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Sphaleron transitions in the minimal standard model
and the upper bound for the Higgs boson mass
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We calculate the dissipation of the baryon number after the electroweak phase transition due to
thermal Buctuations above the sphaleron barrier. We consider not only the classical Boltzmann fac-
tor but also fermionic and bosonic one-loop contributions. We find that both bosonic and especially
fermionic Huctuations can considerably suppress the transition rate. Assuming the Langer-AfHeck
formalism for this rate, the condition that an initial baryon asymmetry must not be washed out by
sphaleron transitions leads, in the minimal standard model (sin eiv = 0), to an upper bound for the
Higgs boson mass in the range 60 to 75 GeV.

PACS number(s): 12.15.Ji, 11.15.Kc, 11.30.Fs, 14.80.Bn

I. INTRODUCTION

The question of the origin of the baryon asymmetry of
the Universe (BAU) has recently gained much interest.
Many different models of how the BAU was created are
being discussed in the literature (for reviews see, e.g. ,

[1]), some of them considering BAU generation at the
grand unified theory (GUT) stage of the Universe, oth-
ers favoring the generation during the electroweak phase
transition.

Whatever the mechanism was which led to the BAU
at early times, the resulting asymmetry might have been
eliminated by baryon number violating processes in the
electroweak theory after the phase transition. Such pro-
cesses are possible due to the anomaly of baryon and lep-
ton currents [2] and the nontrivial topological structure
of the Yang-Mills theory. This feature was discovered
in 1976 by Faddeev [3] and Jackiw and Rebbi [4], who
found that the potential energy is periodic in a certain
functional of the 6elds, the Chem-Simons number Ncs.
Topolagically distinct vacua of the theory are enumerated
by integer Ncs. In the electroweak theory those vacua
are separated by an energy barrier whose height is of the
order of m~/n where mii is the mass of the W boson
and n = g /(4n) is the SU(2) gauge coupling constant.

Transitions from one vacuum to a topologically dis-
tinct one over this barrier change the baryon and lepton
number by one unit per fermion generation due to the
anomaly of the corresponding currents. If we assume in
accordance with the standard model that B —I. (baryon
minus lepton number) is conserved and that there is no
primordial excess of say, antileptons, then these transi-
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tions can cause the BAU erasure as mentioned above.
Hence it is necessary to know the transition rate of such
processes. While the baryon number of the Universe to-
day (Bo) is about 10 to 10 o (relative to the num-
ber of relict photons), in models generating the BAU
at the electroweak phase transition the number of pro-
duced baryons (BT ) per photon is of order 10 [5,6].
(The precise value is not important for our calculation,
see below. ) Thus the ratio Bo/BT which describes the
dissipation of the BAU should not be significantly lower
than about 10; otherwise, th~ initial baryon excess is
not large enough to explain the present day BAU.

In principle to obtain the value of this ratio one has
to integrate the rate of the baryon number violating pro-
cesses over the temperature from T = T to T = 0. In
practice, however, the rate is very strongly suppressed
at ordinary temperatures [2] so that only a short range
below T contributes to the erasure of the BAU. While
at low T the rate is dominated by tunneling processes,
at higher temperatures the energy barrier can be over-
come thanks to thermal fluctuations [7,8,5]. This ther-
mal transition rate can be evaluated by the semiclassical
formalism of I anger [9] and AfHeck [10].

A key role in this calculation is played by the static
classical field configuration which corresponds to the
top of the energy barrier, having Chem-Simons num-
ber Nt„-s —— 2. This configuration was first found by
Dashen, Hasslacher, and Neveu [11] and rediscovered in
the context of electroweak theory by Klinkhamer and
Manton; it is called the sphaleron [12]. Its energy E,~ „
enters the transition rate p(T) = A(T)e ' -I via
the classical Boltzmann factor and is usually the dom-
inant contribution to p; i.e. , in most cases

~

ln A(T)
~

E,i „/T. The prefactor A(T) contains contributions
coming from fermion and boson quantum fluctuations
about the sphaleron. In [8] the rate was calculated con-
sidering the classical and zero-mode contributions, while
the determinant of nonzero boson fluctuation modes and
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the fermion determinant were set to unity. The result for
p was so large that any initial baryon excess would have
been washed out by sphaleron transitions after the phase
transition. Therefore it is of interest whether quantum
loop corrections could help to preserve the baryon asym-
metry.

Several investigations which consider loop corrections
have already been made. Bockharev and Shaposhnikov
[5,6] included the boson fluctuations through an effec-
tive potential of the Higgs field. They obtained that
the transition rate is sufBciently suppressed if the Higgs
boson mass is below an upper limit of 45 to 55 GeV.
A direct computation of the bosonic determinant over
nonzero modes was made in [13] by using an approxima-
tion technique [14], exact calculations were performed in
[15,16].

All these calculations were based on the high tempera-
ture limit in which the four-dimensional Quctuation ma-
trix can be replaced by the three-dimensional one and
fermions decouple completely. Although parametrically
this limit is reasonable it need not necessarily be justi-
Ged numerically. In this paper we go beyond the high
temperature approximation which corresponds to taking
into account the fermion determinant (suppressed in the
formal high temperature limit) and to calculating the
full four-dimensional bosonic determinant. We general-
ize the preceding calculations to arbitrary temperatures.
First, we include fermion loops which previously have
been altogether neglected, second, we evaluate the Quc-
tuation determinants for Gnite temperature considering
the full sum over Matsubara &equencies. Both contribu-
tions seem to be quite essential numerically.

The fermion determinant has been considered in de-
tail in our previous publication [17], the bosonic one is
the aim of this work (see also [18]). We find that the
result is significantly influenced by terms which vanish in
the formal high T limit, especially by the contribution
of the fermion Quctuations. Actually, the polarization
of the Dirac sea of fermions in the classical sphaleron
background field adds up to about 30%%uo to the sphaleron
energy. Therefore, the fermion determinant which was
put to unity in [5,8,13,15,16] leads to a strong additional
suppression of the transition rate.

Let us remark that in an Abelian (1+1)-dimensional
model the transition rate can be calculated analytically.
This has been done in [19] for the boson and in [20] for
the fermion loop correction. In 3+1 dimensions, however,
one has to resort to nurg. erical methods.

For the evaluation of the boson determinant we use the
same method as for the fermion determinant in [17]. It is
based on the computation of the complete (discretized)
spectrum of the Quctuation operators. All the relevant
quantities can subsequently be calculated for any tem-
perature T by suitable summations over the eigenener-
gies. Including the loop corrections into the formula for
the transition rate, we finally obtain the ratio Bo/B~
which is a measure for the erasure of the BAU. We find
that both bosonic and fermionic fluctuations suppress the
rate considerably, especially for a low mass of the Higgs
boson and a large top quark mass. For a top quark mass
in the range mq ——150 to 200 GeV, in accordance to

recent experimental results [21], the condition that the
BAU must not be washed out by sphaleron transitions
leads within the framework of our one-loop calculation
and the Langer-AfIIeck formalism to an upper limit for
m~ in the range between about 60 and 75 GeV.

Another goal of this work is the recalculation of the
boson Quctuation determinant in the high T limit since
the results of the two existing calculations [15,16], based
on di8'erent analytical and numerical techniques, deviate
from each other. Although they show the same tendency
for low Higgs boson masses, no satisfactory quantitative
agreement was found. Our numerical method is based
on the diagonalization of the Quctuation operator as de-
scribed above; it difFers significantly from those used in
[15,16] so that our study can be considered as indepen-
dent. We find that our results for the boson determinant
in the high T limit agree with the results of [16] up to
about 10%%uo while there is a larger deviation from the ones
of [15].

The paper is organized as follows: In Sec. II we intro-
duce into the notations and conventions of the model, in
Sec. III we apply the Langer-Aleck formalism to the
baryon number violation processes. The renormaliza-
tion is discussed in Sec. IV, followed by the treatment
of the temperature dependent parts of the Quctuations.
The evaluation of the baryon erasure Bo/Bz is done
in Sec. VI. Numerical results and checks for the com-
putation of the Quctuation determinants are presented
in Sec. VII. In Sec. VIII we proceed to the evaluation
of the sphaleron transition rate and deduce the upper
bound for the Higgs boson mass. We also investigate
the applicability of the framework of our calculation. Fi-
nally we summarize the results and draw our conclusions
in Sec. IX. Technical details about the computation of
the discretized spectrum and the spectral densities are
treated in the appendices.

II. THE MODEL AND PARAMETERS

We consider the minimal version of the standard elec-
troweak theory with one Higgs doublet which is Yukawa
coupled to left-handed fermion doublets and to right-
handed singlets; in the following we write only one dou-
blet and one pair of singlets for brevity.

We shall work in the limit of the vanishing Weinberg
angle; i.e. , the theory is reduced to the pure SU(2) case
[without the U(1)]. This idealization does not seem to
be significant [22]. The Lagrangian is thus

+OL iY Dpi/'L + MR iY ~pWR QLMQR ORM O'L

(2.1)

with the covariant derivative D„= 0„—iA~, A~

2 A„w, and the field strength E„„= 2 E
i(D~, D„],F „=B„A„—O„A +e ~'AsA' Mis a 2 .x 2
matrix built of the Higgs field components 4' = (@, ) and
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the Yukawa couplings 6„,hg.

( ~„co* ~,e+ )=
~ -~.C+* h"eo ~)

(2.2)

for the gauge boson, the fermions, and the Higgs boson.
We prefer to work in terms of dimensionless rescaled

quantities

@I. means the SU(2) fermion doublet 2g

( @u
01. = —,(1 —vs)@ =

I L)
and with gR we denote the pair of the singlets

(2.3)
using the following representation of the Dirac matrices

(0 1&, I' 0 ~;l, (-1 0)
r0 I

&'=
I 0

'Y =
I 0 1

(2.7)
@~ = —,'(1+~ )0 =

I R) (2 4)

gv h~ gvm~ ——,m„,g —— ', and m~ ——Av2' (2.5)

The masses generated by the nonvanishing vacuum ex-
pectation value (0~4~0) = ~(oi) are

4'I. ~mw
I I, O'R~mws)2 f gl, l s)2 & o )

R) (2 8)

In this representation the Lagrangian (2.1) is

the fermion Dirac spinors can be reduced to two compo-
nents:

~ ™zz 2[ 4I";-—I" —" + 2 (D~~')'(D" ~') —s'24(@'4' —4)']

+zgl (Do —~.D;)gl. + zvpR(Bo + ~;B,)up~ —QI MQR —Q&M QL, (2.9)

with the mass matrix

( m„eo* m, e+ )
+4 and v~

2m~ ( —m~@ * md@ ) mar

(2.1o)

,." "(&„8,&:+ —,"...a:a',x:),16'2

t9pK" = e" ~ F F1
64vr2 P ll PcT

(3.4)

(3.5)

III. THE BARYON NUMBER VIOLATION RATE

64~2 (3.1)

Here %~ = 3 is the number of fermion generations. We
dropped the contribution of the U(1) gauge field to the
anomaly since we work in the approximation of vanishing
Weinberg angle sin 0~ ——0.

Integrating this anomaly equation one finds that in any
process the change of the baryon and lepton numbers is
related to the change of the Chem-Simons number by

As it is well known [2] the baryon and lepton num-
bers B and L are not conserved in the standard model of
electroweak interactions due to the anomaly of the cor-
responding currents j& and j&.'

