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Varieties of vacua in classical supersymmetric gauge theories
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We give a simple description of the classical moduli space of vacua for supersymmetric gauge theories with
or without a superpotential. The key ingredient in our analysis is the observation that the Lagrangian is
invariant under the action of the complexified gauge gr@fp From this point of view the usudd-flatness
conditions are an artifact of the Wess-Zumino gauge. By using a gauge that pres€ineariance we show
that every constant matter field configuration that extremizes the superpoter@ialgsuge equivalentin a
sense that we make precige a unique classical vacuum. This result is used to prove that in the absence of a
superpotential the classical moduli space is the algebraic variety described by the set of all holomorphic
gauge-invariant polynomials. When a superpotential is present, we show that the classical moduli space is a
variety defined by imposing additional relations on the holomorphic polynomials. Many of these points are
already contained in the existing literature. The main contribution of the present work is that we give a careful
and self-contained treatment of limit points and singularities.

PACS numbds): 12.60.Jv

[. INTRODUCTION features of supersymmetric gauge theories, the formulation
of the classical and quantum moduli spaces of vacua in terms
Recently, significant progress has been made in undeef gauge invariant polynomials is essential.
standing the structure of four-dimensional supersymmetric It is therefore clearly desirable to have a precise under-
gauge theories. Building on earlier wofk,2] and using ar-  standing of why the classical moduli space can be described
guments based on symmetry, holomorphy, and weakin terms of gauge invariant polynomials. However, in the
coupling limits, it has been possible to reach remarkable conliterature this description is used on a case-by-case basis,
clusions about the nonperturbative structure of these theorigtith little insight given as to its general applicability. The
[3,4]. Particularly striking results have been achieved inpurpose of this paper is to give a simple but rigorous proof
N=2 theories using these methoffs]. One of the main that the moduli space of vacua can always be precisely de-
goals of this recent work has been to understand the structuggribed in this way. Some of the results we obtain are con-
of the moduli spaces of vacua in supersymmetric gauge thedained in the existing literaturl®s—8|. The main contribution
ries. of the present work is that we give a complete and general
In Ref.[1] it was noted that the classical space of vacua ofroof of the desired result in a unified framework. Also, our
the models studied there could be described in terms of hovork properly takes into account “fine points” such as sets
lomorphic gauge-invariant polynomials in the matter fields.of measure zero and singularities. As we will discuss, these
Specifically, the classical space of vacua can be parametrizd®@ints are physically important because they are often asso-
by a set of holomorphic polynomials subject to polynomialciated with qualitative features such as enhanced gauge sym-
constraints. This description of the moduli space of vacua ignetry.
the starting point for many of the recent advances in under- Our point of departure is the observation that a supersym-
standing nonperturbative effects in supersymmetric gauggetric gauge theory with gauge gro@is invariant under
theories. For example, when the quantum moduli space dithe complexified gauge group®. From this point of view,
fers from the classical one, it can still be described in termghe usuaD-flatness conditions can be viewed a§%agauge
of the gauge-invariant polynomials, but with constraints thatartifact. By using a gauge in whic® invariance is pre-
differ from those in the classical theof$]. In many inter- served, we show that in the absence of a superpoteviay
esting cases, the classical and quantum moduli spaces atenstant value of the matter fields@ gauge equivalenin
identical, showing the absence of chiral symmetry breakingn extended sense that we make predise solution of the
in strongly coupled gauge theori¢3]. When the classical D-flatness conditions. This gives the result that the space of
and quantum spaces are identical, there are often dual delassical vacua is
scriptions of the theorie$4]; the identity of the moduli
spaces in the dual descriptions constitutes one of the main Mo=T]
pieces of evidence for this duality. To understand all of these
where.7 is the space of all constant matter field configura-
tions and the quotient denoted byidentifies anyG® orbits
* Present address: Department of Physics, University of Marylandthat have common limit points. This gives a manifestly ho-
College Park, MD 20742. Electronic address: luty@ctp.mit.edu lomorphic description of the spac#. In fact, we can use
TPresent address: Department of Physics, Joseph Henry Laborati¥s result to prove(using elementary results of algebraic
ries, Princeton University, Princeton, NJ 08544. Electronic addresggeometry that the space of vacua can be described by the set
wati@mit.edu of all gauge-invariant holomorphic polynomials. These poly-
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nomials form an algebra generated by a finite number of This immediately shows that any that satisfies the
monomials subject tffinitely many) defining constraints, as D-flatness condition$2.4) for someC is G° gauge equiva-
in Ref.[1]. That is,.#, is an algebraic variety. lent to the field:;S:eC’%, which satisfies

