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Free energy of QCD at high temperature
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Effective-field-theory methods are used to separate the free energy for a non-Abelian gauge theory at high
temperatureT into the contributions from the momentum scalgsgT, andg?T, whereg is the coupling
constant at the scalerZ’. The effects of the scal€ enter through the coefficients in the effective Lagrangian
for the three-dimensional effective theory obtained by dimensional reduction. These coefficients can be calcu-
lated as power series ig?. The contribution to the free energy from the scglE can be calculated using
perturbative methods in the effective theory. It can be expressed as an expargsistaiting at ordeg®. The
contribution from the scalg®T must be calculated using nonperturbative methods, but nevertheless it can be
expanded in powers af beginning at ordeg®. We calculate the free energy explicitly to ordg. We also
outline the calculations necessary to obtain the free energy to gfder

PACS numbds): 11.10.Wx, 12.38.Bx

[. INTRODUCTION the plasma, which is of orddr or perhaps ZT. While this
is necesssary, it may not be sufficient. At sufficiently high
One of the most dramatic predictions of quantum chromo-order in perturbation theory, any observable becomes sensi-
dynamics(QCD) is that when hadronic matter is raised to ative to low-momentum gluons that interact with a large cou-
sufficiently high temperature or density, it will undergo a pling strengthg. In order to rigorously apply perturbative
phase transition to a quark-gluon plasma. One of the majoRCD, it is essential to be able to unravel the various momen-
thrusts of nuclear physics in the next decade will be thdum scales that play an important role in a problem. If low-
effort to study the quark-gluon plasma through relativisticmomentum contributions are important, they must be treated
heavy-ion collisions. For this effort to be successful, it will using nonperturbative methods.
be important to understand the properties of the plasma as For a quark-gluon plasma at high temperature, there is a
accurately as possible. The two major theoretical tools thalierarchy of three momentum scales that play an important
have been used to study the quark-gluon plasma are lattigele in static properties. First, there is the scaleof the
gauge theory and perturbative QCD. Lattice gauge theoryypical momentum of a particle in the plasma. Next, there is
has the advantage that it is a nonperturbative method aritie scalegT associated with the screening of color-electric
applies equally well to the quark-gluon phase and to thdorces by the plasma. Finally, there is the sagf@ associ-
hadron phase. It is an effective method for calculating theated with color-magnetic screening. Only recently has a
static equilibrium properties of hadronic matter with zeromethod been developed that can systematically unravel the
baryon density. Unfortunately, the Monte Carlo methodscontributions from these various momentum scales. The
used in lattice gauge theory cannot be easily applied to probmethod is based on the construction of effective field theo-
lems involving dynamical properties or to hadronic matterries that reproduce static observables at successively longer
that is away from thermal equilibrium or has nonzero baryordistance scales. This effective-field-theory approach is based
density. These are severe restrictions, because a quark-gluon an old idea called “dimensional reductioft,2]. Accord-
plasma that is produced in heavy-ion collisions will not be ating to this idea, the static properties of &+ 1)-dimensional
thermal equilibrium and it may have nonzero baryon densityfield theory at high temperature can be expressed in terms of
Furthermore, many of the most promising signatures for an effective field theory in three space dimensions. Dimen-
guark-gluon plasma involve dynamical properties. sional reduction has long been used to provide insight into
Perturbative QCD can help fill this gap, at least for thethe qualitative behavior of field theories at high temperature
guark-gluon phase of hadronic matter. This method can cef-1-4]. The effective-field-theory approach makes this idea
tainly be applied to the static equilibrium properties of ainto a practical tool for quantitative calculations. In R,
quark-gluon plasma at zero baryon density, but there are nawe developed the effective-field-theory approach to dimen-
apparent obstacles to also applying it to dynamical problemssional reduction and applied it to a scalar field withpé
to nonequilibrium situations, or to a plasma with nonzerointeraction. We demonstrated the power of this method by
baryon density. Thus it is a powerful tool for studying vari- using it to carry out several perturbative calculations beyond
ous aspects of the quark-gluon plasma that might be probettie frontiers set by previous work. A similar approach was
through heavy-ion collisions. However, there are potentiadeveloped independently by Faraketsal. [6], who applied
difficulties in applying perturbative QCD to the quark-gluon it to the important problem of the electroweak phase transi-
plasma. The method is based on treating the coupling cortion. This method has also been applied to Q) and
stantg as a small parameter, bg{u) is a parameter that used to resolve a long-standing problem involving the break-
varies rather dramatically with the momentum scaleln  down of the perturbation expansion for the free endiy
order to apply perturbative QCD, it is necessary thdbe  These ideas have also been used to determine the asymptotic
small at the scale of the typical momentum of a particle inbehavior of the correlator of Polyakov loop operai®@kand
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to provide a rigorous nonperturbative definition of the Debye 1l. SEPARATION OF SCALES IN THE FREE ENERGY

screening mass in non-Abelian gauge theofisy. . .
Once we have understood how to resolve the contribu- The free energy for QCD at high temperatiranciudes

i f th : i les in th | OCD contributions from the momentum scalsgT, andg?T. In
ions of the various momentum scales in thermal QCD, aSthis section, we explain how the contributions from these

ymptotic freedom guarantees us that perturbation theory Withee momentum scales can be unraveled by using effective-
be under control in the high-temperature limit. At sufficiently field-theory methods.
high temperature, the running coupling constant will be  The static equilibrium properties for hot QCD are given

accurate. However, in most practical applications, such agpgarithm of the partition function:

those encountered in heavy-ion collisions, the temperature is

not asymptotically large, and we must worry about higher- ‘

order corrections. The accuracy of the perturbation expan- F=- v'”Z‘QCD, (1)
sion can only be assessed by carrying out explicit perturba-

tive calculations beyond leading order. One of the obstacleghereV is the volume of space. In the imaginary-time for-
to progress in high-temperature field theory has been that th@ajism for thermal QCD, the partition function is given by a
teChnOIOgy for perturbative calculations was not well devel'functiona| integra| over quark and g|uon fields on a four-
oped. Only very recently have there been any calculations tgimensional Euclidean space. The Euclidean tims peri-

a high enough order that the running of the coupling constangdic with periodg=1/T. The partition function is

comes into play. The simplest physical observable that can
be calculated in perturbation theory is the free energy, which
determines all the static thermodynamic properties of the
system. The running of the coupling constant first enters at 5
orderg®. The free energy for gauge theories at zero tempera- % exp( _ J er dsX%/Qco)- ©)
ture but large chemical potential was calculated to ogfer 0

long ago[11]. The first such calculation at high temperature

was the free energy of a scalar field theory witgpainter- ~ The gluon fields are periodic functions efwhile the quark
action, which was calculated to ordgft by Frenkel, Saa, and and antiquark fields are antiperiodic. The Lagrangian is
Taylor in 1992[12]. (A technical error was later corrected by
Arnold and Zha{13].) The analogous calculations for gauge
theories were carried out in 1994. The free energy for QED
was calculated to orde* by Coriano and Parwaril4] and

the free energy for a non-Abelian gauge theory was Ca|CUWhereGiV=&MA§— ﬁyAi+gfab°AZAi is the field strength
lated to ordeig* by Arnold and Zha[13]. The calculation of andg is the gauge coupling constant. All the quark fields
Arnold and Zhai was completely analytic, and thus repreave been assembled into the multiple-component sgijnor

sents a particularly significant leap in calculational technol-and the gauge-covariant derivative acting on this spinor is
ogy. The calculational frontier has since been extended t@ﬂza#+igAaTa The relevant quark flavors are all as-
aTe

fifth order in the coupling constant by Parwani and Singhgmed to be ‘massless.

