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Ghost-free spectrum of a quantum string in SL(2, R) curved spacetime
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The unitarity problem in curved spacetime is solved for the string described by the SL(2, R)
Wess-Zumino-Witten (WZW) model. The spectrum is computed exactly and demonstrated to be
ghost-free. The new features include (i) SL(2, R) left-right symmetry currents that have logarithmic
cuts on the world sheet but that satisfy the usual local operator products or commutation rules, (ii)
physical states consistent with the monodromy condition of closed strings despite the logarithmic
singularity in the currents, and (iii) a new free boson realization for these currents which render the
SL(2, R) WZW model completely solvable.

PACS number(s): 11.25.Hf

I. INTRODUCTION

A string propagating in curved spacetime with one
time and (d —1) space coordinates is described by an
action in the conformal gauge that has the form

S = dada [0+X"0 X G„(X)+ ],
where G„(X) is a background metric in d dimensions
with signature (

—1, 1, 1, . . .). The terms in the action de-
noted by the ellipses may contain additional background
fields such as an antisymmetric tensor B„(X),a dila-
ton 4(X), etc. The overall theory must be conformally
invariant at the quantum-mechanical level. In general
it is dificult to impose the conformal invariance con-
dition nonperturbatively, but some solutions do exist.
However, it is even more diKcult to solve the system.
Thus, up to this point there has not been any solution
presented to the quantum-mechanical spectrum or other
quantum-mechanical features of a string propagating in
curved space and time. There are some solutions of mod-
els for two-dimensional (2D) gravity. But the spacetime
interpretation remains somewhat obscure in the matrix
formulation of such models and furthermore there seems
to be no prospect for extending the approach to higher
dimensions.

One knows the spectrum and correlation functions for
many string models in curved space (without time) in
several dimensions; these are the string models for com-
pactiGed space that represent possible string vacuua.
However, when the time coordinate is included as part
of the curved space, as it would be during the early uni-
verse, little is known about the quantum string theory.
The lack of such solutions has prevented the understand-
ing of the role and true impact of string theory on the
structure of symmetries and matter as observed in the
present universe. If string theory is truly relevant, it must
play its major role in the presence of quantum gravity
during the early part of the universe when spacetime is
curved. Thus, the structure of gauge symmetries, mat-
ter content in the form of families of quarks and lep-

tons, and all that, would be determined by the structure
of string theory while the universe is at an early stage
with its time coordinate being part of curved spacetime.
Given this intuitive fact, it would be premature to try
to predict from string theory the structure of low energy
physics (at accelerator energies) by considering only flat
four-dimensional spacetime plus additional curved com-
pactiGed spaces in extra dimensions, as is usually done
by string phenomenologists. The role of quantum grav-
ity and its impact on low energy physics could not be
assessed without a better understanding of strings dur-
ing the early universe while time and space are curved.

Many models that are exactly conformally invariant in
one time plus (d —1) space dimensions have been con-
structed by now [1—3]. But no further understanding
of the quantum properties of these models has been ob-
tained. One of the stumbling blocks has been the issue
of the unitarity of such theories (negative norm states)
[1,4]. Although there have been many attempts to solve
the problem [5,6], no real progress has been made until
now.

In this paper we solve the unitarity problem that has
plagued a certain class of models, and provide new free
Geld methods for the computation of many quantum
properties of the models. In particular we give the ex-
plicit solution of the exact spectrum of a string propagat-
ing in the SL(2,R) curved spacetime of a Wess-Zumino-
Witten (WZW) model. This is the simplest of all curved
spacetime models. This resolves also the unitarity and
spectrum issues for the SL(2,R)/R black hole model [1,7]
and provides the methods of spectrum computation for
all higher dimensional models that are in a similar class
[1,2], including supersymmetric and heterotic versions.
The free Geld methods that are introduced in this paper
open the way to the computation of correlation functions
as well.

II. UNITARITY PROBLEM

One of the Grst attempts to solve string propagation in
curved spacetime was to consider some current algebra
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models that potentially can be solved through algebraic
methods [2]. However, one immediately comes across an
unexpected problem with the unitarity of the theory. Be-
cause of the presence of a time coordinate, there are nega-
tive norm oscillators. These create negative norm states.
However, since one must also impose the Virasoro con-
straints, on the basis of naive counting one may hope to
prove that all negative norm states are removed from the
theory. A similar situation occurs also in the flat the-
ory. As is well known, in the flat case one can indeed
prove the no-ghost theorem [8] which implies that the
theory is unitary. However, in the case of curved space-
time current algebra models, one finds that even after
imposing the Virasoro constraints there remain negative
norm states that render the theory nonunitary. This has
been the main stumbling block that has discouraged the
application of these ideas to model building for the past
five years.

To illustrate the problem consider SL(2,R) currents,
and a stress tensor defined in the form of a Laurent series:

desired. Otherwise, the c & 26 theory may be considered
a piece of a critical theory.

The states of the theory are constructed as usual from
the current algebra Verma module (analogue of Fock
space of flat spacetime)

(J „)"-ljm), (2.3)

where
l jm) is a representation of the zero mode currents.

The physical states lP) are those linear combinations of
Verma module states that satisfy the Virasoro constraints

I.„ly)= 0, n & I,
Lol&)= a I&). (2 4)

In a critical theory one may take a = 1 and c = 26 (or
k —2 = 6/23). It is also possible to take the SL(2,R)
model as a piece of a critical conformal theory. Then
a ( 1 and c ( 26 (or k —2 ) 6/23).

The eigenvalues of Lo are determined by the Casimir
and the level of excitation of the string l = P,. np;

7t A 1
Z i =0, 1, 2,

—j(j+ 1)
k —2

(2.5)

T(&) = —n —2 (2 1)

1

k —2
i 2:J J„+

L„,J'
ZC 'gk) J~+~ + A8n+m g

ijk l 'E2

2

—m J„'+ (2.2)

L„,L (n —m) L„+ + n (n' —1) 8„+
12

where q, ~
= diag( —1, 1, 1) is the Minkowski metric and

is proportional to the Killing metric for SL(2,R). The
commutation rules are

Thus, an excited string at level l ) 1 must have positive
values of j(j + 1) and j + 1 that depend on the level of
excitation:

j(j+ 1) = (k —2)(l —a),
1j + 1 = —+ g(k —2)(l —a) + 1/4. (2.6)
2

Such values of the Casimir operator can occur in uni-
tary representations of SL(2,R) only for the discrete se-
ries ljm), for which the lowest (or highest) state has

m = j + 1 ) 0, and then the values of m are given by
m = (j + 1 + n), where n is a positive integer.
It is easy to see that there are plenty of excited states

that satisfy the Virasoro constraint, but whose norm is
negative. An explicit example is [1]

l y, I) = (1', —tJ', )
'

l j, m = g + 1),
c = 3k/(k —2). I„lg, I) = 0, n) 1, (2.7)

J corresponds to the compact generator, and the other
two correspond to the noncompact generators. For pos-
itive A: these commutation rules imply that there is one
time and two space dimensions. One indication of this is
the large k limit (semiclassical limit) in which the com-
mutation rules of the currents reduce to those of flat
spacetime oscillators, with one timelike and two spacelike
oscillators. Therefore, it is useful to think of J as a cur-
rent in the timelike direction and of J ' as two currents
in two spacelike directions. Since we are interested in the
covering group of SL(2,R), the time coordinate can take
all values, and it is not restricted to a compact range. For
example, one can see this by analyzing the classical so-
lutions of either the particle or the string in the SL(2,R)
curved spacetime in the form of a WZW model. In the
large A: ~ oo limit the model reduces to flat spacetime in
2+1 dimensions with c = 3. But for finite k it describes
curved spacetime with a metric induced by the group,
as seen in the WZW model formulation (see Sec. VII),
with c = 3k/(k —2), which can be made critical c = 26 if

(P &lP~t) = N~(&) (&!)H =o [k —2j(l) —2+ r],

where N~(!) = (j, m = j+1lj,m = j+1) is the norm
of the state at the base. Evidently, for sufficiently large
values of the excitation number l the norm switches be-
tween positive and negative values. Hence, despite the
Virasoro constraints, this model is not unitary and can-
not describe a physical string.