These results generalize simply to the case where a super-
potential is present. In that case every constant field configu- 9 A A 9 A
ration that extremizes the superpotentiaGisgauge equiva- 0=—=—(¢'e%P)|c_o=—=xv(e“?P)|c_0, (2.5
lent (in the extended senp¢o a classical vacuum and the ICa ICh
space of classical vacua is given by Ef1), where7 is the h
space of stationary points of the superpotential. This spac\év ere
7 is by definition an algebraic variety, which is sufficient to w(d)=a'. (2.6)
show that 7, is a variety in this case as well.

This paper is organized as follows. In Sec. Il we derivegqation(2.5) is just the usuaD-flatness condition in Wess-
our principal results on the structure of the space of vacua; i%,mino gauge. Since () is G invariant, we see that the

Sec. lll we give several illustrative examples. Section 'Vfields that satisfy thes®-flatness conditions are precisely

contains a discussion of related work and our conclusions. “Ehose for whichw( ) is stationary with respect t6° 2 The
the Appendix, we give a simple proof that the spaég is @ get of points for which this condition is satisfied lie on closed

variety. G orbits (since G is compact that we will refer to asD
orbits.
Il. CLASSICAL VACUA We consider now the case where the superpotential van-

ishes, and show thaveryconstant field configuratioeb is

) ) G° gauge equivalent to a solutio#p of the Wess-Zumino
The Lagrangian of a supersymmetric gauge theory can bgaugeD-flatness condition Eq(2.5). To make our results

A. Quotient space

written® precise, we need a slightly generalized notionGSf gauge
1 equivalence. We say that two constant field configurations
= f d20d25®TeV®+(—2f d26 tr(W*W,,) ¢1 and ¢, areG* equivalent in theextendedsense if there is
4e a sequenceg,} of elements inG® such that

+J d29W(q>)+H.c.), (2.2 limgn-é1= 5. 2.7

n—o

where ® are chiral matter fields transforming in sortia In order for this to define an equivalence we must also im-
general reduciblerepresentation of the gauge groGpV is  pose the same condition with the roles ¢f and ¢, re-
a vector superfield taking values in the Lie algebr&ofand  versed; we must also impose transitivity; i.é, and ¢, are
W(®) is a superpotential. This Lagrangian is invariant underequivalent if there is ap; that is equivalent to botlb, and

a large group of gauge transformations: ¢,. We call the set of all fields that are equivalent in this
sense to a fields the extended G orbit of ¢. These defini-
dr—>gP, eVsg lleVg?, (2.2)  tions are physically sensible because any gauge-invariant

function takes the same value on all the field configurations
whereg=¢'* and A is a chiral superfield in the Lie algebra in an extended orbit, so that the points of such an orbit are
of G. In particular,A can be a complex scalar, so this in- Physically indistinguishable.
cludesG® transformations. Conventionally, one fixes Wess- With these definitions, the result to be proven can be con-
Zumino gauge, which break&° invariance leaving only cisely stated: every extended® orbit contains aD orbit.
“ordinary” G gauge invariance. We will instead use a gaugeT_his immediately implies that the space of classical vacua is
in which V takes the form given by

_ _ - 1 - //4Q:7HGC, (28)
Va=Car— 60”00MA+i600)\A—i000)\A+EGGG@DA, _ _ _
where.7 is the space of all constant matter field configura-
(2.3 tions, and the extended quotient Bf is defined using the
equivalence defined above. This result is intuitively satisfy-
ing since it is closely analogous to the result for nonsuper-
symmetric theories thdtn a theory with no potentialevery

constant field configuration lies in a gauge equivalence class

where A is a G adjoint index. This leaves a residu@l®
gauge freedom. It is straightforward to derive the
D-flatness conditions in this gauge, which read

of vacua.
L(Wecqﬁ):o (2.4) The proof of this assertion is extremely simple. Fix an
aC ' arbitrary ¢y. Since the functiorv(¢) is positive semidefi-

nite and is less than or equal #§¢.) only on a compact ball
where ¢ is the scalar component df.

