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Nontrivial directions for scalar fields
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We study the eigenvectors of the renormalization-group matrix for scalar fields at the Gaussian fixed point,
and find that there exist ‘‘relevant’’ directions in parameter space. They correspond to theories with exponential
potentials that are nontrivial and asymptotically free. All other potentials, including polynomial potentials, are
‘‘irrelevant,’’ and lead to trivial theories. Away from the Gaussian fixed point, renormalization does not induce
derivative couplings, but it generates nonlocal interactions.

PACS number~s!: 11.10.Hi, 11.10.Kk, 11.10.Lm
I. INTRODUCTION AND SUMMARY

In a previous work@1#, we discussed the renormalizatio
group~RG! for scalar field theories, and reported RG traje
tories near the Gaussian fixed point along which the sca
theory is nontrivial and asymptotically free. In this paper, w
give the details, including a critical analysis of the calcul
tions. In particular, we address the question of whether ren
malization generates interactions not originally present in
Lagrangian.

To address the question of closure under RG, we s
with the most general action conceivable for a real sca
field f(x) in d space-time dimensions. Eventually, we focu
our attention on a theory with local nonderivative coupling
whose Euclidean action is given by

A@f#5E ddxF12 ~]f!21U~f2!G ,
U~f2!5g2f

21g4f
41•••. ~1!

The potentialU(f2) is arbitrary, and not necessarily polyno
mial. For simplicity we work with a one-component rea
field here; but extension to a multicomponent field wi
O(N) symmetry is straightforward, and we shall quote r
sults for that case. There is a high-momentum cutoffL. To
make calculations feasible, we use a sharp cutoff, which a
proves to be a limitation, for it leads to ambiguous nonloc
interactions. We only report results that are believed to
independent of the cutoff function.

Scalar fields are used in the Higgs sector of the stand
model, where it is customary to assume thatU~f2! is quartic
in f. It turns out that such a choice leads to ‘‘triviality,’’ in
that the renormalized value ofg4 vanishes in the limitL→`,
and one is left with a free field. This startling result wa
implicit in the work of Larkin and Khumel’nitskii@2#, and
demonstrated by Wilson@3#. It has been verified in a numbe
of independent Monte Carlo simulations@4–8#. There are
proposals on how to deal with this awkward situation.

~a! Physical quantities are insensitive to the value of t
cutoff, because the approach to the free-field limit procee
with logarithmic slowness@2#. Thus, one can keep the cutof
finite as a parameter of the model. Considerations of s
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consistency@9# impose an upper bound, estimated to be 600
GeV @8#, on the Higgs boson mass.

~b! Even in the free-field limit, the theory is not entirely
trivial. The field can have a nonvanishing vacuum expecta-
tion, as shown in Monte Carlo simulations@6#. Thus it can
still be used as a phenomenological method to generate par-
ticle masses.

These alternatives are not completely satisfactory, for they
do not take the field theory seriously. The purpose of this
paper is to show that escape routes do exist in the framework
of renormalized quantum field theory. In the rest of this sec-
tion, we describe our approach to the problem, and summa-
rize the results.

Common belief holds that onlyf4 theories are renormal-
izable, in the sense that higher powers in the potential will
give Feynman graphs requiring an infinite number of sub-
traction constants. This is true if the higher coupling con-
stants, which generally have dimensions, set independent
scales. From a physical standpoint, however, these scales
contain information about the system at momenta higher
thanL, of which nothing is supposedly known. Accordingly,
we shall assume thatL is the only intrinsic scale in the
problem. This means that all coupling constants should be
scaled by appropriate powers of the cutoff:

ga5uaLa1d2ad/2, ~2!

where theua are dimensionless parameters. These factors of
L supply extra convergence to Feynman graphs, rendering
them renormalizable in the usual sense@10#. It can be shown
that theSmatrix of the theory ind54 is the same as that of
an effectivef4 theory, whose effective coupling is a function
of the ua @1#. However, the RG behavior of the effective
coupling is not the same as that of af4 theory, for it depends
on the RG flow of theua , which can only be obtained from
the original theory.

