . The termsgE

4 , gE
2lE , andlE

2 are of orderg4,
g6, andg8, respectively. The coefficients of these terms can
be determined by calculating the ultraviolet-divergent terms
in the strict perturbation expansion for the electric screenin
mass in the effective theory. Alternatively, ifmE

2 is known,
its b function can be determined simply by differentiating.
Since the expression~29! is independent ofLE , we know
that the coefficient ofgE

4 in theb function vanishes and the
leading term must begE

2lE . Thus the evolution equation for
mE
2 is
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LE

d

dLE
mE
2501O~g6T2!. ~41!

We have not calculated the coefficient ofgE
2lE in this evo-

lution equation, because it does not affect the free ene
until orderg7.

Theb functions forgE
2 andlE vanish to all orders in the

super-renormalizable interactions. All the nonvanishin
terms in theirb functions involve the coupling constants o
nonrenormalizable interactions, and they are therefore s
pressed by large powers ofg. The evolution of these para-
maters can probably be ignored for most practical purpos

The only EQCD parameter whose evolution plays a ro
in the free energy to orderg6 is f E . To this order, the solu-
tion to Eq.~40! is trivial:

f E~LE!5 f E~LE8 !2
dACA

~4p!2
gE
2mE

2 ln
LE

LE8
. ~42!

IV. FREE ENERGY TO ORDER g5

Having calculated the parameters of EQCD to the nec
sary order ing2, we now use the effective theory to calculat
the free energy to orderg5. The free energy is the sum of the
three terms in~13!, which correspond to the momentum
scalesT, gT, and g2T, respectively. The termf ET is the
contribution from the scaleT. We have already calculated
f E to the necessary order and it is given in~36!. The term
f GT is the contribution from the scaleg2T, but it does not
contribute until orderg6. The remaining termf MT is the
contribution from the scalegT.

Through orderg5, f M is proportional to the logarithm of
the partition function for EQCD:

FIG. 7. Two-loop Feynman diagrams for the logarithm of th
partition function of EQCD.
rgy

g
f
up-

es.
le

es-
e

f M52
lnZEQCD

V
. ~43!

In order to calculate this contribution using perturbation
theory, we must incorporate the terms in the Lagrangian that
provide electrostatic screening into the free part of the La-
grangian. The necessary screening effects are provided by
theA0

aA0
a term in the EQCD Lagrangian. Thus we must in-

clude the effects of the mass parametermE
2 to all orders,

while treating all the other coupling constants of EQCD as
perturbation parameters. The only coupling constant that is
required to obtain the free energy to orderg5 is the gauge
coupling constantgE .

The contributions to lnZEQCDof ordersg
3, g4, andg5 are

given by the sum of the one-loop, two-loop, and three-loop
diagrams in Figs. 6, 7, and 8, respectively. The solid, wavy,
and dashed lines represent the propagators of theA0 field,
the Ai fields, and the associated ghosts, respectively. We
evaluate these diagrams in the Feynman gauge. They can b
expressed in terms of the scalar integrals defined in Appen-
dix B. The resulting expression for the logarithm of the par-
tition function is

e

FIG. 8. Three-loop Feynman diagrams for the logarithm of the
partition function of EQCD.
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L1,21G1d f E , ~44!

whered f E is the counterterm associated with the unit operator of the EQCD Lagrangian. The integralsI n , Jn , Kn , Lm,n ,
Mm,n , andNm,n can be calculated analytically using methods developed by Broadhurst@21# and they are given in Appendix
B. Adding them up, we obtain

f M52
dA

3~4p!
mE
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dACA

4~4p!2 S 1e 14ln
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whereL is the scale of dimensional regularization. It can
identified with the ultraviolet cutoffLE of EQCD. The ultra-
violet pole ine in the term proportional togE

2mE
2 in ~45! is

canceled by the countertermd f E , which is given in~34!.
Our final result is therefore

f M~LE!52
dA

3~4p!
mE
3 H 11F23ln

LE

2mE
2
9

4G CAgE
2

4pmE

1F2
89

8
1
11

2
ln22

1

2
p2G S CAgE

2

4pmE
D 2J . ~46!

The coefficientf M in ~46! can be expanded in powers o
g by settinggE

25g2T and by substituting the expression~29!
for mE

2 . The complete free energy to orderg5 is then
F5( f E1 f M)T. Note that the dependence on the arbitra
factorization scaleLE cancels betweenf E and f M , up to
corrections that are higher-order ing, leaving a logarithm of
T/mE . Thisg

4ln(g) term is associated with the renormaliza
tion of f E , and its coefficient can be determined from th
evolution equation~40!. There is nog5ln(g) term in the per-
turbation expansion forF, and this is a consequence of th
vanishing of the order-g4 term in theb function formE

2 .