2Similar arguments have been discussed recently by N. Arkani-
We use the conventions of Wess and Bad@ar Hamed, H. Georgi, and J. March-Rusdgltivate communications
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in ¢ space, it must take on a minimum value at some point irone ordinaryG® orbit, points in theG°® orbit that contains the
the closure of the ordinarg® orbit that containsp,. Thus, D orbit have more gauge symmetry than points in other or-

there is a¢ such that bits of the same extended orbit.
. To show that there is a uniqu® orbit in every extended
¢=1imgn- o, (2.9 orbit, we begin by showing that every stationary pojnbf
n—e v(¢) on an ordinaryG® orbit O lies in aD orbit which is a

which minimizesr on the closure of the orbit. Clearlglg lies global minimum of» in O. Along any exponential curve

in the extendeds® orbit containing¢,, and thuse is in a d(t)=e'“¢,, (2.11)
D orbit.

This result makes it intuitively clear why the space of becauser is positive semidefinite we have
classical vacua can be parameterized by the set of gauge-
invariant holomorphic polynomials in the fields as advo-
cated in Ref[1]. Such polynomials are constant on extended W”(‘ﬁ(t)): v(C(1))=0. (212
G° orbits, and it seems natural that there are “enough” poly-
nomials to distinguish any two distinct extended orbits. InEquation (2.12 can vanish for finitet only if C¢(t)=0,

the Appe.ndix, We show that this intuition can be made rlgwhmh is 0n|y possib|e Whemﬁ(t): ¢0 for all t. Every ele-
orous using fairly elementary results from algebraic geomment of G¢ can be written in the form

etry. We prove that the spac#, has as coordinates a set of

gauge-invariant polynomials subject to finitely many defin- g=e®-u, (2.13

ing relations. In the language of algebraic geometr, is

the algebraic variety defined by the ring of all invariant poly- whereC is Hermitian andi e G. Thus, every point if© can

nomials on%. be reached by an exponential curve starting at a point in the
The argument above can be extended immediately to theameD orbit as¢,, andv is monotonically increasing along

case where there is a superpotential present. In that case, tBgery such curve. This proves that tBeorbit is a global

2

fields must extremize the superpotential minimum of » in O. In fact, because thB orbit is compact,

it is not hard to see that the set of point<Onwherev is less
R(¢)= IW(9) =0 (2.10 than or equal to any fixed numbgris a compact set. This

d; implies that any limit of a sequence @ which does not lie

L . . in O would have a divergent value of which implies that
as well as satisfying th®-flatness conditions. It is easy t0 5 is 4 closed orbit containing all its limit points.

(5.10 then al sther poits i that extended oot also satisy ¢ CaNOt immediatey conclude from this trtmini-
thi.s equation. We cgn thus simply restrigtto satisfy Eq. mize_SV on the e_xten_ded prbbt( c_:ontainingo, since there
(2.10 and proceed as above. The result is that the space e in general_dlrecnons iX which do not correspond to

' ' ¢ transformation.We can, however, use the fact that the

vacua Is given by Eq(2.8), Whe_re.,/ is the space of fields action of G¢ is algebraic(see Appendixto show that every
that extremize the superpotentiébee also Ref6].) . . . .