Until now a solution to this problem, and the related
SL(2,R)/R black hole problem, has not been found de-
spite many attempts [5,6]. Suggestions included (1) re-

The analogue of this equation in Hat spacetime is the mass
shell condition —(p~) = M = l —a, where lp„) denotes the
labeling of the base.

There has been a claim of a proof of the no-ghost theo-
rem for this problem (second reference in [6]). Evidently the
"proof" is wrong since we are able to display explicitly nega-
tive norm states that satisfy the Virasoro conditions.
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stricting (artificially) j(l) + 1 ( k/2 so that the norm
never becomes negative, (2) allowing large values of j(l)
as needed by the excited level l, but also permitting the
base state to have negative norm N~~~~ in such a way as to
make the norm of the excited state (P, l1$, l) positive, and
(3) hoping that modular invariants will fix the problem.

All of these suggestions are rejected as follows. (1)
If j + 1 cannot exceed k j2, then the string cannot be
excited to arbitrary levels, as seen from ( 2.6). In addi-
tion to being an artificial condition not justified by the
formalism, this also leads to inconsistent physical results:
For example, classical string solutions in which the string
is arbitrarily excited exist in curved spacetime; there is
no intuitive or physical reason not to expect them in the
quantum theory as well. (2) Even if the explicit state
in (2.7) is forced to have positive norm by changing the
norm of the base, there are other states at the same level
that would have opposite norm to 1$, l). For example,
the state 1P, l, +)—:(Jo + iJo)1$, l), which also satisfies
the Virasoro constraint, has the norm

On the other hand one may analyze the classical the-
ory underlying such models in the form of a WZW or
gauged WZW theory based on a noncompact group, such
that there is a single time coordinate [2]. The classical
solutions in a class of models were outlined some time
ago [9], and a more detailed discussion of the 2D spe-
cial case has been given more recently [10,11]. The same
approach yields classical string solutions for SL(2,B) as
well. For a classical string to make sense one must con-
sider only those solutions for which the string time coor-
dinate X (w, cr) (defined through an appropriate coordi-
nation of the group element) monotonically increases as
a function of r for the whole string (all cr), just as in flat
spacetime. Under such conditions one finds that there are
perfectly well-behaved physical string solutions that are
the generalizations of string motions in Hat spacetime.
There must be a corresponding quantum theory formu-
lated in terms of the symmetry currents of the WZW the-
ory. Evidently, it cannot be the theory outlined above.
A radical solution is needed.

(p, l, +1/, l, +) = 2(j + 1 —l)(p, l1$, l). (2.8)
III. MODIFIED CURRENTS

The two norms have opposite signs when j(l) + 1 —l is
negative at sufficiently high level l. Thus, the second
suggestion does not work either. Independent of this ar-
gument, it seems unreasonable to have a negative norm
base in a unitary theory.

The third possibility is more elusive since modular in-
variants are not well understood for SL(2,A) or other
noncompact groups. For the past Ave years this possi-
bility remained open. One could have hoped that the
problem could be resolved through modular invariants
that are needed in order to complete the construction
of the physical theory. A modular invariant provides in-
structions for putting together the left-moving and the
right-moving states

(2.9)

It could happen that the physical modular invariant
would choose only those combinations of states that have
overall positive norm, even though the left- or right-
moving states 1/1), 1$&) contained in it may have neg-
ative norm. However, as described below, we recently
found an argument that destroys this possibility too.

Thus, consider an open string rather than a closed one.
The boundary conditions turn out to relate the left- and
right-moving currents, so that only one set of currents
and states is suKcient to describe the full open string
(see Sec. IV C). The convenient current is neither the
left nor the right mover, but it can be related to either
one by a transformation with the group element. In any
case, the quantum theory for the open string propagat-
ing in the SL(2,R) curved spacetime reduces to the same
mathematics outlined above, with no further consider-
ation of left-right states since there is a single current.
So the mechanism of squaring two minus signs hoped for
through Eq. (2.9) cannot help. Therefore, this model is
not unitary. Something is wrong with the open as well
as the closed string. The problem will be solved in this
paper.

In this paper a key departure from the usual currents
is introduced in the form of a logarithmic cut lnz in the
complex z plane. The new currents satisfy the standard
local operator products, with only poles as singularities
so that the standard commutation roles are not altered.
To compensate for the cut, the physical states are re-
stricted by monodromy conditions.

First we explain in general terms why a cut is possi-
ble. The string equations of motion that follow from an
action (e.g. , WZW or gauged WZW) consist of differen-
tial equations and boundary conditions. The differential
equations for the left-right currents,

0-JI, ——0, B,J~ ——0, (3.1)

are required to be satisfied when z, z are on the circle, i.e. ,
z = exp[i(r + 0)], z = exp[i(w —cr)], in the Minkowski
world sheet, and therefore the cut starting at z = 0, oo
presents no problem with the physical equations of mo-
tion. Thus the left-moving currents JL, are functions of
z, including the possibility of lnz (and similarly right-
moving currents JR are functions of z). Another aspect
of minimizing the string action is the boundary condi-
tions that require periodicity in the 0 variable. The
physics should be consistent with the periodicity con-
dition o —i 0 + 27m (or z ~ ze' in the complex z
plane). This is the reason that the currents are usually
taken as functions of only the powers z and hence are
holomorphic for complex z, except for poles at z = 0, oo
[as in Eq. (2.1)].

The periodicity requirement will be satisfied in our

These solutions also seem to display new classical string
physics at singularities, such as penetration to the other side
of the black hole spacetime, which is not possible for particle
geodesics (see, e.g. , [10,11]).
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solution in a more subtle way. A cut in the currents
presents problems with the monodromy. Instead of tak-
ing periodic currents, the periodicity condition will be
implemented on the Hilbert space in our theory. So the
physical states will be identified as the subset of states
that are invariant under the monodromy. In other words,
the matrix elements of the currents will be periodic in
the physical subspace. Furthermore, we will see that
although the new currents have a logarithmic cut, the
stress tensor is free of cuts and can be written as a Lau-
rent series in powers of z. This feature permits the simul-
taneous imposition of the Virasoro constraints as well as
the monodromy on the states.

Except for a new definition of the currents we keep
the entire formalism the same. That is, the stress ten-
sor will be constructed as the Sugawara form with the
new currents, and the Virasoro condition will be imple-
mented with this stress tensor. The structure of the new
currents was discovered by trial and error, in the process
of building a new free boson realization for Sl (2,B) cur-
rents, which will be presented below. But later it was un-
derstood that the logarithmic structure follows naturally
from the WZW model. It turns out that the natural vari-
ables for the quantization of the model, and for perform-
ing computations, are the free bosons, rather than the
currents. However, it is instructive to state the resolu-
tion of the unitarity problem directly in terms of currents
without considering the details of free boson realizations.

