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Curved extended superspace from Yang-Mills theory via strings
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~Received 24 October 1995!

The massless superfield content of four-dimensional compactifications of closed superstrings with exte
~N52, 3, or 4! supersymmetry is derived by multiplying two~N50, 1, or 2! Yang-Mills multiplets. In some
cases these superfields are known, and the low-energy actions are determined from the fact that the co
sator~dilaton! supermultiplets occur quadratically classically. In the other cases these superfields suggest
formulations of extended superspace theories.

PACS number~s!: 11.25.Mj, 04.65.1e, 11.30.Pb
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I. INTRODUCTION

A. General principles

Low-energy actions of string theories can be derived
rectly from field theory by incorporating ‘‘T duality’’ @1# as a
spontaneously broken symmetry@2#. T duality is the symme-
try which, in string theory and its low-energy limit, mixes th
metric tensor with the antisymmetric tensor and, in the h
erotic string, the Yang-Mills vectors.~In string language, it
rotates the left- and right-handed components of the str
coordinatex as a26126, 10110, or 26110 component vec-
tor. AlthoughT duality is normally described as a symmet
of solutions independent of some coordinates, in our desc
tion the maximalT duality can be made manifest in th
action, is broken by the choice of 26- or 10-dimension
hypersurface, and is partially restored for such solutio
similar to a high-energy limit. In this paper ‘‘T duality’’ will
always refer to this extended definition.! Such low-energy
actions are unique up to the usual ambiguities of compa
fication. This method has the advantage of giving the lo
energy information of strings without using the full machi
ery needed for calculating the effects of the massive sta
Another advantage is that the usual four-dimensional sup
field methods can be applied, avoiding questions of wh
formulation ~Ramond-Neveu-Schwarz, Green-Schwa
Berkovits! should be used to describe the corresponding
perstring variables. In particular, it is straightforward to d
termine the off-shell formulation of the low-energy fiel
theory. In this paper we will apply some of the properti
following from T duality to find some of these off-shell su
perspace formulations. The two main principles we will u
are well known general properties of string theory.

~1! The first-quantized Hilbert space of~the massless
fields of! the closed string is the direct product of the Hilbe
spaces of~the massless fields of! two open strings. This fac-
torization holds off shell as well as on shell, so that it appl
to auxiliary fields as well. In the manifestlyT-dual formula-
tion of field theories corresponding to the low-energy limit
superstrings, this follows from an appropriate gauge cho
@2#. In string language, it follows from the assumption of th
existence of a corresponding string field theory, but it a
can be derived from the more general assumption of Bec
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Rouet-Stora-Tyutin~BRST! first quantization of strings,
since it is a direct consequence of the separability of thi
BRST operator in terms of left- and right-handed degrees o
freedom. Furthermore, the massless sector of any open stri
is just a vector or~for open superstrings! vector multiplet in
the critical dimension, which reduces upon compactificatio
to a vector~multiplet! plus matter defined by the compacti-
fication. Unlike supergravity multiplets, whose off-shell con-
tent can be ambiguous because of their reducibility, vecto
multiplets are unambiguous. Thus, the structure of the mas
less sector of the closed string follows from the known struc
ture of the massless sectors of the two open strings, plus t
properties of the compactification. This off-shell field conten
includes not only the fields themselves, but also their gaug
transformations~ghosts! and gauge fixing~antighosts!. This
principle is thus enough to identify the superfield content o
the theory, in terms of prepotentials. It also determines whic
off-shell version of supergravity is used by string theory@3#.

~2! The dilaton multiplet(s) appears homogeneously of or
der 2 in the field theory action@and thus homogeneously of
order 23~12loops! in the field theory effective action#. The
field to which we refer as the ‘‘dilaton’’ is the scalar density
that is invariant underT duality. In the manifestlyT-dual
formulation, this principle is a consequence of the fact tha
the dilaton multiplets are the only densities around with
which to construct actions. Using known properties of the
superspace formulation of these multiplets, this principl
then provides restrictions on the form of the action. If matte
from the Calabi-Yau sector is ignored, it is sufficient to de
termine the low-energy action uniquely. In the cases wher
these prepotentials are familiar~N50,1, and type IIN52!,
we construct these actions explicitly. In the remaining case
~N53,4, and heteroticN52!, this approach gives new off-
shell formulations of extended supergravity. It should be pos
sible to complete these new formulations by incorporatin
the field content of the prepotentials into the constraints o
the curved-superspace covariant derivatives, or more direc
by constructing the corresponding covariant derivatives o
the manifestlyT-dual formulation~as forN50,1, in @2#!.

B. Nature of dilaton

This dilaton coupling in string language also follows from
T duality: SinceT duality mixes all the physical vertex op-
erators, and the dilaton is invariant, the dilaton vertex opera
3324 © 1996 The American Physical Society
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53 3325CURVED EXTENDED SUPERSPACE FROM YANG-MILLS . . .
tor can be expressed in terms of just world-sheet gho
which generate a world-sheet curvature coupling upon be
integrated out. The fact that they couple to ghosts means
the dilaton multiplets are the ones that follow from consi
ering the direct product of the ghost sectors of the two op
string Hilbert spaces.

Such states are a general property of field theory: If a
representation of the Poincare´ group is defined by adding
two commuting and two anticommuting dimensions to t
light cone, then the fields that appear in the minimal gau
invariant action are those that are singlets under the Sp~2!
symmetry that rotates the two anticommuting dimensions.
string language, this is a symmetry that rotates the wor
sheet ghost~s! and antighost~s!. Thus, the dilaton and related
states are those that couple to the Sp~2! singlet combination
of the direct product of open-string vector~multiplet! ghosts
with open-string vector~multiplet! antighosts.

More explicitly, all fields, upon adding extra dimension
to the light-cone representations of SO~D22!, become rep-
resentations of OSp~D21,1u2!. In particular, an OSp vector
Ai contains the physicalD vectorAa and the two ghostsAa .
The direct product of two such vectors is then a tensorTi j .
This decomposes as usual into a supertraceless graded
metric tensor, the supertrace, and a graded antisymme
tensor. These separate tensors include all the usual com
nents and ghosts: The supertraceless symmetric tenso
cludes the metric tensor and its trace and their ghosts,
antisymmetric tensor includes that gauge field and its gho
and ghosts for ghosts. This separation is the one for wh
the ~gauge-fixed! kinetic terms are diagonal@3#. However,
for purposes ofT duality, and for writings models for
strings, it is more useful not to make this separation, sinceT
duality affects only the SO~D21,1! part of each OSp index,
which couples to]x in the string, while the Sp~2! part of
each index couples to the ghostsb,c. Thus, in this OSp lan-
guage it is clear which fields are physical, etc.: The O
supertraceTi i is the physical scalar, which appears when t
action is written in diagonal form, while the Sp~2! traceTa

a
is the T-duality-invariant dilaton, which appears, with
wrong-sign kinetic term because of its ghost coupling, wh
the action is written in strings-model form.