. . : g .extended orbit contains a uniqi® orbit. We have shown

It is now straightforward to describe the classical moduli . c . . . o
; ; : . . that every ordinaryG*® orbit which contains & orbit is
space of vacua in theories with a superpotential as a variety, L :
. ) Closed. The proof of statemefij in the Appendix shows that

The results proven in the Appendix show that the moduli s . ) )

) . . for any two disjoint closed sets which are invariant under
space can be parametrized by the gauge-invariant polynomjse there exists a gauge invariant polynomial which takes
als on the set of fields that extremize the superpotential. Thig.. gaug poly L

ifferent values on the two sets. Thus, two distinct closed

means that in addition to the defining relations, there A rbits cannot lie in a single extended orbit. This clearly im-
extra relations on the polynomials stating that any gauge- 9 ' y

. . L ) ) . lies that each extended orbit contains a unifuerbit.
invariant combination of th&’s defined in Eq.(2.10 with P
the ¢'s must vanish. We will give an example of this con- Note that the above proof does not hold when the group

struction in Sec. 1. G_ is not compact. _A simple example _is an Abelian theory
with relatively irrational charges.In this case, the gauge
groupG is not compact, and a single extended orbit contains
multiple D orbits.

We now collect some observations about the structure of We now discuss the connection between extended orbits
extended orbits. The main results of this paper do not depenahd enhanced gauge symmetry. On any ordir@fyorbit,
on these observations, but we include them to clarify thehe invariant subgroup d&° is the saméup to conjugation
significance of the extende@°® orbits. We first show that at all points on the orbit. However, in an extended ox¥bthe
there is exactly ond orbit in every extended orbit. This
shows that the classical moduli space can be precisely iden-—
tified with the set of solutions to the Wess-Zumino gauge We thank H. Georgi for this observation.
D-flat conditions with points in the sant@ orbit identified, “As an example of the type of difficulty which may arise, we
and provides a simple connection between our approach andention that there are instances where a pdiris the limit of a
the conventional treatment. We then discuss the relationshigequence of pointg,- ¢,, and yet there is no exponential curve
between extended orbits and points of enhanced symmetrgiCg, that approaches.
We show that in any extended orbit that contains more than 3we thank A. Nelson for suggesting this example.

B. Observations on orbit structure
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G° orbit containing theD orbit contains points with more contains theD orbit has enhanced gauge symmetry, while

gauge symmetry than the points in other orbitXinThis can  the other orbits do not. In this extended orbit the orbit con-

be seen intuitively by noting that if a sequence of points intaining aD orbit is closed and contains all its limit points,

one ordinaryG°® orbit O approaches a point in another orbit while the remaining orbits contain curves approaching the

O then the direction in which the limit is approached corre-D orbit.

sponds to an extra invariance of the limit point. Because of

the complications mentioned above it is easier to make this B. A U(1)x U(1) model

result precise using algebraic arguments. As noted in the Ap- . . . : .

pendix, every orbit can be written as a finite union and inter- We_ now con_5|der a chiral theory with a more interesting

section of algebraic sets. This implies that in the situationCI"’lss'C"’II quu“ space. The gauge group {$)bfU(1), and

above, since@ must be contained in the closure ©f the the matter fields have charges

dimension ofO must be strictly smaller than that &f. Q~(2,0, R~(-21, S~(1,-1), T~(-1,0.
Based on this one might suppose that every extended orbit (3.5

corresponds to a vacuum with enhanced gauge symmetry.

However, in theories with no flat directions there is a singleThe gauge-invariant polynomials are generated by

extendedG® orbit which contains multiple ordinar¢® or-

bits, but there is clearly no extra gauge symmetry. One might A=QR’S?, B=QT?, C=QRST (3.6)

also conjecture that one can identify points with extra gauge

symmetry from the singularity structure of the resulting va-which satisfy the defining relation

riety, but we will give examples which show that this is not

possible. AB=C2, 3.7
. EXAMPLES This simple two-dimensional variety is an example afua-