Thus define the following new set of currents con-
structed from the old ones (in light-cone-type combina-
tions):

J'( ) + J'( ) = J'( ) + J'( )

J (z) —J (z) = J (z) —J'(z)
k—2ino lnz J (z) ——n()

+(—'~;»z)' Jo(z)+P(z), (3.2)

J'(.) = J2(z) —t~;». Jo(z)+P(z)

The old currents J'(z) are analytic, and are written in the
form of a I aurent series as in (2.1), and the coefficients
J' satisfy the commutation rules in (2.2). In addition to
these coeKcients we have introduced a new zero mode o.o
which commutes with all the current modes J„'. In the
limit o,o ~ 0 we get the old currents. One can compute
the local operator products and/or the commutators and
show that for any o.o the local commutation rules are the
same for both sets of currents:

J'(z), J'(u)) = ie''"rII, (J (u)) b(z —u))

The first line is given and is equivalent to the commu-
tation rules of the current modes J„' given in (2.2). The
second line is derived from the first line plus the defi-
nition of the new currents. The lnz structure plays a
nontrivial role in arriving at this result. In particular the
crucial commutator to check is

J (z), —2icro ln u) J (u)) (3.5)

and

—ino lnz [J (z) + J'(z)], [J (z) —J'(z)]

Collecting the central extensions of these two terms we
have

k——(9,b(z —u)) (—2icxo 1nu) + 2ino lnzj

iko.oo b(z —to), (3.6)

which gives the desired result. Thus, even though the
new currents have diferent global properties on the world
sheet, they have the same local singularities as the old
currents when their products are considered. The global
structure has an eKect on the spectrum of the theory
through the monodromy, as will be discussed in Sec.
VIII.

We now claim that the physical model has the new
currents as the symmetry currents, and that the stress
tensor is constructed from the new currents

T(z) .
( ]do(z)] +]J~(z)] +]J2(z)] )

.

(3.7)

where normal ordering is defined by splitting the points,
subracting the singularity, and then sending z ~ m in
the finite part. This procedure produces the following
expression when written in terms of the old currents:

1 - 2 - 2 - 2T()= : —J() + J() + J()
k —2

o J'(z) + J'(z) (3.8)

This implies that the Virasoro constraints are modified
as4

J (z), J (u)) —J'(u)) = ib(z ——u)) J (u)) —J'(u))

(3.4)

where the term —i b(z —u)) (——"ao ) on the right-hand
side must be reproduced as part of the new currents.
This term is obtained from the combination of the central
extensions coming from

——(9,8(z —u)) q
k a2

[J'(z), J'(u))] = is*'"rII,( J'(u)) b(z —u))

——0,8(z —u)) q
k U
2

(3.3)
This form of stress tensor was considered before from a

difFerent point of view [12j, but apparently without realizing
that it comes from a current with a logarithmic singularity,
and that it implies monodromy constraints on the states.
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L„=L„+n, (J„'+J„'). (3.9) spectively, and they are defined as

Using the algebra (2.2) for L„,J„' it is easily shown that
the central charge of the new L is the one given before
(for any no ):

-1X (z) =q —ino lnz+i) —n„z-n
neo

[L,L ] = (n —m)L + + —n(n —1)h ~ . (3.10)
12

The new structure (3.9) changes the physical conditions
on the Hilbert space in a profound way. Furthermore,
instead of using the basis

~
jm) in which the zero mode

Jo is diagonal, it is necessary to use the basis
~j,p+, p )

in which Jo + Jo ——p+ and o.o
——p are diagonal in

order to diagonalize Lo. The eigenvalue of the Casimir
operator is insensitive to which zero mode generator is
diagonalized. Then the eigenvalue of I o is

P+( ) ) + n i — —
( +~t

S(z)= ) s„z " ', (s„)t=s „, (4.2)

L p
—p+ j(j+1)

k —2
(3.11)

with a & 1. The contribution from o.o
——p alters the

balance of this equation as compared to (2.5). When p
was absent j(j + 1) had to be positive, which in turn re-
quired the discrete series. However, now p p+ = —M /2
plays the role of a mass in a two-dimensional subspace,
and therefore j(j + 1) can be negative. In that case the
principal as well as the supplementary series become rel-
evant in the description of excited string states. This is
basically the way out of the bind with the ghosts. The
computations that led to the negative norm states were
valid only for the discrete series, but now we have other
choices of unitary representations of SL(2,R) at the base.
Furthermore, the new Virasoro constraints require phys-
ical states that correspond to a diferent combination of
Verma module states. One may compute as in the past
"physical" states and then check their norms. However,
this procedure is very cumbersome. Furthermore, it may
not be very useful to consider the representation space
of the old current algebra, since from that point of view
the states do not fall into degenerate representations of
the central SL(2,R) generated by Jo. The stress tensor
is covariant under the transformations generated by the
new currents, and the old symmetry looks like sponta-
neously broken [as in (3.9)]. Therefore, in order to solve
the new theory we must resort to better methods. This
will be done below, where we will show that the theory
can be solved completely in terms of free fields. In par-
ticular we will show that in the free Geld representation
that corresponds to the WZW model only the principal
series is selected, and that there are no ghosts after the
Virasoro constraints are satisfied.

IV. SL(2,R) CURRENTS AND FREE FIELDS

A. De6nition of the Aelds

Consider the free fields X (z), P+ (z), S(z), and
T'(z). They have naive dimensions 0, 1, 1, and 2, re-

These Gelds are Hermitian, defined for any complex z by

X (z) = X
z)

1 + f'lb
zP+(z) = P+

~

——(, etc.
z hazy

'

That is, because of the Hermiticity of the modes, the
fields X (z), z P+(z), zS(z), z T'(z) are Hermitian if z
is on the unit circle, as it would be for describing left-right
moving fields z = exp[i(r + 0.)] in the Minkowski world
sheet. We emphasize that under Hermitian conjugation
the o+ modes do not go to the a modes. The zero
modes q, o.o

——p, 80, Lo play an important role, as weI

will see below. We also assign the commutation rules

[q, no+] = i,

[n„,n+] = n8„+ o

[s„,s ] = (—", —1) nb„+

[I'„,L'
] = (n — )L'„

(4.3)

while all other commutators are zero. In particular all o.+
commute among themselves, and all o. commute among
themselves, just like light-cone coordinates. Indeed the
o.+ oscillators may be rewritten in terms of light-cone-
type combinations of one timelike n and one spacelike
n oscillator, i.e. , n+ = (n + n )/~2. In this sense,
q, p are interpreted as light-cone-type canonical vari-
ables q = x, p = p+. We have not introduced a canon-
ical variable corresponding to x+; hence, o.o

——p com-
mutes with all the operators and acts like a constant.
Similarly the zero mode 80 also acts like a constant.

The L' operators act like Virasoro operators with zero
central charge. The miiumal construction of SL(2,B) cur-
rents does not need these operators. In fact, the WZW
model that we discuss in Sec. VII does not have the
L' . But in this section we would like to present a new
more general construction of SL(2,B) currents that in-
clude the L' since they may find physical applications in
more general models. In their absence only the principal
series arises, but in their presence all unitary representa-
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tions of the SL(2,R) current algebra can be constructed,
as will be seen below.

The field X (z) contains the logarithmic term
—io.o lnz. This is the source of the lnz terms in the
currents discussed in the previous section. If this term is
left out, all the expressions are analytic, and we obtain
the old currents. However, the presence of this term is
crucial for the description of excited strings in a unitary
theory.

