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Varieties of vacua in classical supersymmetric gauge theories
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We give a simple description of the classical moduli space of vacua for supersymmetric gauge theories
or without a superpotential. The key ingredient in our analysis is the observation that the Lagrangia
invariant under the action of the complexified gauge groupGc. From this point of view the usualD-flatness
conditions are an artifact of the Wess-Zumino gauge. By using a gauge that preservesGc invariance we show
that every constant matter field configuration that extremizes the superpotential isGc gauge equivalent~in a
sense that we make precise! to a unique classical vacuum. This result is used to prove that in the absence o
superpotential the classical moduli space is the algebraic variety described by the set of all holomor
gauge-invariant polynomials. When a superpotential is present, we show that the classical moduli space
variety defined by imposing additional relations on the holomorphic polynomials. Many of these points
already contained in the existing literature. The main contribution of the present work is that we give a car
and self-contained treatment of limit points and singularities.

PACS number~s!: 12.60.Jv
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I. INTRODUCTION

Recently, significant progress has been made in und
standing the structure of four-dimensional supersymme
gauge theories. Building on earlier work@1,2# and using ar-
guments based on symmetry, holomorphy, and we
coupling limits, it has been possible to reach remarkable c
clusions about the nonperturbative structure of these theo
@3,4#. Particularly striking results have been achieved
N52 theories using these methods@5#. One of the main
goals of this recent work has been to understand the struc
of the moduli spaces of vacua in supersymmetric gauge th
ries.

In Ref. @1# it was noted that the classical space of vacua
the models studied there could be described in terms of
lomorphic gauge-invariant polynomials in the matter field
Specifically, the classical space of vacua can be parametr
by a set of holomorphic polynomials subject to polynomi
constraints. This description of the moduli space of vacua
the starting point for many of the recent advances in und
standing nonperturbative effects in supersymmetric gau
theories. For example, when the quantum moduli space
fers from the classical one, it can still be described in ter
of the gauge-invariant polynomials, but with constraints th
differ from those in the classical theory@3#. In many inter-
esting cases, the classical and quantum moduli spaces
identical, showing the absence of chiral symmetry break
in strongly coupled gauge theories@3#. When the classical
and quantum spaces are identical, there are often dual
scriptions of the theories@4#; the identity of the moduli
spaces in the dual descriptions constitutes one of the m
pieces of evidence for this duality. To understand all of the
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features of supersymmetric gauge theories, the formulation
of the classical and quantum moduli spaces of vacua in terms
of gauge invariant polynomials is essential.

It is therefore clearly desirable to have a precise under-
standing of why the classical moduli space can be described
in terms of gauge invariant polynomials. However, in the
literature this description is used on a case-by-case basis
with little insight given as to its general applicability. The
purpose of this paper is to give a simple but rigorous proof
that the moduli space of vacua can always be precisely de
scribed in this way. Some of the results we obtain are con-
tained in the existing literature@6–8#. The main contribution
of the present work is that we give a complete and general
proof of the desired result in a unified framework. Also, our
work properly takes into account ‘‘fine points’’ such as sets
of measure zero and singularities. As we will discuss, these
points are physically important because they are often asso
ciated with qualitative features such as enhanced gauge sym
metry.

Our point of departure is the observation that a supersym-
metric gauge theory with gauge groupG is invariant under
the complexified gauge groupGc. From this point of view,
the usualD-flatness conditions can be viewed as aGc gauge
artifact. By using a gauge in whichGc invariance is pre-
served, we show that in the absence of a superpotentialevery
constant value of the matter fields isGc gauge equivalent~in
an extended sense that we make precise! to a solution of the
D-flatness conditions. This gives the result that the space of
classical vacua is

M05F iGc, ~1.1!

whereF is the space of all constant matter field configura-
tions and the quotient denoted byi identifies anyGc orbits
that have common limit points. This gives a manifestly ho-
lomorphic description of the spaceM0 . In fact, we can use
this result to prove~using elementary results of algebraic
geometry! that the space of vacua can be described by the se
of all gauge-invariant holomorphic polynomials. These poly-
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3400 53MARKUS A. LUTY AND WASHINGTON TAYLOR IV
nomials form an algebra generated by a finite number
monomials subject to~finitely many! defining constraints, as
in Ref. @1#. That is,M0 is an algebraic variety.