We can then interpret the scalar density we are call
‘‘dilaton’’ as the ‘‘compensating’’ scalar for dilatations.~This
is also the original definition of ‘‘dilaton’’ from before the
days of string theory.! This unphysical conformal mode o
ordinary gravity always appears with negative metric in t
action. Thus, the position of the physical and compensat
fields has been reversed from those normally used in fi
theory @3#. This switch can be performed~or undone! by a
field redefinition; however, a more useful method, especia
in supergravity, is to begin with~super!gravity as conformal
~super!gravity coupled to a scalar~multiplet! with wrong-
sign kinetic term~the compensator!, and couple to further,
physical fields.~In this context ‘‘scalar multiplet’’ refers to
any supersymmetric multiplet containing a scalar.! In this
approach the action is invariant under local We
~super!scale transformations. The normal gauge for this
variance then results from gauging away the compensa
~multiplet!, while the ‘‘string gauge’’ comes from gauging
away some physical field~s!.
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Two features of this dilaton have caused confusion in the
literature:~1! In a Weyl scale gauge, the form of the torsions
and curvatures of the superspace covariant derivatives de-
pends on the type of scalar multiplet that has been gauged
away. This is because this multiplet has been eaten by the
conformal supergravity multiplet, so its fields show up there,
as torsions and curvatures. On the other hand, the type of
off-shell supergravity being used is defined by the type of
scalar multiplet used as the compensator. Although these two
properties are related in the normal Weyl gauge where it is
the compensator that is gauged away, they are not generally
related in the string gauge, where a physical multiplet is
gauged away. In thes-model approach, this means the type
of off-shell supergravity can be determined only by consid-
ering the coupling to the world-sheet ghosts or curvature.~2!
The ‘‘dilaton’’ that counts loops is the compensator, not the
physical scalar.

C. Outline

The general picture is then to consider the physical and
ghost fields of two vector multiplets, take their direct prod-
uct, and identify the physical and ghost fields of the corre-
sponding closed string. Specifically, physical^physical gives
physical, physical̂ ghost and ghost̂physical give ghost,
and ghost̂ antighost–antighost̂ghost gives compensating.
~The other ghost̂ghost combinations give ghosts for
ghosts.! One way to understand this is in terms of first-
quantized BRST: The closed-string BRST operator can be
divided into left-handed and right-handed parts; this analysis
of the Hilbert space then follows from considering states of
different ghost number. The ghost states are also useful be-
cause they give the~linearized! gauge transformations and
gauge conditions. Generally, the fields resulting from these
products are reducible representations: In particular, we will
examine the~super!spin content of the physical fields to
break it into conformal~super!gravity plus matter. We will
denote the closed string resulting from the direct product of
anN5m open string with anN5n open string asN5(m,n),
with a total ofm1n supersymmetries, wherem,n50,1,2.~A
similar notation was used in@4#. N53 vector multiplets can
also be described in harmonic superspace@5#, but it is not
clear what multiplets the ghosts represent, since there is no
multiplet of any kind with only spins,1 for N.2, so we
will not considerm or n53 further here.!

In the following section we will review this method for
the bosonic string. In this case the analysis should be fairly
familiar from BRST quantization of this string@6#, but the
method will be described in a way which is not dependent on
string theory, except for the two assumptions stated above.
~In the bosonic case,T duality is also needed to fix a relative
coefficient.! This will allow a straightforward generalization
to superstrings, while avoiding questions of how such super-
strings are formulated, whether they are covariantly quantiz-
able, whether supersymmetry is manifest, etc.

In Sec. III we review the application of this approach to
the four-dimensional~4D! N51 compactification of the het-
erotic superstring. This has also appeared previously: The
identification of the superfield content of this ‘‘16–16’’ su-
pergravity appeared in@7#, while the complete nonlinear ac-
tion was given in@8#. We applied this method to rederive the
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linearized theory and show the theory described a phys
tensor multiplet coupled to old minimal supergravity in@3#.
~Although it has sometimes been claimed to be instea
chiral scalar multiplet coupled to new minimal supergravi
this is clearly incorrect, since then the antisymmetric ten
would have to be auxiliary, whereas it is actually the usu
physical field that comes from vector^vector, as in the
bosonic case.! The manifestlyN51 supersymmetric 4D
string that directly leads to this description was discover
by Berkovits @9#, and applications tos-model calculations
are being investigated@10#. We also give a derivation of an
explicit expression for the Chern-Simons contribution to t
N51 tensor multiplet field strength as a Chern-Simons s
perform in terms of the potentials. Its existence is guarant
by the background-field method and the existence of high
loop divergences.~A less geometric form, as a parametr
integral of the field equations in terms of explicit prepote
tials, appeared in@8#.!

The next section discusses low-energy limits ofN52
strings. For the type IIN52 string, this approach directly
leads to the superfield formulation originally proposed
Rivelles and Taylor@11#, and effectively extended to the non
linear level by tensor calculus@12#. These results also follow
from the type II Berkovits string@13#, with left- and right-
handedN52 world-sheet supersymmetries.~Applications of
these results to describe the general form of the effect
action, usingN52 superspace methods, are also given
@13#.! The heteroticN52 string implies a new formulation of
N52 supergravity, which we describe only at the lineariz
level.

In the final section we considerN.2 strings, also linear-
ized. The asymmetric type IIN53 string allows not only a
comparison with theN53 harmonic superspace formulatio
of super Yang-Mills theory, but also suggests such a form
lation for supergravity. The results forN54 type II strings
suggest a new formulation ofN54 harmonic superspace.

II. N50

A. Open^open and BRST

The simplest example is the bosonic string in the critic
dimension. The massless states of the open string are
scribed by a vector, whose ghost and antighost are sca
The physical sector is then given by vector^vector, which
decomposes into traceless symmetric metric tensor~confor-
mal graviton!, antisymmetric tensor~‘‘axion’’ !, and the
physical scalar, which appears as the trace of the metric
sor, but which we have separated out:

ALa^ARb5hab1bab1habx.

~To be more precise, we should really write this equation
a basis of first-quantized states.! The off-shell content is de-
scribed by spins 1̂152%1%0, while the on-shell content is
described by helicities~61!1~61!5~62!%0%0.

Similarly, for the ghosts~gauge parameters!,

CL^ARa5ea1za , ALa^CR5ea2za .

The explicit linearized BRST~gauge! transformations are
then given by
ical
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QAa5]al, Q~ALa^ARb!5~QALa! ^ARb1ALa^QARb

⇒Qhab5] (aeb)2
2

D
hab]ce

c,

Qbab5]@azb] , Qx5
2

D
]ae

a.

~Since we are actually constructing the fields in terms of
first-quantized states, these transformations are given by the
first-quantized BRST operator, but are equivalent to the usua
second-quantized expressions, linearized.!

Finally, the dilaton is

CL^ C̃R2C̃L^CR5f.

In general, the~linearized! transformation law of the antig-
host is the ‘‘dual’’ of the transformation law of the gauge
field. ~The two transformations are generated by the same
term in the first-quantized BRST operator.! In this case,

QC50, QC̃5]aA
a.

~Without loss of generality, we use the form of the BRST
transformation resulting from eliminating the Nakanishi-
Lautrup auxiliary field by its field equation in the Fermi-
Feynman gauge.! The transformation of the dilaton then fol-
lows:

Qf5]ae
a.