[15] and by Braaten and Nie{®] for the ¢* field theory, by In order to make our calculations as general as possible,

Parwani[16] and by Andersepl7] for QED, and by Kasten- e will express them in terms of the group-theory factors
ing and Zhai[18] for non-Abelian gauge theories. In this Ca, Cr, andTg defined by

paper, we present an independent calculation of the free en-

Zocp= f DA L(X,7) DX, T) (X, T)

1 _
Zaco=767,8h,Ta7,.D,.0, )

ergy for a non-Abelian gauge theory to ordgt [19], veri- fabefabd_ ¢ sed @)
fying the result of Kastening and Zhai. In our calculation, we
use effective-field-theory methods to simplify the calculation

y plity (T2 =Ce5 ®)

and to resolve the contributions to the free energy from the
momentum scaleg andgT. We also outline the calculations
that are required to obtain the free energy to omgfer

In Sec. Il, we describe how effective field theories can be . .
used to resolve the contributions to the free energy from th&0r @ SUNc) gauge theory wittn; quarks in the funda-
momentum scale$, gT, andg?T. In Sec. IlI, we calculate Mental , representation, these factors a€,=N,,
the coefficients in the Lagrangian for the effective field CF=(Nc—1)/(2Nc), andTg=n/2. The dimensions of the
theory obtained by dimensional reduction. In Sec. IV, we usédjoint representation and the fermion representation are
the effective field theory to calculate the free energy forda=NZ—1 anddq=Ncn, respectively.
QCD to orderg®. In Sec. V, we outline the calculations that ~ The free energy for QCD can also be calculated using an
would be necessary to improve the accuracy to ogferin effective field theory in three space dimensions called elec-
Sec. VI, we discuss the implications of our calculation fortrostatic QCD(EQCD). This effective theory is constructed
convergence of the perturbation expansion for the free enso that it reproduces static gauge-invariant correlators of
ergy. We present some conclusions in Sec. VII. In two apQCD at distances of order JT) or larger. It contains an
pendixes, we tabulate the analytic expressions for all thelectrostatic gauge fieldj(x) and a magnetostatic gauge
sums and integrals that arise in our calculation. field A*(x) that can be identified, up to field redefinitions,

tr(T3TP) =T 6% (6)



53 FREE ENERGY OF QCD AT HIGH TEMPERATURE 3423

with the zero-frequency modes of the gluon ﬁg@(xlq-) for The functiongl integral rquires an ultraviolet cutafi, .
thermal QCD in a static gaud@]. The free energy for ther- The Lagrangian for MQCD is
mal QCD can be written

NZeoco

|

1
) “mqeo=7 Gij Gij + 6 Zwqc, 12
, (7)

Wherer} is the magnetostatic field strength with coupling
where Zgqcp is the partition function for EQCD: constanigy . This coupling constant differs frome by per-
turbative corrections. The term“yocp includes all pos-
(Ap) sible local gauge-invariant operators of dimension 5 and
Zeocp= J i%Ao(x)yAi(x)exp< — J d3xy,"EQCD)_ higher that can be constructed out Af. Gauge-invariant
) correlation functions in EQCD can be reproduced in MQCD
by tuning the gauge coupling constanpi and the parameters
The functional integral requires an ultraviolet cutoffz.  IN_0%mqcp as functions of the parameters of EQCB:(
The Lagrangian for EQCD is mé, Ne, ...) and thaultraviolet cutoffA ), of MQCD. The
A\ dependence of the parameters in the MQCD Lagrangian
1 1 1 is canceled by the\,, dependence of the loop integrals in
U%/EQCD:ZG?}G% + E(DiAO)a(DiAo)a+ EméASAg MQCD. '
In order to calculate the free energy using MQCD, one
1 must also tune the coefficiefi, of the unit operator, which
+ g)\E(ASAS)2+ 0%EqcDs (99  was omitted from the effective Lagrangiah?) but appears
as the second term in the expressiaf) for the free energy.
where G2 = 9, A%— 3, A%+ g FAP°APAC is the magnetostatic Its dependence on the ultraviolet cutoffy, of MQCD is
field strelﬁgthleith cjoulpling consltadg. If the fieldsA, and canceled by the cutoff dependence of the partition function

A; are assigned the scaling dimension 1/2, then the operatoFgr MQCD. The coefficienty gives the contr|but|or_1 to. the
shown explicitly in(9) have dimensions 3, 3, 1, and 2, re- ree energy from the momentum scaé. The contribution

spectively. The termdZeqcp in (9) includes all other local ]l;)(;r;riiﬂfn SOT?#:rp?r(t)i?oenn:‘ld;nctisgﬁ-rr I\l/TQc(c:)Btamed in the
gauge-invariant operators of dimension 3 and higher that ca By constructing the effective field theories EQCD and

be constructed out ok, andA, . Static gauge-invariant cor- I
relation functions in full QCD can be reproduced in EQCD MQCtD’ we I|'1a;_/e S_I(::‘par?jtegrthetﬁor}trlbutlons fro_lr_?] the mo-
by tuning the gauge coupling constajt, the mass param- mentum scales, g1, andg-1 In the free energy. The gen-
2 ; . eral structure of the free energy is

etermg, the coupling constankg, and the parameters in
0 Zeqcp as functions ofg, T, and the ultraviolet cutofi\ ¢ )
of EQCD. TheA ¢ dependence of the parameters is canceled  F=T[fe(T.g;Ag) +fu(mg,ge e, ... 1A, An)
?ﬁ/egEAE dependence of the loop integrals in the effective FEa(gus - - - AT, (13)

In order to calculate the free energy using EQCD, we . . L
must also tune the coefficiefi of the unit operator, which wheref=—In-Zyqcp/V. The arbitrary factorization scales

. : : Ag and Ay, separate the momentum scalesrom gT and
was omitted from the effective Lagrangié®) but appears as _E M .
the first term in the expressioﬁ)gforgtr? free grl?ergy. It ng Efrog[;fT, reszp ectwel}il. The ternﬁE e}nd thel p:;\hramet?rs
depends on the ultraviolet cutoffz of EQCD in such a way of EQCD (i.e., mg, Qe, Mg, ...) involve only the scale

as to cancel the cutoff dependence of the partition functior-ll.—' Thr(]ay can therefore be.calt.:ulated usin% ordinary pe_rturba—
for EQCD. The coefficienf gives the contribution to the UON theory as power series gP(27T), whereg(2T) is

free energy from the momentum scale The logarithm of the running coupling constant at the scale of the lowest Mat-
the partition function for EQCD includes the remaining con-SuPara frequency 2T. The termfy, and the parameters of
tributions from the smaller momentum scatg® andg®T. MQCD (gu , - ..) involve only the scalgT. They can be

In order to further separate the contributions from thec@lculated in EQCD as perturbation expansmn:g@mE,
scalesgT and g2T, it is convenient to construct a second Me/Me, and other dimensionless parameters obtained by
effective field theory called magnetostatic Q@BMQCD) ~ Multiplying EQCD coupling constants by appropriate powers
which contains only the magnetostatic gauge fidf{x). of mg. The leading contribution td,, is proportional to

The free energy for thermal QCD can be written m%. The termfg in (13) can only be calculated using non-
perturbative methods, such as lattice-gauge-theory simula-

Inz tions of MQCD. Surprisingly, howevef; can be expanded
F=T( fe(Ag)+ fu(Ag,Ay)— \'\/"QCD>, (10) as a Wez_ik cou_pllng expansion in powergydby treating the
higher dimension operators in the MQCD Lagrangian as per-
turbations[7]. The leading term is proportional @f, .

In summary, the free energy for QCD has the general
structure given in(13). The termf is the contribution from
the scaleT. It has the formT® multiplied by a power series
in g2(27T) whose coefficients can be calculated using ordi-

where Zyqcp is the partition function for MQCD:

. (1D

(Am) .
”’/Z:MQCD: j f/AIa(X) eX% - j d3ka;//MQCD
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FIG. 3. One-loop Feynman diagrams for the free energy.

FIG. 1. One-loop Feynman diagrams for the gluon self-energy!” the perturbation expansion, but the screening of magneto-

Curly lines, solid lines, and dashed lines represent the propagator'qc.t""t_iC gluons can only be take_n i_nto account using nonpertur-
of gluons, quarks, and ghosts, respectively. bative methods. Fortunately, it is not necessary to treat the

effects of screening in a physically correct way in order to
determine the parameters in the EQCD Lagrangian. The pa-
rameters take into account the effects of large momenta of
order T, and they are therefore insensitive to the infrared
effects associated with screening. We can therefore simply
ignore screening and remove the infrared divergences in the
strict perturbation expansion by imposing any convenient in-
frared cutoff. As long as we use the same infrared cutoff in
EQCD and in full QCD, we can determine the EQCD param-
eters by matching strict perturbation expansions in the two
ll. PARAMETERS IN THE EQCD LAGRANGIAN theories. Note that we are using the strict perturbation expan-

In order to calculate the free energy using the EQCD LgSion simply as a device for determining the parameters in the

grangian, the parameters in the Lagrandi@mmust be tuned EQCD Lagrangian.
as functions ofg, T, and A so that EQCD reproduces the
static gauge-invariant correlation functions of full QCD at
distancesR>1/T. The EQCD parameters can be determined For the calculation of the free energy to ordgt, we
by computing various static quantities in full QCD, comput- require the EQCD gauge coupling constagy only to
ing the corresponding quantities in EQCD, and demandingeading-order irg2. At this order, we can simply reagk off
that they match. It is convenient to carry out these matchingrom the Lagrangian of the full theory. We substitute
calculations using a strict perturbation expansiogin This Ao(X,7)— \/on(X) in the QCD Lagrangiafi3) and compare

expansion is afflicted with infrared divergences. The diver-fng‘z’QCD with Zeocpin (9). We find that, to leading order
gences arise from long-range forces mediated by static glyp, 92,

ons, which remain massless in the strict perturbation expan-

sion. Physically, these divergences are screened by plasma 2
effects either at the scatgT in the case of electrostatic glu- 9e=
ons or at the scalg?T in the case of magnetostatic gluons. . L )
The screening of electrostatic gluons can be taken into acLNere is no dependence on the factorization sdalet this

count by summing up infinite sets of higher-order diagram¢rder. The c_ouzpling constarge could be calculated to
higher-order ing® by matching scattering amplitudes in full

QCD with the corresponding ones in EQCD.

nary perturbation theory in thermal QCD. The tefgpis the
contribution from the scalgT. It has the formmZ multi-
plied by a power series ig(27T) whose coefficients can be
calculated using perturbation theory in EQCD. The tégn
is the contribution from the scalg?T. It has the formg‘,f,I
multiplied by a power series ig(27T) whose coefficients
can be calculated using lattice simulations of MQCD.