~

ImZ, pi, i

7l Zp
(3.6)

The semiclassical description of the processes with
fermion and lepton number violation is based on the exis-
tence of an infinite number of classical vacuum configura-
tions labeled by integer values of N~s. These vacua are
separated by potential barriers which can be overcome
either by quantum tunneling or by real processes in the
Minkowskian time due to thermal Huctuations. We shall
be interested in temperatures at which the real-time tran-
sitions dominate. The rate of the thermal transitions at
temperature T between adjacent vacua is roughly given
by the Boltzmann factor exp( —E,i „/T), where E,i „is
the energy of the sphaleron, which is the Geld configura-
tion at the top of the barrier between the two vacua. The
transition rate I' with the preexponential factor is given
by the Langer-Afneck formula [9,10]

AB = AL = %0ANes

where the Chem-Simons number Ncs is defined by

~vs= d rKo r

(3.2) Here Zp is the partition function computed in the semi-
classical approximation around the vacuum, and Z,ph ~

is the partition function obtained by semiclassical expan-
sion about the sphaleron solution. Since the sphaleron
solution is a saddlelike point of the potential energy
functional, the quadratic form of fluctuations about the
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which leads to the classical equations

(D,F;~) —4[4tr (D~C') —(D~4)tr C] = 0,

[D2 —sv~(C'tC' —4)]C' = 0 .
(3.8)

The sphaleron solution is assumed to have the form
(hedgehog)

A, (r) = e~;, n,.
1 —A(r) B(r)

b'~; —n~n,r r
&(r)

+n~n;

4(r) = 2[H(r) + iG(r)n. r] I

(0)
&')

(3 9)

sphaleron has a negative mode u & 0 so that the for-
mal semiclassical expansion about the nonstable static
solution gives a complex contribution to the partition
function Z,~h ~.

In the Weinberg-Salam model the sphaleron solution in
the temporal gauge Ao ——0 can be found as a stationary
point of the energy functional

Here r = rn, v are Pauli matrices, and the profile func-
tions A, B,C, G, H can be found numerically by solving
the classical equations.

The spherical symmetry of this static solution is pre-
served under time-independent gauge transformations of
the form

U(r) = exp[iP(r)n T] (3.10)

with an arbitrary function P(r). One of the five pro-
file functions could be completely eliminated by using
this gauge freedom, but since in this case the remaining
functions are not necessarily regular at the origin and at
infinity, which is required by our numerics, we use all five
functions.

It should be mentioned that the expression for the
Chem-Simons number given in Eq. (3.3) is not gauge in-
variant, so it is only well defined if we require the fields to
be continuous at infinity. In this case N~s is determined
up to an integer number which is the winding number of
a possible gauge transformation. The final results should
be independent of the choice of the gauge. Since we did
not exploit the gauge freedom to eliminate one of the five
profile functions, we can verify this gauge invariance nu-
merically. This provides a powerful nontrivial check of
our performance.

We can rewrite the general Langer-Aleck formula
equation (3.6) in the form

17a17p17@ Dg exp( —S[A+ ga, C + gp, Q, @],"q„)
mph' 4)

Va17p17$t17$ exp( —S[A + ga, 4 + gy, g, @],„)
(3.11)

Here the Euclidean action

Pmg
S[A, 4, @t,g] = — dt d r 4(P„) + 2(D„4)t(D„C)

0

(3.12)

is expanded to second order in fluctuations around
the sphaleron configuration A, 4 in the numerator and
around the vacuum configuration A~ ~, 4~ ~ in the de-
nominator. P = 1/T is the inverse of the temperature
T.

In zeroth order (no Quctuations) S reduces to P times
the classical energy (3.7) of the sphaleron or the vac-
uum configuration, hence the transition rate I' contains
the Boltzmann factor exp[—P(E,i „—E,i „)]mentioned

above, where we have E,i „——E,i „[A~ ~, 4~ l] = 0.
In fact, formula (3.11) should be modified to take into

]

account the gauge fixing, renormalization, and special
treatment of zero modes. Let us start with the gauge
fixing. Following [15] we shall work in the background
Bg gauge defined by adding the term

(3.13)

to the quadratic form for the fluctuations a, p. D is the
covariant derivative with the background field A. In this
gauge the Faddeev-Popov determinant is

Kpp ——~det( —Bo + iCpp)~ with Kpp = D, + -'4tC . — (3.14)

The quadratic form of the action expanded about the sphaleron solution in this gauge is
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Pmg 2

a~(—c)0 —D; + 4@t4') a„+2e 'I","a; .a —ia; [(D;4)t& p —at~a(D, @)]+ ~ (4t~ + &t@)
0

—Is(4 ~ p —pt~ 4) + pt
I

80 ——D; + (4? 4 —4)
I p

2(&'&')
I (3.i5)

where M is the mass matrix (2.10) with the background
Higgs Beld 4. The integration over ao yields the inverse
square root of the Faddeev-Popov determinant, 1/rpp
The spherical symmetry of the sphaleron solution leads
to certain symmetries of the quadratic form of the action.
In order to make these symmetries explicit in the Higgs
sector, we prefer to work with the complex Higgs doublets
in terms of four real components. Any complex doublet
( can be represented in the form

with ~„+ = (+i2-, 1)
f g, +i(, '), (0)
& 4 —'2) "&')

ab ~a

&~- = —(DI'. )~- —
4 (1 —4)4'~4'-

+-4'4-((1+ -', 4)~-o- —24)

W, = rl„(D;4')

io,D;'arm =
I I

2

2 Vy'4~1
—Z(T~(9r' )

g. . =b [
—(D ) +-b ~4 4 ]+2~ 'F;;,

(3.21)

(~= i, . . . , 4); (3.i6)

where („ is a real four vector. One has

In order to preserve the spherical symmetry of the
fermionic Hamiltonian 'Rfer we have taken equal masses
for up and down fermions:

(3.17)

m+
m =my, vF =

mph
(3.22)

i((t~ ( —(t~ () = 2I)„„(„(
where g„ is the 't Hooft symbol

1'g: —tr[7" (r 'r —7 'r )]4i

a a a
I&4

——'g4& = vayu gij &aij

(3.is)

In this four component language the covariant derivative
DpE, = (Dg()~7+(0I) can be written as

(Dp()„= (Dp)„„(„with (Dg)„= b„c)p —2Ii„„Aq .

(3.19)

Joining the Buctuations of the gauge and Higgs fields
into a 13 component vector (a, p„) we can rewrite the
quadratic form of the action (3.16) in the form

The physical significance of this approximation will be
discussed later.

Using the quadratic form of the action (3.20) we can
perform the functional integral in the Langer-Afneck for-
mula for the transition rate (3.11) and get [5,8]

2 TI' (0)m~W 8'7t V 3 ~3 KFP Kgos Kfer

(g2p) 3 tr rot (0) K (0)
FP ferm

x exp[ —PE~(;;] . (3.23)

Here E,I",, is the classical energy (3.7) of the sphaleron
solution with bare (unrenormalized) parameters. The
(dimensionful) quantity V is the physical space volume
arising from the integration over the three translational
zero modes of the sphaleron. Moreover the sphaleron has
three rotational zero modes. The effect of all zero modes
is taken into account in Eq. (3.23) through the factor [13]
[8vr2V/(g P) ]At, %, t with the Jacobians

s~'~s =

where

d'* —,'(a~)( —~o + &h-)
I4&)

(3.20)

I/2
d' [(+;a)'+ (DI @)'(Db@)]

I

q6

1 3 2

6' d r (r b( —rr()2 2

x[E;,E,, + (D,e) (D&4)] —ea;, A„5';,
)

(3.24)
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where A is the solution of the equation

( D—, + 4C't4) bAq ——eI,;~I", (3.25)

The determinants Kpp, vb „Kf„ in Eq. (3.23) arise

from the Gaussian integration over Huctuations with pe-
riodic time boundary conditions for bosons and antiperi-
odic boundary conditions for fermions. We can write
them in the following form

rpp = [det( —Bo+ Kpp)] = 2sinh
~

—m~~„2 ~P Fpl
J h (2 (3.26)

Kb~g = [det (—Bo + Kb(&~)]

——det{OO + 'Hr„) =

2 sinh
~

m~—~„~
r

t'P
2 cosh

~

—m~e(2

(3.27)

{3.28)

where w, w, and z are the eigenvalues of Kb „KFp, and 'Rp„, respectively. Our numerics is based on a
calculation of the eigenvalues of discretized versions of these operators; details can be found in Appendix A and in

[17]. The primed product in Eq. (3.27) means that the zero modes are omitted, the negative mode cu, however,
contributes to Kb, .

IV. RENORMALIZATION

Equation (3.23) for the transition rate contains ultraviolet divergences arising from the infinite products in
Eqs. (3.26)—(3.28). These divergences are removed by the renormalization, where it is sufficient to renormalize the
theory at zero temperature. Keeping this in mind we split the right-hand side of Eq. (3.23) into the temperature
dependent finite part and the divergent part corresponding to zero temperature. We write

7r2

, , (~t ~-~) ' exp( —PI%'i:::+ Epp ' + Ep'p '(T) + Eb.=.' + E"..'(T)
47r sin ( 2 m~ cu gs

+E„,='+ E,"., '{T)]), (4.1)

where the ultraviolet divergent T = 0 terms as

EFp —
—,'m~

~ ) ~„PP —) ~„PP'
n n

Ebas = +2m~ ) ~~ ) ~n
)

(4.2)

E...=' = —
—,'mg ) e„f —) [e„'f

The temperature-dependent terms

Ep'p (T) = ——
~ ) ln(1 —e ~ ~ " ) —) ln(1 —e ~ ~ " )

Eb', (T) =+— ) "ln(1 —e 0 w
) ) ln(1 —e ~ w '„) (4.3)

E&,', (T) = —— ) ln(1+ e ~ ~~'"~~ —) ln(1+ e ~ ~~'"~)

are finite and vanish at zero temperature. Here P ' stands for the sum over all nonzero, nonnegative modes.
We shall perform the renormalization of the zero-temperature contribution using the proper-time representation

for the quantities (4.2) with the cutoff parameter A:

E&P (A) =
3&2 Tr(exp[ —tKFpl —exp[ —KFp])z o mw dt (o)

4 vr ~ . t'&' (4 4)
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E&„= (A) = Tr/exp[ —t'Rr„] —exp[ —t(Rr, ) ]) .
4 7r ~—2 ts&2 (4.5)

In the case of Eb =, the proper time representation is modified to suppress the negative mode contribution:

Eb =, (A) = — (Tr(exp[ —tKb~, ]
—exp[ —tKb, )) + (1 —e ' -)}.