Normal ordering is defined in the usual way for all the
oscillators; i.e. , positive modes are moved to the right and
negative modes to the left. However, for the zero modes
q, p+ we define normal ordering to mean the Hermitian
combination of any powers of q, p+: for example,

+ — — +: q p+:=—2(q p++p+q ),

q p:=q p q

+ +: q p+q p+:—:—(q p+q p++p+q p+q ), etc.
2

(4.4)

(4.5)

q p+ =:q p+: +(q p+), (q p') =i/2

p+q =:q p+: +(p+q ), (J+q ) = —'/2. (4.6)

This is important for constructing Hermitian currents.
We define the contractions (q p+) = i/2 and (p+q ) =
—i/2 which arise in rewriting ordinary products in terms
of Hermitian products:

B. Construction of the currents

All the currents are Hermitian:

[zJ~(z)]'= -J~
~

—
~

.(I)
z z) (4.12)

The new aspects include the ln z terms and the
T'(z)/P+(z) parts. T' is a stress tensor with zero central
charge. It commutes with all other terms in these cur-
rents, but it obeys the following operator product with
itself:

Some time ago we suggested a free field construction
of SL(2,R) currents that gives only the principal series at
the base [5j. This was similar to the Wakimoto construc-
tion but with the important difFerence that the currents
were Hermitian. Here we generalize that construction by
including all unitary representations of SL(2,R) at the
base. In this construction there are new structures that
have not been introduced heretofore. After a few trials
and errors we found that the following works:

Jo(z) + Ji(z) = P+(z), (4.1O)

Jo() J()=:X ()P ()X (z):+2~()X ()
(k —2)T'(z)

P+ (z)
J2(z) =:X (z) P+(z):+S(z) .

With this definition of normal ordering the usual Wick's
theorem for multiplying normal-ordered products with
each other is preserved. Then, one obtains, for example,

T'(z)T'(io) = 0 2T'(io) 8 T'(io)
4 + 2 + +

z —m z —m

: q p+:: q p+: =:q p+q p+:+(p+q )(q p+)

+((p+q )+(q p+)): q p+:

p q p: +4. (4.7)

Products of fields may be rewritten in the normal-
ordered form as

2 +2' z —tU

(P (z)X (~)): +
2Z Z —tU

(~(z) ~(~)) —=
k/2 —1

(z —io)

(X ( )P+( )) =

(4.9)

The 2' or 2' terms occur because of the unusual normal
ordering of the zero modes p+, q . These are unimpor-
tant in the computation of the singular parts of operator
products, but they do play a role in the computation of
the finite parts, such as the energy-momentum tensor,
as seen below. The presence or absence of the p lnz
term in the definition of X (z) does not change the con-
tractions in (4.9); therefore, the singularity structure in
the operator products is unafFected by the p lnz term.
However, the presence of the p term does change the
finite parts in a desirable way.

&(z) &(~) =:&(z) &(~):+(&(z) B(~)) (4 S)

The following c terms arise from the normal ordering of
the various fields:

J*(z) = ) J„'z-"-', (J„*)'= J'„. (4.14)

Then the J' become functions of the oscillators o.+, 8
and L' . The relation between the new nonanalytic cur-
rents J'(z) and the analytic currents J'(z) has precisely
the form given in Eq. (3.2).

Using the rules for normal ordering given above we
compute the operator product algebra for the currents,
and verify that they satisfy the correct relations in the
presence or absence of the no lnz term:

J"(z) J (io) m

J"(z) J"(io) +-k/2

(z —io)

k/2

(z —m)

+ie""" +, (4.15)
Z —'W

+,...~ J~(~) (4.16)

(see Sec. V and the Appendix for the details of the cal-
culation) .

(4.13)

It is possible to give a construction of T'(z) (or I' ) in
terms of other elementary (free) fields, but this is not
necessary for the present paper since it will be used only
in the form of T'(z).

Because of the p ln z term in X (z), the currents can
not be written purely as a Laurent series. Let us define
another set of currents J' as the o.o

——0 limit of the
currents above. The J'(z) have the Laurent expansion
with Hermitian coefFicients
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The energy-momentum tensor is obtained from the
normal-ordered product of the currents:

T(z)=:(—[&0(z)I' + I~, (~)I' + I~, (~)I'):

(4.17)

where l~, l„l' are positive integers and 6' is the eigen-
value of Lo at the base (whose possible values depend on
the model for T'). The mass shell condition Lo ——a is

p+p + (so + 1/4)/(k —2) + h' + integer = a, (4.25)

The result of the computation gives (see Sec. VI)

T(z) =:P+il9,X:+Ts(z) + T'(z) . (4.18)

where a & 1. The term p+p = —M /2 is crucial since
it takes negative values. In comparison to Eq. (3.11) we
see that the Casimir operator of the old currents takes
the value

If the computation is repeated with the J(z) currents,
the only difference is dropping the o.o term contained in j(j + 1) = —(so + 1/4) —h'(k —2) . (4.26)

iB X = o. z

In (4.18), Ts is a Hermitian stress tensor:

Ts(z) = „2:(S(z)]': —
—,~.lzS(z)]+ 4,, (4 20)

The structure —'e), [zS(z)] difFers from the usual one iBS,
and thus is Hermitian. The operator products of Ts(z)
are

e, /2 2Ts(~) 8 Ts(is)+ +
z —m z —m

(4.21)

with the central charge

Therefore, if the T' piece is absent in the construction
(h = 0), then j = —1/2 + iso is only in the principal
series. The supplementary series occurs for —1/4 & j(j+
1) & 0 and the discrete series occurs for —1/4 & j(j+1).
We see that the field T' with a positive 6' contributes only
to the principal series and with a negative 6' it leads to
the other representations as well. This construction may
find various applications in the future. We will see below
that T' is absent in the SL(2,R) WZW model; hence, only
the special case of our construction (T' = 0) will find an
application in the current paper. Then, for excited string
states, since the integer in (4.25) is positive, it would
not be possible to satisfy the mass shell condition in the
absence of the p . So the new logarithmic structure will
play a role.

The physical state conditions will be analyzed in Sec.
VIII, after we prove the above construction.

6
c~ =1+

k —2
(4.22)

V. OPER.ATDR PB,ODUCTS OF CURRENTS
Note that the term P+iB,X is identical to the energy-
momentum tensor of flat light-cone coordinates con-
structed from the oscillators o.„+. Therefore, that part is
mathematically equivalent to a c = 2 stress tensor con-
structed from one time and one space coordinate in flat
spacetime. Then the total central charge is

c= 2+c~+c

=2+
~

1+ ~+0
6

k —2)

We want to verify that the operator products of the
currents are correct. Some formulas that are useful for
this computation are collected in the Appendix. There
are six independent operator products that we need to
reproduce. In increasing complexity these are

(Jo + Ji) (z) (Jo + Ji) (u)) ~ 0+

3A:

A: —2' (4.23)

which is the right central charge for the SL(2, B) WZW
model. Finally, as a further consistency check, by using
only the operator products of the elementary fields, one
finds that T(z) has the correct operator products with
the currents.

The zero mode of the stress tensor takes the form Lo ——

I 0 + Lo + Lo, where each piece has the eigenvalues

+ ~ ~ ~

J2(z)J2(u)) +-k/2

(z —m)

2i
J2 (u))

L,+ = J+&-+l,
= (s + 1/4)/(k —2) + I„

L' = h, '+ l',

(4.24)
J2(z) (Jo —Ji) (u)) w (Jo —Ji) (zo) + .