V. OUTLINE OF CALCULATION TO ORDER g6

The calculation of the free energy to orderg5, which was
presented in the previous section, was greatly streamlined
using effective field theory to unravel the effects of the m
mentum scalesT and gT. The same result has also bee
obtained by Kastening and Zhai using other methods@18#.
However, the advantages of the effective-field-theory a
proach become more and more apparent as we go to hig
order ing. In this section, we demonstrate the power of th
method by outlining the calculation of the free energy
orderg6. In this case there are contributions from all thre
momentum scalesT, gT, andg2T.

A. Contribution from the scale g2T

We first discuss the contribution to the free energy fro
the scaleg2T, which is given by the termf GT in ~13!. This
term is proportional to the logarithm of the partition functio
~11! of MQCD. Treating the correction termdLMQCD in the
MQCD Lagrangian as a perturbation, the partition functi
can be written

ZMQCD5E ~LM !

DAi
a~x!expS 2E d3xG2/4D

3 H12E d3xdLMQCD1•••J , ~47!

whereG2[Gi j
aGi j

a . Taking the logarithm of both sides, we
obtain

f G52
lnZMQCD

~0!

V
1^dLMQCD&01•••, ~48!
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whereZMQCD
(0) is the partition function for the minimal gauge

theory with action*d3xG2/4. The subscript 0 on the expec-
tation value^dLMQCD&0 is a reminder that it is to be calcu-
lated using the minimal-gauge-theory action.

For the moment, let us consider only the first term in~48!.
The partition functionZMQCD

(0) is that of the minimal gauge
theory in three dimensions. This is a super-renormalizab
theory and its ultraviolet divergences have a very simpl
structure. By naive power counting, ultraviolet divergence
in lnZMQCD

(0) can arise only from vacuum diagrams with one
two, three, or four loops or from propagator corrections with
one or two loops. Ward identities guarantee that the prop
gator corrections are actually finite. This is related to the fac
that the only gauge invariant operator with dimension lowe
thanG2 is the unit operator. Thus the only ultraviolet diver-
gences are in the vacuum diagrams. The one-loop diagram
give a cubic divergence. The two-loop diagrams give a qua
dratic divergence proportional togM

2 . The three-loop dia-
grams give a linear divergence proportional togM

4 . Finally,
the four-loop diagrams give a logarithmic divergence propor
tional togM

6 . After subtraction of the power divergences, we
can use dimensional analysis to determine the form o
lnZMQCD

(0) . Aside from the logarithmic dependence on the
ultraviolet cutoffLM , the only scale in the problem isgM .
By dimensional analysis, lnZMQCD

(0) must be proportional to
gM
6 . Thus it must have the form

2
lnZMQCD

~0!

V
5S a1bln

LM

gM
2 DgM6 , ~49!

wherea andb are pure numbers. The coefficientb can be
determined by calculating the logarithmic ultraviolet diver-
gence in the four-loop vacuum diagrams for MQCD. The
coefficienta can only be calculated using nonperturbative
methods. It can for example be extracted from measuremen
of the expectation valuêG2&0 using lattice simulations of
the pure gauge theory. A convenient expression for^G2&0
can be obtained by taking the logarithm of both sides of~49!
and differentiating with respect togM

2 . It is useful to first
rescale the fieldAi in the functional integral forZMQCD

(0) , so
that the coupling constant appears only in the coefficien
1/gM

2 of the action. After subtracting the power ultraviolet
divergences, we obtain the expression

^G2&0524S 3a2b13bln
LM

gM
2 DgM6 . ~50!

The subscript 0 on the expectation value^G2&0 is a reminder
that it is to be calculated using the minimal-gauge-theor
action *d3xG2/4 rather that the full action of MQCD. The
expectation valuêG2&0 can be measured on the lattice using
Monte Carlo simulations of the minimal gauge theory. Onc
^G2&0 has been measured and the coefficientb has been
calculated, we can determinea using the formula~50!.

We now verify that the correction term in~47! from
higher dimension operators in the MQCD Lagrangian ca
indeed be treated as a small perturbation. The lowest dime
sion operators indLMQCD areG3[ f abcGi j

aGjk
b Gki

c , whose
coefficient is proportional to g3/T3/2, and (DG)2
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[(DiGik)
a(DjGjk)

a, whose coefficient is proportional to
g2/T2. Their coefficients have been calculated to leading
der in g by Chapman for the case of a pure gauge theo
@22#. After subtraction of power ultraviolet divergences, th
only scale in the problem isgM

2 . Therefore, by dimensiona
analysis, ^G3&0 must be proportional to (gM

2 )9/2. Using
gM
2 'g2T and taking into account the coefficient which
proportional tog3/T3/2, we find that the contribution tof G
from ^G3&0 is of orderg

12T3. Using a similar analysis, we
find that the contribution from̂ (DG)2&0 is also of order
g12T3. Thus the effects of higher dimension operators in t
MQCD Lagrangian are indeed suppressed by powers of
coupling constantg.