These results generalize simply to the case where a su
potential is present. In that case every constant field confi
ration that extremizes the superpotential isGc gauge equiva-
lent ~in the extended sense! to a classical vacuum and th
space of classical vacua is given by Eq.~1.1!, whereF is the
space of stationary points of the superpotential. This sp
F is by definition an algebraic variety, which is sufficient
show thatM0 is a variety in this case as well.

This paper is organized as follows. In Sec. II we deri
our principal results on the structure of the space of vacua
Sec. III we give several illustrative examples. Section
contains a discussion of related work and our conclusions
the Appendix, we give a simple proof that the spaceM0 is a
variety.

II. CLASSICAL VACUA

A. Quotient space

The Lagrangian of a supersymmetric gauge theory can
written1

L5E d2ud2ūF†eVF1S 1

4e2E d2u tr~WaWa!

1E d2uW~F!1H.c.D , ~2.1!

whereF are chiral matter fields transforming in some~in
general reducible! representation of the gauge groupG,V is
a vector superfield taking values in the Lie algebra ofG, and
W(F) is a superpotential. This Lagrangian is invariant und
a large group of gauge transformations:

F°gF, eV°g21†eVg21, ~2.2!

whereg5eiL andL is a chiral superfield in the Lie algebr
of G. In particular,L can be a complex scalar, so this in
cludesGc transformations. Conventionally, one fixes Wes
Zumino gauge, which breaksGc invariance leaving only
‘‘ordinary’’ G gauge invariance. We will instead use a gau
in which V takes the form

VA5CA2usmūvmA1 iuuūl̄A2 i ū ūulA1
1

2
uuūūDA ,

~2.3!

whereA is a G adjoint index. This leaves a residualGc

gauge freedom. It is straightforward to derive th
D-flatness conditions in this gauge, which read

]

]CA
~f†eCf!50, ~2.4!

wheref is the scalar component ofF.

1We use the conventions of Wess and Bagger@6#.
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This immediately shows that anyf that satisfies the
D-flatness conditions~2.4! for someC is Gc gauge equiva-
lent to the fieldf̂5eC/2f, which satisfies

05
]

]ĈA

~f̂†eĈf̂ !uĈ505
]

]ĈA

n~eĈ/2f̂ !uĈ50 , ~2.5!

where

n~f![f†f. ~2.6!

Equation~2.5! is just the usualD-flatness condition in Wess-
Zumino gauge. Sincen(f) is G invariant, we see that the
fields that satisfy theseD-flatness conditions are precisely
those for whichn(f) is stationary with respect toGc.2 The
set of points for which this condition is satisfied lie on closed
G orbits ~sinceG is compact! that we will refer to asD
orbits.

We consider now the case where the superpotential van
ishes, and show thateveryconstant field configurationf0 is
Gc gauge equivalent to a solutionf̂ of the Wess-Zumino
gaugeD-flatness condition Eq.~2.5!. To make our results
precise, we need a slightly generalized notion ofGc gauge
equivalence. We say that two constant field configuration
f1 andf2 areG

c equivalent in theextendedsense if there is
a sequence$gn% of elements inG

c such that

lim
n→`

gn•f15f2 . ~2.7!

In order for this to define an equivalence we must also im
pose the same condition with the roles off1 and f2 re-
versed; we must also impose transitivity; i.e.,f1 andf2 are
equivalent if there is af3 that is equivalent to bothf1 and
f2 . We call the set of all fields that are equivalent in this
sense to a fieldf theextended Gc orbit of f. These defini-
tions are physically sensible because any gauge-invaria
function takes the same value on all the field configuration
in an extended orbit, so that the points of such an orbit ar
physically indistinguishable.

With these definitions, the result to be proven can be con
cisely stated: every extendedGc orbit contains aD orbit.
This immediately implies that the space of classical vacua i
given by

M05F iGc, ~2.8!

whereF is the space of all constant matter field configura-
tions, and the extended quotient byGc is defined using the
equivalence defined above. This result is intuitively satisfy-
ing since it is closely analogous to the result for nonsuper
symmetric theories that~in a theory with no potential! every
constant field configuration lies in a gauge equivalence clas
of vacua.