Z —tU

(Jo —Ji) (z) (Jo —Ji) (u)) + 0 + (5.1)
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The first one is easy:
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(Jp + Ji) (z) (Jp —Ji) (~)
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[J.(.) + J.( )][J.(.) + J.( )]

= P+(z) x P+(ip) +0-. (5.2)

This is correct since the central extension in JoJo cancels
the central extension in JiJi due to the indefinite metric

= diag( —1, 1, 1). The product

(Jo+ J ) ( )J ( ) = P+( ) [: X P+: +S]( ) (5.3)

iP+—(u )/ (z —ip)

—[J.(-)+J.(-)]/(. --) (54)

follows from Eq. (Al). Next, by using the operator prod-
uct for P+ and X one obtains

: X P+X: ik—B X
+ (k —2)T' (ip

2+ [:X P':+S](~)
z —~ Z —tU

—A: —2i
J2(~)2+

(z —ip)'
(5 5)

The product for J2 J2 is obtained by using (A3) and (4.9):

J (z)J (ip) = [:X P+:+S](z):X P+:+S ( )

,+,=,. (5.6)
1 k/2 —1 k/2

Z —lO Z —QJ

The product J2 (Jp —Ji) is computed by using (A4) and
(4.9):

J2(z) (Jp —Ji) (to): (: X P+: +S) (z):X P+X: ikB X— + 2X S—
i (: X—P+X —(k —2)T'/P+) (ip) —2iX (w) S(ip)

Z —QJ Z —tU

—zkX (z) I
8

I + 2X (ip)
k/2 —1

z —ip) (z —u))

: X- P+X-: —ka„X-+ 2X-S —&"-'.& '

Z —tU

(A: —2)T'
( )

2X (iu)+ 2
(z —~)

(5.7)

(Jp —Ji) (~) (5.8)

where we have used

X (z) = X (ip) + (z — )ip)cX (ip) + (5.9)

VI. STR.ESS TENSOR,

To construct the stress tensor we need to compute the
normal-ordered products of currents q;~: J'(z) J~(z)

in the 4th line. Finally the product that is the most
complicated to compute follows from the steps that lead
to (A18):

(Jp —Ji) (z) (Jp —Ji) (ip) m 0. (5.10)

Hence we have correctly constructed the current algebra
from the elementary free fields. The closure of the algebra
goes through whether or not the a« ln z term is included
in the definition of X (z). Its presence is felt through Eq.
(5.9) since this is how the 1/z terms work out. Thus, for
any o.o the algebra of the new currents is identical to the
algebra of the old ones.

We define the normal-ordered product by splitting the
points, and taking the ordinary product minus the sin-
gularity. That is,

3k/2
g,, : J'( )J'( ):—= %, J'( )J'( )—

(z —ip)
'

Then we compute the right-hand side by substituting
the free field form and rearrange it by using Wick's
theorem for free fields. The final form is a normal-
ordered form for the free fields in which all singu-
larities cancel. Then the limit z ~ m is taken
to define the local stress tensor. In this process it
is important to keep track of the finite parts, and
not use the operator products naively. We need
to compute the products 2 (Jp —Ji) (z) (Jp + Ji) (ip),

(Jp + Ji) (z) (Jp Ji) (ip), and J2(z) J2(ip) including
the finite parts. The singular part for the first two prod-
ucts is given in (5.5) and the finite part (as z our) is-
obtained from Eqs. (4.9) and (A2). Thus,

1 + — +——(Jp+ Ji) (z) (Jp —J, ) (ip) = — P+(z): X P+X— : ikO X + 2X S —(k——2) (ip)

= ——(: P+X P+X:)+ —(: P+0 X:)—:P+X:S+
I

——1
I

T'

+ 22 (z —ip)

( —i i+
I
J.( )+o(.— )z —ip 2ip) (6.2)
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Here we were careful to keep the finite 1/z part in the contraction (P+(z)X (io)). Similarly we have

1 1——(Jo —Ji) (z) (Jo+ Ji) (iU) = ——
2 2

1=--(:
2

(k
+

(2
i )

i J2(io) —ior J,(io) + O(z —io). (6.3)
2io )

Tl
X P+X: i kB—,X + 2X S —(k —2) (z) P+ (io)

X P+-X P+-:) + —(: P+O X :)-—:P+X :S-+2
—1 T'+

2 (z —io) (z —io

The singular part of the product J2(z) J2(iu) is given in (5.6) while the finite part is obtained through Eqs. (A3) and
(4.9) as

J (z)J (io) = (: X P+: +S) (z) (: X P+: +S) (io)

i i —i=:X (z)P+(z)x (~)P+(~):+
l

+ —l: X (z)P+(~):(z —iU 2z)
i )+

+ 2' )
1

4m2

i
(z —io

(
(z —io

k

: X (u)) P+(z): +2S:X P+

+ —
I

+:S(.)S(~):f —i i 5

+ (: im+x —p+'a-x :)-
2 (z —io)

+:SS:+2S:X P+: +O(z —io),

k/2 —1
+

(z —io)

+ —:X P+:+:X P+X P+:
LU

(6.4)

where we have used

1 1

2Z Z —QJ

1 1

2Q) z —tU

1
+. O(z —iu)

2tU
(6.5)

in arriving at the I/4io term. Substituting these expres-
sions in (6.1) we obtain, as z i io,

where t, is a basis for the SL(2,R) Lie algebra, and
—2tr(t, t~) = diag( —1, 1, 1). A convenient basis

that we will use is given in terms of Pauli matrices
to = 02/2, ti = io i/2, t2 = —io's/2.

The quantum theory is conveniently formulated in
terms of the left- and right-moving currents after writing
g(7, CT): gL, ('T + 0) gR (7 —CT):

J(~) J(~):= (: P+i~ X:+Ts+T'), Jl, (z) =ikB,gl gl, JR(z) =ikO;gRgR, (7.2)

( : ——~(~S) +
k —2 ( 4iU2 )

Therefore the energy-momentum tensor is

(6.6) where z = e'( + ), z = e'(" ). Note that z, z are inde-
pendent complex variables. After normal ordering, the
stress tensor takes the form

7 =. I+iax- . +T, + T',
as advertized in Eq. (4.18).

(6.7)
1

T( ) = „ t I: J (.)J ( ):I
2 k —2

1
T(z) = tr[: JR(z) JR(z):j.

(7.3)

VII. QUANTIZATION OF THE SL(2,R) WZW
MODEL

Up to now we have worked in a purely algebraic frame-
work. We now relate these structures to the WZW
model for SL(2,R). The group element g(X) may be
parametrized in terms of one-time and two-space string
coordinates X~(v, a), p = 0, 1, 2. When the model is ex-
plicitly written in terms of these, the action looks like
Eq. (1.1) with the metric G~„(x) induced by the Car-
tan connection of the group as

J*(z) J'(n)) m

J'(z) g(iU)

k/2, „Jg (u))

Z tU Z —tU

t
g(~) + ".

Z —tO

(7.4)

The quantum rules are most conveniently given in terms
of operator products among the currents and the group
elements. The left movers Jl, (z), gl, (z) or right movers
JR(z), gR(z) obey similar rules. Therefore, to save space,
in the following we denote J(z) and g(z) for either the
left-moving or right-moving pair:

dg(X) g (X) = (—it, ) dX" E„'(X),

G„„(x)= E„'(X)rI,~
E~ (X),

(7.1) where the ellipses stand for nonsingular terms in the oper-
ator product. These quantum rules reAect the left-right
symmetry structure that is of fundamental importance
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in this model. Below we give a construction in terms of
oscillators that satisfies these rules.

