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Curved extended superspace from Yang-Mills theory via strings

W. Siegef
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The massless superfield content of four-dimensional compactifications of closed superstrings with extended
(N=2, 3, or 4 supersymmetry is derived by multiplying twdl=0, 1, or 3 Yang-Mills multiplets. In some
cases these superfields are known, and the low-energy actions are determined from the fact that the compen-
sator(dilaton) supermultiplets occur quadratically classically. In the other cases these superfields suggest new
formulations of extended superspace theories.

PACS numbgs): 11.25.Mj, 04.65+e, 11.30.Pb

[. INTRODUCTION Rouet-Stora-Tyutin(BRST) first quantization of strings,
since it is a direct consequence of the separability of this
BRST operator in terms of left- and right-handed degrees of
Low-energy actions of string theories can be derived difreedom. Furthermore, the massless sector of any open string
rectly from field theory by incorporatingT duality” [1]as a s just a vector ofor open superstringszector multiplet in
spontaneously broken symme{]. T duality is the symme-  the critical dimension, which reduces upon compactification
try which, in string theory and its low-energy limit, mixes the to 4 vector(multiplet) plus matter defined by the compacti-
metric tensor with the antisymmetric tensor and, in the hetﬁcation_ Unlike Supergravity mu|tip|et3' whose off-shell con-
erotic string, the Yang-Mills vectorgn string language, it tent can be ambiguous because of their reducibility, vector
rotates the left- and right-handed components of the stringnyltiplets are unambiguous. Thus, the structure of the mass-
coordinatex as a26+26, 10+10, or 26+10 component vec-  |ass sector of the closed string follows from the known struc-
tor. AlthoughT duality is normally described as a symmetry yre of the massless sectors of the two open strings, plus the

of solutions independent of some coordinates, in our descrifs onerties of the compactification. This off-shell field content
tion the. maximalT duality can be made mamfgst n _the includes not only the fields themselves, but also their gauge
?C’[IOH, 'Sf broken dby the ghl?|ce of 2%’ for 10'dr'1mer}S'pnaltransformations(ghosts and gauge fixingantighosts This
S?&Eﬁ;‘:’% aacﬁi’gﬁf]enelfgf/)?irrﬂiiit )I/nrtiwsi;o;\peg"r‘ dil;?ity,:s\?viﬁtlonsprincipIe is thus enough to identify the superfield content of
: : o the theory, in terms of prepotentials. It also determines which
always refer to this extended definitiprSuch low-energy off-shell version of supergravity is used by string thefs

actions are unique up to the usual ambiguities of compacti- @) . .

S . - The dilaton multiplet(s) appears homogeneously of or-
flcatlon._ This mgthod ha; the qdvantag_e of giving the IF)W'der 2 in the field theory actiofand thus homogeneously of
energy information of strings without using the full machin-

. . order 2<(1—loops in the field theory effective actignThe
ery needed for caICL_JIatmg the effects of th_e massive Stateﬁ'eld to which we refer as the “dilaton” is the scalar density
Another advantage is that the usual four-dimensional SUPeli + is invariant undei duality. In the manifestlyT-dual

;gg]urr;itgr?ds(éz%gﬁ d?ﬁgtii‘_ggﬁ\':;? qugsrggﬂfs?:fhxvvgg}ormuIation, this principle is a consequence of the fact that
' 'the dilaton multiplets are the only densities around with

Berkoyﬁs} ShPUId be used FO descp_be the_ corresponding SUyhich to construct actions. Using known properties of the
perstring variables. In particular, it is straightforward to de-

) : : ) . superspace formulation of these multiplets, this principle
termine the .Oﬁ shell forml_JIatlon of the low-energy f|e_|d then provides restrictions on the form of the action. If matter
theory. In this paper we will apply some of the properties

following from T duality to find some of these off-shell su- from the Calabi-Yau sector is ignored, it is sufficient to de-

) ; o X termine the low-energy action uniquely. In the cases where
perspace formulations. The two main principles we will use,

are well known general properties of string theor: these prepotentials are familig=0,1, and type IIN=2),
(1) The ﬁrst-g(]]uantize% Iﬂilbert space %fhe n}lléssless we construct these actions explicitly. In the remaining cases

i o= . . (N=3,4, and heterotitN=2), this approach gives new off-
geladsezbotgﬁecﬁizzg;ngéﬁj;h;ﬁ%egt grr]ogtl:g Zf'l'tr?iz If-glct?ert shell formulations of extended supergravity. It should be pos-
paces P 9 ; . _sible to complete these new formulations by incorporating
torization holds off shell as well as on shell, so that it applie

t0 auxiliary fields as well. In the manifestly-dual formula- Sthe field content of the prepotentials into the constraints on
tion of fielgj/theories corrés onding to the low-eneray limit of the curved-superspace covariant derivatives, or more directly

) . P 9 . gy by constructing the corresponding covariant derivatives of
superstrings, this follows from an appropriate gauge choic

[2]. In string language, it follows from the assumption of the(lnrhe manifestlyT-dual formulation(as forN=0,1, in[2)).
existence of a corresponding string field theory, but it also
can be derived from the more general assumption of Becchi-

A. General principles

B. Nature of dilaton

This dilaton coupling in string language also follows from
T duality: SinceT duality mixes all the physical vertex op-
*Electronic(interne} address: siegel@insti.physics.sunysb.edu erators, and the dilaton is invariant, the dilaton vertex opera-
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tor can be expressed in terms of just world-sheet ghosts, Two features of this dilaton have caused confusion in the
which generate a world-sheet curvature coupling upon beinditerature:(1) In a Weyl scale gauge, the form of the torsions
integrated out. The fact that they couple to ghosts means thand curvatures of the superspace covariant derivatives de-
the dilaton multiplets are the ones that follow from consid-pends on the type of scalar multiplet that has been gauged
ering the direct product of the ghost sectors of the two openaway. This is because this multiplet has been eaten by the
string Hilbert spaces. conformal supergravity multiplet, so its fields show up there,

Such states are a general property of field theory: If anyas torsions and curvatures. On the other hand, the type of
representation of the Poincaggoup is defined by adding off-shell supergravity being used is defined by the type of
two commuting and two anticommuting dimensions to thescalar multiplet used as the compensator. Although these two
light cone, then the fields that appear in the minimal gaugeproperties are related in the normal Weyl gauge where it is
invariant action are those that are singlets under th@)Sp the compensator that is gauged away, they are not generally
symmetry that rotates the two anticommuting dimensions. Inelated in the string gauge, where a physical multiplet is
string language, this is a symmetry that rotates the worldgauged away. In the-model approach, this means the type
sheet ghos$) and antighogs). Thus, the dilaton and related of off-shell supergravity can be determined only by consid-
states are those that couple to thé2singlet combination ering the coupling to the world-sheet ghosts or curvat(®e.
of the direct product of open-string vectgnultiplet) ghosts  The “dilaton” that counts loops is the compensator, not the
with open-string vectotmultiplet) antighosts. physical scalar.