_ dratic surface The only singular point on this variety is the

A. Supersymmetric QED point A=B=C=0. [This can be seen by noting that when

Our first example is supersymmetric QED, a theory withA#0 the variables 4,C) are good coordinates and when
gauge groui=U(1), amatter fieldQ with charge 1, anda B#0, (B,C) are good coordinatels. _
matter fieldQ with charge— 1. We use this simple example ~ This classical moduli space has a one-parameter family of

to illustrate the structure of the extend@d orbits. The clas- Nontrivial extended orbits. For eve§+0, there is an ex-
sical moduli space in this case is parametrized by tended orbit with coordinates=C=0 which contains three

ordinary G° orbits

A=QQ (3.2
(Q,R,S,T)=(B/t?,0,s,t), (B/t?r,0;t), or (B/t?,0,01).
so the moduli space can be identified with the set of all (3.9
complex number<£.
To understand th&° orbit structure, note thdt/(1)¢is  wherer,s,t#0. The orbit withR=S=0 contains & orbit
simply the multiplicative group of nonzero complex num- which has enhanced gauge symmetihe second (@) is

bers. The action o€ in this case is therefore unbroken) Note that the variety is not singular on the vacua
. P corresponding to these orbits. It is also amusing to note that
(Q,Q)—(aQ,a” Q) (3.2 the extended orbit structure is not symmetric under inter-

changingA and B, even though the variety is. This again
illustrates that the presence of enhanced gauge symmetry
cannot in general be detected from the structure of the vari-
ety.

with «#0. The extended orbit corresponding to a valie
#0 is the set of points

(Q,Q)=(q,A/q) (3.3

with g# 0, which all lie on an ordinaryG® orbit. On the C. Supersymmetric QCD with Np=N
other hand, the extended orbit wifk=0 contains three or-

. c Our final example illustrates how one can obtain a simple
dinary G* orbits:

description of the moduli space in the presence of a super-
potential. Consider supersymmetric QCD, 3$( gauge

(Q.Q)=(a.0, (0), or (0.0 34 theory with chiral superfields Q3  (j=1, ... Ng:
with g,§#0. The orbit(0,0) is a limit point of the other twvo 2= 1, - - N) in the fundamen'tal representation and chiral
orbits. Note that the poild=0 is a point of enhanced sym- SuperfieldsQq (k=1, ... Ng) in the antifundamental rep-

metry, but the moduli space is completely nonsingular theref€sentation. We consider here the special ddse=N>2.

The structure of the classical moduli space in this theoryAccording to the discussion abover from Ref.[1]), the
is extremely simple, but it illustrates many of the features weclassical space of vacua can be parametrized by the variables
have described above. Generic exten@dorbits (A+#0) | —ale
contain a single ordinarg® orbit which contains a single M= Q% Qax
D orbit. At points of enhanced symmetrnAE0), the ex-
tended orbit contains multiple ordinay® orbits, of which

1 . .
=_ . . ajli...Q2anNIN
only one contains & orbit. In this case, th&°® orbit which BT Can iy iy Q Q™ (39
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-1 e - namely that the rank dfl be at mostN— 2. This is therefore
B= mfal'“a’“f 1NQa ik, Qagkyr the defining constraint of the classical moduli space.
subject to the constraint IV. DISCUSSION
BB= det(M). (3.10 We have shown that in classical supersymmetric gauge

. ) ) theories, every matter field that extremizes the superpoten-
We wish to consider the theory in the presence of a superpQyy| is related by 4limit of a) complex gauge transformation

tential to a vacuum. Furthermore, we have proven that the space
o~ . of classical vacua has a natural structure as an algebraic
W=bB+bB (3.1) variety.

. = . There is a related approach to describing the classical
with b,b# 0. (We do not add a mass teficcording to the .space of vacua that follows from the observation that the

discussion in the main part of thg Paper, the mo_dull SPACE ligja) gauge-fixe®-flatness equations precisely describe the
the presence of the superpotential is given by imposing thgymplectic reduction of7 by G. This point of view was

adc_zlmonal constraints that all gauge-invariant polynomlalsused by Witterj 7] to discuss\=2 Abelian gauge theories in
which can be constructed from

two dimensions. The symplectic quotient of a complex space
by G is closely related to the holomorphic quotient 6y,

a]Ea_VZ], R2k= {9~W (3.12  which is the natural domain of geometric invariant theory.