The dilaton is thus a density under general coordinate
transformations. This is true in string theory if the dilaton is
introduced through coupling to world sheet ghosts, and fol-
lows from classical considerations, as does its invariance un-
derT duality. However, if the ghosts are integrated out at one
~world sheet! loop to give coupling to the world sheet cur-
vature, then the density andT-duality properties of the dila-
ton are also one-loop effects, and depend on the definition of
the measure. Thus, ghost coupling simplifies the dilaton’s
properties by making them classical, and hence measure in
dependent.~In the superstring case, the measure ambiguity is
also resolved by supersymmetry, since superfields satisfying
ordinary chirality conditions and with nontrivialR-symmetry
weight are necessarily densities.!

B. Nonlinearity

By generalizing the gauge transformations to fully nonlin-
ear gravity in the standard way, we find the usual version of
the low-energy effective action, but written in terms of the
T-duality-invariant dilaton@2#, allowing for a cosmological
constantl ~as would appear in subcritical dimensions!:

S52E dDxfS 4h1R1
1

12
HabcHabc1l Df.

~The relative coefficients of these terms can be determined
by T duality. In the supersymmetric cases, they are already
fixed by supersymmetry.! The string coupling appears as the
inverse of the vacuum value of the dilatonf. If all fields
except the vierbeinea

m are represented with flat indices, then
the square root of the string tension appears as the vacuum
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value of the vierbein, since then a spacetime derivative c
appear only in the combinationea

m]m . Heref is related to
the more common formw of the dilaton field used in string
theory by

f5~2g!1/4e2w.

The fact that this is theT-duality-invariant combination fol-
lows from the fact thatf must soak up theA2g measure,
sinceA2g is notT-duality invariant.

At this point we have not yet made thehab1habx sepa-
ration; this we now perform with full nonlinearity by the
Weyl rescaling

gmn→x2gmn.

~We do not scalef, and leavef dependence out of the
metric rescaling, so thatf stays out ofT-duality transforma-
tions. Also,bmn is unscaled to preserve gauge transform
tions.! The result is

S52E dDxH f2x2R1~D21!~f¹x!22@f21¹~f2x!#2

1
1

12
f2x6HabcHabc1lf2J .

In general relativity one normally breaks the scale inva
ance introduced by this rescaling by gauge fixingf5~2g!1/4

~w50!:

S52E dDxA2gH x@2~D22!h1R#x1
1

12
x6H21lJ .

The major difference from the original action is the chang
in sign for the scalar kinetic term: The fact thatx now ap-
pears with the right sign identifies it as the physical scalar.
eliminate all scalar dependence for the Einstein term we c
instead choose the slightly modified gaugef5~2g!1/4x21:

S52E dDxA2gFR1
1

12
x4H21~D22!~¹ ln x!2

1lx22G .
Of course, one can also return to the form of the actio
before Weyl rescaling by instead choosing the string gau
x51.

III. N51

A. Versions of off-shell supergravity

Most of the ambiguity in auxiliary fields in supersymmet
ric theories in four dimensions is related to the choice
representing helicity zero in terms of either scalar or secon
rank antisymmetric tensor fields. In supergravity, this amb
guity is the choice of off-shell representation of compens
tors. ForN51 and 2 supergravity~and probably also 3 and
4!, the only compensator and matter multiplets of interest a
those that can be represented as differential forms in sup
space, which include as potentials the 0-form~scalar multip-
an
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let!, 1-form ~vector multiplet!, and 2-form~tensor multiplet!,
as well as multiplets that are completely auxiliary~3-form
and 4-form!. These multiplets are related by gauge invari-
ance: As in the nonsupersymmetric case, then-form gauge
field ~potential! has an~n21!-form gauge parameter~and
ghost! and ~n11!-form field strength, and both these rela-
tionships are expressed simply in terms of the exterior de
rivative.

They are also related by on-shell duality, which switches
Bianchi identities with field equations: InD dimensions, an
n-form field strength is Hodge-dual to a (D2n)-form field
strength, so ann-form gauge field is dual to a (D2n22)-
form gauge field. Finally, they are related by off-shell dual-
ity, which switches Bianchi identitiesdF50 with gauge con-
ditions d*A50 ~where ‘‘* ’’ is the Hodge dual!: Thus an
n-form gauge field is dual to a (D2n21)-form gauge field.
For example, in the bosonic case, in four dimensions,
0-form ~scalar! is on-shell dual to a 2-form gauge field,
which also describes helicity 0 on shell. However, off shell
the 2-form describes spin 1, and is off-shell dual to the
1-form ~vector! gauge field. Similar remarks apply to the
prepotentials and ‘‘reduced’’ field strengths in the supersym
metric case, although the relations are then not simply in
terms of exterior derivatives.

Explicitly, we have potentials written as superforms
A5dzM`dzN`...A...NM , with gauge transformationsdA
5dl, field strengthsF5dA, and Bianchi identitiesdF50.
After applying appropriate constraints on theF ’s, and solv-
ing them on theA’s, the superforms are reduced, and a new
‘‘ d’’ is defined as the operation that appears in the gaug
transformations, expressions for the field strengths, and B
anchi identities for these reduced forms. For example, for 4D
N51 we have@14#

Rank
Reduced
A

Reduced
dA Superhelicity Superspin

0 f i (f̄2f) 1
4 0

1 V id̄2daV
3
4

1
2

2 fa
1
2(dafa1d̄ȧf̄ ȧ) 1

4
1
2

3 V d̄2V – 0
4 f 0 – –

wheref and fa are chiral, whileV is real. ~Here we use
generic symbols for these reduced forms, since they may b
gauge fields, field strengths, or Bianchi identities. For ex
ample,fa may represent the gauge field for the tensor mul
tiplet, the field strengthWa for the vector multiplet, or the
Bianchi identity for the scalar multiplet.! The superhelicity is
the average helicity of the physical states in the multiple
~with complex conjugate states of the opposite sign superhe
licity !, while the spins of the off-shell degrees of freedom
~physical and auxiliary, but not gauge! are given by the su-
perspin^ the spins of the superspin-0 multiplet. In general,
a superspin-0 multiplet has a chiral scalar field strength
~which also satisfies a type of ‘‘reality’’ condition for even
N!, so it has spins as high asN/2.

From this table we can read the expressions for the~lin-
earized! field strengthsWa of the vector multipletV andG
of the tensor multipletfa , as well as the corresponding
gauge transformations and Bianchi identities.~The field
strengthG of the tensor multiplet is a real linear superfield
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containing the vector field strength of a second-rank an
symmetric tensor gauge field@15#, and should not be con-
fused with the complex linear superfield, which contains
gauge fields@16#.! Furthermore, the field equations follow
from duality ~wherefa→ifa for rank 2!. The actions that
give these field equations are just the integrals of the squa
of the field strengths, overd2u if chiral or d4u if real. Al-
though the tensor and vector multiplets both have supers
1
2 ~they are off-shell dual!, the bosonic components of eve
engineering dimension in one have odd dimension in
other, so the two multiplets are easy to distinguish. They a
differ in their superhelicities on shell.~Superspin 1 describes
the multiplet with maximum spin32, which can be included
only when describingN.1 supersymmetry.!