The proof of this assertion is extremely simple. Fix an
arbitraryf0 . Since the functionn(f) is positive semidefi-
nite and is less than or equal ton(f0) only on a compact ball

2Similar arguments have been discussed recently by N. Arkan
Hamed, H. Georgi, and J. March-Russell~private communications!.
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in f space, it must take on a minimum value at some point
the closure of the ordinaryGc orbit that containsf0 . Thus,
there is af̂ such that

f̂5 lim
n→`

gn•f0 , ~2.9!

which minimizesn on the closure of the orbit. Clearly,f̂ lies
in the extendedGc orbit containingf0 , and thusf̂ is in a
D orbit.

This result makes it intuitively clear why the space o
classical vacua can be parameterized by the set of gau
invariant holomorphic polynomials in the fieldsf, as advo-
cated in Ref.@1#. Such polynomials are constant on extende
Gc orbits, and it seems natural that there are ‘‘enough’’ pol
nomials to distinguish any two distinct extended orbits.
the Appendix, we show that this intuition can be made ri
orous using fairly elementary results from algebraic geom
etry. We prove that the spaceM0 has as coordinates a set o
gauge-invariant polynomials subject to finitely many defin
ing relations. In the language of algebraic geometry,M0 is
the algebraic variety defined by the ring of all invariant poly
nomials onF .

The argument above can be extended immediately to
case where there is a superpotential present. In that case
fields must extremize the superpotential

Rj~f![
]W~f!

]f j
50 ~2.10!

as well as satisfying theD-flatness conditions. It is easy to
see that if any point in an extendedGc orbit satisfies Eq.
~2.10! then all other points in that extended orbit also satis
this equation. We can thus simply restrictf to satisfy Eq.
~2.10! and proceed as above. The result is that the space
vacua is given by Eq.~2.8!, whereF is the space of fields
that extremize the superpotential.~See also Ref.@6#.!

It is now straightforward to describe the classical modu
space of vacua in theories with a superpotential as a varie
The results proven in the Appendix show that the modu
space can be parametrized by the gauge-invariant polyno
als on the set of fields that extremize the superpotential. T
means that in addition to the defining relations, there a
extra relations on the polynomials stating that any gaug
invariant combination of theR’s defined in Eq.~2.10! with
the f ’s must vanish. We will give an example of this con
struction in Sec. III.

B. Observations on orbit structure

We now collect some observations about the structure
extended orbits. The main results of this paper do not depe
on these observations, but we include them to clarify t
significance of the extendedGc orbits. We first show that
there is exactly oneD orbit in every extended orbit. This
shows that the classical moduli space can be precisely id
tified with the set of solutions to the Wess-Zumino gaug
D-flat conditions with points in the sameG orbit identified,
and provides a simple connection between our approach
the conventional treatment. We then discuss the relations
between extended orbits and points of enhanced symme
We show that in any extended orbit that contains more th
in
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one ordinaryGc orbit, points in theGc orbit that contains the
D orbit have more gauge symmetry than points in other or-
bits of the same extended orbit.

To show that there is a uniqueD orbit in every extended
orbit, we begin by showing that every stationary pointf̂ of
n(f) on an ordinaryGc orbit O lies in aD orbit which is a
global minimum ofn in O. Along any exponential curve

f~ t !5etC/2f0 , ~2.11!

becausen is positive semidefinite we have3

]2

]t2
n„f~ t !…5n„Cf~ t !…>0. ~2.12!

Equation ~2.12! can vanish for finitet only if Cf(t)50,
which is only possible whenf(t)5f0 for all t. Every ele-
ment ofGc can be written in the form

g5eC•u, ~2.13!

whereC is Hermitian anduPG. Thus, every point inO can
be reached by an exponential curve starting at a point in the
sameD orbit asf0 , andn is monotonically increasing along
every such curve. This proves that theD orbit is a global
minimum ofn in O. In fact, because theD orbit is compact,
it is not hard to see that the set of points inO wheren is less
than or equal to any fixed numberx is a compact set. This
implies that any limit of a sequence inO which does not lie
in O would have a divergent value ofn, which implies that
O is a closed orbit containing all its limit points.