Renormalization relates the coupling constants at different
momentum scales. In Wilson’s formulation@3#, the relation
is found through a RG transformation that represents a
coarse-graining process, eliminating the degrees of freedom
with momenta betweenL andL/b, and effectively lowering
the cutoff by a factorb. The new action should have the
same form as the old, except that the ‘‘bare’’ couplingsua
are replaced by the ‘‘renormalized’’ onesua8 . Making an in-
3252 © 1996 The American Physical Society
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53 3253NONTRIVIAL DIRECTIONS FOR SCALAR FIELDS
finitesimal RG transformation in the neighborhood ofb51
yields differential equations forua , the RG equations. They
generate RG trajectories in the parameter space spanne
the ua . The flow along a trajectory always proceeds in t
coarse-graining direction, i.e., direction of increasing leng
scale. IfA and B are two points on a trajectory, with th
sense of flow fromA to B, thenA corresponds to a bare
system, andB a renormalized system.

It should be emphasized that the cutoffL does not appear
in A@f# explicitly, for we can setL51 by choosing appro-
priate units. Its value is reflected solely in the values of
coupling constantsua . Thus, the RG equations give the ta
gent vector to a trajectory at an arbitrary point.

The actual value of the cutoff can be deduced only
computing some physical quantity, such as the correla
length. Thus, the only way to approach the limitL→` is to
go to some point in the parameter space at which the co
lation length is infinite. Since the length scale increases
der a RG transformation, such a point must be a fixed po
where the system is invariant under RG transformations.

If a trajectory flows into a fixed point~in the coarse-
graining direction! then, to systems lying on that trajector
the fixed point is infrared~IR!, representing the low-energ
limit of the theory. If a trajectory flows out of a fixed poin
then to systems on this trajectory the fixed point is ultravio
~UV!, corresponding to the high-energy limit of the theory

Although we are free to choose a bare action, the ren
malized action is determined by the RG transformation, a
is not under our control. For example, if we start with af4

theory at some value of the cutoff, a RG transformation m
generatef6 and other couplings. Only at a fixed point are th
couplings determined. When we approach a fixed point al
a trajectory, in the coarse-graining sense, some couplings
destined to be in the fixed-point action will tend to zero, a
these are called ‘‘irrelevant’’ couplings. Conversely, when w
go away from a fixed point in a coarse-graining sense, so
couplings that were infinitesimally small will grow, and the
are termed ‘‘relevant.’’ Triviality comes from the existence
an IR fixed point at zero couplings, the Gaussian fixed po
By examining all possible trajectories in the neighborhood
the Gaussian fixed point, we find that, although the fix
point is IR in theories with polynomial potentials, it is UV t
a class of potentials with exponential asymptotic behavio

To insure that the parameter space is closed under
transformations, we have to consider an arbitrary acti
which should include derivative couplings as well as non
cal interactions. A derivative coupling refers to terms co
taining a derivative of the field not of the form of the kinet
term *ddx~]f!2, as, for example,

E ddx~]2f!2. ~3!

A nonlocal term involves fields or derivatives at differe
space-time points, as, for example,

E ddxddyf~x!K~x2y!f~y!. ~4!

Actually, the action with a momentum cutoff is nonloc
within a spatial distance of orderL21. By ‘‘nonlocal terms,’’
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we specifically refer to those for which the range of nonlo-
cality is large compared toL21.

The exact RG equations for the most general case hav
been obtained by Wegner and Houghton@11#, and we shall
review the derivation. This remarkable calculation is made
possible by the simplicity of the sharp cutoff. The equations
show that RG transformations do not induce derivative cou-
plings if none were present from the start. On the other hand
nonlocal terms are always generated. Some of these hav
infinite range, being of the formV21@*ddxf(x)] 2, whereV
is the space-time volume. Though consistent with the fact
that the action isO(V), such a term is indeterminate in the
limit V→`. The ambiguity can be ascribe to the infinitesimal
RG transformation made with a sharp momentum cutoff. It
would disappear if gentle cutoff functions were used, or if
the momentum-shell integration had extended over a finite
instead of an infinitesimal shell. Both of these alternatives,
however, make the problem intractable.