We have found that the contribution to the free ener
from the scaleg2T can be written

f GT5S a1bln
LM

gM
2 DgM6 T1O~g12T4!. ~51!

Remarkably, the only nonperturbative calculation that is
quired to determine the free energy up to orderg12 is that of
the single pure numbera. We also require the coupling con
stantgM , which can be calculated by matching perturbati
calculations in EQCD and MQCD. To calculate the free e
ergy to orderg6, we only needgM to leading order ing. At
this order, it is given simply bygM

2 5g2T. In summary, in
order to obtain the contribution to the free energy from t
scaleg2T to orderg6, all that is required are the two pur
numbersa andb in ~51!. The numberb can be calculated by
evaluating four-loop diagrams in MQCD. In Ref.@7#, it was
assumed incorrectly that this number vanishes. The num
a can be calculated using lattice simulations of the pu
gauge theory in three dimensions.

B. Contribution from the scale gT

The contribution to the free energy from the scalegT is
given by the termf MT in ~13!. The coefficientf M can be
determined by calculating the logarithm of the EQCD par
tion function in both EQCD and MQCD and matching th
expressions. If we use dimensional regularization to cut
both infrared and ultraviolet divergences, all the loop d
grams in MQCD vanish. The expression for the logarithm
the partition function then is simply

2
lnZEQCD

V
5 f M1d f M , ~52!

where d f M is a counterterm that cancels ultraviolet dive
gences in MQCD that are proportional to the unit operat
To orderg6, this counterterm is simply

d f M5
b

2e
gM
6 , ~53!

whereb is the same coefficient that appears in~51!.
To determinef M , we must match the expression~52!

with the corresponding expression in EQCD, which is o
tained by calculating the sum of vacuum diagrams using
mensional regularization. The resulting expression
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lnZEQCD is a sum of polynomials in the EQCD coupling
constants, such asgE

2 andlE , multiplied by whatever pow-
ers ofmE are required by dimensional analysis. There are
three such terms that contribute to the free energy at orde
g6. The first term isgE

2mE
2 , whose coefficient has already

been calculated in~46!. It contributes through the next-to-
leading order term inmE

2 , which is given in ~29!, and
through the next-to-leading order term ingE

2 , which has not
yet been calculated. The second term which contributes a
orderg6 is proportional togE

6 . Its coefficient is determined
by calculating all four-loop vacuum diagrams that involve
only the gauge coupling constantgE . This term will have a
pole in e that matches that from the counterterm~53!. The
third term that contributes tof M at orderg6 is proportional to
lEmE

2 . Its coefficient is given by the single two-loop
vacuum diagram that involves theA0

4 coupling constant
lE . This coupling constant is only required to leading order
in g and has already been calculated by Nadkarni@23# and by
Landsman@24#.

In summary, there are three coefficients that must be cal
culated in order to obtain the contribution of orderg6 to the
free energy from the scalegT. We need the coefficients of
gE
6 and of lEmE

2 in the expression forf M . These can be
obtained by perturbative calculations in EQCD. We also need
the coefficient ofg4 in the expression for the EQCD param-
etergE

2 . This requires a perturbative calculation in full QCD.

C. Contribution from the scale T

The contribution to the free energy from the scaleT is
given by the termf ET in ~13!. The termf E is obtained by
matching the strict perturbation expansions for the free en-
ergy in full QCD and in EQCD. In full QCD, the contribu-
tion of orderg6 is the sum of all four-loop vacuum diagrams.
If we use dimensional regularization to cut off both infrared
and ultraviolet divergences, then the corresponding expres
sion in EQCD is simplyF5( f E1d f E)T. The counterterm
d f E includes the term proportional togE

2mE
2/e given in ~34!

and also a term proportional tolEmE
2/e. Since the counter-

term is proportional to 1/e, we need not only the value of the
coupling constantlE at e50 but also the terms linear ine.
Similarly, we need the term of ordere in the order-g4 cor-
rection togE

2 .
In summary, there are several calculations that must be

carried out in order to obtain the term of orderg6 in f E . We
need to calculate the four-loop vacuum diagrams in full
QCD. We also need to calculate the terms of ordereg4 in the
EQCD parametersgE

2 andlE .

VI. CONVERGENCE OF PERTURBATION THEORY

We have calculated the free energy as a perturbation ex
pansion in powers ofg to orderg5. In this section, we ex-
amine the convergence of that perturbation expansion. Fo
simplicity, we focus on the case of QCD withnf flavors of
quarks.