To obtain a relation to the free boson realization dis-
cussed in the previous sections we coordinate the group
element (i.e., gL, or gR) in terms of triangular and diag-
onal matrices as

1
u(z) = uo —iso lnz+i ) —s z

n
neo

, P+ (z') 2u(z')
(k —2) k —2

x+(.) = -'

by inverting the formulas in (7.8 ); thus,

(7.10)

( 1 0& t:e '-': 0 'l (I X+ lx- I I I 0 . ,„-, . I I o

(7.5) (u(z) S(~)) = i
(Z W

i) fk+
2M) E2 )

Then these structures satisfy the operator products

and compute the currents

i (k —2): B,gg J (z) —J'(z) X+(is) m 2n(m) /(k —2)
Z —tO

(7.11)

As compared to the classical currents (7.2) we have
shifted k -+ (k —2) in both g, Eq. (7.5), and the def-
inition of the current, Eq. (7.6), and applied normal
ordering. This renormalization is necessary for the com-
mutation rules to work out, and is consistent with simi-
lar phenomena concerning the quantization of the WZW
model I13]. One finds

J'(.) + J'(.) =: (k —2) 'a, X+.-'"~("-'):,
J (z) = (k —2):iB,X+X e "~ ":+iB,u,

J (z) —J (z) = (k —2): iO, X+ (X ) e

+2X iB u —ikB,X (7.7)

The coefBcient of —ikO, X is ambiguous because of the
normal ordering of the term: iB,X+ (X ) e
Again this has to be fixed by requiring that the commuta-
tion rules work out. Therefore, instead of having naively
—i (k —2) B,X,we actually must have —ikB,X . These
results are established by applying the canonical formal-
ism and identifying these structures with canonical con-
jugate variables. Velocities must be replaced by canonical
momenta. Note that for left-right movers 0 can be re-
lated to time derivatives 0 or space derivatives 0 . So,
at the quantum level, we find that we must identify the
canonical pairs (X,P+) and (u, S) as

J2 (z)X+ (iU) + 0. (7.12)

Actually MC+ is a screening current. Its operator prod-
uct with all the currents is either zero or a total deriva-
tive. Therefore, its zero mode commutes with all the
currents.

Inserting these expressions in Eq. (7.10) into (7.5)
we obtain the quantum operator version of the group
element g. The operator products may now be evalu-
ated. We find the correct quantum products (7.4) with
the above construction in terms of oscillators. That is,

J'(~) + J'(~) g(~) ~ . '
I , 0 I

g(~),

J'(')g(") ~.*'
I 0, I g( ) (7.13)

&0 I)J'(~) —J'(~) g(~) ~, '
I 0 0 I g(~) .

This result, combined with the current x current oper-
ator products that we have proven earlier, is convincing
evidence that the free field formalism that we have in-
troduced corresponds to the quantization of the SL(2,B)
WZW model.

Thus, u(z) is just the canonical conjugate to S(z). An-
other property of X+ that follows from the fundamental
operator product is that it is a singlet under the action
of J2(z):

P+(z) = (k —2)iB,X+e

S(z) = iB,u,

and then the currents take the form

(7.8) VIII. PHYSICAL STATES

A. No ghosts

J (z) + J (z) = P (z)
J'(z) =:X P+: +S,

J (z) —J (z) =:X P+X: +2SX —ik0 X

(7.9) Since we have rewritten the WZW theory in terms of
free fields, the space of states consists of the Pock space
for the oscillators o.+, s applied on the base lp+, p, so)
that diagonalizes the zero mode operators o.0, 80 ..

This is the form used in the previous section without
the extra field L'(z). Thus, as discussed before, only the
principal series will emerge in the WZW model. Using
the oscillator form introduced in (4.2) we can express
u(z) and X+(z) in terms of the basic oscillators s, n+

('.) (: )™(-.)" Ip+p
m=1

(8.1)

where the powers a, b, cA, are positive integers or zero.
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L„lq) =o, n&1. (8.2)

In the present case the total Virasoro generators include
the terms

This is the space of states that provide a representation
basis for the SL(2,B) currents with only the principal
series. The physical states are identified as those linear
combinations that are annihilated by the total Virasoro
generators:

l = 1 the mass shell condition is

p+p + so+1/4 +1=a.
k —2- (8.7)

l&i) = (p'~:i p-~ 'i)lp-' p»)

One finds the two orthogonal states that satisfy the Vi-
rasoro constraints

where

L„=L„++L„, (8.3) 142) = (p+~ i+p ~+i) so+—
)2

+L = g . Q Q + (8.4) 2p+—p s ilp-+, p, so),

) . : s—ms~+a: +tns~ + —4,o
A: —2( " " 4"')

Note that the I+ is equivalent to the c = 2 Virasoro
operator in 2D flat spacetime. The full central charge is

3k
k —2

The eigenvalue of the total Lo is

1
Lp ——p+p + so + 1/4 + integer

k —2-

(8 5)

(8.6)

Thus, the theory has been reduced to a 2D light cone
in flat spacetime plus a Liouville-type spacelike free field
that has positive norm. A small but important difference
as compared to the standard Liouville formalism is that
the linear term in L is Hermitian in our case, and does
not contribute to Lo.

The only negative norm states are the ones produced
by the timelike oscillator n„= (n+ —n„) /~2. However,
this is no worse than the usual flat spacetime case. The
space of physical states is defined by

(L„—ab„p) lP) = 0,
with a & 1 fixed. A proof of no ghosts can now be given
by following step by step the same arguments that prove
the no-ghost theorem in flat spacetime [8]. There is no
need to repeat it here. We only recall that there are no
ghosts as long as a & 1 and c & 26.

It is straightforward to construct a few low-lying states
that satisfy the Virasoro constraints and check explicitly
that they have positive norm. For example, at the level

(0 I4 ) = 2p+p -, (0-le. ) = o,

(~2l~. ) =-4p p-(1- )

(8.8)

After taking into account (8.7) one sees that the norms
are positive as long as a ( 1. The second state becomes
a zero norm state if the theory is critical, with a = 1.
The first state survives even at the critical point, and
is interpreted as a string state in the 2D subspace. At
higher levels one finds that the number of states cor-
responds to the same counting as if there are two free
bosons. This should be expected since we started with
three free bosons and basically eliminated one of them
through the Virasoro conditions. Some of the norms,
but not all, are proportional to (1 —a) . If the theory
is critical with a = 1, a subset of these states becomes
zero norm states. The same phenomena can be observed
in 3D flat string theory when it is considered as a piece
of the D = 26 critical theory. In fact, as k ~ oo the
states described above become the states of the flat 3D
noncritical theory, satisfying the 3D flat string Virasoro
constraints. This is seen by rescaling s„—+ cr„gk/2 —1,
where n, n j = nb + become the oscillators of the
string in the third dimension, no ——sp/gk/2 —1 be-
comes the momentum in the third dimension, and the
L of the present theory tend to the I of the 3D flat
string theory. This observation is additional confirmation
that the SL(2,B) curved space theory behaves in the cor-
rect intuitive way as k ~ oo by becoming a flat space
theory.

A more efBcient approach to construct the physical
states is to use the "spectrum generating algebra" as in
flat space [14]. This will be presented in a separate paper.