More explicitly, all fields, upon adding extra dimensions
to the light-cone representations of @D-2), become rep- C. Outline
resentations of O$P —1,1J2). In particular, an OSp vector

A; contains the physicab vectorA, and the two ghost, . ghost fields of two vector multiplets, take their direct prod-

m:as (y;igtrﬁ,;ggggtg Sgga?ijr?tho Vae(s:tjopirﬁ;:;gsz zerr:?j%r d Syuc_t, and identify the physical and ghost fields of the corre-
. 4 onding closed string. Specifically, physieahysical gives

metric tensor, the supertrace, qnd a graded anusymmetrﬁysical, physicabghost and ghostphysical give ghost,
tensor. These separate tensors include all the u_suaI compQ 4 ghosbantighost—antighostghost gives compensating.
nents and ghos.ts: The supert.raceless symme_trlc tensor Ifrhe " other ghostghost combinations give ghosts for
cIuQes the metrlc ten;or and its trace anq their ghosts, th(j’nosts) One way to understand this is in terms of first-
antisymmetric tensor includes that gauge field and its ghosﬁuantized BRST: The closed-string BRST operator can be
and ghosts for ghosts. This separation is the one for whicRjvided into left-handed and right-handed parts; this analysis
the (gauge-fixed kinetic terms are diagondB]. However,  of the Hilbert space then follows from considering states of
for purposes ofT duality, and for writingo models for  different ghost number. The ghost states are also useful be-
strings, it is more useful not to make this separation, since cause they give thélinearized gauge transformations and
duality affects only the S@ —1,1) part of each OSp index, gauge conditions. Generally, the fields resulting from these
which couples togx in the string, while the Si@) part of  products are reducible representations: In particular, we will
each index couples to the ghosis. Thus, in this OSp lan- examine the(supejspin content of the physical fields to
guage it is clear which fields are physical, etc.: The OSpbreak it into conformalsupejgravity plus matter. We will
supertracel’; is the physical scalar, which appears when thedenote the closed string resulting from the direct product of
action is written in diagonal form, while the &) traceT“,  anN=m open string with atN=n open string adl=(m,n),
is the T-duality-invariant dilaton, which appears, with with a total ofm+n supersymmetries, whem,n=0,1,2.(A
wrong-sign kinetic term because of its ghost coupling, whersimilar notation was used i]. N=3 vector multiplets can
the action is written in string--model form. also be described in harmonic superspHgkg but it is not

We can then interpret the scalar density we are callingclear what multiplets the ghosts represent, since there is no
“dilaton” as the “compensating” scalar for dilatation§This ~ multiplet of any kind with only spins<1 for N>2, so we
is also the original definition of “dilaton” from before the will not considerm or n=3 further here.
days of string theory.This unphysical conformal mode of In the following section we will review this method for
ordinary gravity always appears with negative metric in thethe bosonic string. In this case the analysis should be fairly
action. Thus, the position of the physical and compensatingamiliar from BRST quantization of this stringf], but the
fields has been reversed from those normally used in fieldhethod will be described in a way which is not dependent on
theory[3]. This switch can be performe@r undon¢ by a  string theory, except for the two assumptions stated above.
field redefinition; however, a more useful method, especially(In the bosonic casé, duality is also needed to fix a relative
in supergravity, is to begin witksupejgravity as conformal coefficient) This will allow a straightforward generalization
(supejgravity coupled to a scalafmultiplet) with wrong-  to superstrings, while avoiding questions of how such super-
sign kinetic term(the compensatgr and couple to further, strings are formulated, whether they are covariantly quantiz-
physical fields.(In this context “scalar multiplet” refers to able, whether supersymmetry is manifest, etc.
any supersymmetric multiplet containing a scaldn this In Sec. Il we review the application of this approach to
approach the action is invariant under local Weylthe four-dimensiona(4D) N=1 compactification of the het-
(supejscale transformations. The normal gauge for this in-erotic superstring. This has also appeared previously: The
variance then results from gauging away the compensatadentification of the superfield content of this “16—16" su-
(multiplet), while the “string gauge” comes from gauging pergravity appeared if7], while the complete nonlinear ac-
away some physical fie(d). tion was given i 8]. We applied this method to rederive the

The general picture is then to consider the physical and
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linearized theory and show the theory described a physicalQA,=9,\, Q(A_ .®Arp) =(QA ) ®ArptALa® QArp
tensor multiplet coupled to old minimal supergravity[Bl.
(Although it has sometimes been claimed to be instead a
chiral scalar multiplet coupled to new minimal supergravity,
this is clearly incorrect, since then the antisymmetric tensor
would have to be auxiliary, whereas it is actually the usual
physical field that comes from vectovector, as in the Qbap= djady) QX:5 da€®.

bosonic casg. The manifestly N=1 supersymmetric 4D

string that directly leads to this description was discoveredSince we are actually constructing the fields in terms of
by Berkovits[9], and applications t@-model calculations first-quantized states, these transformations are given by the
are being investigatefdl0]. We also give a derivation of an first-quantized BRST operator, but are equivalent to the usual
explicit expression for the Chern-Simons contribution to thesecond-quantized expressions, linearigzed.

N=1 tensor multiplet field strength as a Chern-Simons su- Finally, the dilaton is

perform in terms of the potentials. Its existence is guaranteed - .

by the background-field method and the existence of higher- CLRCR—CLBCr=¢.

loop divergences(A less geometric form, as a parametric
integral of the field equations in terms of explicit prepoten-
tials, appeared if8].)

The next section discusses low-energy limits &2
strings. For the type IN=2 string, this approach directly
leads to the superfield formulation originally proposed by
Rivelles and Taylof11], and effectively extended to the non-

linear level by tensor calculy42]. These results also follow (Without loss of generality, we use the form of the BRST
from the type Il Berkovits string13], with left- and right-  ¢ransformation resulting from eliminating the Nakanishi-
handed\N =2 world-sheet supersymmetrig#pplications of | autrup auxiliary field by its field equation in the Fermi-

these results to describe the general form of the effectivgeynman gaugeThe transformation of the dilaton then fol-
action, usingN=2 superspace methods, are also given ingys-

[13].) The heterotidN=2 string implies a new formulation of

2
= Qhgp=d(a€p)— D Napdc€®,

In general, thelinearized transformation law of the antig-
host is the “dual” of the transformation law of the gauge
field. (The two transformations are generated by the same
term in the first-quantized BRST operajdn this case,

QC=0, QC=4,A%

N=2 supergravity, which we describe only at the linearized Q= €.
level.
In the final section we consid®&>2 strings, also linear- The dilaton is thus a density under general coordinate

ized. The asymmetric type N=3 string allows not only a transformations. This is true in string theory if the dilaton is
comparison with théN=3 harmonic superspace formulation introduced through coupling to world sheet ghosts, and fol-
of super Yang-Mills theory, but also suggests such a formulows from classical considerations, as does its invariance un-
lation for supergravity. The results fdt=4 type Il strings derT duality. However, if the ghosts are integrated out at one
suggest a new formulation &§=4 harmonic superspace. (world sheek loop to give coupling to the world sheet cur-
vature, then the density aridduality properties of the dila-