The effects of the momentum scaleT enter into the free
energy only through the coefficientf E and the parameters in
the EQCD Lagrangian. The termf E is given in ~36!:
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f E~LE!52
8p2

45
T3H 11

21

32
nf2

15

4 S 11
5

12
nf Das~m!

p
1F244.9217.24nf20.415nf

22
165

8 S 11
5

12
nf D S 12

2

33
nf D ln m

2pT

2135S 11
1

6
nf D ln LE

2pTG S as

p D 21O~as
3!J . ~54!

The other parameters in the EQCD Lagrangian that enter into the calculation of the free energy to orderg5 aremE andgE ,
which are given by~29! and ~14!, respectively:

mE
254pas~m!T2H 11

1

6
nf1F0.61220.488nf20.0428nf

21
11

2 S 11
1

6
nf D S 12

2

33
nf D ln m

2pTGas

p
1O~as

2!J , ~55!

gE
254pasT@11O~as!#. ~56!
y
f

n

s

-

We have calculated two terms in the perturbation series
mE
2 and three terms in the series forf E . We can use these

results to study the convergence of perturbation theory
the parameters of EQCD. We consider the case ofnf53
flavors of quarks, although our conclusions will not depe
sensitively onnf . The question of the convergence is com
plicated by the presence of the arbitrary renormalization a
factorization scalesm and LE . The next-to-leading-order
~NLO! correction tof E is independent ofm andLE , and is
small compared to the leading-order~LO! term provided that
as(m)!1.1. The NLO correction tomE

2 and the next-to-
next-to-leading-order~NNLO! correction tof E both depend
on the renormalization scalem. One scale-setting schem
that is physically well motivated is the BLM prescriptio
@24#, in which m is adjusted to cancel the highest power
nf in the correction term. This prescription give
m50.93pT when applied tomE

2 and m54.4pT when ap-
plied to f E . These values differ only by about a factor of
from 2pT, which is the lowest Matsubara frequency for gl
ons. Below, we will consider the three valuesm5pT,
2pT, and 4pT. For the NLO correction tomE

2 to be much
smaller than the LO term, we must haveas(m)! 0.8, 3.8,
and 1.4 ifm5pT, 2pT, and 4pT, respectively. Based on
these results, we conclude that the perturbation series for
parameters of EQCD are well behaved provided t
as(2pT)!1.

The NNLO correction forf E depends not only onm, but
also on the factorization scaleLE . Because the coefficient o
ln(LE/2pT) in ~36! is so much larger than that o
ln(m/2pT), the NNLO correction forf E is much more sen-
sitive toLE than tom. It is useful intuitively to think of the
infrared cutoffLE as being much smaller than the ultraviol
cutoff m. However, these scales can be identified with m
mentum cutoffs only up to multiplicative constants that m
be different form andLE . Both parameters are introduce
through dimensional regularization, butm arises from ultra-
violet divergences of four dimensional integrals, whileLE
arises from infrared divergences of three-dimensional in
grals. We might be tempted to setLE5m, but then the
NNLO coefficient inf E is large. For the choicem52pT, the
correction to the LO term is a multiplicative facto
120.9as16.5as

2 . The NNLO correction can be made sma
by adjustingLE . It vanishes forLE55.8pT, 5.1pT, and
4.5pT if m5pT, 2pT, and 4pT, respectively. We conclude
for

for

nd
-
nd

e
n
of
s

2
u-

the
hat

f
f

et
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d

te-

r
ll

that the perturbation series forf E is well behaved if the fac-
torization scaleLE is chosen to be approximately 5pT.
Whether this choice is reasonable can only be determined b
calculating other EQCD parameters to higher order to see i
the same choice leads to well behaved perturbation series.

The choice ofLE that makes the perturbation series for
the EQCD parameters well behaved may be much larger tha
the largest mass scalemE of EQCD. Perturbative corrections
in EQCD will then include large logarithms ofLE /mE . This
problem can be avoided by using renormalization group
equations to evolve the parameters of EQCD from the initial
scaleLE down to some scaleLE8 of ordermE . The solution
to the renormalization group equation forf E is given in~42!.
The evolution ofgE

2 andmE
2 occurs only at higher order in

the coupling constant and therefore can be ignored.
We have carried out only one perturbative calculation in

EQCD. This is the termf M , which gives the contribution to
the free energy from the scalegT. This term is given in~46!:

f M~LE!52
2

3p
mE
3F12S 0.2561 9

2
ln

LE

mE
D gE

2

2pmE

227.6S gE
2

2pmE
D 21O~g3!G . ~57!