A. Gauge coupling constant

9°T. (14)

B. Mass parameter

In this subsection, we calculate the coefficien of the
ASAS term in the EQCD Lagrangian to next-to-leading order
in g2. The physical interpretation o is that it is the con-
tribution to the electric screening masyg, from large mo-
menta of ordefT. The parametemé can be determined by
matching the strict perturbation expansions for the electric
screening mass in full QCD and in EQCD. Beyond leading
order ing, the electric screening mass becomes sensitive to
magnetostatic screening and requires a nonperturbative defi-
nition [10]. However, in the presence of an infrared cutoff,
m, can be defined in full QCD by the condition that the

FIG. 2. Two-loop Feynman diagrams for the gluon self-energy.
The solid blob represents the sum of the one-loop gluon self-energy
diagrams shown in Fig. 1. FIG. 4. Two-loop Feynman diagrams for the free energy.




FIG. 5. Three-loop Feynman diagrams for the free energy.

propagator for the fieldAj(7,x) at spacelike momentum
K=(ko=0k) has a pole ak?= —mé. It is the solution to
the equation

k2+T1(k?)=0 at k?=—m3, (15

wherellI(k?) is the u=»=0 component of the gluon self-
energy tensor evaluated atky=0: Hgg(kozo,k)
=TI(k?) 8%". In EQCD with an infrared cutoff, the electric
screening mas#n gives the location of the pole in the
propagator for the fieldAj(x). Denoting the self-energy
function by ITg(k?) 62°, mg is the solution to

k24+m2+Tlg(k?)= 0 at k?=—m2, (16)
By matching the expressions for,, obtained by solving15)
and(16), we can determine the parametsg .

We calculate the electric masg, in the full theory using
a strict perturbation expansion @f and using dimensional
regularization with 3- 2¢ spatial dimensions to cut off both

infrared and ultraviolet divergences. The self-energy functiona

I1(k?) can be expanded in a loop expansion

(k¥ =TTV (k?)+ 112 (k?)+- - -, (17
with TIM(k?) andI1(®(k?) being given by the diagrams in
Figs. 1 and 2, respectively. We can simplify E4.5 by
expandinglI(k?) as a Taylor expansion aroukd=0. This
is justified by the fact that the leading-order solution15)
gives a value ok? that is of orderg?T2. The deviation of
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FIG. 6. One-loop Feynman diagrams for the logarithm of the
partition function of EQCD.

dir
dk?

mZ~T1Y(0)+ 1?2 (0)-T1V(0) (0). (19

Here and below, we use the symbelto denote an equality
that holds only in the strict perturbation expansion. The one-
loop diagrams that contribute 1d*)(k?) are shown in Fig.

1. Evaluating this function and its first derivativekdt=0 in
Feynman gauge, we obtain

Y(0)~2Z29%{2(1— €)Ca(71—2 71) —4Te(71—2 71},

(19
mw o~al —2c.] > 2(1—e€)(1+2e€)
die (0)=g“) —2C,| 2+T/2
8(1-¢)
© 3-2¢ ]’4
ol 4(1+2e) -~ 16 5
tele ot T e 3 g [
(20)

The sum integrals/,, 7., 7%, .:7'n, 7n andﬁé'n are de-
fined in Appendix A. The renormalization of the coupling

constant using the modified minimal subtractioMS)
scheme is accomplished by substituting

11C,—4T ¢? 1
(4m)? €

: - (20

into the expression fofl(*)(0). Thetwo-loop diagrams that
contribute tol1(k?) are shown in Fig. 2. This function evalu-
ted atk’=0 is

+4(1_ 6).71122]
+ 8CATF[2»JZL,ZZ1_ E~271'72_ 4( 1-— E)jjljz]

+8(1— €)CrTe( 71— 71 72— 4 7). (22

k? from 0 should therefore be treated as a perturbation imhe sum integrals if19), (20), and (22) can be evaluated

order to get the strict perturbation expansion tg in pow-

analytically using methods developed by Arnold and Zhai

ers ofg®. The resulting expression for the electric screening13], and they are given in Appendix A. The three quantities

mass to next-to-leading order gt is

appearing in(18) reduce to
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{'(-1) 1 (-1 A
(1) 2,212 - _
'(0)~24g T[ =Cal 1+ 2§(_1) +2|r‘.4ﬂ__|_)e +3TF 1+(1 2|n2+2§( D +2|. T)e], (23
—dH(l) 0 —92 5C ! 1+2 —i—2|n—A +4T ! 1+4In2+2 -|-2In—A 24
dk? ( )~(477)2 T3Ae 5 47 47T| 3 Fle : Y A7T||’ (24)
g* 2 L1 (=1 2 1 (=1
2)(0)~ 2 ,
IM9(0)~ an? T [ CA —+1+2y +2§(_1) +4Ir‘47_r_|_ +3CAT,: —+2- 2|n2+2'y+2§(_1)
4|r1—A 2C(T 25
* 4nT| “FF| (25)

wherevy is Euler’s constant}(z) is the Riemann zeta function, aridis the scale of dimensional regularization. Inserting these
expressions int¢18), we find that the strict perturbation expansion fiof; to orderg® is

M~ = 2(A)T?{ Ca+Te+elC P Sk PR I PRSP i Sl AP | I P

e~ 39 atTet € Cal 27y +2In s |+ Te (—1)  “NanT Al3T3Y
220N ez B M A 416|28 8t (sc:T—g2 26
T3 Ing7) FCATe| 8= g2+ 3yt FIngme [+ TR 3= g In2= 3 v= 3Ing = | =6CeTe |72 (- (20

Note that all the poles im have canceled. In the ordgf-term, we have kept terms of orderfor later use. The expression
(26) depends on\ explicitly through logarithms of\ /4= T and implicitly through the coupling constagf(A). The scale of
the coupling constant can be shifted from the dimensional regularization Acelean arbitrary renormalization scale by
using the solution to the renormalization group equation for the running coupling constant:

2(11CA—4Tp) o°
QM) =g%()| 1+ =5 palng | (27)

After making this shift in the scale of the coupling constant, the only remaining dependenceaours in the terms of order
€. In these termsA can be identified with the factorization scalg that separates the scal€sandgT.

The expressiof26) for m§| is an expansion in powers gf. It does not include g® term, in contrast to the expression for
mgl that correctly incorporates the effects of the screening of electrostatic gl@adhsThis g3 term arises because tigé
correction includes a linear infrared divergence that is cut off at the gdal&ince we have used dimensional regularization
as an infrared cutoff, power infrared divergences such as this linear divergence have been set equal to 0.

In order to match with expressidi26), we have to calculate the screening mass in EQCD using the strict expansion in
g2 Sincemé is treated as a perturbation parameter of ogferthe only scale in the self-energy functibhe(k?) is k2. After
Taylor expanding in powers d€?, there is no scale in the dimensionally regularized integrals, and so they all vanish. The
solution to Eq.(16) for the screening mass is therefore trivial:

m2~m2. (28)

Comparing(26) and(28), we find that, in the limite—0, the parametem is given by

2] o= ) T2 Cat Tet | G2 2t 2yt it | v cuTel 3 Sina+ 2254 Min
mE|e=o—§g (m) AT IF Al3 gy gnm alE 3n 3')/ 3T
P PV TR RPYcR B 20
Fl3™ 3 3 3"aqt)  °%FIF|am2 | (29

At this order ing?, there is no dependence on the factorization sagle The ordere terms inm% will also be required later
in the calculation. These terms are

1-2in2+ 25 1 o A )} (30)
=1 T

amz 1 - Ag
— 5= 392T2[CA< £l )+2|. +Te

Je (-1 T
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This expression depends explicitly on the factorization scaléhe free energy from large momenta of orderThe param-
Ag. eterfg is determined by calculating the free energy as a strict
perturbation ing? in both full QCD and EQCD, and match-
ing the two results.