4 7r A . t')'

In the limit A ~ oo these integrals diverge since, for t ~ 0,

Tr(exp[ —tK] —exp[ —tK ]) = at + bt ) + (4.7)

where K can stand for Kb „KFp, Kr„——'Rr„. We write the divergent pieces of the right-hand side (RHS) of
Eqs. (4.4)—(4.6) as

mdiv WF'

where we define

—2 —2
ren mw "" dt

s&2 [Tr exp( —tKFp)]d;, Eb ——
s(2 [Tr exp( —tKbo )]dit3/2 4 ~ A . t'~'

—2

re~rrn ~ s 2 [~ exP( tKferm)]di»4gK ~ 2 t3/2

[Tr exp( —tK)]d; = at ~ + bt ~

(4.8)

(4.9)

and v, „mw is the renormalization scale which is determined below from the value of the Higgs pole mass. Performing
the small t expansion (4.7) and integrating over t in (4.8) we find

A
+&~ l, l )

—l(~.', )'+ —;8(o'@—4)'+ —,'(@'@—4))
Iran

(' A'
2(v,'..—A')(4+ 4)(c'c' —4) +» l, I [

—". (+,', )'
ren

Eb', (A) =—

2

E,"; (A) = ~, ) d'r 4v~(v,'.„—A')(C'C' —4)+in], I [-,'(+;;)'

+6I~ o)'(~o)+ —,'.(4+ ~»+ ~H)(c'~ —4)*+ —'.(~+ ~H+ ~»)(c'o —4)) I, (4.10)

+2v~(D, 4)t(D, C ) + 2v~(C't4 —4) + 4v~(4tC' —4)]

The fermionic part in the above formulas is written for
one fermion doublet. As it was mentioned above, to pre-
serve the spherical symmetry of the Dirac equation one
has to consider the case of equal masses for up and down
fermions. This approximation is justified for doublets
where both fermions are light. However, in the case of
the (t, b) doublet the approximation ms « mdiv « mt is
more reasonable. In this limit the correction from the top
quark is half that of the doublet with both masses equal
to mq [17]. Therefore, in our numerical estimates we take
9 + z massless fermion doublets and 2 massive doublets
with mass mq, taking into account that the quark contri-
bution is enhanced by three colors.

We see that the quadratically (A ) and logarithmically

(lnA ) divergent terms are exactly those entering the
classical energy functional E i '„(3.7). Therefore, they
can be combined with the bare constants of the corre-
spondent terms in the classical energy —to produce the
renormalized constants at the scale of v„„mw. We call
the classical energy with renormalized constants E ~ „.

What is left after the renormalization is ultraviolet 6-
nite, arid one can safely put the ultraviolet cutoK A to
infinity. We call these pieces renormalization energies:

EF'p = lim EFp""(A),
A —+oo

with
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—2

mar dt (0)Epp (A) =
&

Tr(exp[ —tKpp] —exp[ —tK&p]) —
&

[Tr exp( —tKpp)]g;4 vr ~ . t'~' ~—2
(4.12)

and similarly for E&'," and Eb ",. In the case of Eb'", one should take into account the subtraction of the negative
mode contribution in (4.6) so that

—2

Eb ", (A) = —
&

[Tr(exp[ —tKb, ]
—exp[ —tKb, ]) + (1 —e —

)] — [Tr exp( —tKb, )]g;4 ~—2

(4.13)

Performing the described renormalization procedure we arrive at the following expression for the transition rate
(4.i):

ry—
V gspz sin ~ m~ iur

Finally we fix the renorrnalization point v, „ in
Eqs. (4.8, 4.12, 4.13). The renormalization point ap-
pears in the relations between the physical parameters
of the model such as the pole masses of the Higgs and W
bosons and the top quark as well as the coupling constant
and the corresponding renormalized constants which we
use for our calculation. In most parts of our numerical
computation we work with a top quark mass substan-
tially larger than m~, i.e., N, v~ )) 1. Parametrically,
the biggest one-loop contribution is therefore given by
the box diagram in the external Higgs field and is pro-
portional to Q.N v~ . This term appears as the diQ'erence
between the physical Higgs pole mass v„and the renor-
malized parameter v~2 [see Eq. (4.24)]; the difFerences
between the other physical and renormalized quantities
are suppressed either by a factor n, by 1/N„by 1/v~, or
by a combination of those.

Here we will restrict ourselves to terms of the order
of 0.N v~ and aN v~ . We have checked numerically that
even those large parts of the difference between the phys-
ical and renormalized parameters have only a slight in-
Huence on our final result. Hence we believe that it is a
good approximation to neglect the terms of lower order.
This means we only have to consider the fermionic one-
loop contribution to the Higgs boson mass while we can
take directly the physical values for the other renormal-
ized parameters.

We choose our renormalization constant such that also
v~ coincides with its physical value, the Higgs pole mass
v„. In order to obtain the pole mass we have to evaluate
the propagator of the Higgs particle in one-loop order. Its
classical part (in Euclidean space) is given by 0 (p ) =
p + v~ (in units of mi2), ), the fermionic one-loop con-

tribution can be written as Q.N v~Eg, -,",—", with
vt ' vt

some function Eg„which is finite in the limit of infinite
vz. From the classical part of 0 i(p2) we know that p2 is
of the order of —v~2, while we find (see below) v„„v~ .
Therefore, in order to keep terms of the order Q.N v~ and
o.K,v~ we have to expand I"f„ in p /v~ up to the order
0(p'/v~').

In order to get the Higgs propagator we put the gauge

field to zero and obtain the relevant (four-dimensional)
action:

with

S = So + Sloop (4.i5)

2
d4 i g@ggc, +va Cg@2

2va @tc,
4 )

Sloop —
2 Tr lOgD D + S«„„qe,

(4.i6)

1 dt

A

where we used

D D = —|9 + 'L (x'youp + piO~)

x
i

M +Mt
i

+MtM (4.17)

and the counterterms

Nv
a = — ' d4xe~e

8~3//2

b = d x[v, (Ct@)'+ 4v, (0„4)t(0„4)].64~3i2

(4.18)

(4.19)

The vacuum expectation value of the Higgs field in one-
loop order is obtained by setting 4~C = v = const in the
action (4.15) and minimizing it with respect to v. The
result up to order g is

2N 2
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( 0
(U+giip (4.20)

where vo ——4 is the vacuum expectation value (VEV)
on the classical level and C —0.577 the Euler constant.
Choosing the unitary gauge, we can substitute

The propagator is then given by

b2S d4p
BP(xB —xy)G —i( 2) (4 21)

bii(xi) hei(x2) (2vr) 4
0

~~
~

P
4 e

~ ~ ~
p 7

~

and we obtain, up to order g,

G '(p')=p +~H+ 2
"2" —1 2 I&+» 2 I

I2+
~,'..) E»~) & ~~).

(4.22)

with the function

1f (x) = — dP ln
I

1 —P(1 —P) x
I

= —1 + Re
2 0

z —4
arctanh

x —4)
(4.23)

As mentioned before, we expand the propagator up to terms of O(p2/v~2). We obtain

G (p ) =p +vH+ ""—1 ———
2 I

—+C+ln—i 2 2 2 g &Vt Vren Ip' (2
8m2 v2 4 v~2 (3 ~2 j (4.24)

Our aim is to fix v„„such that the pole mass v„, defined
by G (p = —v ) = 0, coincides with v~. Hence we
have to solve the equation

v 2 2

4 (3 ~2 )
(4.25)

which determines the renormalization constant v„„ for
given values of vq and v~, vq & vH. As anticipated, we
find vr en vg

Analogous equations follow from the full (nonex-
panded) propagator (4.22) and &om the propagator
which includes both fermionic and bosonic Huctuations.
We have checked that for vq & vH the results for v„„
obtained with those equations are very close to the solu-
tions of Eq. (4.25), so that in this case the restriction to
the dominating parts up to O(aN, v~2) is a very good ap-
proximation, and for our choice of v, „the renormalized
parameter vH corresponds to the Higgs pole mass very
accurately.

The situation is slightly worse for the case of very large
vH (e.g. , M~ = 350 GeV). Here no solution of Eq. (4.25)
can be found, so we choose v, „such that the difFerence
Iv„—vHI takes its minimum. The deviation, however,
is found to be below 10%. Moreover, we consider such
high Higgs boson masses only for comparison to our main
results, so that this problem is actually irrelevant.

T [f(iC) —f(iC")1

). f( ') + dE g(E)f(E') (5.1)
0discrete

levels

iCb, has nbD' ——7 discrete levels (six zero modes and
one negative mode), iCf„has nD = 1 discrete zero
mode [17], iCFp has nD ——0 discrete modes, which by
definition are not included in the spectral densities g" .

We rewrite Eq. (4.3) with the help of the spectral den-
sities:

1E«~P (T) g dE boByFP (E) 1 (1 PTTL~ E)

(5.2)

Eq,', (T) = —— dE g" (E)
0

1 fx ln(1+ e ~ ~
) — nD' ln2—,

where the signs are chosen according to those of E '~(T)...
given in Eq. (4.3).

At high temperatures Eq. (5.2) is dominated by spec-
tral densities at large energies. It is shown in Appendix B
that asymptotically all three spectral densities io, g
and g" approach constant values [after subtraction of
the spectral densities of &ee operators, which is implied
in the definition (5.1)]:

lim g(E) = g

V. THERMAL RENORMALIZATION
AND SPECTRAL DENSITIES

We next consider the temperature dependent terms in
the exponent of (4.1) given by (4.3). In order to compute
these quantities we introduce spectral densities g" '(E) for
the continuous parts of the spectra of the operators jC:. . .,
such that for any function f (x) that vanishes fast enough
for x ~ oo we have

2 " 2

(5.3)

whereas the remaining part of E '~(T) can be wri. .t.ten
as [see Eq. (B13)]

Therefore, at high T the quantities E..'. ~(T) have a T2
behavior:

1E' 's'(T) = +— dEg ln(1 + e ~ ~ )"'
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1 gE[gbos, FP(E) hobos, FP] ln(i e
—P m)qpE)

OO

dE[g " (E) —g "
] ln p n—" ln(pmw)

bos, FPEb..Fnp p —n~g" in(PmW), (5.4)

Esmall QE[gfe™(E) gfe™]ln(i + e
—pm)qPE) &fe™ln 2

1 1
ferm p OO (5 5)

With these definitions the E' " are finite in the high temperature limit (see Appendix B).
We notice that at T = O(mw/g) the local functionals E 's'(T. .). can be of the same order as the (renormalized)

classical zero-temperature energy of the sphaleron; therefore, in that range of temperature one has to And a new
sphaleron solution which is a saddle point of the temperature-dependent functional:

E:;"..(T) = E.-.+ E'""(T)+ E".."(T)+ E'.,'"(T) . (5.6)

E;;"„[A,C; T] =

Fortunately this functional has the same form as the original E,~ „, but with temperature dependent parameters.
Therefore its saddle point will be just a rescaled version of the original sphaleron conGguration.

Using the expressions for p computed in Appendix B, Eqs. (B8) and (B4), we arrive at
2T2

d'r
l

—4A", )'+ —,'(D'C')'(D*C') + —.', 4(c'e' —4)'+, (-.'N. ~~'+ 4+ 3)(C'C' —4)
l

mw

g 2

mwq
g2

(5.7)

where in the last expression we change the integration
variable, r —+ q r, and use the notation

Aq(r) = qA(qr), 4q(r) = q 4(qr) . (5.ia)

A(r) = q 'A(q 'r), O(r) = q '4(q 'r)

with (compare, e.g. , [23])

(5 8)
Subtracting the vacuum contribution we Gnd

E"" [A O'T] —E"" [A '~ eq~'l T]
= qE, l .,[A, 4] . (5.ii)

q= q(T) = v i —(TIT.)'

w(2N 2+ 2 ~ 3)
—1/22 2v m

g

(5.9)

The new temperature dependent sphaleron configura-
tion Aq, 4q which is the saddle point of E;i"„(T)can be
expressed in terms of the old zero temperature solution
A, C:

If we now replace A, 4 by A~, 4'~ in all parts of our ex-
pression for p, we Gnd that we get the old results again
but with mw replaced by qmw wherever it appears [ex-
cept in the definition (5.9) of T,]. The vacuum expec-
tation value of the Higgs Geld becomes temperature de-
pendent; it is given by 4'q~o~ = 2q(i) and vanishes for
T MT.