Fortunately, the ambiguous nonlocal terms are second or
der in the bare couplings. We can therefore neglect them in a
linear approximation about the Gaussian fixed point, and the
action ~1! becomes closed under RG in this approximation.
We study the eigenvalue problem based on the RG matrix
which should be insensitive to the form of the cutoff. It tell
us about the characteristics of various ‘‘principal axes’’ in
parameter space at the origin. Our main results are as fol
lows.

~a! There exist trajectories flowing into the Gaussian fixed
point, as well as flowing out of it. That is, the Gaussian fixed
point is IR with respect to some trajectories, and UV with
respect to others.

~b! For all theories with polynomial potentials, the Gauss-
ian fixed point is IR. These theories are consequently trivial.
A similar result was obtained earlier by Hasenfratz and
Hasenfratz@12#.

~c! For a class of nonpolynomial potentials, the Gaussian
fixed point is UV. Ford.2, potentials in this class behave
like U~f!;exp@c(d22)f2# for largef, wherec is a con-
stant. Theories with such potentials are nontrivial and as-
ymptotically free. Some of the potentials exhibit spontaneous
symmetry breaking.

In summary, we can say that in a sufficiently small neigh-
borhood of the Gaussian fixed point, conventional scalar
theories with polynomial interactions are trivial, and that cer-
tain models with exponential potentials are nontrivial. For
conventional potentials, the road to oblivion is clear and in-
escapable, because with each RG step we are closer to th
fixed point, and the linear approximation improves. For the
nontrivial models, on the other hand, the escape route is
clouded, since RG steps tend to take us out of the linea
region into unknown territory.

II. RENORMALIZATION PROCEDURE

We shall begin with the most general scalar field theory,
with arbitrary derivative and nonlocal couplings, and choose
units such that the cutoff momentum is unity:

L51. ~5!

We enclose the system in a periodic hypercube of volumeV,
and define the Fourier transform of the field by
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fk5V21/2E ddxe2 ik•xf~x! ~6!

with f k*5f2k . Eventually, we take the limitV→`, in
which the Fourier component is replaced by the continuu
versionf(k)5V21/2fk . For illustration, the action~1! can
be written as

A@f#5
1

2 (
uku,1

~k21r !fkf2k1
u4
V (

uki u,1
d~k11•••

1k4!fk1
•••fk4

1•••, ~7!

whered(k) is the Kronecker deltadk0.
To generalize the action, all we have to do is to replaceua

by an arbitrary functionua(k1 ,...,ka), which we abbreviate
asua(k). Thus, our starting point is the action

A@f#5 (
a52

`

V12a/2 (
uki u,1

d~k!ua~k!fk1
•••fka

, ~8!

whered(k) is an abbreviation ford(k11•••1ka). Without
loss of generality, we may assume thatua(k) is a symmetric
function of its arguments. To fix the normalization of th
field, we normalizeu2(k1 ,k2) as follows:

v~k![2u2~k,2k!5k21r1c4k
41c6k

61••• . ~9!

The generalized kinetic term is

A2@f#[
1

2 (
uku,1

v~k!fkf2k

5
1

2Euku,1

ddk

~2p!d
v~k!f~k!f~2k! ~10!

from which we can see thatv(k)5v(2k) is the inverse
propagator for Feynman graphs.

Wilson’s RG transformation@3,13# is defined in terms of
the partition function

Z5E Dfe2A@f#. ~11!

The object is to eliminate the Fourier components with m
mentum magnitudes between 1 and 1/b, without changing
the partition function. We decompose the field into a ‘‘slow
partSk and a ‘‘fast’’ part f k :

fk5Sk1 f k , ~12!

where

Sk50 unless uku,1/b,

f k50 unless 1/b<uku<1. ~13!

Let us split off the kinetic term in the action by writing

A@f#5A2@f#1AI@f#, ~14!

whereAI is the ‘‘interaction’’ part. SinceSkf2k50, as their
domains do not overlap,A2[S1 f ] is additive:
m

e

o-

’’

A2@S1 f #5A2@S#1A2@ f #. ~15!