Il. N=0 ton are also one-loop effects, and depend on the definition of
the measure. Thus, ghost coupling simplifies the dilaton’s
A. Openzopen and BRST properties by making them classical, and hence measure in-

The simplest example is the bosonic string in the criticaldependent(in the superstring case, the measure ambiguity is
dimension. The massless states of the open string are dalso resolved by supersymmetry, since superfields satisfying
scribed by a vector, whose ghost and antighost are scalar@(dinary chirality conditions and with nontrivi&d-symmetry
The physical sector is then given by veatmector, which ~ Weight are necessarily densities.
decomposes into traceless symmetric metric tefsonfor-
mal gravitor), antisymmetric tensor(“axion” ), and the B. Nonlinearity
physical scalar, which appears as the trace of the metric ten-

. By generalizing the gauge transformations to fully nonlin-
sor, but which we have separated out: Y9 g gaug y

ear gravity in the standard way, we find the usual version of
the low-energy effective action, but written in terms of the
T-duality-invariant dilaton 2], allowing for a cosmological
rconstant)\ (as would appear in subcritical dimensigns

ALa®Arp=haptDapt 7apx-

(To be more precise, we should really write this equation fo
a basis of first-quantized stateShe off-shell content is de-
scribed by spins @1=2@®140, while the on-shell content is S= —f d®x¢
described by helicitie$+1)+(*+1)=(*2)®040.
Similarly, for the ghostdgauge parameters

1
A0+R+ H3PH jp o+ N | .

(The relative coefficients of these terms can be determined
by T duality. In the supersymmetric cases, they are already
CLO®ARa=€at{a, ALa®Cr=€3— (5. fixed by supersymmetryThe string coupling appears as the
inverse of the vacuum value of the dilatah If all fields
The explicit linearized BRSTgauge transformations are except the vierbeie,™ are represented with flat indices, then
then given by the square root of the string tension appears as the vacuum
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value of the vierbein, since then a spacetime derivative cafet), 1-form (vector multiple}, and 2-form(tensor multiple},

appear only in the combinatiog,"d,,. Here ¢ is related to  as well as multiplets that are completely auxilisgB+form

the more common fornp of the dilaton field used in string and 4-form. These multiplets are related by gauge invari-

theory by ance: As in the nonsupersymmetric case, th@rm gauge
field (potentia) has an(n—1)-form gauge parametefand

dp=(—g)Y%e . ghos} and (n+1)-form field strength, and both these rela-

tionships are expressed simply in terms of the exterior de-

The fact that this is th@-duality-invariant combination fol- rivative.

lows from the fact thatp must soak up the/—g measure, They are also related by on-shell duality, which switches

since J—g is not T-duality invariant. Bianchi _identities with_ field equations: 1D dimension_s, an

At this point we have not yet made thg,+ 7.,y sepa- n-form field strength is Hodge-dual to &¢-n)-form field

ration; this we now perform with full nonlinearity by the Strength, so am-form gauge field is dual to aX—n—2)-
Weyl rescaling form gauge field. Finally, they are related by off-shell dual-

ity, which switches Bianchi identitiedF =0 with gauge con-
g™"— x2g™". ditions d* A=0 (where “*” is the Hodge dual Thus an
n-form gauge field is dual to 80— n—1)-form gauge field.
(We do not scalep, and leave¢ dependence out of the For example, in the bosonic case, in four dimensions, a
metric rescaling, so thab stays out ofT-duality transforma-  O-form (scalaj is on-shell dual to a 2-form gauge field,
tions. Also, b, is unscaled to preserve gauge transformawhich also describes helicity O on shell. However, off shell
tions) The result is the 2-form describes spin 1, and is off-shell dual to the
1-form (vectop gauge field. Similar remarks apply to the

_ D 2 2 1 2 12 prepotentials and “reduced” field strengths in the supersym-

S——f d X[¢ X R+H(D-1)(¢Vx)"—[¢ V(o°X)] metric case, although the relations are then not simply in
terms of exterior derivatives.

Explicitly, we have potentials written as superforms
A=dMAdZA...A yu. With gauge transformation$A
=d\, field strengthd==dA, and Bianchi identitiesl F=0.

In general relativity one normally breaks the scale invari-After applying appropriate constraints on thAés, and solv-
ance introduced by this rescaling by gauge fixifig(—9)"*  ing them on theA’s, the superforms are reduced, and a new

1
+ 12 ¢2X6HabCH abct A ¢2

(¢=0): “d” is defined as the operation that appears in the gauge
1 transformations, expressions for the field strengths, and Bi-
__ Dy [ e + B2 anchi identities for these reduced forms. For example, for 4D
S Jd Xy g[)([ (D-2)0+R]x+ 12)(H +N{. N=1 we have[14]
The major difference from the original action is the change Reduced Reduced
in sign for the scalar kinetic term: The fact thathow ap- Rank A dA Superhelicity Superspin
pears with the right sign identifies it as the physical scalar. To —
eliminate all scalar dependence for the Einstein term we can 0 ¢ i(p— o) i 0
instead choose the slightly modified gaugie (—g)¥4y ™% 1 v id’d,v 3 i
1 2 ba Adeod"+dig?) i :
s=—f d®x\/—g| R+ == x*H?+(D—2)(V In x)? 3 vooodv - 0
12
4 1) 0 - -
Ay 2 where ¢ and ¢, are chiral, whileV is real. (Here we use
' generic symbols for these reduced forms, since they may be

gauge fields, field strengths, or Bianchi identities. For ex-
Of course, one can also return to the form of the aCtiorhmp|e,¢a may represent the gauge field for the tensor mul-
before Weyl rescaling by instead choosing the string gauge@plet, the field strengttw,, for the vector multiplet, or the
x=1. Bianchi identity for the scalar multipletThe superhelicity is
the average helicity of the physical states in the multiplet
. N=1 (with complex conjugate states of the opposite sign superhe-
licity), while the spins of the off-shell degrees of freedom
(physical and auxiliary, but not gaugare given by the su-
Most of the ambiguity in auxiliary fields in supersymmet- perspin® the spins of the superspin-0 multiplet. In general,
ric theories in four dimensions is related to the choice ofa superspin-0 multiplet has a chiral scalar field strength
representing helicity zero in terms of either scalar or secondfwhich also satisfies a type of “reality” condition for even
rank antisymmetric tensor fields. In supergravity, this ambi-N), so it has spins as high &§2.
guity is the choice of off-shell representation of compensa- From this table we can read the expressions for(lime
tors. ForN=1 and 2 supergravityand probably also 3 and earized field strengthsV,, of the vector multiplel and G
4), the only compensator and matter multiplets of interest aref the tensor multiplet¢,, as well as the corresponding
those that can be represented as differential forms in supegauge transformations and Bianchi identiti€She field
space, which include as potentials the O-fdsoalar multip-  strengthG of the tensor multiplet is a real linear superfield