Thus the Gnal result for the transition rate per volume
1s

qP'qms ~~tP ~(ggpgg, t)P bos
P q E &@ss + Fp + hobos + ferm

g'P' Sip gqppp )tp

ig(SPP "(T) +S (T) +—PEa, "(T)] q )
= &exP[—P(qEclass+ Eferm+ Ebos)] (5.i2)

with the prefactor
2m(qmw) sP4]ur

l (Ntr Nroi) 2

gs sin[(P/2) qmw l(u l]
(5.i3)

ferm + ferm (T) lqmqq

bos qEbos + bos (T) lqm(p(p + qEFP

(5.i4)

and the total fermionic and bosonic one-loop contribu-
tions are +EFP "(T)lq-
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VI. DISSIPATION OF THE BARYON
AS Y MMETRY

In this section we express the erasure of the BAU after
the electroweak phase transition through the transition
rate p(T) following the considerations of [8] (see also [5]).

Transitions over the sphaleron barrier change the
baryon and lepton number by LB = LL = NgLN~s,
where N~ = 3 is the number of generations.

If there were neither baryons nor leptons initially, the
transitions increasing Ncs would be compensated by pro-
cesses decreasing N~s so that creation and annihilation of
baryons would cancel each other. The situation becomes
difFerent, however, if we assume the initial existence of
baryons and leptons. These particles could have been
created long time before the electroweak phase transition
in the age of GUT or maybe during the phase transition.
In this case the chemical potentials p of the baryons and
leptons are nonzero which leads to an additional term
pNps in the classical energy functional. In accordance
with the Le Chatelier principle the transitions will favor
the wash out of any particle or antiparticle excess.

Our analysis will be restricted to the usual electroweak
theory where B —L is conserved. Therefore, the study
of the erasure of the BAU in the context of sphaleron
transitions makes sense only under the assumption of the
initial condition B = L.

A sphaleron transition with ANcs ——1 creates one
particle per fermion doublet. We introduce chemical po-
tentials p~ (= 1, . . . , S) for the quark doublets and p,.
(i = 1, . . . , 3) for the lepton doublets. Then each transi-
tion increases the energy by AN&s (P,. ~

@~+P,. ~ p~),
i.e. , the classical energy functional (3.7) has to be re-
placed by [24,25]

Now we have to express the chemical potentials
through the particle numbers in order to get a difFeren-
tial equation for the baryon number decrease. For small
p, standard Fermi-Dirac statistics yields the relation

V
N(p) = I(/jm) p, (6.4)

12 dx
I(a) =-

7r2 1+e~ /~2 —a2
(6.5)

with the properties I(0) = 1, I(oo) = 0. A lepton dou-
blet has three degrees of freedom (two for the lepton and
one for the neutrino) while there are four for a quark dou-
blet. The masses of the leptons and the light quarks are
much smaller than the critical temperature T, = 1/P„
i.e. , P,m « 1 so that I(P,m) = 1. We apply this ap-
proximation also in the case of the top quark since it has
almost no inhuence on the result for the baryon number
wash out. Hence we obtain for the lepton and the quark
doublets:

2P2 3P2
p, V s~ p, 2VQs ) (6.6)

where L;, Q, are the numbers of leptons and quarks of a
axed doublet i. Substituting Eq. (6.6) into Eq. (6.3) and
using L = B = Q/3 we obtain

p(T)VKgl3 (
—Q+ L)

where N is the number of fermions, f the number of
degrees of freedom, m the mass of the fermions, and I(a)
is given by

2P(T)NgP —B . (6.7)

@class ~ @class + NCS ) IJ's + ) Ps'

i=1 i=1
(6.1) Standard cosmology gives a relation between time and

temperature [26,27]:

This p contribution leads to the asymmetry in the
Langer-AfHeck formula (5.12) with respect to transi-
tions increasing and decreasing Ngs. We have to set

+2 for transitions which increase the fermion
number and Ncs ———

2 for transitions which decrease it.
Since the baryon and lepton densities considered are very
small we can restrict the transition rate to terms linear
ln p:

p('. ~&:v~+ &:I,'
i=1 i=1

(6.2)

~-=~ 1+ —, ).~; +&.~;
Vt' -q

i=1
i i

i=1

45 —2 —2

67rsN(T) (6 8)

1 dB q(T)= 13NgC (6.S)

which can be integrated to

where N(T) is some number related to the number of
degrees of &eedom of the thermalized particles at the
temperature T (for our range of temperature it is usually

), m~ = 1.5 x 10 m~ is the Planck mass and hence
the constant C is given by C = 5 x 10 m~. Substitution
yields

so that the baryon and lepton number dissipation, given
by the difference of these rates, reads

dB
dt

p(T)VNgP ) p~ +—) p; . (6.3)
i=1 i=1

q(T)
( )

13Ng C qp(q)—
(1 q2)7i2

(6.10)
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with q(T) = gl —Tz/Tg. This is our final result;
it describes how the erasure of the BAU, measured by
Bo/BT;, can be obtained by an integration of p(T) over
the temperature. In the next two sections we present
numerical results of this ratio from which we deduce an
upper bound on the Higgs boson mass.

VII. NUMERICAL RESULTS

In this section we present the results of our numerical
calculations. We take m~ ——83 GeV, g = 0.67 which
is the physical value of the coupling constant and vary
the top quark mass in the range 150 to 200 GeV, i.e.,
around its recently stated value of 174 GeV [21]. The
only unknown physical parameter left is the Higgs mass
mH. We discussed the fermion loop contribution already
in [17] so in this work we will focus our attention on the
evaluation of the bosonic loops.

As we explained, all our results are obtained by a diag-
onalization of the boson fluctuation matrix Kb, and the
Faddeev-Popov matrix KFp (3.21) in a discretized basis.
The spectrum of the matrices must not depend on the
choice of the gauge for the classical sphaleron fields. Since
we evaluated the matrix for an arbitrary gauge with non-
vanishing C field [see Eq. (A25)], it is possible to check
the invariance of the spectrum under gauge transforma-
tions (3.10). We find that the eigenstates are indeed in-
variant under gauge transformations if their energy is less
than about 0.8P where P is the numerical param-
eter which restricts the momentum of the eigenstates and

I

renders the basis finite to allow a numerical diagonaliza-
tion [see Eq. (All)]. Eigenstates with energies close to
P can be gauge dependent which is due to the finite
numerical box and should not be encountered in our cal-
culations. Hence we always have to choose P large
enough so that all eigenstates which enter the calcula-
tions have energies less than 0.8P and, of course, no
result changes if P is further increased.

Another check of the spectrum consists in an investiga-
tion of the negative and zero modes. The negative mode
appears in the grand-spin K = 0 sector of the fIuctua-
tion matrix Kb, . We checked that its energy is gauge
invariant and independent of the box parameters P
and B. Moreover our results agree with the ones ob-
tained in [28,29] where the negative mode has previously
been calculated. The zero modes can be identified in the
K = 1 sector. Because of the spherical symmetry in this
sector each state is (2K+ 1 = 3)-fold degenerate so that
we find two threefold degenerate states with zero eigen-
value. Numerically the modulus of the eigenvalues was
found to be below 10 which shows that the diagonaliza-
tion reproduces the zero modes with excellent accuracy.
The eigenfunctions of the zero modes can be evaluated
analytically in terms of the sphaleron background fields
[13]. We compared these functions with those which we
obtained as zero mode eigenfunctions in the diagonaliza-
tion and again found a very good agreement.

Beside these investigations of specific eigenstates we
checked a property of the spectrum as a whole. For low
values of the proper time parameter t we consider the
expansion

) (e " —e ( ") ) = Tr(exp[ —tKb, ]
—exp[ —tKb, ])

n
=abQ t +6bQ t +Cb t +—&/2 1/2 3/2 (7 1)

where the coeKcients are given in. Eqs. (B4)—(B6). Tak-
ing mH ——m~, in Fig. 1 we compare the exact result

(solid line) for the trace Tr(exp[ —tKb, ]
—exp[ —tKb, ])

(o)

[LHS of Eq. (7.1)] with several approximations (dashed
and dotted lines), given by the first, the first two and
all terms of the rhs of Eq. (7.1). For low values of t
we obtain excellent agreement between the numerical re-
sult and the approximations, as it should be. For large
values of t the comparison does not provide a check of
the numerical treatment. Here the approximations be-
have as some power law of t / while the exact result is
dominated by the contribution of the negative and zero
modes, given by e ~

—
~ + 6, which is also plotted in Fig. 1

(dashed line).
Now that we have checked the reliability of the spec-

trum we can use it to calculate the desired quantities.
These are the renormalized nonthermal contributions
Zb ", Fp and the temperature dependent parts Eb, F p(T)
associated with the Bose-Einstein distribution factor.
Both quantities have to be evaluated for the fluctuation
operator Kb, and the Faddeev-Popov operator KFp.

To obtain the renormalized value of the nonthermal

50.0

Heat kernel approximations

-c 40.0

& 30.0

~ 20.0

C4

10.0
negative and
zero modes

3rd order
2nd "ord'er" """

1st order

0.0
I I I I

]
! I I

0.00 0.50 1.00 1.50

FIG. 1. Exact (solid line) and approximate values (dashed
and dotted lines) of the heat kernel

Tr(exp[ —tKb, ]
—exp[ —tICb ]) in dependence of the proper

time parameter t. The exact result is obtained with the
discretized spectrum of the fluctuation operator jCb, , the
approximations are the first 3 orders of the expansion in
Eq. (7.1). For low t we obtain excellent agreement. The
large t behavior of the heat kernel is governed by the negative
and zero modes (dashed line).
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TABLE I. Eb ", (A = 4) for different values of the nu-

merical parameters R and P . The result shows that
R = 12 and P = 16 = 4A are large enough to ensure
that the continuum limit is reached. The mass parameters
are m~ ——m~ ——83 GeV, m~ ——714 GeV, v, „=2.02.

B 10 10 10 12 14
P 12 14 16 16 . 16

E' ", (A = 4)/rnid —6.25 —6.29 —6.29 —6.28 —6.28

TABLE II. Eb ", (A) for various values of A. Using the
behavior E'b ", (A) = Eb'", + b/A for large A, we find by
extrapolation the continuum limit Eb ", ———5.95m~. The
mass parameters are m~ ——m~ ——83 GeV, m~ ——174 GeV,
vr@I1: 2 02

A 2 3 4 4.5 5 5.5 6
Eb ", (A)/rnw —6.85 —6.47 —6.28 —6.22 —6.18 —6.14 —6.11

parts Eb'", Fp we have to evaluate Eb ", Fp(A) in the limit
of infinite proper time cutofF (A -+ oo) [see Eq. (4.11)].
Numerically, however, we always have to work with a
finite A to ensure the finiteness of the basis. For this
reason the numerical parameters B (box size) and P
(maximum momentum) also have to be finite. In order
to obtain the limit of infinite parameters we proceed as
for the fermion non-thermal energy in [17]:First we fix A
and take R and P large enough so that their further
increasement would not change the result any more. This
procedure is repeated with larger values of the cutofF A
until we can determine the limit E"" (A = oo) = E"".
We illustrate this method in Tables I and II at the ex-
ample m~ ——m~. The renormalization scale v, „ is
fixed according to Eq. (4.25). With mi ——174 we ob-
tain v„„=2.02. In Table I we show results of Eb ", (A)
for fixed A = 4 and various values of B and P . We
find that for B = 12 and P = 16 = 4A the continuum
limit Eb ","(A = 4) = —6.28miv is reached with an ac-
curacy of better than 0.2%%uo. With the same method we
obtain results for other values of A which are presented in
Table II. For large A the law Eb ", (A) = a+ b/A is sat-
isfied for the fit a = —5.95m~ and 6 = —5.7m~. Thus
from the data in Table II.we can extrapolate the result
for infinite cutoK A and obtain Eb ", ——a = —5.95m~.
Considering the possible error of the values for fixed A
and the error of the extrapolation process we estimate an
accuracy of better than 2%%uo for the final result. For other
Higgs boson masses the deviations can be slightly bigger
but in general the numerical error for the nonthermal
energy should be well below 5%.