We now write

Z5E DSE Dfe2A2@S#2A2@ f #2AI @S1 f #

5NE DSe2A2@S#^e2AI @S1 f #& f

[NE DSe2Ã@S#, ~16!

whereN is a constant, and̂O& f denotes averaging overf
with weight exp$2A2[ f ] %. The new action

Ã@S#[A2@S#2 ln^e2AI @S1 f #& f ~17!

contains only the slow fields, with the cutoff lowered to 1/b.
Writing out the first few terms, we have

Ã@S#5
1

2 (
uku,1/b

@zk21r 11•••#SkS2k1•••. ~18!

The parametersz, r 1, etc., are proportionalb
2y, wherey is a

characteristic index.
To make comparison with the original action, we must

restore the cutoff to 1, and normalize the field according to
the convention~9!. The cutoff can be restored by changing
the momentum integration variable to

k85bk. ~19!

To restore the normalization, we transform the field to

fk8
8 [Sk8/bb

212d/22h/2, ~20!

whereh is the index ofz in ~18!, i.e.,z5b2h. The partition
function can now be put in the form

Z5NE Df8e2A8@f8#, ~21!

where

A8@f8#[Ã@S#. ~22!

The actionA8[f8] should have the same form asA@f# in
~8!, except that the bare coupling functionua(k) is replaced
by the renormalized coupling functionua8 (k8), which is of
course a function ofb.

The RG transformation can be formulated in terms of
Feynman graphs. By expanding exp$2AI [S1 f ] % in powers
of f , we can obtainÃ[S] as a sum of connected Feynman
graphs, in which all external momenta are ‘‘slow,’’ while all
internal momenta are ‘‘fast.’’ That is, an external line is as-
sociated withSk ; an internal line is associated withf k , and
gives the propagator 1/v(k) after functional integration
weighted with A2[ f ]. A vertex represents a momentum-
dependent factorua(k).
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III. RENORMALIZATION-GROUP EQUATIONS

We shall carry out an infinitesimal RG transformation a
the cutoff momentum. The fast momenta are contained in
shells in momentum space:

s5$kue2t,uku,1%, ~23!

where we have putb5et. Calculating to first order int will
yield equations fordua/dt, which are the RG equations. To
this order, all internal momenta in Feynman graphs are in
grated over a shell of infinitesimal thicknesst, just below the
surface of the unit sphere. Each independent integrat
therefore yieldsO(t). This circumstance leads to the follow
ing simplifications:~a! To first order, we need to keep only
tree and one-hoop graphs;~b! a one-loop graph with two or
more vertices must have two or more propagators, and
superficiallyO(t2). But it isO(t) when the total momentum
t
a

te-

ion
-

is

of the external lines emerging from any one vertex is zero.
An equivalent statement is that all the internal lines should
carry exactly the same loop momentum.

To show~b!, consider the simple one-loop graph in Fig. 1,
which is proportional to

FIG. 1. A one-loop graph. The internal lines correspond to high-
momentum components to be eliminated in the RG transformation.
The external lines represent low-momentum components left un-
touched.
E
k1Ps

ddk1E
k2Ps

ddk2d
d~p11p22k12k2!d

d~p181p282k12k2!
u4~p1 ,p2 ,k1 ,k2!u4~k1 ,k2 ,p18 ,p28!

v~k1!v~k2!
. ~24!
This is O(t2) in general; but an exception occurs when
p11p250. The integrations are then constraint by
d(k11k2), and the graph becomesO(t). This argument ap-
plies to any vertex of a graph, even if it is a subgraph. Thu
in order for a one-loop graph to beO(t) instead ofO(t2), the
total external momentum emerging from any one vertex mu
be zero.

Wegner and Houghton@11# sum the tree and one-loop
graphs by means of a functional method, as follows. Firs
expand the action in powers off :

A@S1 f #5A@S#1 (
kPs

Pkf k1
1

2(
kPs

Qkf kf2k1•••,

~25!

where

Pk5F]A@f#

] f k
G
f50

,

Qk5F ]2A@f#

] f k] f2k
G
f50

. ~26!