A. Versions of off-shell supergravity
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containing the vector field strength of a second-rank antiperfieldV with a chiral ghostA (and its antichiral complex
symmetric tensor gauge fie[d5], and should not be con- conjugateA) and chiral antighos (and A):

fused with the complex linear superfield, which contains no — S =

gauge field§16].) Furthermore, the field equations follow QV=A+A, QA=0, QA=d<d?V.

from duality (where ¢,—i ¢, for rank 2. The actions that _ . ,
give these field equations are just the integrals of the squar _The phys_|cal closed string fields are then a real vector
of the field strengths, oved?d if chiral or d*4 if real. Al- =1 superfield and real scalar superfields:

though the tensor and vector multiplets both have superspin VeA.=U Ve o=V

1 (they are off-shell dug) the bosonic components of even a e ? '

engineering dimension in one have odd dimension in therhese prepotentials are in the string gaufg superscale
other, so the two multiplets are easy to distinguish. They als@ransformations This means the supergravity prepotential at
differ in their superhelicities on shellSuperspin 1 describes this point describes a reducible multiplet, consisting of con-
the multiplet with maximum spirj, which can be included formal supergravity plus the multiplet that was gauged away.
only when describindN>1 supersymmetry. The decomposition of the reducible multiplet described by
The only relevant multiplet not included among the formsy , is more subtle than in the bosonic case, but the basic idea
is supergravity itself. Conformal supergravity is superspin is simple:V describes a vector multiplet with supersgin
off shell, described by a vector superfi&dd. Supergravity is  while A, describes a vector of spin 1; taking their direct
described by starting with the conformal action for a multip-product gives superspins21=3@3, where superspig de-
let containing a scalafe.g., the scalar multiplep or tensor  scribes the irreducibl&l=1 conformal supergravity multip-
multiplet ¢,), and covariantizing with respect to conformal |et, while this superspirt describes a tensor multiplet. A
supergravity, as the generalization of the bosonic case. Ogimilar analysis of superhelicities gives the analogous result
shell, the combination of these two multiplets describes su¢+3)+(+1)=(+ o (=3).
perhelicity 7. The actions for pure old-minimal and new-  The ghosts are a chiral vector and a real scalar superfield,

minimal supergravity are the covariantization with respect toplus the usual for the compactification vector multiplets:
conformal supergravity of the wrong-sign conformal actions
A®A,=A,, V®C=K; A®¢'=A";

30sz d4Xd40(;¢+( J d4Xd2(9)\¢3+ H.c.|, QUa:(Aa"_/Ta)'i”&aK; QVI=A|+/T.
The compensatgdilaton superfielflis a chiral scalar super-
Suv= _f d*xd*6G In G. field (which identifies this supergravity as old minimal

A®C—-A®C=¢,

Unlike the nonsupersymmetric case, the action of super- _
gravity coupled to matter cannot always be written as a pure Qp=09,A%+d?d?K.
supergravity action plus matter terms after some field redefi-
nition. The action is the covariantization with respect to con-  This information is enough to write the low-energy action
formal supergravity of some conformal matter action, withfor the 4ADN=1 heterotic string in the absence of Calabi-Yau
the kinetic term of onegsuperspin-D multiplet having the matter. The procedure is to write a superconformally invari-
wrong sign. Like the supersymmetric case, local scale invariant action for the tensdimattej multiplet and chiral scalar
ance can be used to gauge away one multiplet; that multipléeompensatomultiplet, and then couple to conformal super-
is then effectively absorbed into the supergravity prepotentiagravity by general covariantization. It is useful to take the
U2 For example, we can choose a gau@e1 for some conformal weight of the compensator into account by con-
tensor multipletG. Conformal supergravity also has a local sidering also the cosmological term. This term is generally
U(1) (R) symmetry[U(N) for N-extended supergravity, at written as the chiral integral ap®. However, for string pur-
least for N=<4]; combined with scale invariance, it can be poses it is more convenient to make a field redefinition so
used to instead gaugs=1 for some scalar multiplep. As  that it appears ag’; this means thaty now has conformal
for the bosonic case, there is freedom in which multiplet toweight 3. The field strengttG of the tensor multiplet has
gauge away; unlike that case, the field content of the supeweight 2, as fixed by the antisymmetric tensor gauge field
gravity sector is dependent on what type of multiplet hagd,p it contains.(This field strength also contains the contri-
been scaled awafgcalar or tensor and not on what type of bution from the vector multipletg8]; see the following sub-
multiplet the compensator is. section) The fact that the dilaton appears to the same power
(now 2 in both classical terms, together with superconfor-
B. Low-energy superstrings mal invariancg(which fixes the scale weight of both terms

now fixes theG dependence:

The open® open analysis applied to the bosonic string
generalizes straightforwardly to the AD=1 heterotic string.
Our starting point is again the vector multiplets: For the
bosonic open string, the vectdy, just described is now ac-
companied by scalarg' resulting from the compactification This is the case=—3 of the “16—16" supergravity action
from 26 to 10 dimensions. On the other héedhesy we  considered in[7] (with the above field redefinition This
have the 4DN=1 vector multiplet, described by a real su- particular coupling to¢ has the unique property that the

- . 1
szf d*xd*0¢ppG 12+ fd4xd20§)\¢2+H.c. .
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supercurrent{defined by varying the action with respect to Xunp= %A[WNAP)JF%A[MANAP)-
U?), in the string gaug& =1, has no spinor derivatives:
o= Xpgc™ eANI eBNeCPXMNP

Ja=30iVad.
a e =3Aa0Ac)— AT PAD + 5AMARAG) |
(This is the case1=0, n=—3 in the language of17].) By
using the appropriate covariantizati@re., choice of vector
connectiong the current is also the field equation; the result-

ing simple equatiorV,(In ¢—In #)=0 appears naturally in  thiq torm is defined in arbitrary superspaces; an interest-
the o-model approach10]. We can now choose one of tWo jy set of special cases is those relevant for the classical

scale gauges: The string gau@e=1, or the standard gauge superstring, namely\N=1 superspace irD=3,4,6,10. We

¢=1. The string gauge always gauges away the antisymme}joia that there the actiofin a notation suitable for all di-
ric tensor gauge field, so that it is absorbed into the SaMEensions

prepotential as the metric tend@as follows from the ope®

whered, is the derivative covariantized with respect to just
supergravity and not super Yang-Mills invariance, and the
usual grading sign factors are implicit.

open argument, or the equivaléhtduality). Note that, if this

action is expanded about the vacuum values of the fields, Scs=tr f dDXdz(D_Z)@Va“BXaag.

appears with the wrong siggompensator while G appears

with the right one(matte) [7]. which is the analog of the usual 3D bosonic Chern-Simons