The only relevant multiplet not included among the form
is supergravity itself. Conformal supergravity is superspi3

2

off shell, described by a vector superfieldUa. Supergravity is
described by starting with the conformal action for a multi
let containing a scalar~e.g., the scalar multipletf or tensor
multiplet fa!, and covariantizing with respect to conforma
supergravity, as the generalization of the bosonic case.
shell, the combination of these two multiplets describes
perhelicity 7

4. The actions for pure old-minimal and new
minimal supergravity are the covariantization with respect
conformal supergravity of the wrong-sign conformal actio

SOM5E d4xd4uf̄f1S E d4xd2ulf31H.c.D ,
SNM52E d4xd4uG ln G.

Unlike the nonsupersymmetric case, the action of sup
gravity coupled to matter cannot always be written as a p
supergravity action plus matter terms after some field red
nition. The action is the covariantization with respect to co
formal supergravity of some conformal matter action, wi
the kinetic term of one~superspin-0! multiplet having the
wrong sign. Like the supersymmetric case, local scale inva
ance can be used to gauge away one multiplet; that multi
is then effectively absorbed into the supergravity prepoten
Ua. For example, we can choose a gaugeG51 for some
tensor multipletG. Conformal supergravity also has a loc
U~1! (R) symmetry@U(N) for N-extended supergravity, a
least forN<4#; combined with scale invariance, it can b
used to instead gaugef51 for some scalar multipletf. As
for the bosonic case, there is freedom in which multiplet
gauge away; unlike that case, the field content of the sup
gravity sector is dependent on what type of multiplet h
been scaled away~scalar or tensor!, and not on what type of
multiplet the compensator is.

B. Low-energy superstrings

The open^ open analysis applied to the bosonic strin
generalizes straightforwardly to the 4DN51 heterotic string.
Our starting point is again the vector multiplets: For th
bosonic open string, the vectorAa just described is now ac-
companied by scalarswI resulting from the compactification
from 26 to 10 dimensions. On the other hand~edness!, we
have the 4DN51 vector multiplet, described by a real su
ti-
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perfieldV with a chiral ghostL ~and its antichiral complex
conjugateL̄! and chiral antighostL̃ ~andLD !:

QV5L1L̄, QL50, QL̃5d̄2d2V.

The physical closed string fields are then a real vector
N51 superfield and real scalar superfields:

V^Aa5Ua , V^ w I5VI .

These prepotentials are in the string gauge~for superscale
transformations!. This means the supergravity prepotential at
this point describes a reducible multiplet, consisting of con-
formal supergravity plus the multiplet that was gauged away.
The decomposition of the reducible multiplet described by
Ua is more subtle than in the bosonic case, but the basic idea
is simple:V describes a vector multiplet with superspin12,
while Aa describes a vector of spin 1; taking their direct
product gives superspins12^153

2%
1
2, where superspin32 de-

scribes the irreducibleN51 conformal supergravity multip-
let, while this superspin12 describes a tensor multiplet. A
similar analysis of superhelicities gives the analogous result
~63

4!1~61!5~67
4!%~61

4!.
The ghosts are a chiral vector and a real scalar superfield,

plus the usual for the compactification vector multiplets:

L ^Aa5La , V^C5K; L ^ w I5L I ;

QUa5~La1L̄a!1]aK; QVI5L I1L̄I .

The compensator~dilaton superfield! is a chiral scalar super-
field ~which identifies this supergravity as old minimal!:

L ^ C̃2L̃^C5f,

Qf5]aL
a1d̄2d2K.

This information is enough to write the low-energy action
for the 4DN51 heterotic string in the absence of Calabi-Yau
matter. The procedure is to write a superconformally invari-
ant action for the tensor~matter! multiplet and chiral scalar
~compensator! multiplet, and then couple to conformal super-
gravity by general covariantization. It is useful to take the
conformal weight of the compensator into account by con-
sidering also the cosmological term. This term is generally
written as the chiral integral off3. However, for string pur-
poses it is more convenient to make a field redefinition so
that it appears asf2; this means thatf now has conformal
weight 3

2. The field strengthG̃ of the tensor multiplet has
weight 2, as fixed by the antisymmetric tensor gauge field
bab it contains.~This field strength also contains the contri-
bution from the vector multiplets@8#; see the following sub-
section.! The fact that the dilaton appears to the same power
~now 2! in both classical terms, together with superconfor-
mal invariance~which fixes the scale weight of both terms!,
now fixes theG̃ dependence:

S5E d4xd4uf̄fG̃21/21S E d4xd2u
1

2
lf21H.c.D .

This is the casen52 1
2 of the ‘‘16–16’’ supergravity action

considered in@7# ~with the above field redefinition!. This
particular coupling tof has the unique property that the
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supercurrent~defined by varying the action with respect t
Ua!, in the string gaugeG̃51, has no spinor derivatives:

Ja5
1
2 f̄ i¹J af.

~This is the casen50, ñ521
2 in the language of@17#.! By

using the appropriate covariantization~i.e., choice of vector
connections!, the current is also the field equation; the resu
ing simple equation¹a~ln f2ln f̄!50 appears naturally in
thes-model approach@10#. We can now choose one of two
scale gauges: The string gaugeG̃51, or the standard gauge
f51. The string gauge always gauges away the antisymm
ric tensor gauge field, so that it is absorbed into the sa
prepotential as the metric tensor~as follows from the open̂
open argument, or the equivalentT duality!. Note that, if this
action is expanded about the vacuum values of the fieldsf
appears with the wrong sign~compensator!, whileG appears
with the right one~matter! @7#.

While the reald4u term is generally written with a factor
of sdet(EA

M)21 to make it a density, this real factor canno
appear in the chirald2u term, wheref2 acts as the corre-
sponding density. In fact, all truly chiral superfields are su
densities, with density weight corresponding directly to co
formal weight. This simplifying feature of chiral integrals is
one reason why their component evaluation is simpler th
integrals over full superspace. A similar procedure can a
be applied to nonsupersymmetric theories, with gravity wr
ten as conformal gravity plus compensating scalar: By wr
ing all fields as densities, all factors ofA2g can be removed
from the action.~A similar procedure was applied in the
string example of Sec. II B.!

The compactification-dependent massless states can ea
be added. Assuming that the compactification manifold h
no isometries, all moduli are described by scalar fields. As
well known, N51 scalar multiplets with general Yukawa
couplings are described by chiral scalar superfieldsfI . Fur-
thermore, such fields must have conformal weight zero
allow 4D s-model type actions ~with invariances
scalar→scalar1constant and nonlinear generalizations!. This
means the action must be of the form

S5E d4xd4uf̄fG̃21/2A~f I ,f̄ I !

1F E d4xd2u
1

2
f2B~f I !1H.c.G

for some functionsA andB ~in terms offI that are cova-
riantly chiral with respect to the Yang-Mills fields as well a
supergravity!.