In the full theory, the free energy has a diagrammatic

In this subsection, we calculate the coefﬂment of the unitexpansion that begins with the one-loop, two-loop, and
operator fg to next-to-next-to-leading order ig®>. The three-loop diagrams shown in Figs. 3, 4, and 5, respectively.
physical interpretation ofg is thatfgT is the contribution to  Evaluating the diagrams in the Feynman gauge, we obtain

C. Coefficient of the unit operator

F~—(1-€)dp7 §+2dr7 +daZ2g% [ (1— €)2Cp7 2+2(1— ) Te71 (71— 271) ]+ dAg4{ Ci(1-e)42(1+€).7 27,

1 - . - N
= 5 Wog— 2|+ CATe(1= €[ ~8717, 71— 2e. Moo+ (1+ €)1 oo+ 4.7 551+ TE[8(1+€).72.7 2+2e1 5

—4175 ]+ 2CeTe(1—)[2(1— e)(7 2= 47, 71+.7 )Ty + 2 Wo 5= (1+ €)1 oot 2(1— e)j/zl,l]} : (31)

The symbol~ is a reminder that the strict perturbationdgA does not give a physically correct treatment of the screening
effects of the plasma. The sum integrals(81) are given in Appendix A. To ordeg®, the renormalization of the coupling
constant is accomplished in thd¢S scheme by substitutin@1) for Z in the orderg? term. The final result is

mda_,[1 7 d 2(A) 12 194 A 116 220¢'(—1) 38('(—-3)
F~—— [5+20dA ( TF @m2 " (_+T'”m+?+47+T§(—1)_§ g(—s))
12 169 A 1121 157 146 ' (—1) 15'(—3)) (20 A 1 88
+CAT|: —+Tnm+ﬁ—?ln2+8y+T g”(—l) —§ g(_3) §| ﬁ+§—€ln2+4y
16¢'(—1) 8¢ (—3) 105 g® \?
BEN §<—3>)*CFTF(T_Z“'“Z”((mT)Z) ) (32

In EQCD the free energy is given by the expression We calculate IiZgqcp Using the strict perturbation expansion in
which gE and mE are treated as perturbation parameters and both infrared and ultraviolet divergences are regularized using
dimensional regularization. Since diagrams with massless propagators and with no external legs vanish in dimensional regu-
larization, the only contribution to lagqcp Which does not vanish comes from the countertéifia which cancels ultraviolet
divergences proportional to the unit operator. The resulting expression for the free energy is simply

F~(fg+ofe)T. (33

The counterterm can be determined by calculating the ultraviolet dlvergence,@g@&@ If we use dimensional regulanza-

t|on together with a minimal subtraction renormalization scheme in the effective theorygfheis a polynomial ng,

mE, and the other parameters in the Lagrangian for EQCD. The onIy combination of parameters that has dimension 3 and is
of orderg* is gémé Thus the leading term i@fg is proportional togEmE The coefficient is determined by a two-loop
calculation that is a trivial part of the three-loop calculation in Sec. IV. The result for the counterterm is

5fE——WgEmE;. (34)
When expressing this counterterm in terms of the paramgtarslT of the full theory, we must take into account the fact that
m2 multiplies a pole ire. Thus in addition to expression faiz given in(29), we must also include the terms of orgewhich

are given by(30). The counterternt34) is therefore

2d 2 \2 1 (-1 Ag
Sfe=— LA A(—(ﬁﬂz) T3{1x§(;+2i((_1))+2|r4

1 (=1 Ag
-2+ 27— 2y

+12C,T¢

(39

T 7T
Note that minimal subtraction in the effective theory is not equivalent to minimal subtraction in the full theory. In addition to
the poles ine in (35), there are finite terms that depend on the factorization stale

Matching (32) with (33) and using the expressidB5), we conclude thafg to orderg? is
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2d 1 7d 5 \g%(w) Ag 22 116 1487'(—1)
fE(AE):_ﬁgAT3[<§+E)dZ) (C 2TF)( /;2+(CA BN T ?'”%+ 5 YT 3 -y
- 387(-3 Ag 47 w401 37 7470(-1) 1(=3)] 20 u 1
3 3>} +HCATe 48In, = it 55— 52+ 8yt 5 s Eg(—s)} 327" 3
16¢'(—1) 8¢'(—3) 105 g% \?
ghziayey (1) 55(—3>} CFTF{ ~2din 2”((4?) ] (39

whereg(u) is the coupling constant in tHdS renormaliza- where the beta functioB, has a power series expansion in
tion scheme at the scaje. We have used?27) to shift the the coupling constantS,,,. These equations follow from the
scale of the running coupling constant frokx to an arbi-  condition that physical quantities must be independent of the
trary renormalization scalg,, and we have identified the arbitrary scale\¢. SinceC,, is proportional toT®~ %, every
explicit factors ofA that remain with the factorization scale term in the expansion of its beta function must be propor-

Ag. tional to T3~ %. In particular, a term like€, Cpy, - - - Cpy, can
appear only if the dimensiord,, of the corresponding op-
D. Evolution of EQCD coupling constants erators”, satisfy |
The effective Lagrangiaf®) for EQCD can be expressed K
as a sum over all local operators that respect the symmetries 2 (3—d,,)=3-d,. (39)

of the theory:

_ The condition(39) is very restrictive, particularly if the
fe(Ap)+.%4 = C.(Ap)@y, 3 ) o .
e(Ae)+ Zeqeo= 2 ColAe)n B7 " ettective Lagrangian is truncated to the super-renormalizable
terms that are given explicitly if9). It implies that the only

where we have included the unit operator with coefficient€MSs that can appear in tm? function for the coefficient

fe as one of the operators,. The coefficientsC,, are the  fe of the U”'t operator argEmEv Nemg, and a cubic poly-
generalized coupling constants of the effective theory. Benomlal ingZ and\g. SincemZ, g2, and\g are of order
cause of ultraviolet divergences, the effective theory must b@ g and g%, respectively, the only term of ordey* is
regularized with an ultraviolet cutoffiz. The ultraviolet gzmz. We can determine its coefficient by calculating the
divergences in the effective theory include power ultravioletultraviolet divergences in the strict perturbation expansion
divergences proportional ta2, p=1,2,..., andlogarith-  for the free energy in the effective theory. These divergences
mic divergences proportional to Ihf). The power diver- do not appear it33), because the ultraviolet poles érhave
gences are artifacts of the regularization scheme and have g@nceled against infrared poles én We can calculate the
physical content. If they are not removed as part of the reguultraviolet divergences by using a different regularization for
larization procedure, they must be canceled by power diverinfrared divergences. Alternatively, since we have already
gences in the coupling constar@s . In contrast, the loga- calculatedf explicitly to orderg®, we can simply differen-
rithmic ultraviolet divergences are directly related to tiate (36) and use the fact tha’tE(d/dAE)fE must be pro-
logarithms ofT in the full theory, and therefore represent real portional to gEmE Using gE g°T and the leading-order
physical effects. It is convenient to use a regularization proexpression fomE in (29), we find that the evolution equation
cedure for the effective theory in which power ultraviolet is

divergences are automatically subtracted, such as dimen-

sional regularization. In this case, they need not be canceled d daCa , , 63

by power divergences in the coupling constants. The dimen- AEdAE fe=— (4m)? geme+O(g°T"). (40)
sions of a coupling constant can then only be taken up by

powers of the temperatuiie The coupling constar@, must The B function formZ must be a quadratic polynomial in

be proportional tar®~, whered, is the scaling dimension o2 anq) . The termsg?, g2\¢, andAZ are of orderg®,
of the corresponding operatar,. The dimensionless factor g%, andg®, respectively. The coefficients of these terms can

. B S_d . .
multiplying T*%n in the coupling constanC, can be cOm- e getermined by calculating the ultraviolet-divergent terms
puted as a perturbation seriesgf(T), with coefficients that i the strict perturbation expansion for the electric screening

are %olt))/norrlials in In—E,/AE).' The dependence ol is g?vf mass in the effective theory. Alternatively, ifiZ is known,
emed y”af rﬁnc;rmalzatlon group equation” or "evolution s 4 fnction can be determined simply by differentiating.
equation” of the form Since the expressiofR9) is independent ofAg, we know
q that the coefficient og‘é in the B function vanishes and the
AEW {(Ap)=B,(C), (39) Ir(;?dilsng term must bgghg . Thus the evolution equation for
E
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FIG. 7. Two-loop Feynman diagrams for the logarithm of the

partition function of EQCD.
A im2 =0+0(g°T?) (41)
E dAE E '

We have not calculated the coefficient @i\ in this evo-
lution equation, because it does not affect the free energy
until orderg’.