We now consider the convergence of the perturbation serie
~46! for f M . The size of the NLO correction depends on the
choice of the factorization scaleLE . It is small if LE is
chosen to be approximatelymE . The NNLO correction in
~46! is independent of any arbitrary scales. Ifnf53, it is
small compared to the leading-order term only ifas!0.17.
Thus the perturbation series forf M is well-behaved only for
values ofas(2pT) that are much smaller than those required
for the parameters of EQCD to have well-behaved perturba
tion series.

Inserting~55! and ~56! into ~57!, expanding in powers of
g, and adding~54!, we get the expansion for the free energy
in powers ofAas:

F52
8p2

45
T4FF01F2

as~m!

p
1F3S as~m!

p D 3/21F4S as

p D 2
1F5S as

p D 5/21O~as
3lnas!G . ~58!
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The coefficients in this expansion are

F0511
21

32
nf , ~59!

F252
15

4 S 11
5

12
nf D , ~60!

F3530S 11
1

6
nf D 3/2, ~61!

F45237.2115.97nf20.413nf
2

1
135

2 S 11
1

6
nf D lnFas

p S 11
nf
6 D G

2
165

8 S 11
5

12
nf D S 12

2

33
nf D ln m

2pT
, ~62!

F55S 11
1

6
nf D 1/2F2799.2221.96nf21.926nf

2

1
495

2 S 11
1

6
nf D S 12

2

33
nf D ln m

2pTG . ~63!

The coefficientF2 was first given by Shuryak@25#. The co-
efficient ofF3 was first calculated correctly by Kapusta@26#.
The coefficientF4 was calculated in 1994 by Arnold and
Zhai @13#. The coefficientF5 has also been calculated inde
pendently by Kastening and Zhai@18#.

We now ask how smallas must be in order for the ex-
pansion~58! to be well behaved. For simplicity, we conside
the casenf53, although our conclusions are not sensitive
nf . If we choose the renormalization scalem52pT moti-
vated by the Brodsky-Lepagbe-Mackenzie~BLM ! criterion
@24#, the correction to the LO result is a multiplicative facto
120.9as13.3as

3/21(7.113.5lnas)as
2220.8as

5/2. The as
5/2

term is the largest correction unlessas(2pT),0.12. We can
make theas

5/2 term small only by choosing the renormaliza
tion scale to be near the valuem536.5pT for which F5
vanishes. This ridiculously large value ofm arises because
the scalem has been adjusted to cancel the largeg5 correc-
tion to f M in ~46!. This contribution arises from the momen
tum scalegT and has nothing to do with renormalization o
as . We conclude that the expansion~58! for F in powers of
Aas is well behaved only ifas(2pT)!1/10. This is an or-
der of magnitude smaller than the value required for t
EQCD parameters to be well behaved. Our previous analy
indicates that this slow convergence of the expansion forF
in powers ofAas can be attributed to the slow convergenc
of perturbation theory at the scalegT.

VII. DISCUSSION

In this paper, we have used effective-field-theory metho
to unravel the contributions to the free energy of high
temperature QCD from the scalesT, gT, andg2T. We cal-
culated the free energy explicitly to orderg5. The calculation
was significantly streamlined by using effective-field-theo
methods to reduce every step of the calculation to one t
-

r
to

r

-

-
f

he
sis

e

ds
-

ry
hat

involves only a single momentum scale. We also outlined the
calculations that would be necessary to obtain the free en-
ergy to orderg6. It is only at this order that the full power of
the effective-field-theory approach becomes evident.

The effective-field-theory approach provides an under-
standing of the logarithms of the coupling constant that arise
in perturbation expansions in thermal field theory. These
logarithms are associated with the renormalization of the pa-
rameters of effective field theories. The resulting evolution
equations can be used to sum up leading logarithms of the
coupling constant of the formgm12nlnn(g) to all orders in
n @5#. To the accuracy required for the calculation of the free
energy to orderg5 in QCD, this resummation is trivial. The
only terms of the formgm12nlnn(g) with m12n<5 are a
g4ln(g) term associated with renormalization of the coeffi-
cient f E . The fact that the solution~42! to the evolution
equation forf E is trivial indicates that there are no higher-
order terms of the formg212nlnn(g) that are related to the
g4ln(g) term through the renomalization group. There are
also no terms of the formg312nlnn(g) in the free energy. This
is a consequence of the vanishing of thegE

4 term in theb
function for mE

2 . In the seemingly simpler problem of a
massless scalar field with af4 interaction, the evolution
equations play a more important role@5#. There are terms in
the free energy of the formg312nlnn(g) that can be summed
up to all orders with the help of the renormalization group.
The relative simplicity of the QCD case comes from the fact
that the termgE

4 in the b function formE
2 has a vanishing

coefficient. We know of no deep reason for this coefficient to
vanish.