C. Super Chern-Simons forms

To cancel the usual one-loop anomalies, the tensor m
tiplet gauge transformation and field strength are modifie
This modification can be described very simply in supe
space. A related simpler problem, which we consider first,
to write a simple geometric form of the 4DN51 super Yang-
Mills action as ad4u integral. The first thing to consider is
the Chern-Simons superform, defined as the natural gener
zation of the bosonic expression to curved space@18#:
t-

et-
e

t

h
-

an
so
t-
t-

sily
as
is

to

ul-
d.
r-
is

ali-

XMNP5 1
2A[M]NAP)1

1
3A[MANAP) ,

XABC5eA
MeB

NeC
PXMNP

5 1
2A[AdBAC)2

1
4A[ATBC)

DAD1 1
3A[AABAC) ,

wheredA is the derivative covariantized with respect to just
supergravity and not super Yang-Mills invariance, and the
usual grading sign factors are implicit.

This form is defined in arbitrary superspaces; an interest-
ing set of special cases is those relevant for the classica
superstring, namelyN51 superspace inD53,4,6,10. We
note that there the action~in a notation suitable for all di-
mensions!

SCS5tr E dDxd2~D22!ugaabXaab ,

which is the analog of the usual 3D bosonic Chern-Simons
action with the Levi-Civita tensor replaced with a gamma
matrix, is dimensionless in all these cases. In particular, in
D53 it gives a geometrical form of the usual super Chern-
Simons action@18#. Furthermore, if we treatAa as indepen-
dent fromAa , then variation ofAa imposes the usual con-
ventional constraintgaabFab50 in arbitrary dimensions,
which makes it a sort of first-order action.~In D53 this is
the only constraint.! This is analogous to the harmonic su-
perspace formulation ofN53 super Yang-Mills theory@5#,
where also one of the fields appears as auxiliary in a Chern
Simons action because of a nonvanishing~constant! torsion.

In D54 this is the usual super Yang-Mills action, if we
impose the representation-preserving constraints by hand o
by Lagrange multipliers. This is easy to verify explicitly for
the linearized action. For the fully nonlinear action, this is
most easily seen by looking at the field equations: Including
the conventional constraint coming from varyingAa as de-
scribed above, we have

dSCS5tr E dDxd2~D22!ugaab~dA[a!Fab) .

After solving the representation-preserving constraint, as

Aa5~e2g5Vdeg5V!a ,

we can write

dAa52~DV!~g5¹!a ,

where

DV[e2VdeV

and¹ is the Yang-Mills covariantized derivative. The field
equation is then

~g5g!aab¹aFba50.

Using the identity

Faa5gaabW
b,

which follows from the constraints, this can be written in the
usual form
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¹g5W50.

~The Bianchi identity onW is ¹W50.!
Another simple way to evaluate this expression is in t

chiral representation, whereAȧ50, and only the (Aa)
2 term

survives. In that representationAa;d̄ȧAa andWa;d̄2Aa ,
so one immediately obtains*d2uW2.

As a first-order action,Aa contains the Yang-Mills field
strength~at orderuū! as an independent auxiliary field, s
this action contains the usual first-order action for nonsup
symmetric Yang-Mills theory.~Similar remarks apply to the
harmonic superspace formulation ofN53 super Yang-Mills
theory.! The fact that such an expression exists for theN51
super Yang-Mills action as ad4u integral in terms of poten-
tials AA without explicit prepotentialsV is why this action
gets renormalized at more than one loop, since in the ba
ground field method only such terms can occur in the effe
tive action. Such an expression does not exist forN52 super
Yang-Mills theory, which is why it is finite at two loops and
higher.

The generalization of the tensor-multiplet field strength
now easy to guess:

H̃ABC5HABC1XABC ,

whereHABC is the usual super 3-form field strength for th
tensor multiplet. In particular, we have

G̃5G1tr gaabXaab ,

from which it follows that

~ d̄21R!G̃;tr W2

by calculations similar to those that showed the equivalen
of the Chern-Simons form of the Yang-Mills action to th
usual *d4xd2uW2 form. ~Thus, in the string gaugeG̃51,
R;trW2.!

IV. N52

A. Smaller superspaces

As for N51, all the important multiplets except confor
mal supergravity are described by superforms. Of the th
propagating superforms, two can best be described in slig
different versions of harmonic superspace@19#, the third in
chiral superspace:

~1! The simplest case is vector multiplets. Conformal a
tions can be written with the chiral field strengthsWI as
integrals over chiral superspace:

SVM5E d4xd4u f ~WI !1H.c.,

with the only requirement thatf be homogeneous of degree
for invariance underR symmetry, which implies conformal
symmetry.~R symmetry transformsu i→ei zu i ,WI→e2i zWI .!
For example, the superconformal action for a single vec
multiplet ~Abelian or non-Abelian! is

S;tr E d4xd4u 1
2W

2.

~2! For tensor multiplets, we introduce as comple
bosonic coordinates the SU~2! doubletui parametrizing the
he

o
er-

ck-
c-

is

e

ce
e

-
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htly

c-

2

tor

x

space CP~1!, and actions have not only SU~2! invariance but
also the local complex scale~projective! invarianceui→lui ,
which allows us to choose the gaugeui5(1,z). Integration
overu is over a contour asruidu

i , which becomes the usual
rdz in this gauge. A tensor multiplet has a finite number of
fields, and the explicitu dependence of its field strength is
simply

L11~u!51
2u

iujLij .
One then defines the SU~2!-invariant spinor derivative

d1a5uidia , d̄1ȧ5uid̄iȧ
with respect to whichL11 is defined to be ‘‘analytic,’’

d1L115d̄1L1150,
which implies the usual tensor-multiplet Bianchi identity

d( iaL jk)5d̄( i ȧL jk)50.
This description is not only sufficient for the usual harmonic
superspace manipulations, but the only one that manifests
conformal invariance, which is particularly important for
coupling to conformal supergravity. The natural form of su-
perspace integration is then@20#

E d4u\[ R uidu
iE S v idu i

v ju
j D 4.

The u integral isv independent if the integrand is analytic.
~For example, we can pickv i5d i1 to get a ‘‘twisted chiral’’
integral.! Superconformal actions for tensor multipletsL 11

I

are then

STM5E d4xd4u\ f ~L11
I !,

where f is homogeneous of degree 1 for projective invari-
ance, which implies superconformal invariance.

~3! For scalar multiplets, we use also the complex conju-
gate coordinatesūi , and constrain both by the condition
ui ūi51. The local invariance is then only the U~1! phase
transformation onu, so the space is SU~2!/U~1! @which is
effectively the same as CP~1!, but an invariance has been
replaced by a constraint#. Integration*du over u and ū is
now defined to pick out the SU~2! singlet in terms ofu-ū
dependence. Use ofū allows us to define the generators of a
second~broken! SU~2!,

d115ui
]

]ūi
, d225ūi

]

]ui
, d125ui

]

]ui
2ūi

]

]ūi
,

and to write the other half of the spinor derivatives as

d2a5ūidia , d̄2ȧ5ūid̄iȧ .
The concept of analytic superfields can then be extended:

d1L~n!5d̄1L~n!5~d122n!L~n!50.
However, such superfields can in general contain an infinite
number of auxiliary fields. The superspace integration that
includes*du is

E d4u][EduE~ūidui!4.