The terms represented by the dots in~25! may be omitted
because they do not contribute toO(t). In the second term in
~25!, we have a singlek sum instead of a sum over two
independentk’s, because of the restriction to a single-loop
momentum. This circumstance makes it possible to calcula
the functional integral overf to obtain

Z5NE DSe2Ã@S#, ~27!

where
s,

st

t,

te

Ã@S#5A@S#1tB@S#,

B@S#5
1

2t(kPs
F ln Qk2

uPku2

Qk
G . ~28!

The quantityQk arises from one-loop graphs, whileuP(k)u2

arises from tree graphs.
We now transform to the rescaled variables~19! and~20!.

To first order int it is only necessary to do so in the first term
of Ã[S], since the second term isO(t). We obtain, after a
straightforward calculation,

Z5NE Df8e2A8@f8#, ~29!

where

A8@f8#5A@f8#1t$B@f8#1C@f8#%,

C@f#5
1

t (a52

`

(
uki u,1

d~k!@fk1
•••fka

#

3Fd1
a

2
~22h2d!2(

i
ki

]

]ki
Gua~k!. ~30!

This is the result of Wegner and Houghton@11#.
By expandingB@f# and C@f# in powers off we can

express the new actionA8@f# in the form ~8!, and read off
the new coupling functionsu a8 (k). The first-order change of
the action can be written in the form

A8@f#2A@f#5t(
a52

`

(
uki u,1

d~k!ba~k!f~k1!•••f~ka!,

~31!
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where

ba~k![ua8 ~k!2ua~k!. ~32!

Note that, to RG transformations,ua(k) is a function oft
only, with a andk acting as labels for the type of coupling
Thus we can write

dua~k!

dt
5ba~k!, ~33!

which is an exact RG equation. The functionba(k) depends
on theua(k), but not ont explicitly. This equation therefore
gives the tangent vector to the trajectory at an arbitrary po
in parameter space. Although this point is identified ast50
in the derivation, we can shift the origin oft at will, because
the equation is invariant under a translation int.

Since the coupling functionua obeys a differential equa-
tion in t, we can trace its evolution both forward and back
ward in t. This might seem puzzling, since the RG transfo
mation as defined appears to be irreversible. What render
reversible is the fact that one and only one trajectory pas
through any given point in the parameter space, except a
fixed point.

At this point, we can easily see that no derivative co
plings are induced if none were present initially. Terms in
volving derivatives are generated by the momentum
dependent terms inB[f]1C[f]. As we can see from~28!
and ~30!, such terms can occur only inC@f#, through the
expression

(
i
ki

]

]ki
ua~k!. ~34!

If only nonderivative local couplings were present at th
start, then the above vanishes except fora52, for which it
gives a term proportional tok2. Therefore no derivative cou-
plings are generated. This also shows that a massless
field, which corresponds to the origin of the parameter spa
is invariant under RG. The origin is therefore a fixed point—

FIG. 2. Contributions to renormalizedn-field couplings for
n52,4,6.
nt

-
-
s it
es
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-
-
-

e

free
e,

the Gaussian fixed point. It can be seen that if there were
odd powers of the field initially, then none will be generated
The reason is thatQk in ~28! is even in the field.

Graphs withn external lines contribute tou n8, and are
shown in Fig. 2 forn52,4,6. In any one-loop graph, thej
external lines emerging from any vertex give rise to a facto
*ddxf j (x), since they have total momentum zero. Thus,
one-loop graph is generally proportional to a product of suc
factors. For example, Figs. 2~a!–2~c! lead to the following
contributions to the actionA8@f#:

Ga5u8E ddxf6~x!,

Gb5
u4u6
V E ddxf4~x!E ddyf2~y!,

Gc5
u4
3

V2 F E ddxf2~x!G3. ~35!