We cannot immediately conclude from this thatf̂ mini-
mizesn on the extended orbitX containingO, since there
are in general directions inX which do not correspond to
Gc transformations.4 We can, however, use the fact that the
action ofGc is algebraic~see Appendix! to show that every
extended orbit contains a uniqueD orbit. We have shown
that every ordinaryGc orbit which contains aD orbit is
closed. The proof of statement~i! in the Appendix shows that
for any two disjoint closed sets which are invariant under
Gc, there exists a gauge invariant polynomial which takes
different values on the two sets. Thus, two distinct closed
orbits cannot lie in a single extended orbit. This clearly im-
plies that each extended orbit contains a uniqueD orbit.

Note that the above proof does not hold when the group
G is not compact. A simple example is an Abelian theory
with relatively irrational charges.5 In this case, the gauge
groupG is not compact, and a single extended orbit contains
multiple D orbits.

We now discuss the connection between extended orbits
and enhanced gauge symmetry. On any ordinaryGc orbit,
the invariant subgroup ofGc is the same~up to conjugation!
at all points on the orbit. However, in an extended orbitX the

3We thank H. Georgi for this observation.
4As an example of the type of difficulty which may arise, we

mention that there are instances where a pointf̂ is the limit of a
sequence of pointsgn•f0 , and yet there is no exponential curve
etCf0 that approachesf̂.
5We thank A. Nelson for suggesting this example.
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3402 53MARKUS A. LUTY AND WASHINGTON TAYLOR IV
Gc orbit containing theD orbit contains points with more
gauge symmetry than the points in other orbits inX. This can
be seen intuitively by noting that if a sequence of points
one ordinaryGc orbit O approaches a point in another orb
Ô then the direction in which the limit is approached corr
sponds to an extra invariance of the limit point. Because
the complications mentioned above it is easier to make t
result precise using algebraic arguments. As noted in the
pendix, every orbit can be written as a finite union and int
section of algebraic sets. This implies that in the situati
above, sinceÔ must be contained in the closure ofO, the
dimension ofÔ must be strictly smaller than that ofO.

Based on this one might suppose that every extended o
corresponds to a vacuum with enhanced gauge symme
However, in theories with no flat directions there is a sing
extendedGc orbit which contains multiple ordinaryGc or-
bits, but there is clearly no extra gauge symmetry. One mi
also conjecture that one can identify points with extra gau
symmetry from the singularity structure of the resulting v
riety, but we will give examples which show that this is n
possible.

III. EXAMPLES

A. Supersymmetric QED

Our first example is supersymmetric QED, a theory w
gauge groupG5U(1), amatter fieldQ with charge 1, and a
matter fieldQ̃ with charge21. We use this simple example
to illustrate the structure of the extendedGc orbits. The clas-
sical moduli space in this case is parametrized by

A[QQ̃ ~3.1!

so the moduli space can be identified with the set of
complex numbersC.

To understand theGc orbit structure, note thatU(1)c is
simply the multiplicative group of nonzero complex num
bers. The action ofGc in this case is therefore

~Q,Q̃!°~aQ,a21Q̃! ~3.2!

with aÞ0. The extended orbit corresponding to a valueA
Þ0 is the set of points

~Q,Q̃!5~q,A/q! ~3.3!

with qÞ0, which all lie on an ordinaryGc orbit. On the
other hand, the extended orbit withA50 contains three or-
dinaryGc orbits:

~Q,Q̃!5~q,0!, ~0,q̃!, or ~0,0! ~3.4!

with q,q̃Þ0. The orbit~0,0! is a limit point of the other two
orbits. Note that the pointA50 is a point of enhanced sym
metry, but the moduli space is completely nonsingular the

The structure of the classical moduli space in this theo
is extremely simple, but it illustrates many of the features
have described above. Generic extendedGc orbits (AÞ0)
contain a single ordinaryGc orbit which contains a single
D orbit. At points of enhanced symmetry (A50), the ex-
tended orbit contains multiple ordinaryGc orbits, of which
only one contains aD orbit. In this case, theGc orbit which
in
it
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contains theD orbit has enhanced gauge symmetry, while
the other orbits do not. In this extended orbit the orbit con-
taining aD orbit is closed and contains all its limit points,
while the remaining orbits contain curves approaching the
D orbit.