The B functions forgé and\ g vanish to all orders in the
super-renormalizable interactions. All the nonvanishing
terms in theirB functions involve the coupling constants of
nonrenormalizable interactions, and they are therefore su
pressed by large powers gf The evolution of these para-

FIG. 8. Three-loop Feynman diagrams for the logarithm of the
Ip_artition function of EQCD.

maters can probably be ignored for most practical purposes. fo—_ INZeqep 43)
The only EQCD parameter whose evolution plays a role M vV
in the free energy to ordeg® is f¢. To this order, the solu-
tion to Eq.(40) is trivial: In order to calculate this contribution using perturbation
d.C A theory, we must incorporate the terms in the Lagrangian that
_ , Aba 5 o, Ag provide electrostatic screening into the free part of the La-
fe(Ae)=Te(Ae)— (4w)ngmE|nA_’E' (42 grangian. The necessary screening effects are provided by

the ASAS term in the EQCD Lagrangian. Thus we must in-
clude the effects of the mass parameteg to all orders,
while treating all the other coupling constants of EQCD as
Having calculated the parameters of EQCD to the necesperturbation parameters. The only coupling constant that is
sary order ing?, we now use the effective theory to calculate required to obtain the free energy to ordgY is the gauge
the free energy to ordegy®. The free energy is the sum of the coupling constang .
three terms in(13), which correspond to the momentum  The contributions to € gocp Of ordersg®, g, andg® are
scalesT, gT, and g°T, respectively. The ternicT is the  given by the sum of the one-loop, two-loop, and three-loop
contribution from the scald. We have already calculated diagrams in Figs. 6, 7, and 8, respectively. The solid, wavy,
fe to the necessary order and it is given(B6). The term  and dashed lines represent the propagators ofAthéeld,
fsT is the contribution from the scalg?T, but it does not the A; fields, and the associated ghosts, respectively. We
contribute until orderg®. The remaining ternfy, T is the  evaluate these diagrams in the Feynman gauge. They can be

IV. FREE ENERGY TO ORDER ¢°

contribution from the scalgT. expressed in terms of the scalar integrals defined in Appen-
Through orderg®, f,, is proportional to the logarithm of dix B. The resulting expression for the logarithm of the par-
the partition function for EQCD: tition function is

da 2l o 24l 1 2 2 1 1-2¢
fM:_7IO+dACAgE ZI1+mEJ1 +dACAgE _ZI1|2+2|1\]1_2mE|1\]2_mE|1K2_ZMl‘,l_TMQQ"’ EM*l,l
1-2e 2 2 4 3 1 1 2 2 4
— 5 M2+ 4meMy o+ 2MgMg 1~ 4MeM 5 o= gNo,o— FN1-17 7 N2 2= 2mgNy o= MgN; 3 —MeNy
4 1
_mENZ,O_ZLl,*l +5fE, (44)

where 6f¢ is the counterterm associated with the unit operator of the EQCD Lagrangian. The intggrals K, L,
Mnn, andNp, , can be calculated analytically using methods developed by Broadidijsand they are given in Appendix
B. Adding them up, we obtain

4(4)°

1 A
Z44ins—+3
€ 2mE

da
=— mz +

f 2
M 3(4m)

1
e G — —In2+ ~7%|ggme + Sfg, (45)

24 6 6

, d\C3 (89 11
gem
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whereA is the scale of dimensional regularization. It can bewherezf\%w is the partition function for the minimal gauge
identified with the ultraviolet cutoff\g of EQCD. The ultra-  theory with actionfd®*xG?/4. The subscript 0 on the expec-
violet pole in e in the term proportional tg2mz in (45) is  tation value( 8 “yvqcp)o is a reminder that it is to be calcu-

canceled by the counterterdfz, which is given in(34). lated using the minimal-gauge-theory action.
Our final result is therefore For the moment, let us consider only the first terng46).
The partition functionZ{f}p, is that of the minimal gauge
da Ag  9]Cag2 theory in three dimensions. This is a super-renormalizable
fm(Ag) 3am ME 1 3|n2—mE 2| 2mmg theory and its ultraviolet divergences have a very simple

structure. By naive power counting, ultraviolet divergences

, ( CAg§>2} o in INZ{}cp can arise only from vacuum diagrams with one,
46

two, three, or four loops or from propagator corrections with
one or two loops. Ward identities guarantee that the propa-
gator corrections are actually finite. This is related to the fact
The coefficientfy, in (46) can be expanded in powers of that the only gauge invariant operator with dimension lower
g by settinggZz=g?T and by substituting the expressi®)  thanG? is the unit operator. Thus the only ultraviolet diver-
for mé. The complete free energy to ordgr is then gences are in the vacuum diagrams. The one-loop diagrams
F=(fz+f\)T. Note that the dependence on the arbitrarygive a cubic divergence. The two-loop diagrams give a qua-
factorization scaleAg cancels betweerig and f,, up to  dratic divergence proportional tgﬁ,,. The three-loop dia-
corrections that are higher-ordergn leaving a logarithm of ~ grams give a linear divergence proportionalgh . Finally,
T/mg. Thisg®In(g) term is associated with the renormaliza- the four-loop diagrams give a logarithmic divergence propor-
tion of fg, and its coefficient can be determined from thetional tog?, . After subtraction of the power divergences, we
evolution equatior{40). There is nag®In(g) term in the per-  can use dimensional analysis to determine the form of
turbation expansion foF, and this is a consequence of the |n@(,\%CD_ Aside from the logarithmic dependence on the
vanishing of the ordeg* term in the3 function for mg . ultraviolet cutoff A, the only scale in the problem g .
By dimensional analysis, 18{tcp must be proportional to

V. OUTLINE OF CALCULATION TO ORDER  ¢° gm - Thus it must have the form

+ -+ 5In2—57

89 11 1
8 2 2

47TmE

The calculation of the free energy to ordgt, which was ~(0)
presented in the previous section, was greatly streamlined by _ InZhaco _
using effective field theory to unravel the effects of the mo- \
mentum scale§ and gT. The same result has also been o
obtained by Kastening and Zhai using other methpij. ~ Wherea and b are pure numbers. The coefficiemtcan be
However, the advantages of the effective_fie|d_theory ap.determl-ned by CalCUlatlng the |Og-ar|thm|C ultraviolet diver-
proach become more and more apparent as we go to high@ence in the four-loop vacuum diagrams for MQCD. The
order ing. In this section, we demonstrate the power of thiscoefficienta can only be calculated using nonperturbative
method by outlining the calculation of the free energy tomethods. It can.for example be e-xtracte.d from measurements
orderg®. In this case there are contributions from all threeOf the expectation valu¢G?), using lattice simulations of

momentum scales, gT, andg?T. the pure gauge theory. A convenient expression(faf),
can be obtained by taking the logarithm of both side&18j

and differentiating with respect tgﬁ,,. It is useful to first
o o rescale the field; in the functional integral forZ{{cp, so
We first discuss the contribution to the free energy fromthat the coupling constant appears only in the coefficient

the scaleg®T, which is given by the ternficT in (13). This 192 of the action. After subtracting the power ultraviolet
term is proportional to the logarithm of the partition function divergences, we obtain the expression

(11) of MQCD. Treating the correction terd4qcp in the
MQCD Lagrangian as a perturbation, the partition function

A
a+ bln—zM) a% (49
Om

A. Contribution from the scale g?T

. A
can be written (G?)o=—4|3a—b+ 3b|ng—2M) % (50)
M
Z _ f(AM)@A-a(x)eXp< _ f d3szl4) The subscript 0 on the expectation val@?), is a reminder
MQeD o that it is to be calculated using the minimal-gauge-theory

action [d®xG?/4 rather that the full action of MQCD. The
1— f dBX&%MQCD"' . ] (47) expectation vaIuéGz>0 can be measured on the lattice using
Monte Carlo simulations of the minimal gauge theory. Once
(G?), has been measured and the coefficibnbas been
whereGZEGﬁGf} . Taking the logarithm of both sides, we calculated, we can determireusing the formula50).
obtain We now verify that the correction term i47) from
higher dimension operators in the MQCD Lagrangian can
indeed be treated as a small perturbation. The lowest dimen-

X

foo In%ﬁéwﬂﬁ(/ Yok - 48) sion operators i “yocp are G3=3G2GhGf;, whose
6 v ~7MQCD/0 ’ coefficient is proportional to g3/T¥? ‘and (OG)?
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=(D;Gi)*D;Gy)?, whose coefficient is proportional to InZgycp is a sum of polynomials in the EQCD coupling
g°/T?. Their coefficients have been calculated to leading orgonstants, such ag2 and\g, multiplied by whatever pow-
der ing by Chapman for the case of a pure gauge theongs of m: are required by dimensional analysis. There are
[22]. After subtraction of power ultraviolet divergences, the y,ree sych terms that contribute to the free energy at order
only scale in the problem igy, . Therefore, by dimensional g®. The first term isg2mZ, whose coefficient has already

i 3 ; 2 \9/2 i
agalyszls,(G )o must be proportional to dy)™* USINg  peen calculated in46). It contributes through the next-to-
gw~0“T and taking into account the coefficient which is leading order term inm%, which is given in (29), and

proportional tog®/T**, we find that the contribution t6g through the next-to-leading order termg’ﬁ, which has not