Table III shows results for the renormalized nonther-
mal energy for diferent Higgs masses including the con-
tribution &om the Faddeev-Popov operator. The renor-
malization scale v„„, fixed by Eq. (4.25), is included in

Table III. As already mentioned in Sec. IV, for mH ——350
GeV Eq. (4.25) has no solution so that instead we choose
v, „to minimize the difFerence between mH and the pole
Higgs mass, which for this reason may deviate from 350
GeV by some value less than 10%. Moreover we give val-
ues for the classical sphaleron energy and for the fermion
nonthermal energy. The latter was calculated for 2 heavy
doublets with top quark masses between 150 and 200
GeV and 9+ 2 massless doublets. We find that both
the fermion and the boson nonthermal energy are signif-
icantly lower than the classical energy which is in accor-
dance with the fact that, generally speaking, loop con-
tributions are suppressed by a factor a relative to the
tree contribution. Actually after the renormalization the
nonthermal energy of the boson fluctuations about the
sphaleron is small and negative while that of the fermions
is larger and positive. However, we show below that the
thermal part dominates the boson fluctuations and the
sum of both parts has the same sign as the classical en-
ergy.

The behavior of the nonthermal energies for low mH
and large mq can be described by simple scaling laws.
For mi/mdiv ) 1 the aggregate energy density of the
Dirac sea is dominated by the square loop diagram in
the external Higgs field and hence is proportional to
N, (h@) 1n(h, 4/v„„) where 6 is the Yukawa coupling and
4 the Higgs field of the sphaleron. To obtain the energy
we have to integrate this value over the space where the
Higgs field divers from its vacuum expectation value, i.e.,
over the spread of the sphaleron. For small Higgs masses
m~/mdiv (( 1 the size of the sphaleron fields roughly
scales as m~ since the asymptotic behavior for large ra-
dial distance r is dominated by the term e
Therefore all spatial integrals and hence all matrix ele-
ments of the fluctuation matrices scale as mH . Thus for

TABLE III. The renormalized nonthermal energy of the boson fluctuations E'b "„ofthe Fad-
deev-Popov operator EF'p, and the sum of both for various values of the Higgs boson and the top
quark mass. For comparison the classical sphaleron energy E,& „and the fermionic nonthermal
energy E&,'," are included. The renormalization scale is determined according to Eq. (4.25).

m~ [GeV]
m, i [GeV]

&r en

(Eb'", + EF'P")/miv
E;;," /mw
Eclass /mw

50
174
2.07

—9.74
1.36

—8.38
26.94
96.94

66
150
1.74

—5.40
0.48

—4.92
10.35
99.60

66
174
2.05

—7.22
0.75

—6.47
16.91
99.60

66
200
2.36

—9.32
1.10

—8.22
26.81
99.60

83
174
2.02

—5.95
0.46

—5.49
12.11
101.94

100
174
1.98

—5.09
0.29

—4.80
9.40

104.08

150
174
1.76

—3.64
0.08

—3.56
5.87

109.27

350
174
2.11

—5.69
—0.01
—5.69
4.05

121.67
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m~ & mph' & mq the dependence of the zero temperature
energies on mq and m~ is roughly given by

m4 ln(mg/v„„mw)
ferm + 3 )

mQ
(7.2)

Eren + Eren W
bos FP 3

H

These scaling laws explain the strong increase of the fluc-
tuations for small mH and large mq, which is in corre-
spondence to our numerical results. As mentioned above,
we also found numerically that the boson and fermion
nonthermal energies difFer in sign.

One finds a strong increase for small mH and large mq
also for the thermal parts of the fluctuations, but here
both fermionic and bosonic contributions are positive.
For not too small temperature T the boson fluctuation
energy is dominated by its positive thermal contribution
so that the sum of the nonthermal and thermal parts
is positive for both the boson and the fermion fluctua-
tion. For small m~ and large mq these sums are large so
that they provide a strong suppression of the sphaleron

1
a(E) = a-+a, +. . (7.4)

[see Eq. (Bl)] for the high energy part of the spectrum.
To this end we take a smooth function F(E) with the
properties F(E) = 1 for E ( E —Eb, F(E) = 0 for
E ) E + Eb and 0 ( F(E) ( 1 for E —Eb ( E (
E + Eb. Here E and Eb are fixed numerical energy
cutoffs, usually we take Eb = E /2 so that E is left as
the only parameter. We calculate the thermal energies
as

transition rate. If m~ is small enough, this suppres-
sion prevents the erasure of the BAU. Thus, we see that
the condition that the BAU should survive sets an upper
limit on the Higgs mass.

In order to obtain a quantitative result for this up-
per bound we still have to evaluate the thermal parts
E' '~~~ ~ [see Eqs. (5.4) and (5.5)]. To simplify nota-
tions we will drop the subscript qm~ in what follows. In
principle we could evaluate them by a summation over
the whole spectrum; numerically, however, it is prefer-
able to sum only over eigenstates with low or medium
energy and to use the expansion

1 —e
Eh Fp(T) = +—) F(u ) lil

pqmw

j,—Pqmw~„0

—) F(~„)ln
gmw

OO —Pqmw @
dEF(E) ln + g2

gmw
F(E) I e Pqm~E—

dE lnE2 pqmw
(7.5)

The integrals in Eq. (7.5) can easily be evaluated nu-
merically, in the sum only states with u & E + Eb
appear. Now we have to check that numerically E'
is independent of the parameter E . In Table IV we
show results of PE&, i'(T) in the high temperature limit
[see Eq. (B15)] for m~ = mw and several values of E .
We also give results for the contributions [the sum and
the integrals of Eq. (7.5)] separately. We find that in
the interval 3 & E & 8 both the sum and the integrals
in Eq. (7.5) drastically depend on E but the result for
PE&, varies only by about 2%. For smaller values of
E the expansion (7.4) is not good any more and for
larger values of E the numerical accuracy of the spec-
trum decreases due to contributions of states with very
large grand spin K. For other Higgs masses the varia-
tion of Ei', , ii(T) with E can be about 5%. Hence for our

calculations we choose 4 ( E ( 6 and obtain E' '(T)
with an accuracy of usually better than 5%.

We are now going to compare our results to the ones
obtained by Carson et al. [15] and Baacke et al. [16].
There the expression

ln r = PE], , "(T) ——PEpp ' (T) —6 ln 2 —ln ~(u

(7 6)

was evaluated in the high temperature limit T -+ T . In
Fig. 2 we show the results of our work as well as those of
[15,16] as a function of the Higgs mass m~. Our data are
between those of [15] and [16], they agree with the ones
of [16] up to 10%. Apart from numerical uncertainties
one reason for the difference could be the renormaliza-
tion scheme. We have performed the renormalization at

TABLE IV. P,E&, "(T,) and its contributions for several values of the numerical parameters E
and E'&. The contributions strongly depend on E and E&, but E&, " is very stable in the range
3&E &8.

1st line of Eq. (7.5) (sum)
2nd and 3rd lines of Eq. (7.5) (integrals)

P,Eb ."(T,)

2.0
1.0

2.54
3.64
6.18

3.0
1.5

10.95
—4.20
6.74

4.0
2.0

21.93
—15.07

6.85

6.0
3.0

49.95
—43.10

6.85

8.0
4.0

83.95
—77.13

6.82
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zero temperature strictly, as it is usually done. This cor-
responds to a subtraction of the first term (g ) in the
high energy expansion [see Eq. (7.4)] which is also the
first term of the tadpole expansion [30]. In [16],however,
all tadpole graphs except the term linear in T have been
removed. The diH'erence is then due to the higher order
terms which are small for high T but numerically not
completely negligible. There is a larger deviation from
the results of [15], only a qualitative agreement for the
low mH behavior is found.

Since the evaluation of the fluctuation determinants
Eqs. (3.26)—(3.28) is a rather involved task one seeks for
a good approximation procedure which is easy to handle.
Before an exact calculation was performed, Carson and
McLerran [13]applied an approximation technique by Di-
akonov, Petrov, and Yung (DPY) [14] to this problem.
Later they calculated the boson fluctuation determinant
exactly in the high temperature limit [15] and found that
the exact and the approximative result deviate by sev-
eral orders of magnitude. In this section we revisit the
DPY method and explain how it can be used to get the
fluctuation determinants to a reasonable accuracy.

Following [13] we consider here the high teinperature
limit of the boson fluctuation determinant which can be
written as an integral over spectral densities:

Boson determinant in high T limit

0.0

—10.0—

—20.0—

—30.0—

—40.0—

—50.0
I I

l
I I I Il

0.1 0.2 0.5 1

I I
l

I III[
l

I I
j

I III
2 5 10 20 50 100

FIG. 2. ln v = P,E'b,—"(T,) —P,Ei.p "(T,)—6 ln 2 —ln leg

as a function of the Higgs mass. We compare our results (solid
line) with those of Baacke et al. [16] (dashed line) and Carson
et al. [15] (dotted line).

where g '(E) is the spectral density of the boson opera-
tor, with the six zero and one negative mode subtracted.
Using the identity

lnyb, ———p.Eb ."(T.)

dE[g'-(E) —g"]1 (E')
0

(7.7)

dt
incr = —(e —e '

)
p

we arrive at the proper-time representation

(7.8)

ln ybo, = —
2 dE[g '(E) —g '] —(e —e )

0 0

—
l
(T exp[ —«b-] —6 —exp(tl~-

l ) —T exp[ —«b..])+ 7e — d~/t
l

dt ( 2

0
(7 9)

where gb ' = 2a/~sr [see Eq. (B8)].
The idea of the DPY method is as follows [14]. The

behavior of the integrand at small t can be established
&om the semiclassical expansion of the "heat kernel, "
Tr exp( —tjC), see Eqs. (4.7) and (7.1) and (B3). Its be-
havior at large t is governed by negative and zero modes.
Therefore, knowing the behavior of the integrand both
at small and large t, one can approximate the integral
of Eq. (7.9) as a sum of small- and large-t contributions,
separated by some parameter tp.

fi (t) = — bt 'i'+ ct'~' —(7+ l~ l')
1
2

+-(7 —l~-I')
2

(7.11)

fails. The more terms one knows &om both sides, the
better is the accuracy of the method.

Using the heat kernel expansion for Tr exp( —tK), we
find the approximation for small t'.