aQ IQak Our result in 1l B connecting the space of extended orbits to

. ] the space oD orbits makes this connection precise for the
vanish. We must therefore impose cases of physical interest. The approach taken in the present
R, Q=0 (313 paper has the virtue that the quotient space structure emerges

al ' ' naturally and directly as a result of the underlying complexi-

Iiaj(g —o (3.14 fied gauge symmetry. Furthermore, the explicit description of

ak™ = ' the structure of extended orbits allows us to rigorously de-
RajRak= 0, (3.15 scribe the quotient space as an algebraic variety without the

application of sophisticated mathematical theorems.
~ Several aspects of the picture that we have presented in
o1 Qagky =0, this paper have also been considered by others. A closely
related argument for the existence of fields minimizing the
(r=1,...N), (318 D-term potential appears in Reff6]. A local holomorphic
. . _ _ description of the space of vacua was given in Ref. Dur-
€a,.- .aNRalkl- SRk QAr+ur+1. .. QANIN=(, ing the completion of the present work, we learned that simi-
lar work has been done independently by N. Arkani-Hamed,
(r=1,...N). (317 H. Georgi, and J. March-Russéprivate communications
It should be emphasized that the descriptions 4f,,
Expressed in terms chk, B, andé, Egs.(3.13 and(3.14) both as an extended quotient space and as an algebraic vari-
give ety, give the precise structure of the space of vacua including
. isolated special points and singularities. This is important,
B=B=0. (3.18 since such “fine points” often have physical significance.
For example, we have shown that there is a close connection
The left-hand sides of Eq$3.16 and(3.17) for r>1 have between vacua with enhanced gauge symmetry and orbits of
nonzero baryon number and therefore vanish when expresséee complexified gauge group which do not contain all their
in terms of theM’s andB’s whenB=B=0. Forr=1, we limit points. At such vacua, the moduli space is often singu-

arraNR . L. - C
€ Ralll RarlrQar+1k

obtain lar. These singularities continue to play an important role in
_ _ the quantum theory, where they may change structure or dis-
€, iM%, - MIN =0, (3.19  appear by being blown uf8]. It seems natural to pursue a
further understanding of the classical and quantum moduli
ekl"'kNMjZkz. . .MijN:O_ (3.20 spaces of vacua using this geometrical point of view.
Equation(3.15 gives the constraint ACKNOWLEDGMENTS
€. .jNekl' ' 'kNM12k2~ ‘ -MijN=0, (3.2) We thank H. Georgi for sharing closely related work with

us, and for clarifying a useful point in our presentation.
which is clearly implied by Eqs(3.19 and (3.20 above. Thanks to M. Artin and D. Vogan for helping us to navigate
Thus, the classical moduli space is the spac®I&f subject the periphery of geometric invariant theory. We also thank
to Egs.(3.19 and(3.20. To understand the meaning of these M. Bershadsky, J. March-Russell, S. Mathur, H. Murayama,
constraints, note that we can use theNJK U(N) global  A. Nelson, L. Randall, V. Sadov, and I. Singer for helpful
symmetry of the model to diagonaliad. It is then easy to conversations. This work was supported in part by funds
see that Egs(3.19 and (3.20 impose the same constraint, provided by the U.S. Department of Energy under coopera-
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tive agreements DE-FC02-94ER40818 and DE-ACO02- An algebraic sef is irreducible when it cannot be writ-
76ER03069, and by the divisions of Applied Mathematics often as a unio=BU C of two algebraic sets that are proper

the U.S. Department of Energy under Contracts No. DEsubsets of\. An irreducible algebraic set is aifine variety
FG02-88ER25065 and No. DE-FG02-88ER25066, and by 7-open subsetwith respect to the induced topologgf an
National Science Foundation Grant No. PHY89-04035.  affine variety is aquasiaffine varietyWe refer to both as

simply varieties. Every varieth has associated with it a ring
APPENDIX: PROOF THAT ./#4, IS A VARIETY R(A) of rational functions without poles oA. It can be
shown that for an affine varietyA, R(A) is just
C[Xq, ... X,)/1(A), the polynomials in the’s subject to
the relations defined by(A). The essential point of alge-
braic geometry is that all the geometric information about the
variety A is encoded in the algebraic structure of the ring
R(A). Thus, in algebraic geometry the fundamental objects