B. A U„1…3U„1… model

We now consider a chiral theory with a more interesting
classical moduli space. The gauge group is U~1!3U~1!, and
the matter fields have charges

Q;~2,0!, R;~22,1!, S;~1,21!, T;~21,0!.
~3.5!

The gauge-invariant polynomials are generated by

A5QR2S2, B5QT2, C5QRST, ~3.6!

which satisfy the defining relation

AB5C2. ~3.7!

This simple two-dimensional variety is an example of aqua-
dratic surface. The only singular point on this variety is the
point A5B5C50. @This can be seen by noting that when
AÞ0 the variables (A,C) are good coordinates and when
BÞ0, (B,C) are good coordinates.#

This classical moduli space has a one-parameter family o
nontrivial extended orbits. For everyBÞ0, there is an ex-
tended orbit with coordinatesA5C50 which contains three
ordinaryGc orbits

~Q,R,S,T!5~B/t2,0,s,t !, ~B/t2,r ,0,t !, or ~B/t2,0,0,t !.
~3.8!

wherer ,s,tÞ0. The orbit withR5S50 contains aD orbit
which has enhanced gauge symmetry.~The second U~1! is
unbroken.! Note that the variety is not singular on the vacua
corresponding to these orbits. It is also amusing to note tha
the extended orbit structure is not symmetric under inter
changingA and B, even though the variety is. This again
illustrates that the presence of enhanced gauge symmet
cannot in general be detected from the structure of the var
ety.

C. Supersymmetric QCD with NF5N

Our final example illustrates how one can obtain a simple
description of the moduli space in the presence of a supe
potential. Consider supersymmetric QCD, SU(N) gauge
theory with chiral superfields Qaj ( j51, . . . ,NF ;
a51, . . . ,N) in the fundamental representation and chiral
superfieldsQ̃ak (k51, . . . ,NF) in the antifundamental rep-
resentation. We consider here the special caseNF5N.2.
According to the discussion above~or from Ref. @1#!, the
classical space of vacua can be parametrized by the variabl

M j
k[QajQ̃ak ,

B[
1

N!
ea1•••aNe j 1••• j NQ

a1 j 1
•••QaNjN, ~3.9!
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B̃[
1

N!
ea1•••aNek1•••kNQ̃a1k1

•••Q̃aNkN
,

subject to the constraint

BB̃5det~M !. ~3.10!

We wish to consider the theory in the presence of a supe
tential

W5bB1b̃B̃ ~3.11!

with b,b̃Þ0. ~We do not add a mass term.! According to the
discussion in the main part of the paper, the moduli spac
the presence of the superpotential is given by imposing
additional constraints that all gauge-invariant polynomi
which can be constructed from

Raj[
]W

]Qaj , R̃ak[
]W

]Q̃ak

~3.12!

vanish. We must therefore impose

RajQ
ak50, ~3.13!

R̃a jQ̃ak50, ~3.14!

RajR̃
ak50, ~3.15!

ea1•••aNRa1 j 1
•••Rar j r

Q̃ar11kr11
•••Q̃aNkN

50,

~r51, . . . ,N!, ~3.16!

ea1•••aNR̃
a1k1

•••R̃arkrQar11 j r11
•••QaNjN50,

~r51, . . . ,N!. ~3.17!

Expressed in terms ofM j
k , B, andB̃, Eqs.~3.13! and~3.14!

give

B5B̃50. ~3.18!

The left-hand sides of Eqs.~3.16! and ~3.17! for r.1 have
nonzero baryon number and therefore vanish when expre
in terms of theM ’s andB’s whenB5B̃50. For r51, we
obtain

e j 1••• j NM
j 2
k2
•••M jN

kN
50, ~3.19!

ek1•••kNM j 2
k2
•••M jN

kN
50. ~3.20!

