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Fermion condensates of massless two-dimensional QED at finite density in nontrivial
topological sectors

H. R. Christiansen* and F. A. Schaposnikt
Departamento de Fisica, Universidad Nacional de La Plata, C. C. G7, (1g00) La Plata, Argentina

(Received 27 July 1995)

Vacuum expectation values of products of local bilinears v)@ are computed in massless two
dimensional +ED at finite density. It is shown that chiral condensates exhibit an oscillatory in-
homogeneous behavior depending on the chemical potential. The use of a path integral approach
clarifies the connection of this phenomenon with the topological structure of the theory.
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I. INTRODUCTION

Fermion condensates play an important role in particle
physics and cosmology. In particular, they are relevant
in connection with chiral symmetry breaking [1], a phe-
nomenon related to the structure of the QCD vacuum
[2].

Recently, it has been found in the large Nc limit [3],
that the order parameter for chiral symmetry, (g@), is at
high fermion densities inhomogeneous and anisotropic so
that the ground state of quark matter has the structure
of a standing wave with respect to the order parameter.

At present, it is well understood that the fermion con-
densate (@(x)@(x))picks contributions from nontrivial
topological sectors. Then, in order to decide whether the
breakdown of chiral symmetry occurs, one should con-
sider instanton eO'ects on the fermion condensate.

Two-dimensional models such as two-dimensional
QED (QED2) and QCD2 provide a natural ground
to study these phenomena since, although simplified,
the basic features (chiral symmetry breaking, nontriv-
ial topological sectors, etc. ) are still present and exact
calculations can be in many cases performed. In this
context, we calculate in the present work vacuum ex-
pectation values of products of local bilinears, gg, at
finite density for the Schwinger model. We employ a
path integral approach which leads in a very simple way
to exact results and has shown to be very adequate for
studying non-Abelian extensions [4—7 . Our conclusions
go in the same direction as those in [3] and extend the
results obtained in [8]. In particular, we are able to show
that multipoint chiral condensates exhibit an oscillatory
inhomogeneous behavior depending on the chemical po-
tential, as it is the case in the I/Kc results for QCD4
[3]. The lack of translation invariance manifests through
a dependence on differences as well as sums of spacial
coordinates. This last result corrects the oscillatory be-

havior computed approximately in [8] for the two-point
correlator in the Schwinger model.

Let us start by observing that quantum field theories
at finite fermion density can be studied by introducing
a chemical potential leading to a quantum theory in the
presence of a classical background charge distribution [9—
11]. Concerning topological contributions, Bardakci and
Crescimanno [12] proposed a natural way to take into
account topologically nontrivial configurations, which is
suitable for the study of the fermion condensates within
the path integral formulation. In this approach, one de-
composes a given gauge field belonging to the nth topo-
logical sector in the form

II. THE MODEL

We start from the two-dimensional (Euclidean) La-
grangian for massless QED2'.

i: = @(i/+ g)g — I"„'„, (2)

where our p matrices are taken as the Pauli matrices,
po

——oi, pq
———a2 so that p~p5 ——iE„~Q„.

The partition function Z for the model is

with A„a fixed configuration carrying the (whole) topo-
logical charge n and a„ the path integral variable, which
accounts for quantum fluctuations and belongs to the
trivial topological sector. In this way, calculations easily
workable in the n = 0 background (as the evaluation of
Fujikawa Jacobians after a fermionic change of variables
using techniques requiring a compact manifold) can be
handled without problems and, at the same time, the
contribution of topologically nontrivial sectors is prop-
erly taken into account.
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A„(a) = A(") (x) + A'„(x) + a„(x). (4)

Hence, the Lagrangian in the nth topological sector reads

In order to include fermion density effects, it will be
convenient to add still another vector Geld A which will
allow for the introduction of the chemical potential in
a simple way. This field describes an external charge
density acting on the quantum system. Whenever A„ is
taken as i times the chemical potential [11],it will repre-
sent a uniform charge background. If one first considers a
finite length (2L) distribution and then takes the L ~ oo
limit, translation symmetry breaking becomes apparent
and at the same time ambiguities in the definition of the
finite density theory are avoided (see Ref. [10]).