3y 123 ; i ;
;:’r?gﬂ tﬁw(;t >t‘i1§ ggnﬁ[%irt?o?fr'o%ilg%?z)s |rri1éla;|5a(r)1a(lj¥s(|)sr,d;vre yet been calculated. The second term which contributes at
0 eorderg6 is proportional togg. Its coefficient is determined

g*?T3. Thus the effects of higher dimension operators in th , , _
MQCD Lagrangian are indeed suppressed by powers of thBy calculating all four-loop vacuum diagrams that involve

coupling constang. only the gauge coupling constagt . This term will have a
We have found that the contribution to the free energyPle in e that matches that from the counterte(&8). The
from the scaleng can be written third term that contributes th, at orderg6 is proportional to

)\Emé. Its coefficient is given by the single two-loop
Ay vacuum diagram that involves thAé coupling constant
a+ bln—z)gﬁ,lT+ O(g*T?). (51)  \g. This coupling constant is only required to leading order
m in g and has already been calculated by Nadkgz8]j and by
Remarkably, the only nonperturbative calculation that is rel-andsmar{24].
quired to determine the free energy up to org&ris that of In summary, there are three coefficients that must be cal-
the Sing'e pure numba_ We a|so require the Coup”ng con- Culated in Ol’del’ to Obtain the Contribution Of OI’C@S’FO the
stantg,,, which can be calculated by matching perturbativefree energy from the scalgT. We need the coefficients of
calculations in EQCD and MQCD. To calculate the free en-gg and of \em in the expression foffy . These can be
ergy to orderg®, we only needyy, to leading order irg. At  obtained by perturbative calculations in EQCD. We also need
this order, it is given S|mp|y b}gﬁl:ng In summary, in the coefficient Ob4 in the expression for the EQCD param-
order to obtain the contribution to the free energy from theetergz . This requires a perturbative calculation in full QCD.
scaleg®T to orderg®, all that is required are the two pure
numbersa andb in (51). The numbeb can be calculated by
evaluating four-loop diagrams in MQCD. In R¢T], it was C. Contribution from the scale T
assumed inCOI’I’eCtIy that this number vanishes. The number The contribution to the free energy from the scalas
a can be calculated using lattice simulations of the pureyiven by the termfcT in (13). The termfg is obtained by

fGT=

gauge theory in three dimensions. matching the strict perturbation expansions for the free en-
ergy in full QCD and in EQCD. In full QCD, the contribu-
B. Contribution from the scale gT tion of orderg® is the sum of all four-loop vacuum diagrams.

If we use dimensional regularization to cut off both infrared
given by the termf,, T in (13). The coefficientf,, can be and ultraviolet divergences, then the corresponding expres-

determined by calculating the logarithm of the EQCD parti-Sior'_in EQCD is simplsz(f_EJr S6fe)T. 2The _coun_terterm
tion function in both EQCD and MQCD and matching the ofe includes the term pr_oportlonalztgﬁmgle given in (34)
expressions. If we use dimensional regularization to cut offind also a term proportional t:mg/e. Since the counter-
both infrared and ultraviolet divergences, all the loop dia-term is proportional to ¥, we need not only the value of the

grams in MQCD vanish. The expression for the logarithm ofcoupling constankg at e=0 but also the terms linear ia
the partition function then is simply Similarly, we need the term of orderin the orderg* cor-

rection togz .
In summary, there are several calculations that must be
=fu+ofu, (52  carried out in order to obtain the term of ordgtin fg. We
need to calculate the four-loop vacuum diagrams in full

where 6f), is a counterterm that cancels ultraviolet diver- QCD. We also ”ee‘g to calculate the terms of oretgfin the
EQCD parametergg and\g.

gences in MQCD that are proportional to the unit operator.
To orderg®, this counterterm is simply

The contribution to the free energy from the scglE is

_ INZeqep
\Y

VI. CONVERGENCE OF PERTURBATION THEORY

We have calculated the free energy as a perturbation ex-

= —_— 6 - . - .
5fM_269M' (53 pansion in powers ofj to orderg®. In this section, we ex-
amine the convergence of that perturbation expansion. For
whereb is the same coefficient that appearg5d). simplicity, we focus on the case of QCD with flavors of

To determinef,,, we must match the expressidb2) quarks.
with the corresponding expression in EQCD, which is ob- The effects of the momentum scaleenter into the free
tained by calculating the sum of vacuum diagrams using dienergy only through the coefficiefit and the parameters in
mensional regularization. The resulting expression forthe EQCD Lagrangian. The teriiz is given in(36):
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The other parameters in the EQCD Lagrangian that enter into the calculation of the free energy tp emdeng andgg,
which are given by(29) and (14), respectively:

=4 T2 1+1 +10.612-0.48%;—0.0428° + 1 1+1 1 2 In=r— +o 2 55
mg=4mas(u) g . : £~ U T ki 33" |5 T (@s)(, (55
g2=4masT[1+0(ay)]. (56)

We have calculated two terms in the perturbation series fothat the perturbation series fog is well behaved if the fac-

mé and three terms in the series fbg. We can use these torization scaleAg is chosen to be approximately=d .
results to study the convergence of perturbation theory foWhether this choice is reasonable can only be determined by
the parameters of EQCD. We consider the caseof3 calculating other EQCD parameters to higher order to see if
flavors of quarks, although our conclusions will not dependthe same choice leads to well behaved perturbation series.
sensitively onn;. The question of the convergence is com- The choice ofAg that makes the perturbation series for
plicated by the presence of the arbitrary renormalization anthe EQCD parameters well behaved may be much larger than
factorization scalesu and Ag. The next-to-leading-order the largest mass scate: of EQCD. Perturbative corrections
(NLO) correction tof is independent ofr andAg, and is  in EQCD will then include large logarithms @ /mg. This
small compared to the leading-ord&O) term provided that problem can be avoided by using renormalization group
as(w)<1.1. The NLO correction tan? and the next-to- equations to evolve the parameters of EQCD from the initial
next-to-leading-orde(NNLO) correction tof g both depend ~scaleAg down to some scald g/ of ordermg . The solution

on the renormalization scalg. One scale-setting scheme to the renormalization group equation figr is given in(42).

that is physically well motivated is the BLM prescription The evolution ofgé and mZ occurs only at higher order in
[24], in which u is adjusted to cancel the highest power of the coupling constant and therefore can be ignored.

ny in the correction term. This prescription gives We have carried out only one perturbative calculation in
1=0.937T when applied tomé and u=4.47T when ap- EQCD. This is the ternfy,, which gives the contribution to
plied to fg. These values differ only by about a factor of 2 the free energy from the scagel’. This term is given in(46):

from 27T, which is the lowest Matsubara frequency for glu-

ons. Below, we will consider the three valugs= =T, 2 9 Ag) O

27T, and 47 T. For the NLO correction tan2 to be much fu(Ae)= mE 1 (0'256+ Zm_) 2mme
smaller than the LO term, we must hawg(u)<< 0.8, 3.8, 2 \2

and 1.4 ifu==T, 27T, and 47T, respectively. Based on —276( 9 +O(g3)} (57)
these results, we conclude that the perturbation series for the A\ 27mg '

parameters of EQCD are well behaved provided that
ay(27T)<<1. We now consider the convergence of the perturbation series
The NNLO correction forf g depends not only o, but  (46) for fy,. The size of the NLO correction depends on the
also on the factorization scale: . Because the coefficient of choice of the factorization scalég. It is small if Ag is
IN(Ag/27T) in (36) is so much larger than that of chosen to be approximatelye. The NNLO correction in
In(w/27T), the NNLO correction forf¢ is much more sen- (46) is independent of any arbitrary scales.nlf=3, it is
sitive to Ag than tou. It is useful intuitively to think of the ~small compared to the leading-order term onlyif<0.17.
infrared cutoffA ¢ as being much smaller than the ultraviolet Thus the perturbation series fby, is well-behaved only for
cutoff u. However, these scales can be identified with mo-values ofa (27 T) that are much smaller than those required
mentum cutoffs only up to multiplicative constants that mayfor the parameters of EQCD to have well-behaved perturba-
be different foru and Ag. Both parameters are introduced tion series.
through dimensional regularization, butarises from ultra- Inserting(55) and(56) into (57), expanding in powers of
violet divergences of four dimensional integrals, while ¢, and adding54), we get the expansion for the free energy
arises from infrared divergences of three-dimensional intein powers of\/—
grals. We might be tempted to sétz=pu, but then the
NNLO coefficient infg is large. For the choice=2#T, the 8w’ _, ag(pm) ag(w)\%? ag)?
correction to the LO term is a multiplicative factor F=- ET FotF, - +F3 - +F4 ?)
1—0.9a4+6.502. The NNLO correction can be made small
by adjustingAg. It vanishes forAg=5.87T, 5.17T, and
A57Tif u==T, 27T, and 47T, respectively. We conclude

s 5/2 .
+Fs| —| +O(adinay)|. (58)
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The coefficients in this expansion are involves only a single momentum scale. We also outlined the
calculations that would be necessary to obtain the free en-
E—14 2—1n (59 ergy to orderg®. Itis only at this order that the full power of
0 32" the effective-field-theory approach becomes evident.