Our explicit calculations allow us to study the conver-
gence of the perturbation expansion for thermal QCD. They
suggest that perturbation theory at the scalegT requires a
much smaller value of the coupling constant than perturba-
tion theory at the scaleT. At the scaleT, perturbation cor-
rections can be small only ifas(2pT)!1. Of course, even if
this condition is satisfied, the perturbation expansion may
break down anyway, but this is certainly a necessary condi-
tion. At the scalegT, perturbation corrections can be small
only if as(2pT)!1/10. Thus, in order to achieve a given
relative accuracy, the coupling constantas(2pT) must be an
order of magnitude smaller for perturbation theory at the
scalegT compared to perturbation theory at the scaleT. This
has important implications for calculations in thermal QCD.
At extremely high temperatures, the asymptotic freedom of
QCD guarantees that the running coupling constant
as(2pT) is sufficiently small that perturbation theory will
provide an accurate treatment of the effects of the scalegT
as well as those of the scaleT. Nonperturbative methods,
such as lattice simulations of MQCD, are necessary only to
calculate the effects of the scaleg2T. Of course, one can
always treat the entire problem nonperturbatively by carrying
out lattice simulations of full thermal QCD. However, it is
probably more efficient to integrate out the scalesT and
gT using perturbative methods, and to reserve the nonpertur-
bative methods only for the scaleg2T where they are essen-
tial. As the temperature is decreased, the running coupling
constant increases and perturbation theory becomes less ac
curate. At sufficiently low temperatures, perturbation theory
breaks down completely, and the entire problem must be
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treated nonperturbatively. This is certainly the case when
temperature is close to the critical temperature for the ph
transition from the quark-gluon plasma to a hadron gas.

Our calculations suggest, however, that there is a rang
temperatures in which perturbation theory at the scalegT has
broken down, but perturbation theory at the scaleT is rea-
sonably accurate. In this case, one can still use perturba
theory at the scaleT to calculate the parameters in the EQC
Lagrangian. Our calculations of the coefficientsf E andmE

2 to
orderg4 are therefore still useful. However, nonperturbati
methods, such as lattice simulations of EQCD, are requ
to calculate the effects of the smaller momentum scalesgT
and g2T. While one could simply treat the entire proble
nonperturbatively using lattice simulations of full QCD, th
effective-field-theory approach provides a dramatic savin
in resources for numerical computation. The savings co
from two sources. One is the reduction of the problem fro
a four-dimensional field theory to a three-dimensional fie
theory. The other source of savings is that quarks are i
grated out of the theory, which reduces it to a purely boso
problem.

We now consider briefly the implications for the study
the quark-gluon plasma in heavy-ion collisions. The critic
temperatureTc for formation of a quark-gluon plasma is ap
proximately 200 MeV. It may be possible in heavy-ion co
lisions to produce a quark-gluon plasma with temperatu
several timesTc . At T5350 MeV, as(2pT)'0.3, which
is small enough that perturbation theory may be reasona
convergent at the scaleT, but it is certainly not convergent a
the scalegT. We conclude that at the temperatures achi
able in heavy-ion collisions, perturbative QCD may be ac
rate when applied to quantities that involve the scaleT only.
However, nonperturbative methods are required to accura
calculate quantities that involve the scalesgT andg2T. The
most effective strategy for calculating the properties of
quark-gluon plasma at such temperatures will probably
volve a combination of perturbative and nonperturbat
methods. The effective-field-theory approach developed
this paper provides a systematic method for unraveling
momentum scales in the plasma and for combining pertur
tive and nonperturbative methods in a consistent way. T
approach applies strictly only to static properties and to
case of zero baryon density. The extension to dynam
properties and to the case of nonzero baryon density rem
a challenging problem.
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APPENDIX A: SUM INTEGRALS IN THE FULL THEORY

In the imaginary-time formalism for thermal field theor
the four-momentum P5(p0 ,p) is Euclidean with
P25p0

21p2. The Euclidean energyp0 has discrete values
p052npT for bosons andp05(2n11)pT for fermions,
wheren is an integer. Loop diagrams involve sums overp0
and integrals overp. It is convenient to use dimensiona
the
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l

regularization to regularize both ultraviolet and infrared di-
vergences. We introduce a concise notation for these regular-
ized sum integrals:

(E
P
[S egL2

4p D e

T (
p052npT

E d322ep

~2p!322e , ~A1!

(E
$P%

[S egL2

4p D e

T (
p05~2n11!pT

E d322ep

~2p!322e , ~A2!

where 322e is the dimension of space andL is an arbitrary
momentum scale. The factor (eg/4p)e is introduced so that,
after minimal subtraction of the poles ine due to ultraviolet
divergences,L coincides with the renormalization scale in
theMS renormalization scheme. Below, we collect together
all the sum integrals that are required to calculate the coef-
ficient f E to next-to-next-to-leading order ing2 and the co-
efficientmE

2 to next-to-leading order ing2.
The one-loop bosonic sum integrals that arise in the cal-

culation have the following forms:

I n[ (E
P

1

~P2!n
, ~A3!