Now we can write the gauge field in Lagrangian (2) in
the form

With this change of variables, the only field that remains
coupled to the fermions is A„, a classical configuration
carrying all the topological charge. In terms of the new
variables, Lagrangian (5) becomes

1&'"' = x('P+ 8'"')x—

(10)

where we have already taken A„as a constant, in order
to introduce the chemical potential.

Equation (10) describes the effect of the change of vari-
ables merely at the classical level. At the quantum level,
within the path integral approach, one has to take into
account the change in the fermionic measure, i.e. , the
Fujikawa Jacobian associated with transformations (7).
The evaluation of this Jacobian is standard and we just
quote the result [4]

+2f F( )+(Fb ) +2f

+2F("„)F„„]+ 2, . (5)
J = exp

I

— d'* 4 ((t + 2&'"')
i( 27r

In Eq. (5) we have added a counterterm 8, which will
be conveniently chosen to cancel out a divergency aris-
ing when the background A„ is taken as a constant to
introduce the chemical potential (see below).

The partition function now reads
where P( ) is accordingly defined by

A(") = —e„.a.y("). (12)

Z = ) DQDQDa„exp
~

— d zC(
) (6) Concerning the Jacobian associated with the change of

the bosonic variables [Eqs. (4) and (8)],

q = exp(W, 4+in+W, 4'+in') X,
'(i' = X exp(ps' —i9+ 7sP —i9 ) (7)

according to a standard decomposition of the vector fields

ay 6~v C)vg + ~~i7 (8)

and

A = —e~ c) (j!P + 8~77

where we have written the path integral as a sum over
all topological sectors.

As is well known, in two dimensions fermions can be
completely decoupled from gauge fields by an appropri-
ate chiral and gauge transformations of the fermion fields.
At the quantum level, the corresponding change in the
fermionic variables is accompanied by a nontrivial Fu-
jikawa Jacobian [13]. As it can be inferred from the
connection between the chiral anomaly (and the index
theorem for the Dirac operator) with the change in the
fermionic path integral measure, calculation of the Jaco-
bian can be more easily performed in compact space-time
manifolds. The latter implies that only decouplings from
topologically trivial gauge Gelds should be considered.
With this in mind, we perform the following change in
the fermionic variables:

Da„= Jb~, DQDq, (13)

it can be identified with the Faddeev-Popov determinant
for the g = 0 (Lorentz) gauge, Jb, = det, and it will
be ignored in what follows.

To relate A„with the chemical potential p, note that
fixing the fermion number density through a term

&abc~ = iPVVP4— (14)

corresponds to the choice

A„= —iph„p (15)

or, equivalently,

Pb = 1@xi, 'gb = 0. (16)

Notice that, as has been thoroughly analyzed by Actor
[11], Ab does not correspond to a pure gauge. Were it
not so, the introduction of a chemical potential would not
have physical consequences. For the same reason, one
cannot gauge away C,h from the Lagrangian by means
of the alternative choice: i1b

—— i exp Pi, =—0. In fact,
this transformation would correspond to an unbounded
(in the temporal axis) gauge one. Although transforma-
tion (16) is unbounded as well, as mentioned above, one
can handle this problem as is usually done: putting the'
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Z = JV) DgDyDP exp( —S,s ), (17)

system in a spatial box, introducing counterterms, and
taking the infinite limit for its length at the end of the
calculations. In this way, the usual divergency associ-
ated to the electromagnetic energy carried by fermions
can be eliminated by an appropriate counterterm [10].
In our approach the divergency manifests through the
term P(, Pl l in Eq. (11). As stated above, this infinite
contribution is canceled out by an appropriate choice of

This counterterm is the Lagrangian counterpart of
the one usually employed in the Hamiltonian approach to
handle this problem [8,10]. In the canonical QFT, this is
tantamount to a redefinition of creation and annihilation
operators which is equivalent to a shift in the scale used
to measure excitations.