While the reald*d term is generally written with a factor action with the Levi-Civita tensor replaced with a gamma
of sde(E ™) ™" to make it a density, this real factor cannot matrix, is dimensionless in all these cases. In particular, in
appear in the chirati’0 term, where¢” acts as the corre- D=3 it gives a geometrical form of the usual super Chern-
sponding density. In fact, all truly chiral superfields are suchSimons actior{18]. Furthermore, if we treaf, as indepen-
densities, with density weight corresponding directly to con-dent fromA,,, then variation ofA, imposes the usual con-
formal weight. This simplifying feature of chiral integrals is ventional constraintyaaﬂlzaﬁzo in arbitrary dimensions,
one reason why their component evaluation is simpler thaivhich makes it a sort of first-order actiofin D=3 this is
integrals over full superspace. A similar procedure can alseéhe only constraint. This is analogous to the harmonic su-
be applied to nonsupersymmetric theories, with gravity writ-perspace formulation dl=3 super Yang-Mills theory5],
ten as conformal gravity plus compensating scalar: By writwhere also one of the fields appears as auxiliary in a Chern-
ing all fields as densities, all factors df—_g can be removed Simons action because of a nonvanishfognstant torsion.
from the action.(A similar procedure was applied in the In D=4 this is the usual super Yang-Mills action, if we
string example of Sec. Il B. impose the representation-preserving constraints by hand or

The compactification-dependent massless states can easily Lagrange multipliers. This is easy to verify explicitly for
be added. Assuming that the compactification manifold hashe linearized action. For the fully nonlinear action, this is
no isometries, all moduli are described by scalar fields. As isnost easily seen by looking at the field equations: Including
well known, N=1 scalar multiplets with general Yukawa the conventional constraint coming from varyidg as de-
couplings are described by chiral scalar superfieddsFur-  scribed above, we have
thermore, such fields must have conformal weight zero to
allow 4D o-model type actions (with invariances
scalar—scalar-constant and nonlinear generalizatiprihis
means the action must be of the form

8Sce=1r f APX G029y B SAL)F

After solving the representation-preserving constraint, as

S:J d*xd*0p G2 /(' ¢)) A,=(e"7Vde"s),,
we can write
+

fd“xd201 > 7(p") +H.c
277 ~ SA,=—(AV)(y5V) 4,

for some functionsZ and.# (in terms of ¢ that are cova- Where
riantly chiral with respect to the Yang-Mills fields as well as

: Av=e~Vse'
supergravity.
andV is the Yang-Mills covariantized derivative. The field
C. Super Chern-Simons forms equation is then
To cancel the usual one-loop anomalies, the tensor mul-
P (7572 4F ga=0.

tiplet gauge transformation and field strength are modified.

This modification can be described very simply in super-ysing the identity

space. A related simpler problem, which we consider first, is

to write a simple geometric form of the 40=1 super Yang- Foaa= yaaﬂv\/ﬁ,

Mills action as ad*¢ integral. The first thing to consider is

the Chern-Simons superform, defined as the natural generalivhich follows from the constraints, this can be written in the
zation of the bosonic expression to curved spdd@s: usual form
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V ysW=0. space CHL), and actions have not only $2) invariance but
_ B _ _ also the local complex scalprojective invarianceu'—\u',
(The Bianchi identity onW is VW=0.) which allows us to choose the gauge=(1,z). Integration

Another simple way to evaluate this expression is in thepveru is over a contour agu;du’, which becomes the usual
chiral representation, whe, =0, and only the A,)? term ¢4z in this gauge. A tensor multiplet has a finite number of
survives. In that representatiok,~d,A, andW,~d’A,,  fields, and the expliciu dependence of its field strength is
so one immediately obtaingi®6W?. simply

As a first-order actionA, contains the Yang-Mills field L, . (u)=3uuiL; .
strength(at order66) as an independent auxiliary field, so One then defines the $2)-invarianlé spinor derivative
this action contains the usual first-order action for nonsuper- - P

symmetric Yang-Mills theory(Similar remarks apply to the d,,=ud,, d.,=ud;
harmonic superspace formulation N=3 super Yang-Mills  with respect to whichL , , is defined to be “analytic,”
theory) The fact that such an expression exists for el d.L,,=d,L, =0,

super Yang-Mills action as @*¢ integral in terms of poten-
tials A, without explicit prepotentiald/ is why this action
gets renormalized at more than one loop, since in the back- diiaLjig=dakjin=0.

ground field method only such terms can occur in the effecThis description is not only sufficient for the usual harmonic
tive action. Such an expression does not existNer2 super ~ superspace manipulations, but the only one that manifests
Yang-Mills theory, which is why it is finite at two loops and conformal invariance, which is particularly important for

which implies the usual tensor-multiplet Bianchi identity

higher. coupling to conformal supergravity. The natural form of su-
The generalization of the tensor-multiplet field strength isperspace integration is th¢20]
now easy to guess: ({p.de) 4
- J d40hE % UidUIJ (l_i—
Hasc=Hasct Xasc: viu

The 6 integral isv independent if the integrand is analytic.
whereH 55 is the usual super 3-form field strength for the (For example, we can pick;= &;,. to get a “twisted chiral”
tensor multiplet. In particular, we have integral) Superconformal actions for tensor multiplét§

B are then
G=G+tr ¥**PX .5,
. Sw= [ iyt
where f is homogeneous of degree 1 for projective invari-
ance, which implies superconformal invariance.
(3) For scalar multiplets, we use also the complex conju-

. : . >
by calculations similar to those that showed the equivalenc82® coordinates!’, and constrain both by the condition

of the Chern-Simons form of the Yang-Mills action to the U Ui=1. The local invariance is then only the(1) phase
usual [d*xd20W? form. (Thus, in the string gaug&=1, transformation oru, so the space is SB)/U(1) [which is
R~tr W2) effectively the same as CB, but an invariance has been

replaced by a constraihtintegration fdu overu andu is
now defined to pick out the SB) singlet in terms ofu-u

from which it follows that

(d2+ R)G~tr W2

V. N=2 dependence. Use ofallows us to define the generators of a
A. Smaller superspaces second(broken SU(2),
As for N=1, all the important multiplets except confor- do.=U— d__=0 i d. _=u i_g _’1
H : ++ 1 - 1 +— i i
mal supergravity are described by superforms. Of the three ou ou au ou

propagating superforms, two can best be described in slightlgnd to write the other half of the spinor derivatives as

different versions of harmonic superspdd®)], the third in d_,=ud,, afdzaaid-

chiral superspace: , _ The concept of analytic superfields can then be extended:
(1) The simplest case is vector multiplets. Conformal ac- ol —do L —(d L —0

tions can be written with the chiral field strengtid as +Lw=diLp=(ds-—n)Ly=0.