Equation~3.15! gives the constraint

e j 1••• j Nek1•••kNM j 2
k2
•••M jN

kN
50, ~3.21!

which is clearly implied by Eqs.~3.19! and ~3.20! above.
Thus, the classical moduli space is the space ofM ’s subject
to Eqs.~3.19! and~3.20!. To understand the meaning of thes
constraints, note that we can use the U(N)3U(N) global
symmetry of the model to diagonalizeM . It is then easy to
see that Eqs.~3.19! and ~3.20! impose the same constrain
rpo-

e in
the
als

ssed

e

t,

namely that the rank ofM be at mostN22. This is therefore
the defining constraint of the classical moduli space.

IV. DISCUSSION

We have shown that in classical supersymmetric gauge
theories, every matter fieldf that extremizes the superpoten-
tial is related by a~limit of a) complex gauge transformation
to a vacuum. Furthermore, we have proven that the space
M0 of classical vacua has a natural structure as an algebraic
variety.

There is a related approach to describing the classical
space of vacua that follows from the observation that the
usual gauge-fixedD-flatness equations precisely describe the
symplectic reduction ofF by G. This point of view was
used by Witten@7# to discussN52 Abelian gauge theories in
two dimensions. The symplectic quotient of a complex space
by G is closely related to the holomorphic quotient byGc,
which is the natural domain of geometric invariant theory.
Our result in II B connecting the space of extended orbits to
the space ofD orbits makes this connection precise for the
cases of physical interest. The approach taken in the present
paper has the virtue that the quotient space structure emerges
naturally and directly as a result of the underlying complexi-
fied gauge symmetry. Furthermore, the explicit description of
the structure of extended orbits allows us to rigorously de-
scribe the quotient space as an algebraic variety without the
application of sophisticated mathematical theorems.

Several aspects of the picture that we have presented in
this paper have also been considered by others. A closely
related argument for the existence of fields minimizing the
D-term potential appears in Ref.@6#. A local holomorphic
description of the space of vacua was given in Ref.@9#. Dur-
ing the completion of the present work, we learned that simi-
lar work has been done independently by N. Arkani-Hamed,
H. Georgi, and J. March-Russell~private communications!.

It should be emphasized that the descriptions ofM0 ,
both as an extended quotient space and as an algebraic vari-
ety, give the precise structure of the space of vacua including
isolated special points and singularities. This is important,
since such ‘‘fine points’’ often have physical significance.
For example, we have shown that there is a close connection
between vacua with enhanced gauge symmetry and orbits of
the complexified gauge group which do not contain all their
limit points. At such vacua, the moduli space is often singu-
lar. These singularities continue to play an important role in
the quantum theory, where they may change structure or dis-
appear by being blown up@3#. It seems natural to pursue a
further understanding of the classical and quantum moduli
spaces of vacua using this geometrical point of view.

ACKNOWLEDGMENTS

We thank H. Georgi for sharing closely related work with
us, and for clarifying a useful point in our presentation.
Thanks to M. Artin and D. Vogan for helping us to navigate
the periphery of geometric invariant theory. We also thank
M. Bershadsky, J. March-Russell, S. Mathur, H. Murayama,
A. Nelson, L. Randall, V. Sadov, and I. Singer for helpful
conversations. This work was supported in part by funds
provided by the U.S. Department of Energy under coopera-



t

3404 53MARKUS A. LUTY AND WASHINGTON TAYLOR IV
tive agreements DE-FC02-94ER40818 and DE-AC0
76ER03069, and by the divisions of Applied Mathematics
the U.S. Department of Energy under Contracts No. D
FG02-88ER25065 and No. DE-FG02-88ER25066, and
National Science Foundation Grant No. PHY89-04035.