—= »Xb~s, (7.10)

OO tp OO

lnyb~, = dt f(t) dt fi~~(t) + dt fb;sb(t)
0 0 t,p

At large t it behaves as

1 t'7e '
fb', b(t) = —

I2 g t )
(7.12)

where the separation parameter should be found &om
the requirement that the sum of the two terms in this
equation is stable in tp. Actually it means that tp is a
point where the small- and large-t approximations to the
true integrand cross. If that does not happen the method

Knowing the coefficients a, b, c, and lu l, one can es-
timate the fluctuation determinant, Eq. (7.9), using Eq.
(7.10). The result for three difFerent values of the Higgs
mass is presented in Table V, together with the exact
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TABLE V. Exact and approximate results for the high
temperature limit of the boson Buctuation determinant for
various m~. The exact values lnyb, are determined by a
summation over the spectrum of eigenvalues of the Quctu-
ation operator, the approximate values lnyb, are obtained
with the DPY method [14]. One finds an accuracy of about
10 to 15'po.

mg [GeV] 66 125
ln yb, —11.66 —1.96
ln yb, —12.91 —2.27

83
—6.85
—7.66

value of ln yb, . One observes that the accuracy is at the
level of 10 to 15%%up, but that is a price one has to pay if
one wishes to avoid a laborious computation of the exact
spectrum.

VIII. THE UPPER BOUND
FOR THE HIGGS BOSON MASS

The main issue of our work is the calculation of the
sphaleron transition rate p = I'/V according to the

Contributions to transition rate
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FIG. 3. Contributions to the transition rate lnp for fixed
m~ ——66 GeV, m~ ——174 GeV, and mII ——100 GeV, m~ ——174
GeV as a function of the parameter q = gl —T /T . The
total rate has a maximum close to the critical temperature.
The region which mainly contributes to the integral Eq. (6.10)
is marked by a solid line.

Langer-AIHeck formula Eqs. (3.11) and (5.12) including
the classical Boltzmann factor, the fermionic and bosonic
one-loop contributions and the Jacobian prefactors. We
stress again that our calculation is not based on the high
temperature limit but was done for arbitrary values of T.
Therefore, we can compute the rate for the whole tem-
perature range between zero and the critical temperature
T, and perform the integration over T [see Eq. (6.10)]
to obtain the ratio Bp/BT . In Fig. 3 we present the
contributions PqE—,i „+ln X (classical part), PEr-„
(fermion loop), and PEb—, (boson loop) of lnp [accord-
ing to Eqs. (5.12)—(5.14)] for m~ = 66 and 100 GeV.
It is convenient to take the parameter q = gl —T /T
as independent variable rather than the temperature T
itself.

Qualitatively both pictures of Fig. 3 show the same
behavior, but we find significant quantitative differences.
At low temperatures (large q) the main contribution to
the classical part is the Boltzmann exponent PqE, i —„
which decreases with q roughly linearly. For T + T
(q -+ 0) the Jacobian prefactor in& 7lnq(T) ~ —oo
dominates the classical part. Hence we find a maxi-
mum of the classical contribution to the transition rate
at about q 0.1. For large and medium q the sup-
pression from the fermion loop contribution can be also
rather large (in the case m~ = 66 GeV it becomes al-
most as large as the classical one) but it tends to zero
in the high T limit q + 0. The bosonic contribution is
generally rather small and almost constant over the plot-
ted range of temperatures. In the high temperature limit
it does not disappear but it tends to some finite value.
Therefore we see that in this limit which was assumed in
previous works [8,5,13,15,16] the boson one-loop contri-
bution is indeed the most important one while fermions
decouple. Adding the loop contributions to the classical
part, we obtain the total rate which has the same shape
as the classical curve, in particular it also has a maxi-
mum. Hence if there was any significant baryon number
violation after the electroweak phase transition, it must
have happened in a short period around this maximum
[remember that in Fig. 3 the logarithm ln p is plotted
while p itself enters the integral of Eq. (6.10)]. We find
that the piece of the curve for the total rate which is
marked by a solid line contributes about 99% to the ratio
logip(Bo/Bz. ) which measures the washout of the BAU.

Both the position of this washout area and the value of
the maximum are strongly inQuenced by the loop correc-
tions, especially we note that in this region the fermionic
contribution which was neglected in previous works is
quite essential. Below we investigate the efFect of the
fermions qualitatively by computing the ratio Bp/BT.
with and without fermion loop corrections and confirm
the significance of the fermions.

Comparing the two plots of Fig. 3, we find that the loop
contributions are strong for low mH so that in this case
the rate is suppressed, while for large m~ the Quctuations
are rather weak. This is also documented in Fig. 4, where
we have plotted the total transition rate for various mH
and mi. In accordance to the scaling laws equations (7.2)
and (7.3) we find a strong suppression of the transition
rate p for small m~ and large mq and a weak suppression
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The sphaleron transition rate
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FIG. 4. The sphaleron transition rate In(p/mdiv) for var-
ious values of m~ (given without brackets) and mq (given
in brackets) depending on the parameter q = gl —T~/TP .
The dashed lines are for m~ ——174 GeV, the dotted lines for
m~ ——150 and 200 GeV. The regions which mainly contribute
to the baryon number violation are marked by solid lines.

for large mH. This results finally for physically relevant
mq in a small transition rate for small m~ and a large
transition rate for large mH. If the maximum value of p
is small enough, the baryon number violating processes
have happened so rarely that they have not affected the
BAU. On the other hand a large transition rate means
that the sphaleron transitions must have eliminated the
baryon asymmetry. Thus, if we Gx mz we obtain an upper
bound for m~ below which the asymmetry is conserved
and above which we expect a dissipation of the baryon
number. This is how we deduce our upper bound from
the condition that the BAU should survive the age of
sphaleron transitions.

Before we evaluate this conclusion quantitatively a
comment on the limits of the approach is in order. Our
calculation is based on the assumption that the Langer-
AReck formula is valid and our restriction to one-loop
contributions is justified, i.e., that higher order correc-
tions can be neglected. Both assumptions are reasonable
for temperatures not too close to T, and if the fluctu-
ations on the one-loop level are small compared to the
classical part. The physics of the phase transition and in
its direct vicinity, where perturbation expansion breaks
down, is complicated and not well understood yet so it
is difBcult to decide at what temperature the framework
of our calculation becomes inapplicable and what in this
case could be a more adequate description. However, we
can estimate the reliability of our model by checking if,
first, in the washout region the loop contributions are not
too big compared to the classical part, and second, if the
onset of the sphaleron transitions, i.e., the left margin of
the interval marked by a solid line in the corresponding
curve of Fig. 4, is not too close to the critical tempera-
ture. Figures 3 and 4 show that both conditions are well
fulfilled for mH & 100 GeV but not so good for smaller
m~, for mH & 60 GeV the fluctuations are rather large
so that the model on the one-loop level is probably not
reliable. The conclusion of this restriction on the appli-
cability of our technical framework will be drawn later.

Furthermore, we assume that, before the transitions
start, there is the same number of baryons and leptons
in the Universe, i.e., B —L = 0. In the standard model
B—L is strictly conserved so that this condition will not
change during the period of the transitions. If there were
a primordial excess of, e.g. , antileptons, created by un-
known forces which violate B —L before the electroweak
phase transition, then the sphaleron transitions would
increase rather than decrease the BAU.

Let us also briefly comment on the connection between
our critical temperature T, defined in Eq. (5.9) and the
electroweak phase transition. As a consequence of the
thermal renormalization the vacuum expectation value of
4 becomes T dependent and vanishes for T ~ T . This
looks like the behavior of fields at a second order phase
transition. However, in order to obtain the true tem-
perature and nature of the phase transition, one would
have to include other terms, e.g. , a term of the order of
TC into the potential. Since there is no consistent way
how to perform calculations near the phase transition,
where perturbation theory is not applicable, we decided
to take only the numerically by far dominating term of
the order T 4 explicitly into the potential; other terms,
like the T4 one, are considered in the quantum correc-
tion E' . Thus our critical temperature should be seen
as a mere definition which need not necessarily coincide
with the temperature of the true transition, neither do
we imply that the phase transition is of second order.

Knowing the transition rate p as a function of q for a
fixed Higgs mass mH it is now possible to perform the
integration in Eq. (6.10) numerically. The result for the
ratio logio(Bo/Bz ) is plotted in Fig. 5 for mq ——150,
174, and 200 GeV. For comparison, we also performed the
calculation without considering fermions. In this case we
did not use Eq. (4.25) to fix the renormalization scale, but
a corresponding equation which follows from the Higgs
propagator with boson fluctuations included instead of
fermions. Here we obtain v, „1.

All the curves start at zero for small Higgs masses
which means that the BAU survives completely. If we
increase mH, the fluctuations become weaker so that the
transition rate increases. Hence the ratio Bp/Bz sud-
denly begins to fall, and within a short interval it drops
by 20 orders of magnitude. The bigger the top quark
mass is, the larger are the fluctuations, and hence the
region where this decrease takes place is shifted to larger
Higgs masses. For a Higgs mass beyond this region the
survival of the BAU is ruled out, irrespectively of its
initial value B'~ immediately after the phase transition.
Let us assume that this initial value is such that in or-
der to explain the present day BAU we have to demand
Bo/B~ & 10 [5] (we see, however, from Fig. 5 that this
value is not important since a change by many orders of
magnitude alters the upper bound by only a few GeV).
For mq ——150 GeV we obtain m~ & 60 GeV, for mq ——174
GeV the upper bound is at 65 GeV, and for mq ——200
GeV the BAU survives if mH & 71 GeV. At any rate,
for all physical choices of the parameters mg aild Bo/Bz
the upper bound for the Higgs mass is found in the range
between 60 to 75 GeV.

The calculation without fermions leads to a qualita-
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The erasure of the baryon asymmetry
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FIG. 5. The ratio Bo/BT. as a function of the Higgs boson
mass m~ for m~ ——150, 174, and 200 GeV. From the condi-
tion that this ratio should be at least 10 we obtain an upper
bound for mH in the range 60 to 75 GeV. The same calcu-
lation without fermion loops leads to a qualitatively similar
picture but the upper bound would be as low as 49 GeV.

tively similar picture, but the erasure of the asymmetry
happens already at much lower Higgs masses. Assuming
Bo/BT ) 10 we would obtain an upper bound for m~
of only 49 GeV being close to the bound found previously
by Bochkarev and Shaposhnikov [6,5]. The large differ-
ence between this value and the bound of 65 GeV which
we obtain with fermion fluctuations for mq ——174 GeV
again con6rms their significance.

IX. SUMMARY AND CONCLUSIONS

The present paper investigates the fate of the baryon
number asymmetry in the Universe (BAU) after the elec-
troweak phase transition. (T & T,). lt is assumed that the
asymmetry as such originates &om baryogenic processes
before or during the phase transition with a net result of
B+ L g 0 and B —L = 0. It is furthermore assumed
that in the broken phase (T ( T,) the minimal standard
model with one Higgs doublet holds. Since the standard
model does not conserve the baryon number due to pos-
sible sphaleron transition, today's existence of an asym-
metry of about 10 ~ baryons per photon implies certain
dynamic conditions right after the phase transition which
prevent too fast a "wash-out" of the baryon number [7].
In the present paper the baryon number transition rate
is evaluated in the one-loop approximation around the
classical sphaleron solution (hedgehog). The higher loop
e8'ects are partially taken care of by an exact treatment
of the "Debye mass" terms, 4 T . It is assumed that
the Langer-AReck formula holds and that no baryons are
generated in the broken phase.

For all temperatures below the critical temperature T,
the one-loop calculations are performed numerically in
the limit of vanishing Weinberg angle. In fact, the baryon
number transition rate depends on the classical sphaleron
energy, the determinant of the fermionic fluctuations, the
determinant of the nonzero bosonic fluctuations, the en-
ergy of the negative mode and the normalization fac-

tors of the zero modes. While the sphaleron energy and
the zero and negative bosonic modes have been calcu-
lated previously in the literature [8], the evaluation of
nonzero bosonic modes has been performed only in the
high temperature limit with somewhat controversial re-
sults [15,16]. In this context the present paper shows
the erst calculation of the boson determinants for finite
temperatures (the fermion determinant at arbitrary tem-
peratures was previously computed by the same authors
[17]). It turns out that all above contributions to the
transition rate are more or less equally important and
must be evaluated at Gnite temperatures in order to ob-
tain, within the given conceptual frame, an accurate cal-
culation [18].