integrals over chiral superspace: However, such superfields can in general contain an infinite
number of auxiliary fields. The superspace integration that
S‘/'V':J d*xd*6f (W) +H.c., includesfdu is
with the only requirement thdtbe homogeneous of degree 2 J d49ﬁEJdUJ(Jid9)4-

for invariance undeR symmetry, which implies conformal ) _ i
symmetry.(R symmetry transformg' —e'¢g', W —e2éw')  We can also write the integration as
For example, the superconformal action for a single vector 1 _1 _
multiplet (Abelian or non-Abeliahis dut={1-(d.,)""d,.]Jf whend,_7=0,

0 otherwise,
where(d, ,) s defined as 0 on states annihilatedcay. ,
(2) For tensor multiplets, we introduce as complexand the inverse ofi, . otherwise[This operator can be de-
bosonic coordinates the $2) doubletu' parametrizing the fined for general representations of @Y and is also useful

S~tr f d*xd*e TwW2.
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in first-quantized BRST symmet{®1].] When applying this 1, while L;; has weight 2. More generally, superconformal
operator on analytic superfields, it is useful to remember thalveights of(twisted chiral superfields are not arbitrary: The
L(ny (for n>0) contains only isosping=n/2 [with respect to  representation of superconformal symmetry in chiral super-
the second S(2)]. The scalar multiplet hasd, ) U(1)  space [22] implies that (4—N)x(conformal weight

chargen=0, and its superconformal actions are =Nx[U(1) weighf], and that the chiral superfield have no
external isospin or undotted spinor indices. This also follows
SS’V':f d*xd*0, fa(LD(dy L)(ds £ LS from conside[:ing the supercoﬁformal transformatiordf,
for U(1) invariance, which implies superconformal invari- using the fact that the chirality conditiod;;,,=0 must be
ance. preserved. From similar considerations of the analyticity
constraintu'd, ,=u'd;, =0, we find that analytic superfields
B. Versions of off-shell supergravity must have no external §P) or Lorentz indices, thei(R-

These actions generalize directly to curved superspace ymmetry U(1) charges must vanish, and their conformal
covariantizing the definition of harmonic and chiral super-Weights are just their order in—u [thed, _ U(1) chargg.
fields: Just as for chiral integra|5 =1 superspace, there is This is consistent with what we know for the tensor multlplet
no factor involving the determinant of the vielbein. field strength(and all functions of tensor multiplet field

As a consequence of simple dimensional analysis, all thétrengthy, and implies the scalar multiplet field strength has
classical terms are integrals over these smaller superspac#gnishing conformal weight, as appropriate for a field that
Furthermore, the conformal weights of vector and tensorcan be used to describe 4D nonlingamodels.

multiplets are determined by their gauge fieMéhas weight The table forN=2 superforms is
|
Rank Reduced\ Reducedd A Superhelicity Supéiso)spin
0 L d,.L 0 01,2,.)
1 Lot Jdu(d_)’L., _ 2 0(0)
2 o (d,)2%D+(d,)%P 0 00)
3 Ly dyyLyy - 01,2,..)
4 Lisss 0 - -

® is chiral, while theL's are analytic, with W1) weight as ent versions of the scalar multiplet as a compensator for
indicated by the “” signs. SU(2) transformationg12,19: (1) the “nonlinear” tensor
While all these multipletgexcept the trivial 4-formde-  multiplet, (2) a partly on-shell version of the scalar multiplet,
scribe superspin 0, the vector and tensor multiplet each d€3) the tensor multiplet, an(4) the harmonic scalar multip-
scribe a single superisospif), while the others describe an let. The former two do not have a formulation in terms of
infinite number(1,2,..). Thus the vector and tensor multip- unconstrained superfieldprepotentials and so are not of
lets each can be written in terms of a single ordinary supergeneral use, while the latter two are cases ofN2 super-
field, and are the only ones relevant for tNe=(1,1) case, forms just described. Since the scalars of the tensor multiplet
while the scalar multiplet will be important f&é¢=(2,0. The  form an isovector of S(2), while those of the scalar multip-
table gives our previous expression for the field strength ofet form an isospinor, the former spontaneously breaks

the tensor multiplet with SU(2)—U(1), while the latter breaks S@) completely. They
- are therefore the analogs of the new minimal and old mini-
Lij=di®+di P, mal cases oN=1 supergravity. The actions in these two
cases are

while the (off-shell dua) relationship for the vector multiplet
is that we can writdin a particular nonderivative gauge

A =(d)* 2oV, w=d* 1d2vi, S-om =f d*xd*e %w2+f d*xd*6, 3 (d, L)%

[(d.,)* means @.)?(d.)?.] The Yang-Mills field appears in
the covariant derivativ® , , =d, . +A, . [19].

The conformal supergravity multiplesuperspin 1, su- Soamr =f d*xd*e %W2+f d*xd*04L, . InL, .
perisospin ® can also be described by a single ordinary su-
perfield. (Superspin 1/2 is now the spin-3/2 multiplet, ex-
cluded except foN>2 supersymmetry.The local Ul) R
symmetry of theN=1 case is now generalized tq2). Vari-
ous sets of auxiliary fields for 4Dl=2 supergravity have B
appeared in the literature. They all use the vector multiplet a¥he cosmological term can also be writtenfa§ oV Li;, or
a compensator for scale andd) transformations, but differ- asfd"'eﬁAHL++ .

+ )\( J d*xd*odW+ H.c.) .
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C.N=(1,) analysis is now;®3=1@0 (in terms of N=1 superspins in
For theN=2 type Il string, we consider the direct product € eft ha]!f of tlhe equat|or??|=2| In thet righy, de?t(':”|bltngTh
of 2 N=1 vector multiplets. The physical superfield is then 292" conforma superﬁr?v] y plus ? ensor mitipiet, 1he
just a realN=2 scalar superfield: corresponding  superhelicity _ analysis '5(—5.)+(—5).
J ' =(+1)®0% where the two superhelicities 0 describe a single
+ 9 -7 \= + 5 p- 7 tensor multiplet(since it is a complex representatjon
V(67,0.)@V(07,6-)=U(67,6.,67,0-). The use of a general, real, scalar, isoscalar superfield to
o . describeN=2 supergravity{11] follows from harmonic su-
[The * indices are now for the physical $2); we have not perspacq19] if the analyticity condition on the covariant
yet introduced the harmonic coordinate's] The superspin derivative is solved in a globally supersymmetric way:

[dyo,V:4+]=0, V++=d+++%Hi+ﬁaﬁ+Hi++d,a+H++++d,,
1
=V, =d,, + ﬂcaﬁyﬁ{dﬂw[dﬂa:{d+ya[d+5:Ud——]}]}

=d, + %[(dJr)ZQBU]U"a,B"'[(d+)3au]d—a+[(d+)4u]d77 .