We can also write theu integration as

E duf[@12~d11!21d11#f when d12 f50,

0 otherwise,
where~d11!21 is defined as 0 on states annihilated byd22 ,
and the inverse ofd11 otherwise.@This operator can be de-
fined for general representations of SU~2!, and is also useful
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in first-quantized BRST symmetry@21#.# When applying this
operator on analytic superfields, it is useful to remember th
L (n) ~for n.0! contains only isospins>n/2 @with respect to
the second SU~2!#. The scalar multiplet has~d12! U~1!
chargen50, and its superconformal actions are

SSM5E d4xd4u] f JK~LI !~d11L
J!~d11L

K!

for U~1! invariance, which implies superconformal invari
ance.

B. Versions of off-shell supergravity

These actions generalize directly to curved superspace
covariantizing the definition of harmonic and chiral supe
fields: Just as for chiral integrals inN51 superspace, there is
no factor involving the determinant of the vielbein.

As a consequence of simple dimensional analysis, all t
classical terms are integrals over these smaller superspa
Furthermore, the conformal weights of vector and tens
multiplets are determined by their gauge fields:W has weight
at

by
-

he
ces.
or

1, while Li j has weight 2. More generally, superconforma
weights of~twisted! chiral superfields are not arbitrary: The
representation of superconformal symmetry in chiral supe
space @22# implies that ~42N!3~conformal weight!
5N3@U~1! weight#, and that the chiral superfield have no
external isospin or undotted spinor indices. This also follow
from considering the superconformal transformation ofdia ,
using the fact that the chirality conditiond̄i ȧ50 must be
preserved. From similar considerations of the analyticit
constraintuidia5ui d̄i ȧ50, we find that analytic superfields
must have no external SU~2! or Lorentz indices, their~R-
symmetry! U~1! charges must vanish, and their conforma
weights are just their order inu2ū @the d12 U~1! charge#.
This is consistent with what we know for the tensor multiple
field strength ~and all functions of tensor multiplet field
strengths!, and implies the scalar multiplet field strength ha
vanishing conformal weight, as appropriate for a field tha
can be used to describe 4D nonlinears models.

The table forN52 superforms is
Rank ReducedA ReduceddA Superhelicity Super~iso!spin

0 L d11L 0 0~1,2,...!
1 L11 *du(d̄2)

2L11
1
2 0~0!

2 F (d1)
2F1(d̄1)

2F̄ 0 0~0!
3 L11 d11L11 – 0~1,2,...!
4 L1111 0 – –
F is chiral, while theL ’s are analytic, with U~1! weight as
indicated by the ‘‘1’’ signs.

While all these multiplets~except the trivial 4-form! de-
scribe superspin 0, the vector and tensor multiplet each
scribe a single superisospin~0!, while the others describe an
infinite number~1,2,...!. Thus the vector and tensor multip
lets each can be written in terms of a single ordinary sup
field, and are the only ones relevant for theN5~1,1! case,
while the scalar multiplet will be important forN5~2,0!. The
table gives our previous expression for the field strength
the tensor multiplet with

Li j5di j
2F1d̄i j

2 F̄,

while the~off-shell dual! relationship for the vector multiplet
is that we can write~in a particular nonderivative gauge!

A115~d1!4 1
2 ūi ū jV

i j , W5d̄4 1
2di j

2Vi j .

@~d1!4 means (d̄1)
2(d1)

2.# The Yang-Mills field appears in
the covariant derivative¹115d111A11 @19#.

The conformal supergravity multiplet~superspin 1, su-
perisospin 0! can also be described by a single ordinary s
perfield. ~Superspin 1/2 is now the spin-3/2 multiplet, ex
cluded except forN.2 supersymmetry.! The local U~1! R
symmetry of theN51 case is now generalized to U~2!. Vari-
ous sets of auxiliary fields for 4DN52 supergravity have
appeared in the literature. They all use the vector multiplet
a compensator for scale and U~1! transformations, but differ-
de-

-
er-

of

u-
-

as

ent versions of the scalar multiplet as a compensator for
SU~2! transformations@12,19#: ~1! the ‘‘nonlinear’’ tensor
multiplet, ~2! a partly on-shell version of the scalar multiplet,
~3! the tensor multiplet, and~4! the harmonic scalar multip-
let. The former two do not have a formulation in terms of
unconstrained superfields~prepotentials!, and so are not of
general use, while the latter two are cases of theN52 super-
forms just described. Since the scalars of the tensor multiplet
form an isovector of SU~2!, while those of the scalar multip-
let form an isospinor, the former spontaneously breaks
SU~2!→U~1!, while the latter breaks SU~2! completely. They
are therefore the analogs of the new minimal and old mini-
mal cases ofN51 supergravity. The actions in these two
cases are

S‘ ‘OM’’ 5E d4xd4u 1
2W

21E d4xd4u]
1
2 ~d11L !2,

S‘ ‘NM’’ 5E d4xd4u 1
2W

21E d4xd4u]L11 ln L11

1lS E d4xd4uFW1H.c.D .
The cosmological term can also be written as*d8uVi j Li j , or
as*d4u]A11L11 .
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C. N5„1,1…

For theN52 type II string, we consider the direct produc
of 2 N51 vector multiplets. The physical superfield is the
just a realN52 scalar superfield:

V~u1,ū1! ^V~u2,ū2!5U~u1,ū1 ,u2,ū2!.

@The6 indices are now for the physical SU~2!; we have not
yet introduced the harmonic coordinatesui .# The superspin
t
n

analysis is now1
2^

1
251%0 ~in terms ofN51 superspins in

the left half of the equation,N52 in the right!, describing
again conformal supergravity plus a tensor multiplet. The
corresponding superhelicity analysis is~61

2!1~61
2!

5~61!^02, where the two superhelicities 0 describe a single
tensor multiplet~since it is a complex representation!.

The use of a general, real, scalar, isoscalar superfield to
describeN52 supergravity@11# follows from harmonic su-
perspace@19# if the analyticity condition on the covariant
derivative is solved in a globally supersymmetric way:
@d1a ,¹11#50, ¹115d111 1
2H11

ab ]ab1H111
a d2a1H1111d22

⇒¹115d111
1

24
Cabgd$d1a ,@d1b ,$d1g ,@d1d ,Ud22#%#%

5d111 1
2 @~d1!2abU#]ab1@~d1!3aU#d2a1@~d1!4U#d22 .
s

f

@For convenience, we have used 6D spinor notation, wherea
is an SU* ~4! index, which includes botha andȧ, and]ab is
the vector derivative. The other possible superfields in¹11

can be completely gauged away by nonderivative transfo
mations.#

The ghosts, being products of real superfields with chir
ones, are chiral in only half of theu coordinates:

L~u1! ^V~u2,ū2!5C1~u1;u2,ū2!,

V~u1,ū1! ^ L~u2!5C2~u1,ū1 ;u2!.

The resulting gauge transformation is

QU5C11C̄11C21C̄2 .

The compensators are chiral and twisted chiral superfiel
~and their complex conjugates!:

L~u1! ^ L̃~u2!2L̃~u1! ^ L~u2!5W~u1,u2!,

L̄~ ū1! ^ L! ~ ū2!2L! ~ ū1! ^ L̄~ ū2!5W̄~ ū1 ,ū2!,

L~u1! ^ L! ~ ū2!2L̃~u1! ^ L̄~ ū2!5L11~u1,ū2!,

L̄~ ū1! ^ L̃~u2!2L! ~ ū1! ^ L~u2!5L̄11~ ū1 ,u2!.