We have left out the L' sector since this is not part of the
WZW model. In a model that includes L' the base state
would have the additional label h' and products of Virasoro
operators L' applied on it. If the L' sector is present, there
could be additional negative norm states arising in sectors of
negative h', if such values are permitted by the model describ-
ing L'. For example, note that the norm of L' lh') is 2nh'.
Recall that negative values of 6' lead to the discrete series
when j(j + 1)) —1/4. This observation is, in fact, an expla-
nation of the origin of negative norm states that arose in the
beginning.

B. Monodromy

So far we have not taken into account the physical
effects of the lnz cut in the currents. As we argued in
the beginning of Sec. III, a physical string theory must
satisfy the monodromy condition in the physical sector:

(phyl J'(ze' )lphy') = (phyl J'(z)lphy'). (8.9)

This condition would have been satisfied automatically if
there were no cuts. One of the new features of our theory
is to require that the monodromy be satisfied only on a
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subset of states that are the physical states. Quantum
mechanically it is possible to impose this condition simul-
taneously with the Virasoro constraints since the latter
commute with the monodromy operator as seen below.

To implement the monodromy let us first consider its
effect on the currents. From the modified currents in
(3.2) we see that under the monodromy the currents un-
dergo a linear transformation

J +J (ze' ")= IJ +J (z),

1j = ——+isp
2
1

i Q(k —2) (r —l + a) —1j4,
2

(8.16)

where r must be chosen so that the square root is real.

j(j+1) this corresponds to a principal series representa-
tion of SL(2,B) with quantized values of j given by

J —J (ze' ") = J —J' (z) +4vrnno J (z)

+(2~~n;)' J'+ J' (.),
(s.io)

J (ze' ") = J (z) + 2vrnno J + J (z) .

Therefore we expect that the right-hand side can be
rewritten as the adjoint action with a global SL(2,R)
transformation. Since the current Jo(z) + J (z) remains
unchanged, the generator of this transformation must be
the zero mode of this current. Indeed, since o.p acts like
a number, we can rewrite the monodromy in the form

Ji (
i2mn) —2imnap (Jp+ Jp) Ji ( )

2innap (Jp+Jp)

(s.ii)

Therefore physical states that satisfy (8.9) are the subset
of states that are invariant under the monodromy

e" " ' ( '+ ') ~phys) = ~phys) . {s.i2)

In the free boson representation this is easy to implement.
Using (Jo + Jo~) = no+ this condition is applied on the
Fock space of the Bee bosons in the form

+2zwYLcxo cko

n, m, A:=1

(n+„) "(n )
™

(s g)
" ~p+p so) .

(8.18)

0!p 0!p = p p = —r) r Oy 1
y 2) ~ ~ ~ ~ (s.i4)

We must take negative integers because according to the
mass shell condition p p+ is negative. So the mass shell
condition on physical states at the excitation level I, takes
the form

r+ so+I/—4 +l =a.
A: —2- (8.15)

It is always possible to satisfy this condition with some
value of sp which is quantized in terms of the positive
integers r, l. In terms of the original Casimir operator

Therefore it only requires that the momenta that describe
the ground state be quantized in terms of negative inte-
gers:

e" " ' 'le+, p, so) = IS+,u, so),

C. Open and closed strings

An open string action S = f dr 1' der L(r, o) is mini-
mized by allowing free variation of the end points. For
the WZW model for any group G this produces the
boundary terms

Tr (bgg
—') (0 gg

—')
bS= d~ x

—Tr (bgg ') (0 gg ')
(s.i7)

In addition to the equations of motion, these terms must
also vanish at each end of the string. That is,

0~gg =0= 0 gg (8.18)

At the conformal critical point the equations of mo-
tion are satisfied by the general form g(r, o) = gL, (r +
o) g& (r —o). Then the boundary conditions require that
gI, and gR be related to each other by the constraint

gg (r) a„gl (r) + g/ (7) B~gR(r) = 0. (8.19)

Furthermore, each term in this equation is required to be
periodic. As discussed in the rest of this paper, we impose
periodicity on the physical states. The relation (8.19)
between gL, (r) and gR(r) is not easy to solve explicitly.
However, we may carry out the quantum theory in terms
of the current

J(z) = gI. (z) 0 gl(z) = gz (z) 0 g~(z).

The quantum spectrum is obtained from the properties
of J, whose mathematical structure is the same as either
left movers or right movers as discussed in the previous
sections. Thus, the quantum spectrum of the open string
in the SL(2,R) curved spacetime becomes identical to the
spectrum discussed above.

This is neither the left-moving current JL, ——Bgl.gL nor
the right-moving one JR ——Og~g&, but is related to
them by transformations involving gL, or g~. This current
generates transformations on the right side of gl, and
the left side of g&, and the meaning of (8.19) is that
the total current on both gL, and g~ vanishes at the end
points. The canonical commutation rules for this current
are identical to the ones we have already discussed in the
rest of the paper. The stress tensor constructed from it
is equal to the stress tensor constructed from either the
left movers or the right movers:

Tr(J ) = Tr(JL, ) = Tr(J~).
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For a closed string we have independent left- and
right-moving sectors. The full group element is g
gL, (z)» (z) and there are left- and right-moving cur-
rents. Therefore we now need two sets of oscillators,
the left movers o.+, s and the right movers o.+, s . So
the direct product Hilbert space has a base labeled by
~p, p+, so,'p, p+, so) with p p+ = ra—nd p p+ = r-
to ensure that the currents obey the monodromy con-
ditions in the physical sector. We now need to figure
out if these are all independent labels or if they must be
constrained by physical considerations.

For this purpose we recall that a possible modular in-
variant is the so-called "diagonal invariant" that requires
the same unitary representation labeled by the same j
for both left and right movers. This may be understood
as being related to the representation of the full group
element D~(g) = D~(gL, (z))D~(» (z)) which requires
the same j for both left and right movers. Therefore, we
must demand so ——so.

In addition, we examine g(z, z) in more detail. Keeping
the order of operators, it may be written in the form

with

ru ai
~ = ~~(z)» (z) =

I u) (8.20)

—"L+"R —tl L —uRu=e l —2 —el —' &X+ —X+~&X e A: —2

uL —uR —tl L ~R
v = e ~2 +e~2X (X

(8.21)

(8.22)

+e &-2 Xq (Xq —X~) X~ e A-2

We see that g is not periodic under o ~ 0 + 2am
since there are logarithms in the expressions for every
XI. ~, uL, ~. However, provided we impose p+ = —p+
on physical states (to cancel the nonperiodic behavior in
X&+ —X&+), we find that we can rewrite this monodromy
in the form

g(ze' ",ze ' "")= UUg(z, z)U U

U U e
—i p+ p 2am —is&2mn ip+ p 2mn iao2mn

(8.23)

2@+p + 2so —2p+p —2so ——2m, (8.24)

where m is an integer. Since we have already seen that
so ——so, we find that this condition reduces to r —r = m,
and does not impose any additional constraints on r, r.