[For convenience, we have used 6D spinor notation, where (For superspin, all oN=0,1,2 have superspin)drhe analy-
is an SU (4) index, which includes botkr anda, andd,zis  sis in this case i$+3)+(+3)=(+3)®0% the vector and ten-
the vector derivative. The other possible superfield¥ jn sor multiplets. Their gauge transformations are

can be completely gauged away by nonderivative transfor-

mations] . o QW=(d?d?) _C, +(d?d?),C_,

The ghosts, being products of real superfields with chiral
ones, are chiral in only half of thé coordinates: - - —
_ _ QL++:(d2d2)—C++(d2d2)+C—1
A(OHOV(0~,0_)=C, (67;67,6_),

_ _ where the+ derivatives here involve onlg, and its com-
V(0,0,)A(07)=C_(0",6,:67). plex conjugated ™, and similarly for the— derivatives.
This theory therefore consists of conformal supergravity
coupled to a physical tensor multipldal;’j and tensor and
QU=C,+C,+C_+C_. vector compensator muItlplgtsj andW. In the_ string gau,ge
we gauge away the physical tensor multlple,‘g as Lj
The compensators are chiral and twisted chiral superfields 6;j . Gauging away the 2 components not proportional to

The resulting gauge transformation is

(and their complex conjugates 8; is accomplished by using the local &Y symmetry of
. . conformal N=2 supergravity: We rotate the isovector to
AOHRAO)—A(OH)SA(7)=W(8",67), point in a fixed direction. The remaining component is
__ . — . _ _ - _ gauged to 1 by Weyl invariance. In this gauge we have two
AOL)RA(O_)—A(0L)RA(O_)=W(6,,0_), U(1)’s remaining: one the original one of $2J®U(1), and
L _ o _ the second from breaking $2)—U(1). In this gauge both
AOH)OA(O)—A(6T)®A(O_)=L, . (6",0.), physical multiplets(conforma) supergravity and the tensor
o . o L multiplet, are contained within the prepotential The gauge
AO)RA(OT)—A(O)QA(OT)=L"T(0,,07). more commonly used in supergravity is to gauge away as

much of the compensators as possible, by the conditions
While the chirality condition oW is covariant with respect W=1 [scale and ()] and L;~é&; [again breaking

to the SU2) symmetry that mixes the Z's, the twisted SU(2)—U(1)], leavingL . _ unfixed. !

chirality does not seem to be, until we realize that, and As in the N=1 heterotic case, this information on the
L*"=L__ form 2 components of an isotriplet: multiplet structure, together with the fact that in string theory
— — compensators appear only quadratically in the low-energy
dialjy=dialjy=0=d Ly =d, L, =0 action, is sufficient to determine this action in the absence of

o . compactification matter:
The fact thatL, _ does not appear explicitly in the direct

product construction is a reflection of the “mirror” symme-

12
try that implies the invarianceSL . _=const in the string _ 4o g4, 2+ 4y 48 L\pS2
gauge[13] (see below Of the cases we consider, this set of S= | dxd0, L', ] dxdio W

compensators has the only nontrivial superhelicity calcula-
tion, since in all other cases at least one of the Yang-Mills

4, 44
ghosts is foiN=0 or 2, both of which have superhelicity O. +)‘(f d’xd 0(DW+H'C')’
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whereL | , andL', . are now again the harmonic superfields. where we now have dropped the cosmological term to main-
Note that the contour integral is particularly simple in thetain the symmetry13]
basisu'=(1,z), where the string gauge is simply, , =z.
We then just integrate around the polezt0. This also
i invari SL..=kL,,, oL =KL}
means the action has an invariandéa] ++ NI ++ ++

oL, ~L' . .
T related to mirror symmetry, for arbitrary constantsk).

(For contributions to the string effective action from loops

(i.e., 6L, .~z in the string gauggeif the cosmological term i';md high energy, see al§3].)

is dropped. This symmetry is a consequence of the mirro

symmetry that relates type IIA and 1IB strings, by switching

tensor and vector multiplets. Since each vector multiplet has D. N=(2,0)

only two scalars, this allows only two of the three scalars of ' ’

each tensor multiplet to appear in the action without deriva- It should be possible to extend our arguments to closed

tives. In the string gauge this is the standard invariancétrings that can be represented as direct products of open

SLj;=consi< §; . N=2 strings with other open strings. We then need to repre-
Compact|f|cat|on matter can be added in a way similar toSent the vector multiplet and its ghost multiplethir=2 su-

the N=1 case. Again the compactification-dependent massPerspace. The simplest way is to use harmonic superspace,

less states are described by supermultiplets containing scaince representing these ghosts as an analytic harmonic su-

lars. For these to have general self-interactions, they mugerfield avoids ghosts-for-ghosts. The linearized form of the

couple to the compensators. As described in the previouBRST transformations for this vector multiplés follows,

subsection, the self-interaction terms of vector and tenso.g., from the superform analysis abpie

multiplets consist of only a chiral term containing just vector

multiplets, and a “harmonic analytic” term containing just QA;+=ds.L, QL=0,

tensor multiplets. These compactification multiplets must

therefore themselves also be vector and tensor multiplets. -

Unlike N=1, this matter must be expressed as ratios of mat- QL=(d)*(d; ) 2(d_)*(dy Ay y).

ter field strengths to compensator field strengths, to obtain

dimensionless scalars: i i . . .
BRST invariance of the gauge-fixed vector-multiplet action

R (L'++

!
A

J d4Xd4‘9h f d4Xd40q[%A++DA+++|~—(d++)2|-]

L+

+H.c.|,

1 w!
Ay ddpg Z\W2 7
+ fdxd BZW'A)(W

follows from applying the identities

(d++)2(d++)_2(d77)2d++L++:(d77)2d++|-++1 (d+)4(d77) L =0l

for an arbitrary analytic superfield, . . shell. This would imply a new formulation of conformal su-
The first case is the heterotid=2 string. The physical pergravity, since previously the physical antisymmetric ten-
superfield is the direct product of a real analytic harmonicsor gauge field was not contained in this multiplet. On the

superfield with a vector: other hand, the superhelicity analysis ist3)+(*1)
=(+3@(+3), describing supergravity plus a vector multip-
A, ®A%=US .. let on shell.(A similar multiplet, with the same content on

shell, but with 32-32 components off shell instead of 24
(As for the N=1 heterotic string, the vector multiplets aris- +24, has been considered by Néw [23] in a component
ing from the 26-10 compactification are rather trivial as far analysis derived from torsion constraints. A multiplet similar
as the open® open analysis is concerned, so we will not to Muller’s, obtained by coupling the usual conformal super-
repeat it herg.As for theN=2 vector multiplet, this multip- gravity to a vector multiplet with an off-shell central charge
let has only a finite number of fields: Just as we can expres®4], was proposed ifi25].) This multiplet is thus the oppo-
A, . in terms of the ordinary superfield”, we can also site of the usual supergravity multiplets, which are reducible
write U % . in terms of an ordinary superfield'?. The su-  off shell (conformal supergravity- compensatojs but irre-
perspin analysis is thengll=1, which implies this super- ducible on shel(superhelicity 2-3N).
field is the irreducible conformal supergravity multiplet off ~ We also have the ghosts
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LeA*=L? A, ®C=L,, fied on shell with the physical vector of supergravity, the

other with that of the vector multiplet. The Lagrange multi-

and gauge transformation pliers of dimensiorg and 2 have been replaced with fields of
a A oa physical dimension: These, together with the tensor gauge

QUi =dy Lo+, . field, which replaces the @) gauge field, describe the re-

maining physical degrees of freedom of the vector multiplet

For the compensator we find on shell. By comparison, the scalar multiplet compensator

LoC—LeC=L lacks a compensator for (W), but now it only needs scalars
’ that compensate SB) and scale. Since there is a single
QL=g,L2+(d)*d, ) 4d__)2d..L, .. compensator multiplet, this formalism also lacks the dou-

bling of dilatons and dilatini for which the Lagrange multi-

The compensator is then the same representation as the supdgrs were necessary.