Putting all this together, the partition function of the
model can be written in the form

p. To this end, let us de6ne the chiral charge-changing
correlators

s+(~) = 0+@+(~)

s-(~) = @-@-(~)

where g+ and g are the right-handed and left-handed
components, respectively, of the Dirac spinors. Thus, the
fermion condensate (@g(i())) is the sum of the VEV's of
the composites defined in Eqs. (19) and (20).

Notice that this correlator could be naively expected
to vanish as a direct consequence of the chiral invariance
of massless QED2. However, as explained above, when
one is to compute (s+(ii))) [(s (io))], using the partition
function given by Eqs. (17) and (18), a nonzero value is
found. In fact, only the n = 1 (n = —1) sector will con-
tribute to the sum over topologically nontrivial sectors.
One then has

where S,& is the efFective action in each topological sec-
tor,

S.'"„' = d'* ~('9m)+ g~"&)&

DXDXD0 x+ (~)X+ (~)

x exp (+]ii(w) + iir (w)]) exp (
—s,~

' ),
(21)

where Zo, the only nonvanishing contribution to Z, arises
from the n = 0 sector. After some algebra, Eq. (21)
becomes

1
4e2

d2~(el"„~) —— d'* y o (y+ 2yl")).

(18)

1
(s+(~)) =

Z DXDX X+(~)X+(~)

Nate that with the choice of 8 discussed above,
the efFective action written in terms of the "decoupled"
fermions does not depend on the chemical potential p.
Nevertheless, p, reappears when computing correlation
functions of fermion fields, once @ and g are written in
terms of the decoupled fields g and y through Eq. (7).

Of course, the fermionic integral in Eq. (17) is the de-
terminant of the Dirac operator in the background of a
gauge B.eld carrying topological charge n. Now, as is well
known [12], the Dirac operator has, for n ) 0 (n ( 0), n
positive (negative) chirality zero modes so that actually
none but the n = 0 sector does contribute to Z. How-
ever, in computing vacuum expectation values (VEV's)
of products of fermion bilinears, Grassman coeKcients
accompanying zero modes render nontrivial certain path
integrals in a given topological sector. This happens ac-
cording to the number of bilinears appearing in the VEV,
and then only this sector will contribute (see next sec-
tion).

x exp
~

— d x y(if+ g~ ))y
~

(, . ~, l 1

l j Zg
D(b

1
x exp (+2]ii(w) +i@co~])exp — (E'i+ i) )4e2

1
x exp

27'
d'x + 2 ~„.a„A~+'~

(22)

with

ZF = detip

and

2

Z~ = det '~'
4~) (24)

It can be easily proved in the p = 0 case that (s+)~+i
and (s ) i coincide. This, in turn, implies that

III. CORRELATION FUNCTIONS OF FERMION
BILINEARS

We are now ready to study the behavior of chiral con-
densates and their dependence on the chemical potential

(&4(~))"=' = 2(s+)~i'.

Now, from Eq. (22), we can see that

(s~)~i ——exp(+2ipi()i) (s~)+i (26)
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hence, one finally gets

(&&( ))" '= (2V )(&@( ))"='. (27)
~N ——Zz DyDy x+x+ (~*)

In order to have an explicit formula for Eq. (27), let us
recall that

(28)

where p is the Euler constant and m = e jn is the mass
of the effective boson [14]. Equation (27) coincides with
that presented in [8], using operator bosonization rules.
Apart from the simplicity of our derivation in the path
integral framework, it should be stressed that it is within
this approach that the role of diR'erent topological sectors
becomes apparent. This can be put in evidence in the
calculation of N-point correlators which will be discussed
in the remaining of this section.