Furthermore, for a closed string we should also have
L o —L o = 0 on the physical states. According to the
mass shell condition (8.15) this requires r —l = r —l. So
modular invariant physical closed string states must be

where p+, so are operators which do not commute with
q, uo, and similarly for right movers (note that we have
never introduced a canonical conjugate to p [or p )].
To ensure that the matrix elements of the overall g are
consistent with monodromy in the physical sector it is
sufhcient to impose the conditions

labeled at the base as

r + r ++) p ~s +) pJ+ p+ (8.25)

where the restrictions are

so=so, (8.26)

and the excitation numbers for left-right movers must be
restricted by

r —l =r —l. (8.27)

IX. CGMMENTS

Two novel features were introduced in this paper. The
first is that currents are allowed to contain logarithmic
cuts provided monodromy conditions are applied on the
physical states. The second is a new representation of the
currents in terms of free bosons that render the theory
completely solvable. Both of these ideas have generaliza-
tions that would allow the construction of a large number
of new string models that are especially useful in curved
spacetime.

We have shown that a unitary string theory in SL(2,R)
curved spacetime can be constructed and its spectrum
solved exactly. In a separate publication we will give
the spectrum generating algebra which characterizes the
physical states more eKciently. Correlation functions can
also be computed by using free boson methods.

Using the SL(2,R) solution given here, it is not dif-
ficult to figure out the spectrum of the 2D black hole
SL(2,R)/R gauged WZW model [1,7] . This requires im-

posing J = J =Oforn& land Jo+ Jo =Oonthe
SL(2,R) states described above. This task is more eas-
ily carried out once the spectrum generating algebra is
constructed. This will be described elsewhere.

The new methods seem appropriate for understanding
quantum string gravity beyond the so-called c & 1 bar-
rier. In the present SL(2,R) case we have solved a 3D
model with c = 3k/(k —2) that can take values between
3 and 26.

We have also shown that the free boson methods per-
mit a more general representation of SL(2,R) current al-
gebra when the extra degrees of freedom L' are intro-
duced. These were absent in the WZW model, but they
may be present in more general models.

As emphasized in the Introduction, the main purpose
for the present exercise is to develop the appropriate
methods to study string theory during the early universe
and to understand the impact of string theory on the
symmetries and matter content observed at accelerator
energies. For this purpose the current methods must be
generalized to heterotic strings such as those described
in [15]. Methods used for other special models of curved
spacetimes may also be helpful [16].
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APPENDIX

1. Operator products computation

Here we compute the operator products of certain structures that will be used as building blocks for the operator
products of the currents given in Sec. V. The method of computation is to use Wick s theorem for free fields to
rearrange the oscillators into normal-ordered form, then expand the result in powers of the singularities, and finally
drop the nonsingular terms (noted as ellipses below). The following are needed in the computation:

P+(z): X (w) P+(w): =:P+(z) X (w) P+(w):+ ( P+(z) X (w) ) P+(w)

+ -P+(w) + (AI)

P+(z): X (w) P+(w)X (w): =:P+(z) X (w) P+(w)X (w): +2(P+(z) X (w)): X (w) P+(w):

+-[:X (w) P+(w):] + (A2)

(:X P+:) (z) (:X P+:) (w) =:X (z) P+(z)X (w) P+(w): +:X (z) P+(w): (P+(z)X (w))
+:P+( )X ( ): (X ( )P+( ))(P+( )X ( ))(X ( )P+( ))

1
2+

(z —w)

Similarly,

(: X P+:) (z) (:X P+X:) (w)
=:X (z) P+(z)X (w) P+(w)X (w): +2(P+(z)X (w)): X (z) P+(w)X (w):

+(X ( ) P+( )):X ( ) P+( )X ( ):+2(P+( )X ( ))(X ( )P+( ))X ( )
2X (w) i [:X (w) P+(w—)X (w)]2+ +"
(z —w) Z —QJ

Furthermore,

(:X-PX-:) (z) (: X- PX-:) ( )
: (X PX ) (z) (X P+X ) (w): +2(X (z)P+(w)): P+(z)X (z)X (w) X (w):
+2 ( P+(z)X (w)): X (z)X (z)X (w) P+(w):
+4(X (z)P+(w))(P+(z)X (w)): X (z)X (w):
4: X (z)X (w):

(z —w)'
4: X (w)X (w): 4: X (w)0 X (w):

(z —w) Z —Q)

and

X (z) P+(z)X (z):] —ikO X (w)

ik: X (z) P+(z)X —(z)8 X (w): ik 0 (P+(z)X (w))—: X (z)X (z):
: X (z)X (z):

Z —QJ

: X (w)X (w)::X (w)B X (w):
Z —tD Z —tO

Similarly,

(A3)

(A4)

(A5)

(A6)

t
—kO, X-( )] (:X-P+X :)( ) ~ —k- (A7)
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Combining the last three equations we see that

: X P+X: —ikc), X (z):X P+X: ikO—X (w) -+ 2(2 —k)
'

(, )(,
)' + ', - ' +-

If k had the value 2, this operator product would not be singular. However, for any A: the singularity cancels by
including the current S in a modified operator as follows. Consider

A: 2 —12X (z)S(z) 2X (w)S(w) = 4:X (z)X (w): [: S(z)S(w):] +4:X (z)X (w):(--) '

and the combination

2(k 2):Ã (tv)Ã (ul): + Ã (tu)8 K (tu):
(z-m)~ Z —QP (Ag)

: X P+X: ikO, X— (z) x 2X S (w) + 2X S (z) x:X P+X: ik0 X —(w) w 0, (A10)

which is not singular (although each term by itself is).
Combining the last three equations we see that the fol-
lowing operator product is not singular:

[:X P+X :ikB,X +—2X S](z)

This leads to

1 1

x [:X P+X: ikB X g—2X S](w)

-+ 0+. . . . (All)

1 : X (w) P+(w):+P+ z z —w) P+(w)

1 —2i 1:X P X:():X( )

2. Operator products with 1/P+

If the I' are included in the construction, then we
need to compute the operator products with 1/P+(z).
This operator may be treated as a series in the oscilla-
tors, with the zeroth order term 1/p+. Successive terms
in the series contain higher powers of 1/p+. The series is
well defined provided one acts on states for which 1/p+
is a well-defined operator. In momentuin space ~p+) this
simply requires a nonzero eigenvalue p+ P 0. In the space

~ j, m) labeled by the eigenvalues of Jo one has to be care-
ful since the behavior of the wave function (p+

~ j, m) near
the origin is (p+)~+i~2+" (discrete, supplementary, prin-
cipal series) or (p+) ~ i~2 " (principal, supplementary
series). SufEciently high powers of 1/p+ may map a given
state ]jm) out of the normalizable Hilbert space. This
would have to be interpreted properly. In the following
we assume that the operators are well defined on an ap-
propriate set of states, such as the states ~p+ g 0). Then

1 — 1() ()=: () ():
1

I (X (z)P+(w))P+w)

(A12)

—2 1

)' [P'(w)]'

[: X P+X: —ikc), X + 2X S](z) P'(w)

(:X:+S)(w)
—2iT'(w) 1

k —2 T'(w)
(z —w) [P+ (u )]

Similarly,

[:X P X:—ikB X +. 2X S](w)P+ z

: +S
i

(w)
2iT'(w) t' 1
z —w ( P+ )

k —2 T'(w)+
(z —w) [P+ (w)]

k —2 6 T'(w)
(z-w) " &[P'(w))')

(A13)

(A14)

(A15)
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We also have Combining the last three equations together with (All)
shows that the current

Jo (z) —Ji (z) =:X (z) P+ (z)X (z):
i—kO, X (z) + 2X (z) S(z)
(A, —2)r'(~)

P+ (z)

has a nonsingular operator product with itself:

(A17)

(A16) [Jo(z) —Ji(z)] [Jo(z) —Ji(z)] a 0+. . . (A18)
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