The first contribution, coming from the ‘‘diamond ring’’
graph with only one vertex, gives a local interaction. Al
others give uncorrelated products of the fields, which corr
spond to nonlocal interactions of infinite range. The powe
of the space-time volumeV in front of these expressions
arise from the fact that the action should beO(V). All these
uncorrelated nonlocal contributions are indeterminate in th
infinite-volume limit. The ambiguity clearly arises from the
infinitesimal RG step implemented with a sharp momentu
cutoff. The products of field would have been correlated, if
gentle cutoff function had been used, or if the internal line
were integrated over a finite instead of infinitesimal shel
However, the nonlocal terms are second order in the ba
couplings, and can be neglected in a linear approximatio
about the Gaussian fixed point.

The tree graphd in Fig. 2 contributes toA8@f# a term of
the form

Gd5u4
2 (

uki u,1
d~k11•••1k6!

3d~ uk11k21k3u21!fk1
•••fk6

~36!

which gives rise to a correlated nonlocal interaction. A
shown in @11# this term gives rise to the ‘‘nontrivial fixed
point’’ in d542e ~e→0!. But, since it is second order in the
couplings, we shall ignore it here.

In view of the critical examination above, those results i
@1,12# pertaining to nonlinear terms in the RG equation mus
be taken with reservation.

IV. LINEARIZED RG EQUATIONS

In the linear approximation, the action~1! is closed under
RG, and we have a well-defined system. To obtain the lin
earized RG equations, we needB@f# defined in ~28!, in
which the termuPku

2 can be neglected. A straightforward cal-
culation gives
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Qk511r1Q̃,

Q̃5 (
a52

`

a~a11!V12a/2ua12

3 (
uki u,1

d~k11•••1ka!fk1
•••fka

, ~37!

which is a sum over ‘‘diamond rings,’’ and is independent
k. To first order in theua , we have

B@f#5
1

2t
VsQ̃, ~38!

whereVs is the volume of the thin momentum shells.
We quote the linearized RG equations generalized to

N-component fieldfi(x) ( i51,...,N) with O(N) internal
symmetry:

du2n
dt

5~2n1d2nd!u2n1Sd~n11!~2n1N!u2n12

~n51,2,... ,̀ !, ~39!

whereSd is the surface area of a unitd sphere divided by
~2p!d:

Sd5
212dp2d/2

G~d/2!
,

S45
1

8p2 . ~40!

Let c be the column matrix whose elements areu2n. We
can write~39! in the form

dc

dt
5Mc, ~41!

whereM is a matrix. Consider now the eigenvalue proble

Mc5lc. ~42!

The eigenvectorsc correspond to ‘‘principal axes’’ in the
parameter space, along which we have the behaviordc/dt
5lc, or

c~ t !5c~ t0!e
l~ t2t0!. ~43!

The origint0 is arbitrary, except that it should be such thatc
is small; but it should not correspond to the Gaussian fix
point, wherec[0.

The eigenvaluel characterizes the trajectory tangent
the corresponding principal axis at the Gaussian fixed po

~a! If l,0, thenc→0 ast→`. The coupling constants are
said to be ‘‘irrelevant.’’ Under coarse graining, they tend
the Gaussian fixed point, or triviality. On such a trajecto
the Gaussian fixed point is IR.

~b! If l.0, thenc grows with t. The coupling constants
are said to be ‘‘relevant.’’ Under coarse graining, they tend
go away from Gaussian fixed point. On such a trajectory
Gaussian fixed point is UV, and the theory is nontrivial. Th
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trajectory is specified by some initial condition at an arbi-
trary point t5t0 , and it flows away from the Gaussian fixed
point. The latter can be reached by lettingt→2`, in which
limit the couplings vanish. This is asymptotic freedom.

~c! The casel50 corresponds to ‘‘marginal’’ coupling
constants. In this case, we have to go beyond the linear a
proximation in order to determine the true behavior.

Using~39!, we can put the eigenvalue equation~42! in the
form

u2n125
n~d22!2d1l

Sd~n11!~2n1N!
u2n ~n51,2,... ,̀ ! ~44!

which is a recursion relation starting withu25r /2. To solve
it in terms of known functions, it is convenient to introduce a
parametera by writing the eigenvalue in the form

l521~d22!a. ~45!