Yang-Mills ghosts, a scalar multiplet with an infinite set of

auxiliary fields. V. N>2
By the same methods as for previous cases, the low- A N=(2.1)

energy actior(in the absence of compactification mater
Another interesting type of string can result only from

asymmetric compactification of the type Il string, so that
different numbers of supersymmetries survive in the left- and
right-handed sectorésuch as with, e.g., asymmetric orbi-

Although such an action has been proposed previously, Wiy|ds [26]). The physical superfield is a direct product of an

use a new formulation of conformal supergravity. It is thenanalyticN=2 superfield with a reaN=1 superfield:
natural to assume that the vector multiplets from the-26

reduction can be included in a manner similar to that used for A, ®V=U_,.

N=1: modification of the Bianchi identity of a conformal _ o . .
multiplet. In theN=1 case, we hadd®+ R)G~tr W2. If we This real scalar superfield is thus analytic in the first

look at theN=1 superform tabléSec. Il A), it is clear that ~and general in the third. This is the same type of superfield
only the tensor multiplet has a chiral scalar Bianchi identity,uS€d in the harmonic superspace formulatiorNef3 super
necessary since the vector multiplet field strength is chiralYang-Mills theory[5]. However, because of its(W) weight
That field strength is chiral also fdé=2, but in that case the @nd gauge transformations, this superfield contains only a
only chiral scalar Bianchi identity is for the scalar multiplet finite number of fields, like the case &f=(2,0) conformal

(from the table in Sec. IV B The result is then supergravity, but unlike th&l=3 Yang-Mills case. We can
then also express this superfield in terms of an ordihan3

da 12 2 superfieldU", wherei,j are SU2) [not SU3)] indices. The
S:f d*xd"0; 3G, %, superspin analysis is nowgG=3. This is again the confor-
mal supergravity —multiplet. The superhelicity is
where (£3)+(=3)=(+3)@(*3), which is again supergravity plus a
vector multiplet. (The supergravity multiplet has helicities
running from 2 to3, and the complex conjugate states, while
the vector multiplet runs from 1 te-3, and complex conju-
gates) The situation is thus very similar td=(2,0).

S= f d*xd*6, 3(d, L)%

G,,=d, ,L+Q,, fdu(a_)29++~trw2.

(Unlike the N=1 case, the Chern-Simons tefh does not The ghosts are now
allow the existence of higher-loop renormalization of Yang-
Mills theory, since the Yang-Mills action is represented in LeV=L', A, ,®¢=Y,,,

terms of it as an integral over only @s and not the full 8. , o .

In particular, we can compare the component fields of thigvhere L has similar properties t&J ., [except for U1)
version of conformal supergravity to the usual one, by takingVeightl, andY , . is analytic in the first twaf's but chiral in
the direct product in terms of the component fields,the third. While such harmonic superfields have been consid-
(Aa.Xia:Di)) ®A,: Besides the obvious conformal graviton €red as representations (@bnforma) N=3 supersymmetry,
and gravitini, we have they have not been used to describe physical multiplets. The

gauge transformation is then

Old New / N3
QU =d L'+(Y, ,+Y, ).

W,5(1) A, V4(0) . . .
G (1) Grvi(1) (We_u_se the harmor_uc gomplex conjugate, which presanves
G('J)la b ('1)8 andu instead of switching them.

al 3) ab(l) The compensator is
)\ia(i) Xia(z) ~ o~
D(2 #(0) Lep—Logp=Y

where the dimensioconformal weight is indicated in pa- and its gauge transformation is
rentheses. The auxiliary antisymmetric tensor has been re- _
placed with two gauge vectors, one of which can be identi- QY =(d?d?),L"+(d,)*(d, ) 2(d__)%d, .Y, ..
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This Y is similar toY, ;. except for Y1) weight. Again, such QU ro=dyrbyp+dyiblyryr.
superfields have not previously been applied to physical mul-
tiplets; however, the compensators fb+=3 supergravity are
expected to be vector multiplets: First, the vector multiplet is
the only one with spins no higher than 1, and Me3 con- L
formal supergravity multiplet already has the appropriate set LoL'—LoL'=L"
of spin 2 and3 fields for N=3 supergravity. Second, the
vector multiplet's scalars fon a 3 of SU3), so a 33 of
vector multiplets give 83=148 (and 3®3=3®6), which
are the dilaton(1) and compensators for the 8) gauge

The compensator is

and its gauge transformation is

fields (8). We therefore expect to describe a new off-shell QL"=(dy)*(dsrs)"Hdorm)?dy Ly
representation of vector multiplets. +(d )X d, ) "Xd_ )2, L
+ ++ -— ++L++ -
B.N=(2,2 With regard to earlier difficulties in finding an off-shell

from the direct product of twdN=2 supersymmetries. The count that theN=4 strings come with particular choices of
resulting physical superfield is harmonic analytic in bothmatter multiplets: For example, straight dimensional reduc-
pairs of ¢'s: tion of N=1 supergravity fromD =10 yields N=4 super-
gravity plus six vector multiplets. On the other hand, the
AL QAL v =U iy, compensators for 4IN=4 supergravity are also six vector
o _ . multiplets: The vector multiplet’s scalars fora 6 of SU4),
where we uset as the indices of the first broken harmonic and 636=1615020 gives the dilaton singlet, as well as the
SU(2) and =’ for the second. As in all the other cases, thestyeckelberg field for the auxiliary vector of conformal su-
physical superfield contains a finite number of physical anthergravity that gauges $4). (As for N=2, the six compen-
auxiliary fields (because so do thl=0,1,2 vector multip-  sating vectors are the physical vectors\bf4 supergravity.
lets). The superspin analysis is20=0, again conformal su-  This doubling ofN=4 vector multiplets, with opposite-sign
pergravity. ~ The  superhelicity — decomposition s kinetic terms, is exactly what is needed to avoid the no-go

(£3)+(+3)=(+1@0? describing supergravity plus two theorem for the off-sheil formulation of tHé=4 vector mul-
vector multiplets.(Supergravity has helicities 21,3,0 and tiplet [27].

complex conjugates, while the vector multiplet has
1,3,0,—3,—1 and is a real representatipn.
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