APPENDIX: PROOF THAT M0 IS A VARIETY

In this Appendix we give a proof that for any gauge grou
G and matter fieldsf in any representation ofG the classical
moduli spaceF iGc can be parametrized by a finite set o
gauge-invariant polynomialsPa(f) subject to a finite num-
ber of relations. Specifically, we show thatF iGc is the natu-
ral algebraic variety associated with the ring ofall invariant
polynomials inf. The proof is valid when there is a supe
potential present, in which case the spaceF is the set of
values for the fieldsf at which the superpotential is station
ary. The presence of a superpotential simply imposes a
tional relations on the polynomialsPa , as described in Sec
II A. In fact, the result holds for any theory whereF can be
described as a variety in terms of a set of fields transform
linearly underG and satisfying a set of algebraic equation

The proof we give here is essentially a distillation of r
sults contained in a related proof in Ref.@8#. Our goal in
presenting this proof here is to make this result accessibl
the physics community by giving a self-contained derivati
using fairly elementary methods. We will use the language
algebraic geometry but we will only use a few basic defin
tions and results from this subject. We begin by reviewi
those concepts and results that we will use, all of which c
be found on the first few pages of any standard textbo
~such as Hartshorne@10#!.

The setA of points (x1 , . . .xn) in the complex vector
space Cn satisfying a system of polynomial equation
f a(x1 , . . . ,xn)50 is called analgebraic set. The algebraic
sets define a special topology onCn called theZariski topol-
ogy. In the Zariski topology the closed sets are the algebr
sets. Open sets are those sets whose complement is clo
All of the usual statements of topology hold in the Zaris
topology; e.g., the intersection of a finite number of clos
sets is closed, etc. We will distinguish sets closed in t
Zariski topology from sets closed in the usual topology
using the termsZ-closed and closed, respectively. It is ea
to see that everyZ-closed set is closed and thus eve
Z-open set is open. Aconstructableset is a set which can be
constructed fromZ-closed andZ-open sets with a finite num-
ber of operations such as unions or intersections. Const
table sets have the nice property that every point in th
Z- closure is also in their closure.@This can be shown, for
example, by first proving the assertion for an algebraic cu
~one-dimensional variety! and then proceeding by induction
reducing the dimension of the initial variety by one by im
posing the constraint that an additional equation vanishe#

Associated with every algebraic setA there is a ring of
polynomialsI (A) that consists of all polynomials in the vari
ablesxi that vanish at all points ofA. I (A) is an ideal ~in-
variant subring! of the ringC@x1 , . . . ,xn# of all polynomials
in thexi ’s. TheHilbert basis theoremstates thatI (A) always
has a finite number of generators, so thatA can always be
described as the set of points on which a finite set of po
nomials vanishes.
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An algebraic setA is irreduciblewhen it cannot be writ-
ten as a unionA5BøC of two algebraic sets that are proper
subsets ofA. An irreducible algebraic set is anaffine variety.
A Z-open subset~with respect to the induced topology! of an
affine variety is aquasiaffine variety. We refer to both as
simply varieties. Every varietyA has associated with it a ring
R(A) of rational functions without poles onA. It can be
shown that for an affine varietyA, R(A) is just
C@x1 , . . . ,xn#/I (A), the polynomials in thexi ’s subject to
the relations defined byI (A). The essential point of alge-
braic geometry is that all the geometric information about the
variety A is encoded in the algebraic structure of the ring
R(A). Thus, in algebraic geometry the fundamental objects
are commutative rings rather than geometric objects.

The simplest example of howR(A) encodes geometric
information aboutA is given by the algebraic description of
points inA. From the above definitions, it is clear that any
Z-closed subsetB in A can be associated with an ideal
I (B).I (A). Thus, I (B) naturally corresponds to an ideal
I (B)/I (A) in R(A). Conversely, every nontrivial idealI of
A ~an ideal that is neither$0% norA) can be associated with
a closed, nonempty algebraic set, thezero set Z(I ) of I .
Using another theorem due to Hilbert~theNullstellensatz!, it
can be shown that the points inA are in 1-1 correspondence
with the idealsI,R(A) that aremaximal in the sense that
there exists no larger idealI 8.I other thanI 85R.

An algebraic map~or morphism! is a map from a variety
A,$(x1 , . . . ,xn)% to another varietyB,$(y1 , . . . ,ym)%
that can be described by writing theyi ’s as rational functions
of the xi ’s with denominators that are nonvanishing every-
where onA. Such a map gives rise to a ring homomorphism
R(B)→R(A). It can be shown that the image of a variety
under an algebraic map is always a constructable set.

This concludes our brief review of concepts from alge-
braic geometry. In terms of this language, the statement tha
we wish to prove is the following.