J n[ (E
P

p0
2

~P2!n11 , ~A4!

K n[ (E
P

p0
4

~P2!n12 . ~A5!

The specific sum integrals that are needed are

I 085
p2

45
T4@11O~e!#, ~A6!

I 15
1

12
T2S L

4pTD 2eF11S 212
z8~21!

z~21! D e1O~e2!G ,
~A7!

J 152
1

24
T2S L

4pTD 2eF112
z8~21!

z~21!
e1O~e2!G ,

~A8!

I 25
1

~4p!2 S L

4pTD 2eF1e 12g1O~e!G , ~A9!

J 25
1

4~4p!2 S L

4pTD 2eF1e 1212g1O~e!G , ~A10!

K 25
1

8~4p!2 S L

4pTD 2eF1e 1
8

3
12g1O~e!G , ~A11!

whereg is Euler’s constant andz(z) is Riemann’s zeta func-
tion. In ~A6!, I 08 denotes the derivative ofI n with respect
to n evaluated atn50. The one-loop fermionic sum integrals
have the forms

Ĩ n[ (E
$P%

1

~P2!n
, ~A12!
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J̃ n[ (E
$P%

p0
2

~P2!n11 , ~A13!

K̃ n[ (E
$P%

p0
4

~P2!n12 . ~A14!

The specific sum integrals that are needed are

Ĩ 0852
7p2

360
T4@11O~e!#, ~A15!

Ĩ 152
1

24
T2S L

4pTD 2eF11S 222ln212
z8~21!

z~21! D e

1O~e2!G , ~A16!

J̃ 15
1

48
T2S L

4pTD 2eF11S 22ln212
z8~21!

z~21! D e1O~e2!G ,
~A17!

Ĩ 25
1

~4p!2 S L

4pTD 2eF1e 14ln212g1O~e!G , ~A18!
J̃ 25
1

4~4p!2 S L

4pTD 2eF1e 1214ln212g1O~e!G ,
~A19!

K̃ 25
1

8~4p!2 S L

4pTD 2eF1e 1
8

3
14ln212g1O~e!G .

~A20!

All of the two-loop sum integrals that arise in the calcu-
lation factor into the product of 2 one-loop sum integrals.
Some of the three-loop sum integrals factor into the produc
of 3 one-loop sum integrals. Others factor into the product o
a one-loop sum integral and a two-loop sum integral. How-
ever, these sum integrals all vanish, either because the on
loop sum integral isI 050 or Ĩ 050, or because the two-
loop sum integral vanishes:

(E
PQ

1

P2Q2~P1Q!2
50, ~A21!

(E
$P%Q

1

P2Q2~P1Q!2
50. ~A22!

The remaining three-loop sum integrals have the forms
M i , j[(E
PQR

1

P2Q2@R2# i@~P2Q!2# j~Q2R!2~R2P!2
, ~A23!

M̃ i , j[(E
$PQR%

1

P2Q2@R2# i@~P2Q!2# j~Q2R!2~R2P!2
, ~A24!

N i , j[ (E
$PQ%R

1

P2Q2@R2# i@~P2Q!2# j~Q2R!2~R2P!2
. ~A25!

These sum integrals can be evaluated analytically using methods developed by Arnold and Zhai@13#. The specific integrals that
are needed are

M0,05
1

24~4p!2
T4S L

4pTD 6eF1e 1
91

15
18

z8~21!

z~21!
22

z8~23!

z~23!
1O~e!G , ~A26!

M̃0,052
1

192~4p!2
T4S L

4pTD 6eF1e 1
179

30
2
34

5
ln218

z8~21!

z~21!
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z8~23!

z~23!
1O~e!G , ~A27!

N 0,05
1

96~4p!2
T4S L

4pTD 6eF1e 1
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2
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5
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z8~21!

z~21!
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z8~23!
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1O~e!G , ~A28!
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1
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T4S L

4pTD 6eF1e 1
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60
1
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5
ln216g24

z8~21!

z~21!
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z~23!
1O~e!G , ~A29!

M2,225
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z~23!
1O~e!G , ~A30!
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ln21
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ln215
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2
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2

z8~23!

z~23!
1O~e!G . ~A32!
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APPENDIX B: INTEGRALS IN THE EFFECTIVE THEORY

The effective theory for the scalegT is an Euclidean field
theory in three space dimensions. Loop diagrams invol
integrals over three-momenta. It is convenient to introdu
the notation*p for these integrals. We use dimensional reg
larization in 322e dimensions to regularize both infrared
and ultraviolet divergences. We define the integration me
sure

E
p
[S egL2

4p D eE d322ep

~2p!322e . ~B1!