While the chirality condition onW is covariant with respect
to the SU~2! symmetry that mixes the 2u’s, the twisted
chirality does not seem to be, until we realize thatL11 and
L̄115L22 form 2 components of an isotriplet:

d( iaL jk)5d̄( i ȧL jk)50⇒d1aL115d̄ȧ
2L1150.

The fact thatL12 does not appear explicitly in the direct
product construction is a reflection of the ‘‘mirror’’ symme-
try that implies the invariancedL125const in the string
gauge@13# ~see below!. Of the cases we consider, this set o
compensators has the only nontrivial superhelicity calcul
tion, since in all other cases at least one of the Yang-Mil
ghosts is forN50 or 2, both of which have superhelicity 0.
r-

al

ds

f
a-
ls

~For superspin, all ofN50,1,2 have superspin 0.! The analy-
sis in this case is~61

4!1~61
4!5~61

2!^02, the vector and ten-
sor multiplets. Their gauge transformations are

QW5~ d̄2d2!2C11~ d̄2d2!1C2 ,

QL115~d2d̄2!2C11~ d̄2d2!1C̄2 ,

where the1 derivatives here involve onlyd1 and its com-
plex conjugated̄1, and similarly for the2 derivatives.

This theory therefore consists of conformal supergravity
coupled to a physical tensor multipletLi j8 and tensor and
vector compensator multipletsLi j andW. In the string gauge
we gauge away the physical tensor multipletLi j8 as Li j8
5d i j . Gauging away the 2 components not proportional to
di j is accomplished by using the local SU~2! symmetry of
conformal N52 supergravity: We rotate the isovector to
point in a fixed direction. The remaining component is
gauged to 1 by Weyl invariance. In this gauge we have two
U~1!’s remaining: one the original one of SU~2!^U~1!, and
the second from breaking SU~2!→U~1!. In this gauge both
physical multiplets,~conformal! supergravity and the tensor
multiplet, are contained within the prepotentialU. The gauge
more commonly used in supergravity is to gauge away as
much of the compensators as possible, by the condition
W51 @scale and U~1!# and Li j;d i j @again breaking
SU~2!→U~1!#, leavingL12 unfixed.

As in the N51 heterotic case, this information on the
multiplet structure, together with the fact that in string theory
compensators appear only quadratically in the low-energy
action, is sufficient to determine this action in the absence o
compactification matter:

S5E d4xd4u\

1
2L11

2

L118
1E d4xd4u 1

2W
2

1lS E d4xd4uFW1H.c.D ,
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whereL11 andL118 are now again the harmonic superfield
Note that the contour integral is particularly simple in th
basisui5(1,z), where the string gauge is simplyL118 5z.
We then just integrate around the pole atz50. This also
means the action has an invariance@13#

dL11;L118

~i.e., dL11;z in the string gauge! if the cosmological term
is dropped. This symmetry is a consequence of the mir
symmetry that relates type IIA and IIB strings, by switchin
tensor and vector multiplets. Since each vector multiplet
only two scalars, this allows only two of the three scalars
each tensor multiplet to appear in the action without deri
tives. In the string gauge this is the standard invarian
dLi j5const3di j .

Compactification matter can be added in a way similar
theN51 case. Again the compactification-dependent ma
less states are described by supermultiplets containing
lars. For these to have general self-interactions, they m
couple to the compensators. As described in the previ
subsection, the self-interaction terms of vector and ten
multiplets consist of only a chiral term containing just vect
multiplets, and a ‘‘harmonic analytic’’ term containing jus
tensor multiplets. These compactification multiplets mu
therefore themselves also be vector and tensor multip
Unlike N51, this matter must be expressed as ratios of m
ter field strengths to compensator field strengths, to ob
dimensionless scalars:

S5E d4xd4u\

1
2L11

2

L118
AS L11

I

L11
D

1F E d4xd4u
1

2
W2BSWI

W D 1H.c.G ,
s.
e

ror
g
has
of
va-
ce

to
ss-
sca-
ust
ous
sor
or
t
st
lets.
at-
tain

where we now have dropped the cosmological term to main
tain the symmetry@13#

dL115kL118 , dL11
I 5kIL118

related to mirror symmetry, for arbitrary constants (k,kI).
~For contributions to the string effective action from loops
and high energy, see also@13#.!

D. N5„2,0…

It should be possible to extend our arguments to close
strings that can be represented as direct products of ope
N52 strings with other open strings. We then need to repre
sent the vector multiplet and its ghost multiplet inN52 su-
perspace. The simplest way is to use harmonic superspac
since representing these ghosts as an analytic harmonic s
perfield avoids ghosts-for-ghosts. The linearized form of the
BRST transformations for this vector multiplet~as follows,
e.g., from the superform analysis above! is

QA115d11L, QL50,

QL̃5~d1!4~d11!22~d22!2~d11A11!.

BRST invariance of the gauge-fixed vector-multiplet action

E d4xd4u\@ 1
2A11hA111L̃~d11!2L#

follows from applying the identities
~d11!2~d11!22~d22!2d11L115~d22!2d11L11 , ~d1!4~d22!2L115hL11
for an arbitrary analytic superfieldL11 .
The first case is the heteroticN52 string. The physical

superfield is the direct product of a real analytic harmon
superfield with a vector:

A11 ^Aa5U11
a .

~As for theN51 heterotic string, the vector multiplets aris
ing from the 26→10 compactification are rather trivial as fa
as the open̂ open analysis is concerned, so we will no
repeat it here.! As for theN52 vector multiplet, this multip-
let has only a finite number of fields: Just as we can expre
A11 in terms of the ordinary superfieldVi j , we can also
write U 11

a in terms of an ordinary superfieldUi ja . The su-
perspin analysis is then 0̂151, which implies this super-
field is the irreducible conformal supergravity multiplet of
ic

-
r
t

ss

f

shell. This would imply a new formulation of conformal su-
pergravity, since previously the physical antisymmetric ten-
sor gauge field was not contained in this multiplet. On the
other hand, the superhelicity analysis is~61

2!1~61!
5~63

2!%~61
2!, describing supergravity plus a vector multip-

let on shell.~A similar multiplet, with the same content on
shell, but with 32132 components off shell instead of 24
124, has been considered by Mu¨ller @23# in a component
analysis derived from torsion constraints. A multiplet similar
to Müller’s, obtained by coupling the usual conformal super-
gravity to a vector multiplet with an off-shell central charge
@24#, was proposed in@25#.! This multiplet is thus the oppo-
site of the usual supergravity multiplets, which are reducible
off shell ~conformal supergravity1 compensators!, but irre-
ducible on shell~superhelicity 221

4N!.
We also have the ghosts
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L^Aa5La, A11 ^C5L11

and gauge transformation

QU11
a 5d11L

a1]aL11 .

For the compensator we find

L^ C̃2L̃^C5L,

QL5]aL
a1~d1!4~d11!22~d22!2d11L11 .

The compensator is then the same representation as the
Yang-Mills ghosts, a scalar multiplet with an infinite set
auxiliary fields.

By the same methods as for previous cases, the l
energy action~in the absence of compactification matter! is

S5E d4xd4u#
1
2 ~d11L !2.