According to the previous discussion, we consider the
contribution of the nth topological sector to the N-point
correlation function

and

B+N —Z~
f N

DP exp k2 ) 0(1U, )

1
x exp

~E2e2
d xPCl(/+2'+ ) ~

x exp, d'z[(Clg)'
(2e2

y(+N) ~ 4, + (~y(+N)) ]

We thus see that the dependence of the correlator on the
chemical potential factorizes, resulting in

S WO

1
s+(~;) = ~ DxDxD4

0+n
xP+x(~') s+(~')

N

exp sip )
*=i j

x exp +2 ) 0(u);) —S,~" . (29) x s~ (10,) (35)

Here ( )~„means that the VEV is computed in the knth-
topological sector; P+ (P ) is the projector on the right-
handed (left-handed) subspace

1
P~ = —(1+ps)

2

and we have defined.

where

N p=O

s~(10,) = (—me~ j4vr)N
i=1 kN

x exp —2 ) Ke(m~tv; —m~ ~)

0(~) = &(~) + (t'(~). (36)

Now, because of Grassman integration rules, it can be
easily proved that the only nonvanishing contribution to
these correlators may arise when the number of insertions
equals the absolute value of the topological charge, i.e. ,

~n~ = N [15]. Performing the decoupling of ferznions as
before, we finally get the expression

N p, +0

S+(Wi) = F+N(~1& 1U2 " ~N)
i=1 +N

are the general minimal correlation functions for p, = 0
[15,16].

We are now ready to go further and study the so-called
nonminimat [12,16,17] correlation functions which will be
needed in order to compute multipoint vacuum conden-
sates. We start considering the complete two-point com-
posite

(&&(~)&&(~))= (s+(~)s+(~)) + (s-(*)s+(~))
+(s+(*)s-(~))
+(s-(*)s-(~)). (37)

Here,

++EN(~1 ~2 "~ 10N) ~ (32) In the n = 0 topological sector, the unique contribution
to Eq. (37) comes precisely from the simplest nonmini-
mal VEV which, after fermion decoupling, becomes

(s-(~)s+(~))""+(s+(*)s-(~))" ' = &exp[ —2'p(» —»)]
x (x+x+(*)x-x- (w)) ~ + exp[»c (» —w1)] (x-x-(~)x+x+(v)) ~)
x D exp d x +-

(2e 27r j (38)
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This gives a contribution to (g@(x)@vP(y)& in the n = 0
topological sector, of the form

(@@(*)@@(y)&."=o = cos[2~(» —y~)l

x(A(~)A(y)&".—:: (»)
There are two remaining contributions arising from the
n = +2 sectors. They follow directly from Eq. (35):

(s+(x)s+(y)&+, = exp[ —2ip(x, + y, )]

x(s+(*) +(y))+2

( -( ) -(y))".'= p[2 V( +y )]
x ( (x) (y))"= . (40)

At this point some remarks are in order. (i) Once again
the topological structure of the theory manifests, mak-
ing possible the discrimination of the contributions to
fermion bilinear correlation functions &om each topolog-
ical sector; (ii) Eq. (42) exhausts all topological contri-
butions; (iii) the lack of translation invariance (which is
broken by the background charge distribution) becomes
apparent, particularly through the last term in the right-
hand side (RHS) of Eq. (42), which depends on the com-
bination xq+yq, '(iv) no clustering ansatz has been needed
in order to obtain these results.

I et us finally note that if we put yq ——0 in Eq. (42),
we get a compact formula analogous to Eq. (27):

Again,

(s+( )s+(y))+=.
' = (s-(*)s-(y)&"2

= 2(A(*)&@(y)&(„(',
so that we Anally have

(A(*)&&(y)&" '
= cosl»(~~ —»)]8@(*)4@(y)&."=:

+'o [2 ( + )](@@( )@@(y)&~„~=,. (42)

(@@(*)@@(y)&"' = o (2p* )(@@(*)@&(y)&"='.(43)

This last result can be seen to coincide with that obtained
in Ref. [8], using cluster decomposition. In fact, the result
reported in [8] corresponds just to the trivial topological
sector and does not reproduce the contribution of n g 0
sectors whenever xq g yq.