The effective-field-theory approach provides an under-

15 5 standing of the logarithms of the coupling constant that arise
FZ:_Z 1+1_2nf)* (60 in perturbation expansions in thermal field theory. These
logarithms are associated with the renormalization of the pa-
1 \3%72 rameters of effective field theories. The resulting evolution
F3=30( 1+ gnf) : (61)  equations can be used to sum up leading logarithms of the
coupling constant of the forrg™*?"In"(g) to all orders in
F,=237.2+ 15.97hf—0.4131? n [5]. To the accuracy required for the calculation of the free
energy to ordeg® in QCD, this resummation is trivial. The
135 1 ag N only terms of the formg™*2"In"(g) with m+2n<5 are a
+ T( 1+ Enf)ln T 1+ 6 } gIn(g) term associated with renormalization of the coeffi-

cient fz. The fact that the solutiort42) to the evolution
_ 1_65( 14 in )(1_ En )InL 62) equation forfg is trivial indicates that there are no higher-
f f )

8 12 33 27T order terms of the forng?*2"In"(g) that are related to the
g*In(g) term through the renomalization group. There are
also no terms of the formg®*2"In"(g) in the free energy. This
6 is a consequence of the vanishing of tjp@term in theB

function for mé. In the seemingly simpler problem of a
+4—95(1+1n )(1—3n )InL} 63) massless scalar field with @ interaction, the evolution
f f . . . .
2 6 33 27T equations play a more important rdie]. There are terms in
the free energy of the forg®*2"In"(g) that can be summed
The coefficientr, was first given by Shuryak25]. The co-  yp to all orders with the help of the renormalization group.
efficient of F5 was first calculated correctly by Kapus6].  The relative simplicity of the QCD case comes from the fact
The_ coefficientF, was calculated in 1994 by Arnold_and that the termgg in the 8 function for m2 has a vanishing
Zhai[13]. The coefficients has also been calculated inde- coefficient. We know of no deep reason for this coefficient to
pendently by Kastening and Zhgi8]. vanish.

We now ask how smalirs must be in order for the ex-  Qur explicit calculations allow us to study the conver-
pansion(58) to be well behaved. For simplicity, we consider gence of the perturbation expansion for thermal QCD. They
the Casmf:3, although our conclusions are not sensitive tOSuggest that perturba’[ion theory at the S(@Te requires a
n¢. If we choose the renormalization scale=27T moti-  much smaller value of the coupling constant than perturba-
vated by the Brodsky-Lepagbe-MackenzBLM) criterion  tijon theory at the scal&. At the scaleT, perturbation cor-
[24], the correction to the LO result is a multiplicative factor rections can be small On|y &S(ZWT)<1 Of course, even if
1-0.9a5+3.303%+ (7.1+ 3,50 s —20.83%. The a3 this condition is satisfied, the perturbation expansion may
term is the largest correction unlesg(27T)<0.12. We can  break down anyway, but this is certainly a necessary condi-
make thea>? term small only by choosing the renormaliza- tion. At the scalegT, perturbation corrections can be small
tion scale to be near the valye=36.57T for which F5  only if ay(27T)<1/10. Thus, in order to achieve a given
vanishes. This ridiculously large value pf arises because relative accuracy, the coupling constan{2=T) must be an
the scaleu has been adjusted to cancel the lagjecorrec-  order of magnitude smaller for perturbation theory at the
tion to fy, in (46). This contribution arises from the momen- scalegT compared to perturbation theory at the scaléhis
tum scalegT and has nothing to do with renormalization of has important implications for calculations in thermal QCD.
ag. We conclude that the expansi@B) for F in powers of At extremely high temperatures, the asymptotic freedom of
\/;S is well behaved only ifag(27T)<1/10. This is an or- QCD guarantees that the running coupling constant
der of magnitude smaller than the value required for thexs(27T) is sufficiently small that perturbation theory will
EQCD parameters to be well behaved. Our previous analysigrovide an accurate treatment of the effects of the sgale
indicates that this slow convergence of the expansiorFfor as well as those of the scale Nonperturbative methods,
in powers of\/ag can be attributed to the slow convergencesuch as lattice simulations of MQCD, are necessary only to
of perturbation theory at the scaigl. calculate the effects of the scalgT. Of course, one can
always treat the entire problem nonperturbatively by carrying
out lattice simulations of full thermal QCD. However, it is
probably more efficient to integrate out the scalesand

In this paper, we have used effective-field-theory methodg T using perturbative methods, and to reserve the nonpertur-
to unravel the contributions to the free energy of high-bative methods only for the scalgT where they are essen-
temperature QCD from the scal@s gT, andg®T. We cal- tial. As the temperature is decreased, the running coupling
culated the free energy explicitly to ordgt. The calculation —constant increases and perturbation theory becomes less ac-
was significantly streamlined by using effective-field-theorycurate. At sufficiently low temperatures, perturbation theory
methods to reduce every step of the calculation to one thdireaks down completely, and the entire problem must be

1
F5= 1+ = Ns

1/2]
{—799.2; 21.96;—1.926?
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treated nonperturbatively. This is certainly the case when thesgularization to regularize both ultraviolet and infrared di-
temperature is close to the critical temperature for the phaseergences. We introduce a concise notation for these regular-
transition from the quark-gluon plasma to a hadron gas. ized sum integrals:

Our calculations suggest, however, that there is a range of
temperatures in which perturbation theory at the sgdlénas i“: e\’ GT D f d*~2p (A1)
broken down, but perturbation theory at the schlés rea- L\ 4x Po=2naT (277)3*75’
sonably accurate. In this case, one can still use perturbation
theory at the scal€ to calculate the parameters in the EQCD e¥A2\ € d32p
Lagrangian. Our calculations of the coefficiefigsandm? to i E( 2 ) T > f (2m)% % (A2)

4 . . {P} m po=(2n+1)7T w

orderg” are therefore still useful. However, nonperturbative

methods, such as lattice simulations of EQCD, are requiregihere 3- 2¢ is the dimension of space ardis an arbitrary
to calculate the effects of the smaller momentum scgles  momentum scale. The factoe/4)€ is introduced so that

2 H H T .. . . . !
and g°T. While one could simply treat the entire problem after minimal subtraction of the poles indue to ultraviolet
nonperturbatively using lattice simulations of full QCD, the gjyergencesA coincides with the renormalization scale in
effective-field-theory approach provides a dramatic savingghe MS renormalization scheme. Below, we collect together
in resources for numerical computation. The savings comg)| the sum integrals that are required to calculate the coef-

from two sources. One is the reduction of the problem fromgi ient fe to next-to-next-to-leading order ig? and the co-
a four-dimensional field theory to a three-dimensional ﬁeldefficient mé to next-to-leading order ig?.
theory. The other source Of Savings IS _that quarks are mt_e- The one-loop bosonic sum integrals that arise in the cal-
grated out of the theory, which reduces it to a purely boson'%ulation have the following forms:
problem. '
We now consider briefly the implications for the study of 1
Tn= im.
p(P9)

the quark-gluon plasma in heavy-ion collisions. The critical (A3)
temperaturd . for formation of a quark-gluon plasma is ap-
proximately 200 MeV. It may be possible in heavy-ion col- 2
lisions to produce a quark-gluon plasma with temperatures O = Po

i - : :/n—i AGES R (A4)
several timesT.. At T=350 MeV, ay(27T)~0.3, which p(P?)
is small enough that perturbation theory may be reasonably
convergent at the scale but it is certainly not convergent at pg
the scalegT. We conclude that at the temperatures achiev- Tn= %W (A5)
able in heavy-ion collisions, perturbative QCD may be accu-
rate when applied to quantities that involve the sdalenly.  The specific sum integrals that are needed are
However, nonperturbative methods are required to accurately
calculate quantities that involve the scatgE andg®T. The 2

an
most effective strategy for calculating the properties of a ~76:4—5T4[1+ O(e)], (AB)
quark-gluon plasma at such temperatures will probably in-
volve a combination of perturbative and nonperturbative 1 2¢ '(-1)
methods. The effective-field-theory approach developed in .71=1—2T2(4—) 1+(2+ Zﬂ e+ O(ez)},
this paper provides a systematic method for unraveling the (A7)
momentum scales in the plasma and for combining perturba-
tive and nonperturbative methods in a consistent way. This 1 A \2€ 7'(—1)
approach applies strictly only to static properties and to the Th=— —TZ(—) {1+2 —— €+ 0(€?)|,
case of zero baryon density. The extension to dynamical 24" \4nT (=1
properties and to the case of honzero baryon density remains (A8)
a challenging problem. 1 A \2¢1
722(47)2(m) ;+2’y+0(6) , (A9)
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APPENDIX A: SUM INTEGRALS IN THE FULL THEORY . , N )
wherev is Euler’s constant angl(z) is Riemann’s zeta func-