Although such an action has been proposed previously,
use a new formulation of conformal supergravity. It is th
natural to assume that the vector multiplets from the 26→10
reduction can be included in a manner similar to that used
N51: modification of the Bianchi identity of a conforma
multiplet. In theN51 case, we had (d̄21R)G̃;trW2. If we
look at theN51 superform table~Sec. III A!, it is clear that
only the tensor multiplet has a chiral scalar Bianchi ident
necessary since the vector multiplet field strength is chi
That field strength is chiral also forN52, but in that case the
only chiral scalar Bianchi identity is for the scalar multipl
~from the table in Sec. IV B!. The result is then

S5E d4xd4u]
1
2 G̃11

2,

where

G̃115d11L1V11 , E du~ d̄2!2V11;tr W2.

~Unlike theN51 case, the Chern-Simons termV does not
allow the existence of higher-loop renormalization of Yan
Mills theory, since the Yang-Mills action is represented
terms of it as an integral over only 6u’s and not the full 8.!

In particular, we can compare the component fields of t
version of conformal supergravity to the usual one, by tak
the direct product in terms of the component field
(Aa ,x ia ,Di j )^Aa : Besides the obvious conformal gravito
and gravitini, we have

Old New

Wab~1! Aa ,Va~0!
G( i j )a~1! G( i j )a~1!
Ga~1! bab~0!
lia~32! xia~12!
D~2! w~0!

where the dimension~conformal weight! is indicated in pa-
rentheses. The auxiliary antisymmetric tensor has been
placed with two gauge vectors, one of which can be ide
super
of

ow-

we
en

for
l

ity,
ral.

et

g-
in

his
ing
s,
n

re-
nti-

fied on shell with the physical vector of supergravity, the
other with that of the vector multiplet. The Lagrange multi-
pliers of dimension32 and 2 have been replaced with fields of
physical dimension: These, together with the tensor gaug
field, which replaces the U~1! gauge field, describe the re-
maining physical degrees of freedom of the vector multiple
on shell. By comparison, the scalar multiplet compensato
lacks a compensator for U~1!, but now it only needs scalars
that compensate SU~2! and scale. Since there is a single
compensator multiplet, this formalism also lacks the dou
bling of dilatons and dilatini for which the Lagrange multi-
pliers were necessary.

V. N>2

A. N5„2,1…

Another interesting type of string can result only from
asymmetric compactification of the type II string, so that
different numbers of supersymmetries survive in the left- and
right-handed sectors~such as with, e.g., asymmetric orbi-
folds @26#!. The physical superfield is a direct product of an
analyticN52 superfield with a realN51 superfield:

A11 ^V5U11 .

This real scalar superfield is thus analytic in the first twou’s
and general in the third. This is the same type of superfiel
used in the harmonic superspace formulation ofN53 super
Yang-Mills theory@5#. However, because of its U~1! weight
and gauge transformations, this superfield contains only
finite number of fields, like the case ofN5~2,0! conformal
supergravity, but unlike theN53 Yang-Mills case. We can
then also express this superfield in terms of an ordinaryN53
superfieldUi j , wherei , j are SU~2! @not SU~3!# indices. The
superspin analysis is now 0̂125

1
2. This is again the confor-

mal supergravity multiplet. The superhelicity is
~61

2!1~63
4!5~65

4!%~61
4!, which is again supergravity plus a

vector multiplet. ~The supergravity multiplet has helicities
running from 2 to12, and the complex conjugate states, while
the vector multiplet runs from 1 to21

2, and complex conju-
gates.! The situation is thus very similar toN5~2,0!.

The ghosts are now

L^V5L8, A11 ^ f5Y11 ,

where L8 has similar properties toU11 @except for U~1!
weight#, andY11 is analytic in the first twou’s but chiral in
the third. While such harmonic superfields have been consid
ered as representations of~conformal! N53 supersymmetry,
they have not been used to describe physical multiplets. Th
gauge transformation is then

QU115d11L81~Y111Ȳ11!.

~We use the harmonic complex conjugate, which preservesu
and ū instead of switching them.!

The compensator is

L^ f̃2L̃^ f5Y

and its gauge transformation is

QY5~ d̄2d2!3L81~d1!4~d11!22~d22!2d11Y11 .
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ThisY is similar toY11 except for U~1! weight. Again, such
superfields have not previously been applied to physical m
tiplets; however, the compensators forN53 supergravity are
expected to be vector multiplets: First, the vector multiplet
the only one with spins no higher than 1, and theN53 con-
formal supergravity multiplet already has the appropriate
of spin 2 and3

2 fields for N53 supergravity. Second, the
vector multiplet’s scalars form a 3 of SU~3!, so a 3%3̄ of
vector multiplets give 3̂ 3̄51%8 ~and 3̂ 353̄%6!, which
are the dilaton~1! and compensators for the SU~3! gauge
fields ~8!. We therefore expectY to describe a new off-shell
representation of vector multiplets.

B. N5„2,2…

The last example we consider hasN54 supersymmetry
from the direct product of twoN52 supersymmetries. The
resulting physical superfield is harmonic analytic in bo
pairs ofu’s:

A11 ^A18185U111818 ,

where we use6 as the indices of the first broken harmon
SU~2! and68 for the second. As in all the other cases, th
physical superfield contains a finite number of physical a
auxiliary fields ~because so do theN50,1,2 vector multip-
lets!. The superspin analysis is 0̂050, again conformal su-
pergravity. The superhelicity decomposition
~61

2!1~61
2!5~61!%02, describing supergravity plus two

vector multiplets.~Supergravity has helicities 2,3
2,1,

1
2,0 and

complex conjugates, while the vector multiplet ha
1,12,0,2

1
2,21 and is a real representation.!

The ghosts are

L^A18185L1818 , A11 ^L85L11 .

Both are similar to the physical superfield, but have differe
weights under the two U~1!’s, resulting in their containing an
infinite number of auxiliary fields. The gauge transformatio
of the physical superfield is
ul-

is

set

th

ic
e
nd

is

s

nt

n

QU1118185d1818L111d11L1818 .

The compensator is

L^ L̃82L̃^L85L9

and its gauge transformation is

QL95~d18!
4~d1818!

22~d2828!
2d1818L1818

1~d1!4~d11!22~d22!2d11L11 .

With regard to earlier difficulties in finding an off-shell
N54 formulation of supergravity, one should take into ac
count that theN54 strings come with particular choices of
matter multiplets: For example, straight dimensional redu
tion of N51 supergravity fromD510 yieldsN54 super-
gravity plus six vector multiplets. On the other hand, th
compensators for 4DN54 supergravity are also six vector
multiplets: The vector multiplet’s scalars form a 6 of SU~4!,
and 6̂ 651%15%20 gives the dilaton singlet, as well as the
Stueckelberg field for the auxiliary vector of conformal su
pergravity that gauges SU~4!. ~As for N52, the six compen-
sating vectors are the physical vectors ofN54 supergravity.!
This doubling ofN54 vector multiplets, with opposite-sign
kinetic terms, is exactly what is needed to avoid the no-g
theorem for the off-shell formulation of theN54 vector mul-
tiplet @27#.
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