Correlators of a larger number of bilinears can be very
simply obtained following the same procedure as above.
As an example one gets, for the three-point correlator,

) (@@(z)@@(y)g@(z)& o 2cos[2p(z~ + y~ + z~)](s+(x)s+(y)s+(z)

+2- [»(*.+"-")](-(*)"(.) -(»."==',

+2cos[2p(xz —yq + zq)](s+(z)s (y)s+(z)&
+2 o[2 (—* + + )](-()+()+()).": (44)

[we have emphasized that the left-hand side of Eq. (44) exhausts all the topological contributions by explicitly showing
the sum over n].

From the examples above, one can easily infer the structure for the general N-point correlator:

(&&(w')&0(w') - "A (w")
&

"~'

(s+(w')s+(w'). . . s+(w ))„" ~+ ) cos 2p, ) wj. —w,"

(s+(w )s+(w ).. . s+(w" )s (w")s+(w"+ ).. . s+(w )&„"=~

+). ' ~ ).wl wl wl (s+(w )s+(w ) . . s+(w )s (w )s+(w + —) . . s+(w' )s (w')—
k,j igk, j

xs+(w ) . s+(w )&~N 2+
A compact expression for the nonminimal correlation functions appearing in Eq. (45) is

(45)

( s+ (w;)
i=1 j=1

p, =O

s (w, )
T —B

= ( me~/4vr) —exp —2 ) e;e~Ko(m~w, —w~]) (46)
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where r + s = JV (for details see [16]).
In summary, we have presented the correlation func-

tions of fermion bilinears in QED2 at finite density, us-
ing a path integral approach, particularly adequate for
identifying contributions arising from difFerent topologi-
cal sectors. We have been able to exactly compute cor-
relation functions for an arbitrary number of bilinears,
showing its dependence on the chemical potential. One
of our motivations was a recent work by Deryagin, Grig-
oriev, and Rubakov [3], where it has been shown that in
the large Nc limit, condensates in QCD are inhomoge-
neous and anisotropic at high fermion density.

The Schwinger model is a favorite laboratory for test-
ing phenomena which are expected to occur in QCD4.
In fact, an oscillatory inhomogeneous behavior in (gg)
was discussed in the Schwinger model [8], using operator
bosonization. We think that the path integral approach
employed in the present paper is more appropriate to
make apparent the crucial role that topological sectors
play in the behavior of condensates (they are actually re-
sponsible for the nonvanishing of (QQ) ). In fact, our anal-
ysis implies that the phenomenon is not just a byproduct
of two-dimensional peculiarities.

It is striking that the oscillatory behavior that we have
found, exactly coincides (apart from the anisotropy that,
of course, cannot be tested in one-spatial dimension) with
that described in [3] for QCD4. The structure of the
N-point correlation functions, given by Eq. (45), shows
a nontrivial dependence on spatial coordinates. This
makes apparent that the ground state has, at Rnite den-
sity, an involved structure which is a superposition of
standing waves with respect to the order parameter.

Several interesting issues are open for further investi-
gation using our approach. One can, in particular, study
in a very simple way the behavior of condensates at fi-
nite temperature. The chiral anomaly is independent of
temperature and plays a central role in the behavior of
condensates through its connection with the index theo-
rem. Therefore, one should expect (as discussed in Ref.
[8] for (@Q)) that a formula such as (45) is valid also
for T ) 0. Of course, VEV's at p, = 0 in the RHS of
this equation should be replaced by those computed at
Rnite temperature and hence the issue of zero modes in a
toroidal manifold should be carefully examined (see, e.g. ,

[16])
Another extension which can be undertaken is related

to the study of massless QCD2. Indeed, the decoupling
change of variables at the root of our approach, can be
easily extended for non-Abelian gauge groups and has
lead to deep insights in the properties of the model [5—
7]. Finally, it should be worthwhile to consider massive
fermions and compute fermion correlation functions via a
perturbation expansion in the fermion mass following the
approach of [18]. We hope to report on these problems
in a future work.
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