In this Appendix we give a proof that for any gauge group
G and matter fieldg in any representation @ the classical
moduli space7]||G® can be parametrized by a finite set of
gauge-invariant polynomialB,(¢#) subject to a finite num-
ber of relations. Specifically, we show thai|G° is the natu-
ral algebraic variety associated with the ringadf invariant e . .
polynomials iné. The proof is valid when there is a super- are comr_nutatwe rings rather than geometric objects. _
potential present, in which case the spageis the set of _ 1h€ Simplest example of hoR(A) encodes geometric
values for the fieldsp at which the superpotential is station- nformation aboutA is given by the algebraic description of
ary. The presence of a superpotential simply imposes addROINts in A. From the above definitions, it is clear that any
tional relations on the polynomiaB,, as described in Sec. Z-closed subseB in A can be associated with an ideal
Il A. In fact, the result holds for any theory wheré can be  |(B)D1(A). Thus, 1(B) naturally corresponds to an ideal
described as a variety in terms of a set of fields transformind(B)/I (A) in R(A). Conversely, every nontrivial ideal of
linearly underG and satisfying a set of algebraic equations.A (an ideal that is neithef0} nor A) can be associated with
The proof we give here is essentially a distillation of re-a closed, nonempty algebraic set, thero set ZI) of I.
sults contained in a related proof in RE8]. Our goal in  Using another theorem due to Hilbéthe Nullstellensaty, it
presenting this proof here is to make this result accessible t6an be shown that the points Anare in 1-1 correspondence
the physics community by giving a self-contained derivationwith the idealsl CR(A) that aremaximalin the sense that
using fairly elementary methods. We will use the language othere exists no larger ideal D1 other thanl’=R.
algebraic geometry but we will only use a few basic defini- An algebraic map(or morphism is a map from a variety
tions and results from this subject. We begin by reviewingAC{(X1, ... X,)} to another varietyBC{(yy, ... Ym)}
those concepts and results that we will use, all of which carihat can be described by writing tlygs as rational functions
be found on the first few pages of any standard textboolkf the x;’s with denominators that are nonvanishing every-
(such as Hartshornd Q). where onA. Such a map gives rise to a ring homomorphism
The setA of points (X, ...X,) in the complex vector R(B)—R(A). It can be shown that the image of a variety
space C" satisfying a system of polynomial equations under an algebraic map is always a constructable set.
f (X1, ... X, =0 is called analgebraic set The algebraic This concludes our brief review of concepts from alge-
sets define a special topology @ called theZariski topol- ~ braic geometry. In terms of this language, the statement that
ogy. In the Zariski topology the closed sets are the algebraitve wish to prove is the following.
sets. Open sets are those sets whose complement is closed.TheoremGiven a groups® acting on a variety, there is
All of the usual statements of topology hold in the Zariskia 1-1 correspondence betwe&jiG® and the set of points in
topology; e.g., the intersection of a finite number of closedthe affine varietyA® defined by the ringRg of G-invariant
sets is closed, etc. We will distinguish sets closed in theelements irR=R(A).
Zariski topology from sets closed in the usual topology by We are making the technical assumptigadich are al-
using the termg-closed and closed, respectively. It is easyways valid in the relevant physical theofiethat A is an
to see that everyZ-closed set is closed and thus every affine variety in a complex vector spa€8 on whichG* acts
Z-open set is open. Bonstructableset is a set which can be linearly, and thaG is the product of a semisimple Lie group
constructed fronZ-closed andZ-open sets with a finite num- with a torusU(1)X. Thus,G¢ is itself a variety(a so-called
ber of operations such as unions or intersections. Constru@lgebraic group, and the action 06° on A is described by
table sets have the nice property that every point in theian algebraic map: GXA—A. The G® orbits in A are the
Z- closure is also in their closurgThis can be shown, for image under of GX{p} wherep is a point inA; therefore