The actual numbers basically depend only on one un-
known parameter, namely the mass of the Higgs boson
mH. In fact, the dependence of the baryon number tran-
sition rate on the Higgs mass is extremely strong. Both
bosonic and fermionic fluctuations above the sphaleron
barrier help to preserve the baryon asymmetry in the
Universe. They prevent a fast erasure of the baryon ex-
cess provided the mass of the Higgs boson is less than
some upper bound, while for larger Higgs masses the
sphaleron transition rate becomes large and the asym-
metry would be eliminated. The value of this upper
bound depends on the mass of the top quark, ranging
from about 60 GeV for mq ——150 to 71 GeV for mq ——200
GeV. These results are obtained in the minimal standard
model with only one Higgs doublet. They assume a the-
oretical frame characterized by the applicability of the
Langer-AReck formula and the restriction to one-loop
calculations, with a partial resummation of higher or-
ders. These assumptions are only justified if the baryon
number violating processes do not happen immediately
after the electroweak phase transition where the loop ex-
pansion breaks down. This means the position of the
maximum of the transition rate p should be not too close
to the critical temperature. Moreover the quantum loop
contributions at the maximum should be small compared
to the classical terms. We find that both conditions are
well fulfilled for Higgs masses m~ & 100 GeV while this
is not the case for small Higgs masses below about 60
GeV. Those Higgs masses are, however, ruled out by ex-
periment [31,32]. Thus we arrive at the following con-
clusion: If the Higgs mass is in the range between about
60 and 100 GeV, the minimal standard model could be
able to account for the survival of the BAU, either within
the formal framework we used and a suitable top quark
mass or by eKects outside this formalism, e.g. , higher
loop contributions. If it is found above 100 GeV, there
is only a little chance to explain the present BAU .within
the MSM since in this case the application of our frame-
work is rather safe and predicts the complete erasure of
the BAU. A possible escape could be an extended model
with two Higgs doublets, following from supersymmetric
models.
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APPENDIX A

In this appendix we describe how we solve numerically
the eigenvalue problems

text of the chiral quark model [33—35] and employed for
the diagonalization of the fermionic fluctuation matrix
[17], which ensures consistency between the calculations
of bosonic and fermionic loop corrections.

The fluctuation vector hobos consists of nine gauge Beld
components a; (a, i = 1, . . . , 3) and four Higgs field com-
ponents p~ (p = 1, . . . , 4) while @Fp contains only three
components which we denote by a0. Hence the eigenvalue
equations read

«)'
2 2+bos@bos = ~ hobos~ +FP@FP —~ @FP (A1) (A2)

for the boson fluctuation and the Faddeev-Popov oper-
ators. We construct a finite basis for the fluctuations
in which the operators can numerically be diagonalized.
Partially this technique has been developed in the con-

y ahab ~2ga0 0 ~

where the matrix elements of the fluctuation matrix jC:bos
are given by [see Eq. (3.21)]

g;. - = b;~b (—)9 + AbAb + 44„4„)+ 2s 'E + 6;~ [e'(B.bA. b) + 2s 'AbBb —AbAb],
'R„=b„[ 8+ 4—A; A, + 44p@p+ s~v~(4p@p —4)]+ g„A, )9;+ 2g„„()9;A;)+ 4(v~ —1)4„4„,

= z@„A; —2s 'g„' 4„A, —g„„(B;C)„),

and the Faddeev-Popov operator by [see Eq. (3.14)] reducible SU(2) representation with generators:

~ab bah( g2 + Ac Ac + 1 C,

+ abc(g Ac) + 2 abcAcg AaAb (A4)

A;(r) = s...n,
1 —A(r)

B(r) C(r)
+(ba, —nan;) + nan, )

For the static classical sphaleron fields we assume the
spherically symmetric hedgehog ansatz:

(0 0 0
0 0 —i
0 i 0

(oo o

$0 —i 0ol
i 0 0 0
0 0 0 0

&0 o o 0)

—i 000

(A6)

4;(r) = 2n;G(r),
44(r) = 2H(r),

(A5) A basis of ("spin") eigenstates
I
SSs) of S2 = Si2+ S22+ Ss2

and S3 is given by

with the given five radial functions A(r), B(r), C(r),
H(r), G(r). In principle one of these functions, e.g. ,

C(r), can be eliminated by a gauge transformation. Al-
though this would lead to a significant simplification of
the numerics we will not perform this step but rather
stick to the general gauge with five functions since our
numerical procedure only works if the classical fields are
continuous functions at zero and infinity, i.e. , that they
take their vacuum values there. This is only possible for
a nonvanishing C Beld, which increases the numerical ef-
fort, but on the other hand allows to check the invariance
of all quantities under gauge transformations.

To exploit the spherical symmetry and to construct
a Bnite basis in which Kbos and KFP can numerically
be diagonalized we consider a four (=3+1) dimensional

(A7)

The indices i, j will always refer to coordinates of
these spin eigenstates, for example, Il 1), i ———i/~2,
Io0),—4 —— 1. Similarly we define a four-dimensional
SU(2) "isospin" representation; the operators Ti, T2, and
Ts and the eigenstates IT Ts) look exactly as the corre-
sponding ones of the spin representation. Here the coor-
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dinates are referred to by the indices a, 6 and p, v. More-
over we use the basis ILLs) of the angular momentum
operator to describe the spherical space dependence of
the fluctuations, with the property

(A8)

The "grand-spin" operator defined by K = 3 + T
L + S + T commutes with the fluctuation operators of
Eq. (Al). Therefore eigenstates of K2 and Ks form a
proper basis for the diagonalization procedure. We cou-
ple the eigenstates IL Ls), IS Ss), and IT Ts) to eigen-
states of K and K3..

'
I
K, Ks., T, J, S, L); =

L3,S3,J3,T3

+z z„'T T, +I, I,'„ss, I
S Ss) o IT Ts) IL Ls) . (A9)

For the vacuum fluctuation operator, i.e., in the case of
no external field, we can solve the eigenvalue problem
analytically; the dependence of the fluctuations on the
radial coordinate r is in this case given by spherical Bessel
functions. We take these solutions as the basis for a
numerical diagonalization of K in the nonvacuum case.
To this end we define states lp; K, Ks, T, J, S, L) by

(rip; K, Ks', T, J, S, L) = JVjl, (pr) (nlK, Ks, T, J, S, L) .
(A10)

Here the momentum p is a continuous variable, and A'

is a normalization factor specified below. In order to get
a finite basis we have to discretize the momentum and
to restrict its allowed values to a Rnite number. With
large enough numerical box parameters B and P we
demand

dr r'»1(p'„r)»1(p' r)

R
d "j.+.(p.")j.+.(p' )

0

(A13)

if the normalization factor is chosen as

2
~, Ij + (p.'&)

I

' (A14)

hence our states are orthonormal:

sion of the usual construction I34] is necessary to ensure
the orthogonality of the basis states; it has already been
used and checked in I35]. We obtain

where
j,(p„'R) = o, p„' & a .„,

I =I(KJ, S) = (,
(A11)

(A12)

(p„;K, Ks, T, J, S, LIp; K', Ks; T', J', S', L')

'4m ~KK' ~Ko Ko ~TT' ~1J' ~ss' 6+I.' ~ (A15)

In the case S = T = 1 we have three discretization con-
ditions for fixed grand-spin K instead of one, yielding
three sets of momenta p +,p, and p . This exten-

For Axed values of K = 0, 1, 2, . . . and K3 — K, , +K
we can write down the following set of basis states for the
fluctuations:

( (rip„', K, K, ;1,J, 1,I.); )
0

for J = K —1, K, K + 1; L = J —1, J, J + 1;n = 1, . . . , N( J);

(
&rlpK; K, K.;1,L„o,I);

)
for L = K —1, K, K + 1; n = 1, . . . , N(K);

o
0

rlpK;K, K, ;0, K, O, K)', )
for n = 1, . . . , N(K);

@FP( ) ao (r) = (rip K, Ks' 1 L 0 L)4 = (rlc Fp)4

for L = K —1, K, K+ 1; n = 1, . . . , N(K); (A16)
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where N(I) is the number of allowed momenta p„', see
Eq. (All). The index n enuznerates the basis states of
the three groups for the fluctuations and of the Faddee�-
vPop� matrix. For K = 0, 1 not all of these basis states
exist . The total number of states for 4b, is given by
3N(K + 1) + 7N(K) + 3N(K —1) for 6xed K ) 1 and
fixed Ks, for K = 1 it is 3N(2) + 7N(l) + N(0) and
3N(1) +2N(0) for K = 0. For the Faddeev-Popov matrix
we have 3N(K) basis vectors for K ) 0 and N(0) for
K = 0.

We show below that due to the spherical symmetry
of the sphaleron the operator Kb, is block diagonal in
A and K3, i.e., basis states with diBerent K or K3 do
not mix. Moreover the blocks for difFerent K3 and the

same K are identical, so that for each K only one matrix
has to be diagonalized, and the resulting eigenvalues are
(2K + 1)-fold degenerate. The dimension of this matrix
is given by the numb er of the above basis states . The
same holds for the Faddeev-Pop ov operator KFp .

The remaining task is to calculate the matrix elements
of the operators in the basis (A16); i.e. , if I@b", ') and

I
4'b", ') are basis states given by Eq. (A16), we need to

know the element (4b", '
IKba, l@b", '). For this purpose

we have to express the matrices in terms of spherical
tensor operators so that the spherical part of the matrix
elements can be evaluated analytically. Apart from S
and T given in Eq. (A16) we need operators P+ and
P—,acting in spin space, which we de6ne as

and

P+ =
( 0 0 0 1

0 0 0 0
0 0 0 0 )

1 O O 0 )

(0 0 0 0)
0 0 0 1
0 0 0 0

&0 1 O 0)

(' ' ' 'l
0 0 0 1
0 0 0 1

( 0 0 1 0 J
(A17)

(0 0 0 —i~
0 0 0 0
0 0 0 0
i 0 0 0

P2
0 0 0 —i
0 0 0 0

( 0 i 0 0 )
P3

( 0 0 0 0
0 0 0 0
0 0 0 —i

( 0 0 ' 0 )
(A18)

It can easily be checked that like S these operators are spherical vector operators, i.e. , [K, , P ] = i s;,kPk+. Moreover
we de6ne two scalar operators by

Is =
( 1 0 0 0

0 1 0 0
0 0 1 0

&0 0 0 0)
0 0 0 0
0 0 0 0

(0 0 0 1)
(A19)

In the isospin space we need the corresponding operators which we denote by Q and Iz, iT.
Using the relations

(I&)v ~ = (IT) ~p = (IT + 'T)p
z,,k =i(Sk);, , s '=i(T), g„.=i(T +Q )„„,

AkAk ——(AkA'kIT' —AkAkTaT, ) ) W~k = (W„"kIz —W„",TiTk)

4 „4„=(@kC'kIT + 4 44'4xZ —4 iC. kTiTk + 4 k@4qk+)„~ )

(P,+),4 = (P„+)4, = (iP„),4 ———(iP„)4, = 8„,
(Q+)a4 (q+)4a (.q —)a4 (.Q —)4a gka

(A20)

we can rewrite the fluctuation matrices:

g, = (IT Is( 0+ 44 „4„)+—sT,TgAkAk + iT, (2IsAkBk + Is(BkAk) + ski~I kiS~]},
= (is(IT + iz)[—0 + A, A; + -'4 4' -+ -'v (4 4 —4)] +is(T + Q )i[A, B, + -'(8;A;)]

+z S 4 (vJI —1) ( @k4' k IT + 4'4 O 4xT —4' i 4' k Ti Tk + 4k 44 Q k )}44

W;~ = ( 2 (W) kIT —W~iT(Tk) (P,+ + iP ) + 4W„"4(Qk + iQk ) (P„+ + iP„)},
W,„=(2 (W"„IT —W„",TkTi)(P —iP, ) + 4W„"4(Q„+ —xqk )(P„+ —iP„)}4

= (isIT( —0 + 4 4 „4„)+ i sT TdA, A,"+ isT i[2A;8, + (B,A;)]}44 .