If renormalization is accomplished by the minimal subtra
tion of poles ine, thenm is the renormalization scale in the
MS scheme. Below, we collect all the integrals that a
needed to calculate the contribution to the free energy fro
the momentum scalegT to orderg5.

The nontrivial one-loop integrals that arise in the calcul
tion have the form

I n[E
p

1

@p21m2#n
. ~B2!

The specific one-loop integrals that are needed are

I 085
m3

4p S L

2mD 2eF231
16

9
e1O~e2!G , ~B3!

I 15
m

4p S L

2mD 2e

@2122e1O~e2!#, ~B4!
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I 25
1

4pm S L

2mD 2eF121O~e2!G . ~B5!

In ~B3!, I 08 denotes the derivative ofI n with respect ton
evaluated atn50.

Some of the two-loop integrals reduce to products of one-
loop integrals. The remaining two-loop integrals have the
forms

Jn[E
pq

1

~p21m2!@q21m2#n~p2q!2
, ~B6!

Kn[E
pq

1

~p21m2!~q21m2!@~p2q!2#n
. ~B7!

The specific two-loop integrals that are needed are

J15
1

~4p!2 S L

2mD 4eF 14e
1
1

2
1O~e!G , ~B8!

J25
1

~4p!2m2 S L

2mD 4eF141O~e!G , ~B9!

K25
1

~4p!2m2 S L

2mD 4eF2
1

8
1O~e!G . ~B10!

Some of the three-loop integrals reduce to the product of
3 one-loop integrals or to the product 1 one-loop integral and
1 two-loop integral. The remaining three-loop integrals have
the form
Mi , j[E
pqr

1

~p21m2!~q21m2!@r 21m2# i
1

@~p2q!2# j~q2r !2~r2p!2
, ~B11!

Ni , j[E
pqr

1

~p21m2!~q21m2!@~q2r !21m2#@~r2p!21m2#

1

@r 2# i@~p2q!2# j
, ~B12!

Li , j[E
pqr

1

~p21m2!@~r2p!21m2# i@q21m2# j@~q2r !21m2#

1

r 2~p2q!2
. ~B13!
These integrals are special cases of more general three-
integrals defined by Broadhurst@21#:

Mi , j5m122i22 j S L

m
D 6eS egeG~ 3

21e!

~4p!3/2
D 3BM~1,j ,1,1,1,i !,

~B14!

Ni , j5m122i22 j S L

m
D 6eS egeG~ 3

21e!

~4p!3/2
D3BN~ i , j ,1,1,1,1!,

~B15!
loop
Li , j5m122i22 j S L

m
D 6eS egeG~ 3

2 1e!

~4p!3/2
D 3BN~1,1,1,1,i , j !.

~B16!

Broadhurst derived recursion equations for the integralsBM
andBN with general arguments which can be used to reduce
any of the integralsMi , j , Ni , j , andLi , j to the basic integrals
M0,0 andN0,0, together with simpler one-loop and two-loop
integrals. The specific integrals that are needed in our calcu-
lation are

M0,05
m

~4p!3 S L

2mD 6eF2
1

2e
241O~e!G , ~B17!
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M21,15
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~4p!3 S L

2mD 6eF 14e
121O~e!G , ~B18!
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4e
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1O~e!G , ~B19!

M1,05
1

~4p!3m S L

2mD 6eFp2

12
1O~e!G , ~B20!

M0,15
1

~4p!3m S L

2mD 6eF2
1

8e
1
1

4
1O~e!G , ~B21!

M2,05
1

~4p!3m3 S L

2mD 6eF2
1

4
1

p2

24
1O~e!G , ~B22!

N0,05
m

~4p!3 S L

2mD 6eF2
1

e
2814ln21O~e!G , ~B23!

N1,215
m

~4p!3 S L

2mD 6e

@224ln21O~e!#, ~B24!

N2,225
m

~4p!3 S L

2mD 6e

@2314ln21O~e!#, ~B25!
N1,05
1

~4p!3m S L

2mD 6e

@ ln21O~e!#, ~B26!

N2,215
1

~4p!3m S L

2mD 6eF132
1

3
ln21O~e!G , ~B27!

N2,05
1

~4p!3m3 S L

2mD 6eF2
1

24
2

1

12
ln21O~e!G ,

~B28!

N1,15
1

~4p!3m3 S L

2mD 6eF142
1

4
ln21O~e!G . ~B29!

We also require the sum of the integralsM1,21 andL1,21 ,
which is simpler to calculate than the individual integrals:

M1,211L1,2152M0,012I 1J15
m

~4p!3 S L

2mD 6e

@21O~e!#.
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