example, by first proving the assertion for an algebraic curveeach orbit is a constructable séh fact, it can be shown that
(one-dimensional variejyand then proceeding by induction, each orbit is a variety but we will not need this fact.
reducing the dimension of the initial variety by one by im-  Implicit in the statement of the theorem is the result that
posing the constraint that an additional equation vanighes. A® is an affine variety. This follows from the fact thag is
Associated with every algebraic satthere is a ring of finitely generated, which is a consequence of the Hilbert ba-
polynomialsl (A) that consists of all polynomials in the vari- sis theorem and the fa@ised and proven in the proof belpw
ablesx; that vanish at all points of. I(A) is anideal (in-  that every ideall CRg generates an ideall in R with
variant subringof the ringC[ x4, ... x,] of all polynomials MNRg=1I.
in thex;’s. TheHilbert basis theorenstates that(A) always It will be convenient for us to think oA as lying in the
has a finite number of generators, so thatan always be complex vector space with coordinates, . ..x,. We can
described as the set of points on which a finite set of polythen take a set of generators fétg to be some set
nomials vanishes. P4, ...P, of G-invariant polynomials in the;’s. There is a
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natural mapm: A— A€ that can be defined by simply evalu- constructable, which implies that ticlosure and closure
ating the polynomial®, at a pointxe A. Since the polyno- of each orbit are identical. Now, suppose that there were two
mials are invariants, this map is constant on orbit€6f so  distinct extended orbit® andO’ in 7~ *(p). SinceO and
for any pointpe A® the preimager %(p) is a union of O’ are disjoint, the ideal (O)+I1(O’) in R generated by
disjoint orbits. Furthermore, by continuity must be con- 1(O) andl(O’) must be all ofR. (To see this, note that the
stant on extende@° orbits inA, so it induces a well-defined ideall (O)+1(0O") cannot be contained in any maximal ideal
map fromA||G® to A®. of R or the corresponding point would be in both and
It should be noted that the varie®f is a simple example O'.) Thus, 1e1(O)+1(0Q"), and we can write, for somg
of a general class of varieties that are the subject of a deep1(O) and f'el(0’), 1=f+f’. But then we have
and beautiful area of mathematics called geometric invariant=E(1)=E(f)+E(f’). We now claim that E(f)
theory[8]. Fortunately, in the specific case we are interestede | (O)NRg andE(f') e (O’)NRg . This follows from the
in here we can prove the desired result without using anyact that the ideal$(O) and1(O’) are invariant undeG®
particularly sophisticated or delicate methods from algebraiésince the extended orbits are invarjead therefore can be
geometry. written as a direct sum of linear spaces on wh@&h acts
Proof of theorem We prove two basic statements, of irreducibly. We have thus shown th&{(f) is an invariant
which the theorem is a consequencéi) For p function that takes the value 0 db and 1 onQO’. Thus,
e AC, 7~ %(p) contains at most a single extend@d orbit;  7(0)+ 7(O'), completing the proof ofi).
(i) 7 is onto. To show thatz is onto, we fix a poinp e A® and show
It will be useful to define aReynolds operator that there exists a nontrivial idedll in R with zero set
E:R—Rg, which is a projection onto the subringg of  Z(M)=="1(p). We defineM to be the ideal irR generated
invariants. Becaus® is a direct sum of finite dimensional by the maximal ideal I(p)CRg. M satisfies
irreducible representations @, such an operator always Z(M)="1(p) by construction, but we must prove theit
exists. Important properties of the Reynolds operator are thas not all of R, so that it is nontrivial. To do this, note that
it is linear, and that for anyfeRg and geR, everyge M can be written agg=Xe¢;f;, where the{e;}
E(fg)=fE(Q). generatel(p) and f;eR. If g is invariant, we have
To prove(i), we begin by noting that every extended orbit g=E(g)=2¢,E(f;) eI (p), which shows that
is Z-closed. This follows from the fact that every orbit is RgNM=I1(p). Thus,M is nontrivial, proving(ii).
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