Theorem. Given a groupGc acting on a varietyA, there is
a 1-1 correspondence betweenAiGc and the set of points in
the affine varietyAG defined by the ringRG of G-invariant
elements inR5R(A).

We are making the technical assumptions~which are al-
ways valid in the relevant physical theories! that A is an
affine variety in a complex vector spaceCn on whichGc acts
linearly, and thatG is the product of a semisimple Lie group
with a torusU(1)k. Thus,Gc is itself a variety~a so-called
algebraic group!, and the action ofGc on A is described by
an algebraic mapt: G3A→A. TheGc orbits inA are the
image undert of G3$p% wherep is a point inA; therefore
each orbit is a constructable set.~In fact, it can be shown that
each orbit is a variety but we will not need this fact.!

Implicit in the statement of the theorem is the result that
AG is an affine variety. This follows from the fact thatRG is
finitely generated, which is a consequence of the Hilbert ba-
sis theorem and the fact~used and proven in the proof below!
that every idealI,RG generates an idealM in R with
MùRG5I .

It will be convenient for us to think ofA as lying in the
complex vector space with coordinatesx1 , . . .xn . We can
then take a set of generators forRG to be some set
P1 , . . .Pl of G-invariant polynomials in thexi ’s. There is a
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natural mapp: A→AG that can be defined by simply evalu
ating the polynomialsPa at a pointxPA. Since the polyno-
mials are invariants, this map is constant on orbits ofGc, so
for any point pPAG the preimagep21(p) is a union of
disjoint orbits. Furthermore, by continuityp must be con-
stant on extendedGc orbits inA, so it induces a well-defined
map fromAiGc to AG.

It should be noted that the varietyAG is a simple example
of a general class of varieties that are the subject of a de
and beautiful area of mathematics called geometric invaria
theory@8#. Fortunately, in the specific case we are interest
in here we can prove the desired result without using a
particularly sophisticated or delicate methods from algebra
geometry.

Proof of theorem. We prove two basic statements, o
which the theorem is a consequence:~i! For p
PAG, p21(p) contains at most a single extendedGc orbit;
~ii ! p is onto.

It will be useful to define a Reynolds operator
E:R→RG , which is a projection onto the subringRG of
invariants. BecauseR is a direct sum of finite dimensional
irreducible representations ofG, such an operator always
exists. Important properties of the Reynolds operator are t
it is linear, and that for any fPRG and gPR,
E( f g)5 fE(g).

To prove~i!, we begin by noting that every extended orb
is Z-closed. This follows from the fact that every orbit is
-
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constructable, which implies that theZ-closure and closure
of each orbit are identical. Now, suppose that there were tw
distinct extended orbitsO andO8 in p21(p). SinceO and
O8 are disjoint, the idealI (O)1I (O8) in R generated by
I (O) and I (O8) must be all ofR. ~To see this, note that the
ideal I (O)1I (O8) cannot be contained in any maximal ideal
of R or the corresponding point would be in bothO and
O8.) Thus, 1PI (O)1I (O8), and we can write, for somef
PI (O) and f 8PI (O8), 15 f1 f 8. But then we have
15E(1)5E( f )1E( f 8). We now claim that E( f )
PI (O)ùRG andE( f 8)PI (O8)ùRG . This follows from the
fact that the idealsI (O) and I (O8) are invariant underGc

~since the extended orbits are invariant! and therefore can be
written as a direct sum of linear spaces on whichGc acts
irreducibly. We have thus shown thatE( f ) is an invariant
function that takes the value 0 onO and 1 onO8. Thus,
p(O)Þp(O8), completing the proof of~i!.

To show thatp is onto, we fix a pointpPAG and show
that there exists a nontrivial idealM in R with zero set
Z(M )5p21(p). We defineM to be the ideal inR generated
by the maximal ideal I (p),RG . M satisfies
Z(M )5p21(p) by construction, but we must prove thatM
is not all ofR, so that it is nontrivial. To do this, note that
every gPM can be written asg5(ei f i , where the$ei%
generate I (p) and f iPR. If g is invariant, we have
g5E(g)5(eiE( f i)PI (p), which shows that
RGùM5I (p). Thus,M is nontrivial, proving~ii !.
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