(A21)

Now we can And matrices Kb, and Kpp with the property

(4" ' I&b
I

+"' ') = (+"" ' I& lilI"' ')

(@Fpl&»l@Fp) = (@Fpl&FFI@pp)

(A22)
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[for the definition of the states ~@b' ) and ~iIIFp) see Eq. (A16)]:

Kb, = ITIs(—O + -4„4„)+ IsT~TdAqAI, + IsT, [2AI zOI, + z(OI, Ai, )] —skI~FkiS~T, + zs(IT + iz)( —O + —A,. A,. )

+zsIT [(4 + svH)4444 + sv~@I C'I —zv~] + zszz [(4 + Iv~)C'~4'k + sv~c'444 —2vH]

+i s (T~ + Q~ ) [A; iO; + 2 (iO A; )] + 4 (v~ —1)(is Qi+, by 44 —is T)Tg@gOi) + IT S+ M„"~

W",T P„—2 (W„", + W,'„)TITI,P,+ + W„"4-(Q„+P+ —Q„P ),
Kpp =isIT ( O+—44„4„)+isT,Td,A;A,"+isT,[2A;iO; + i(O. ,Ak)] .

(A23)

Our next step is to plug in the hedgehog ansatz (A5) so that the matrices Kb, and KFp can be expressed through
the profile functions A, B,C, H, G, and the spherical vector and scalar operators. With the hedgehog ansatz and

0
i = ni &ijknjLI,Br r

we obtain, after a long and tedious calculation,

( O' 2 O L', , 2
Kb~, =

~

— ———+ +G +H + —[(1 —A) +B] ~ITIs
Or2 r Or r2 r2

+—[C —B —(1 —A) ]Is(n. T) + —(1 —A)Is(T L)r' r2
i ( O 2B+—

~

2rC +rC'+ C—
~
Is(n T) + Is[T . (n x L) —i(n. T)]r2 g Or ) r2

+—(1 —A —B + rA'+ BC)(n S)(n. T) + —(rB' —AC)n (S x T) ——(rA'+ BC)(S . T)r2 r2 r2
O' 2 O L' 1 (, C''t

+ — ———+ +
~

(1 —A) +B +
~

is(IT+iT)
Or2 r Or r 2r ( 2

+[H + 2vH(H —1) + 2vHG ]isIT + [G + 2vtI(G —1) + 2v~H ]zsiT + (1 —v~)G is(n T)
1 i ( O+—(1 —A)zs(T+ Q ) . L+

~

2rC —+ rC'+ C
~

isn ' (T+ Q )r2 2r2 ( Or

(A24)

+ is[(T+ Q ) . (n —x L) —in. (T+ Q )] —(1 —v&)HGis(n. Q+) + —(GC+ 2rH')IT (n P+)
1 1——(G+ GA —HB)(T. P ) + (H —HA —B—G)n. (T x P )

1 ] 1+—(G+ GA —HB+ HC —2rG')(n T)(n P ) + (H —HA —B—G)n. (Q+ x P+ —Q x P )r 2r
1——(G+ GA —HB)(Q+. P+ —Q P )2r
1+—(G+ GA —HB+ HC —2rG')[(n Q+)(n. P+) —(n Q )(n. P )],2r (A25)

( O~ 2O L 2 2 2
KFp=~ — + +G +H + —

2Or rOr r r

+—[C —B —(1 —A) ]is(n. T) +r2
i ( O+—

~

2rC +rC'+ C
~

is(—n T) +
Or

[(1-A)'+ B']
I zsIT

2—(1 —A)is(T L)r2
2B.
, is [T (n x L) —i(n T)],

where we dropped the argument r of the profile functions.
Now it is easy to see that all the spherical operators which
turn up in Eq. (A25) are scalar operators in the sense that
they commute with the grand-spin K and K3 so that

[Kb „K ] = [Kb „Ks] = O,

[KFp, K ] =- [KFp, Ks] = O

(A26)

This is the reason why the matrices can be diagonalized
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in each K sector separately, as mentioned above.
For the numerical diagonalization one has to evalu-

ate these matrices in the basis (A16). The radial part
of a matrix element leads to a numerical computation
of a one-dimensional integral. The angular part, how-
ever, can be evaluated analytically. The most direct
and easiest way to do this is to employ the Wigner-

Eckart theorem and perform the summations over the
Clebsch-Gordan coeKcients with the help of a program
like MATHEMATICA. Instead of writing down the com-
plete result of this angular integration we demonstrate
the procedure with an example. We consider the opera-
tor r (GC + 2rH')ll (n. P+) which is part of iCbo, and
calculate the matrix element

(p„;K,Ks, 1, J, 1,LIr (Gc+ 2rH')IT(n P+)Ip;K, Ks, 1,L', 0, L')

= JV JV dr r jL(p r) —(GC+ 2rH')j L (p ) &K, Ks,. 1,J, 1, LIIT(n. P+)IK, ICs,'1, L', O, L') .
0 r (A27)

The integral over the radial coordinate r has to be evaluated numerically. The angular matrix element is independent
of K3 so that we can put K3 to zero. We obtain

&K, 0; 1, 1, 1, LIIT(n. P+)IK, 0; 1,L', 0, I,') =
1

) ) ) ( 1) CJJs, lT3 CLLs, isa CL'L~1, 1T3'
L3 S3 J3 T3 L3 T3

x &1TslITllTs) &1SslP(+
) IOO) &LLsln( ~) IL'Ls) . (A28)

Here the operators P~+
~

and n~ ~
are spherical, not Cartesian components of P+ and n. The matrix elements in

the last line can subsequently be evaluated using the Wigner-Eckart theorem, e.g. ,

&1sslP(+
) I0» = coo,'l &1IIP+II» . (A29)

Hence for the calculation of the matrix element in Eq. (A27) we need to perform a numerical integration, a summation
over Clebsch-Gordon coefBcients, and to know the following reduced matrix elements:

&LIILIIL') = ~LL V'L(L+1)(2L+1)

&LllnllL'& = ~~L —L ~, l(—
&) -'(L+ L'+ 1)

(L —1)~L— for L' = L —1,
&Llln x LIIL ) = & (L+. 2)QL+1 for L' = L+1,

, 0 otherwise,

(SIISIIS') = ~ss V'S(S+1)(2S+1),
(A30)

(SIIP+ IIS'& = —~~3(~sl4 o + ~so&s l),
&SIIP IIS') = —~3(41~s'0 ~so~s'l) .

For the corresponding reduced matrix elements of the
isospin states one simply has to replace S by T and P by

spectral density in a series:

g(E) - g-+).g2-E '"
n=1

(B1)

APPENDIX B

We discuss here the spectral densities g(E) defined in
Eq. (5.1), especially their asymptotic behavior for large
E. It is easy to see that at large E one can expand the

In order to calculate the values of the coeKcients

lim g(E) = g and lim [g(E) —g~tE = g2 (B2)

we use the small t expansion of
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E(t) = Tr(exp[ —tK] —exp[ —tK~ ~]) = )
discrete

levels

= at-'~'+ 6~'~'+ ct'~'+

dE g(E)e

(B3)

The corresponding coeKcients can be easily calculated using gradient expansion, following the renormalization pro-
cedure equations (4.7)—(4.10) one can read off

+ferm =

app = — d r(Cti —4),32vr3~'

ab, = —
( (4+ vH) d r(4tC —4),32~3/2

K,v, d r(C t4 —4),c g

bFp =,&,
d'

[
——,'(E,.;.)'+ —,', (4 to —4)'+ -', (Cte 4)],

bb, =
s(2 d r[ s (E,, ) + —,~(4 —3vtI + vH)(4 4 —4) + 4(8 —3vH + vH)(C "4 —4)],

bt„= d r[-'Ng(N, + 1)(E,, ) + -'N, v, (2v, —vH)(CrtC —4) + -'K, v, (4v, —v~)(4 tC —4)],16~3~2

(B4)

(B5)

where we made use of Eq. (3.8) to eliminate the term (D;4')t(D, 4) in bb, and bf„In Se.c. VII we also need [13]

&bos =
384~3~2

+ —'( —3vH + 93)(C "C)F,,E,, + —'(5v~ —4vH + 5 )[oi, (C'tC)]

+2(vH + 28vH + —)(4?tCr)(D, 4)t(D, C') + s (15vH + 21v~ + 18vH + 48)(@tC —4)

+ s (27vH + 57vH + 36v~ + 144) (C tC —4) + 9(v~ + 2vH + v~ + 8) (C "C' —4)] . (B6)

Using (B3) one can show that

lim +tP(t) = 2~erg

which implies

(B7)

that

R'(E) = g(E),

R(O) = n~ = number of discrete levels,
(B9)

g = 2a/~~ . (B8)

To calculate g2, let us introduce the function R(E) such
nD ——0, nD' ——7, nD' == 1. Using partial integration,
we can write

+tS'(t) —a
t ).

discrete
levels

e + dE[g(E) —g ]e
0

r ) e + [R(E) —g E)e + 2+t dE[R(E) —g E]Ee
t i 0a discrete 0

levels

) (e —1) + 2v t dE[R(E) —g E]Ee
t 0discrete

levels

(B10)
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The first term vanishes with t ~ 0, and for the second
one we can use the same way as above with [B(E)—g E]
E instead of g(E) and find that

From Eq. (Bl1) we can deduce another interesting result;
lim~ [B(E)—g E] = 0 yields

6
lim [R(E) —g E]E =

Using l'Hospital's rule we finally find

g2 ——hm [g(E) —g~]E' =—

(BlI)

(BI2)

dE[g(E) —g ) = lim [B(E)—g E —B(0)]

= —II(0) = —nD . (B13)

Finally we show that the contributions E'. to the
transition rate p are finite in the high temperature limit,
i.e. , q m 0. In the fermionic case we obtain, by partial
integration,

QE[g (E) g ] ln(l + e
—pqmwE) ferxxx

1
1 1

—(B'" (0) —n~' ) ln2 —xImw

0
qmo: 0.

For Esma and Esma we obtainbos FP

~ferxxx(E) ferxxxE
dE

+ pPqm~ E

(»4)

—Pqm~E
E; "[s . .—— +— dE[g" (E) —g' ]ln"

rlrn w

: +— dE[g (E) —g"'"] lnE (finite) . (B15)

The last line holds since this is true for the integral J' with arbitrary upper bound E, and the rest I& vanishes with
growing E due to the behavior of g(E) —g, Eq. (B12).
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