In the imaginary-time formalism for thermal field theory, tion. In (A6), .7 ; denotes the derivative of,, with respect
the four-momentum P=(py,p) is Euclidean with ton evaluated ah=0. The one-loop fermionic sum integrals
P?=p2+p?. The Euclidean energp, has discrete values: have the forms
po=2n=T for bosons andpy=(2n+1)#T for fermions,
wheren is an integer. Loop diagrams involve sums opgr 5 i 1

n

and integrals ovep. It is convenient to use dimensional Tp (P9 (A12)
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2 1 A 2e 1
=¥ o _ Ty=———| —=| |=+2+4In2+2y+0(e)
/0= oy P A e\ aaT) | yrete)
(A19)
- o )
.%J/.nE i TBo\n¥2- (A14) ~ 1 A ‘1
P JO 9= —— - " .
Py (P?) Ky 8@\ 4.7 | +3 +4In2+2y+0(¢€)
The specific sum integrals that are needed are (A20)
. 72 All of the two-loop sum integrals that arise in the calcu-
T o=— ﬁT“[HO(e)], (A15) lation factor into the product of 2 one-loop sum integrals.
Some of the three-loop sum integrals factor into the product
1 A\ 2¢ £(-1) of 3 one-loop sum integrals. Others factor into the product of
_}1: — —T2<—) 1+ 2=2In2+2 )E a one-loop sum integral and a two-loop sum integral. How-
24" \4xT (=1 ever, these sum integrals all vanish, either because the one-
loop sum integral is7,=0 or.7,=0, or because the two-
+0(€?)|, (A16)  loop sum integral vanishes:
2 ) ! 0 (A21)
= 1 AT (- i 576761012 =0
7= T2 —— _ 2 pQ PQ(P+Q)
=287 (4WT) 1+ 2In2+2§(_1) e+0(e?) |, Q
(ALD) i ! 0 (A22)
y 1 2e Tro P?Q(P+Q)?
Tr=——z| 7==| |=t+4In2+2y+ - ,
72 (477)2<477T) € An2+2y+0(e)|, (AL8) The remaining three-loop sum integrals have the forms
#=% ! (A23)
TN Fhor PPQARTI(P-Q)T(Q-R)*(R-P)*’
V4 —i ! (A24)
T Feor PRARPTT(P-QT(Q-R*(R-P)?’
/- _i L (A25)
T Fegr PIARTI(P-Q)ZT(Q-R*(R-P)

These sum integrals can be evaluated analytically using methods developed by Arnold dridZfidie specific integrals that
are needed are

o= T4( ; )6€E+9—1+8§,(_1)—2g,(_3)+0 ) (A26)
00T 244w \ AT 15 " 4(-1) “4-3) )

o= — T4( . )6E£+1—79—%| DT LI S P G (A27)

P00 T 1o 4m2 ' \4aT) | 80 5 TOU(—1) T ¢(—3) @)

! A \°T1 173 42 (-1 _{'(-3)

S 0'0_96(477)21-4(4171') ;+%—€|n2+8§(_1) _Zg(—3) +O(6)}1 (A28)
A T"'( A )GEE+3—M+7—6ln2+6 A ETY o (A29)
LT T 199 4m? ! \anT) |€ 60 5 TN T3 !

... T4( ; )6El+7—3+1—2 Loadzh 10873 (A30)

2727 0104m)? \AnT) e 22 117 11¢(—1) 11 {(-3) ().
- 29 4< A )651 89 48 90  136{'(-1) 10{'(=3) A3l
2= T T2 | \aaT) €T 207207 20 29 ((—1) 20 ¢(—3) O] (A3D)
e T“( = )663+3—‘E’+§ P G B S Gl (A32)
22T 10gam2 \aaT) |€78 127 10— 2 U-3) )
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1

E + 0(62)

APPENDIX B: INTEGRALS IN THE EFFECTIVE THEORY 1 ( A )26
. (B5)

2m

The effective theory for the scatgT is an Euclidean field 2" 47m
theory in three space dimensions. Loop diagrams involve , o .
integrals over three-momenta. It is convenient to introducen (B3), 1, denotes the derivative df, with respect ton

the notationf , for these integrals. We use dimensional regu-€valuated an=0. _
larization in 3-2e dimensions to regularize both infrared =~ Some of the two-loop integrals reduce to products of one-

and ultraviolet divergences. We define the integration meal®0p integrals. The remaining two-loop integrals have the

sure forms
eyAZ € dS*ZEp J’ 1
= Jn= , B6
fp—( ar | ) o (B1) " Joa(P?+mA)[aZ+ m?"(p—q)? (B5)
If renormalization is accomplished by the minimal subtrac- K = 1 B7
tion of poles ine, theny is the renormalization scale in the " Jpg(pE M) (g*+m)[(p—q)*]" (®7)

MS scheme. Below, we collect all the integrals that are
needed to calculate the contribution to the free energy fronThe specific two-loop integrals that are needed are
the momentum scalgT to orderg®.

4e
The nontrivial one-loop integrals that arise in the calcula- _ 1 (A 11
tion have the form T am?iom) |ge " 7 TOle ), (B8)
l=f; (B2) Jo= ! A4Elo B9
n= | TP 2= Zm)2me | 2m 2t (e) |, (B9)
The specific one-loop integrals that are needed are 1 4€
Bl A\22 16 Kz——(4ﬂ_)2m2(ﬁ> [— §+O(€) . (BlO)
|5=—(—) [—+—E+O(€2) , (B3) _
4m\2m/ |3 9 Some of the three-loop integrals reduce to the product of
A2 3 one-loop integrals or to the product 1 one-loop integral and
m ¢ 1 two-loop integral. The remaining three-loop integrals have
=) 1=1=- 2
Il_4rr(2m> [~1=2e+0(eD], BY the form
M —f ! ! (B11)
" Jpar(p*+m¥) (P + mA)[r2+mP] [(p— )T (a—1)*(r—p)*’
N = J 1 1 (B12)
Y Jpar(p*+m?) (@7 +mA)[(g—r)*+m?[(r—p)*+m*] [r*TT(p—a)?]"’
L f L ! (B13)
W ) pae(PP+mA)[(r—p) P+ mT[g*+ m?P[(q—r)?+m’] r¥(p—a)*
|
These integrals are special cases of more general three-loop A Be e’T'(2 +¢) 3
integrals defined by Broadhurig1]: L, j:m12i21(a) ((4—2)3,2_ By(1,1,1,1i ).
’ v
(B16)

3 . . . .
Broadhurst derived recursion equations for the integgals

Bm(1,,1,1,1j), andBy, with general arguments which can be used to reduce
(B14)  any of the integraldd; ;, N; ;, andL;; to the basic integrals
Moo andNg g, together with simpler one-loop and two-loop
integrals. The specific integrals that are needed in our calcu-

6e eT( 3
12i2j(A) (ev F(3+e)

m (437

Mi‘j:m

IR 3 lation are
N__:m172i72j é € (E+E) B (| i 1113 6e
1,] m (471_)3&2 N 1J1 1Ly m A
= _4+0(¢)|, (B

(B15) Moo= Zm3| 2m 2¢
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M m AGElZO B18 N1 o= ! AGEIZO B26
117 43| 2m 2. T2t0(e)|,  (B1Y L0~ Zm)%m | 2m [In2+0O(e)], (B26)
M m AT 13 o] B19
~227 (47)3\ 2m 4__§+ (o)), (B19 N, .= 1 A 6€£_E|n2+o(6) (B27)
271" 4m)®m\2m/ |3 3 '
1 A 6e 2
lem(ﬁ) 12 TO(e)], (B20)
N 1 ANe 1 1I -
L (A1 el @2 20~ (amPm® | 2m| |22 122109
017 (27)%m| 2m ge T30 (B28)
My (A 1+772+0() (B22) 1 [ A\6e
207 (4m3mi\2m) | 4 24" ) - =] ===
(4) Ny @med\2m| |2 7n2+0(e) . (B29)
N m ( A )65[ ! 8+4In2+0(€)|, (B23)
00743\ om| | 2~ n €|
(4m)”\2m € We also require the sum of the integrdl, _; andL; _,,
m A | B which is simpler to calculate than the individual integrals:
Nl’l:m(ﬁ) [2—4In2+0(e)], (824)
6 M;_;+L Mg ot 214J m A 6E[2+O( )]
m A \°€ 1,-17L1-1= "Moo 1 1:W >m €)1
NZ’Z_W(%> [-3+4In2+0(€e)], (B25 (B30
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