The recursion relation can then be put in the form

u2n125
~d22!~a1n21!

2Sd~n11!~n1N/2!
u2n ~46!

whose solution is

u2n5
r

2 S d22

2Sd
D n21

3
a~a11!•••~a1n22!

n! ~n211N/2!~n221N/2!•••~11N/2!
.

~47!

The potential with these coupling constants is referred to a
the ‘‘eigenpotential.’’ Using the abbreviation

z5
~d22!f2~x!

2Sd
, ~48!

wheref25(if i
2, we have

Ua@f2~x!#[ (
n51

`

u2nf
2n~x!

5r
NSd

2~a21!~d22!
@M ~a21,N/2,z!21#,

~49!

whereM (a,b,z) is the Kummer function@14#:

M ~a,b,z!511
a

b

z

1!
1
a~a11!

b~b11!

z2

2!
1•••

5
G~b!

G~b2a!G~a!
E
0

1

dteztta21~12t !b2a21.

~50!

If a is a negative integer, the power series breaks off t
become a polynomial of degreeuau. Otherwise, its asymptotic
behavior for largez is given by
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M ~a,b,z!'
G~b!za2bez

G~a!
@11O~z21!#. ~51!

The eigenpotentialUa~f
2! describes a field theory lying on a

trajectory tangent to a particular principal axis with respe
to the Gaussian fixed point. The principal axis is identifie
only through the eigenvalue parametera.

For a polynomial potential of even degree 2K, then, we
havea522K. The corresponding eigenvalues are

l52@12~d22!K# ~K51,2,...!, ~52!

which is negative ford54. In d53 it is negative except for
the marginal case ofK51; but that corresponds to a free
theory. Therefore, ind.2, all polynomial even potentials
lead to triviality.

For d52, the linear approximation breaks down com
pletely. The reason is undoubtedly the formation of vortic
that lead to the Kosterlitz-Thouless phase transition@15#. It
would be very interesting to discover vortices within th
present framework, for in the existing literature they are sim
ply put in by hand. We shall not pursue this topic here, a
will assumed.2 from now on.

V. NONTRIVIALITY AND ASYMPTOTIC FREEDOM

Nontrivial theories correspond to positive eigenvalue
l.0, which means that

a.2
2

d22
. ~53!

They correspond to nonpolynomial potentials with the fo
lowing asymptotic behavior for largef:

U~f2!;expF ~d22!f2

2Sd
G . ~54!

Nothing in canonical field theory rules out such a potentia
Sufficiently close to the Gaussian fixed point, the pote

tial is proportional tor , which evolves int according to

r ~ t !5r ~ t0!e
l~ t2t0!5Celt ~55!

with C5r (t0)exp(2t0). This is a running coupling constant
with a given renormalized valuer (t0) at the reference point
t0. The theory is nontrivial because the potential does n
tend to zero in the low-momentum limit. Instead, we hav
asymptotic freedom, corresponding to the fact that the pote
tial vanishes in the limitt→2`, which corresponds to infi-
nite momentum.

In order to have spontaneous symmetry breaking on
semiclassical level, the eigenpotential must have at least
minimum inf. The power-series expansion for the eigenp
tential reads

Ua~f2!5
rSd

~d22! Fz1
az2

~11N/2!2!
1

a~a11!z3

~11N/2!~21N/2!3!

1••• G . ~56!
ct
d
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e
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l.
n-
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ot
e
n-

the
one
o-

A sufficient condition is thatU8(0),0, andU.0 for large
z. The first is satisfied by choosingr,0. AsymptoticallyU is
proportional tor [(a21)G(a)]21, the rest of the factors be-
ing positive. Thus we must have (a21)G(a),0, which is
equivalent toG(a21),0. Using the formulaG(a)G(2a)
5p/sin(pa), and the fact thatG(a) is positive fora.0, we
find thata must be in one of the open intervals~0,21!,~22,
23!, etc. For a nontrivial theory, we havel.0, or 21(d
22)a.0. Combining these requirements, we obtain the su
ficient condition

21,a,0. ~57!

A family of eigenpotentials for this range ofa, andd5N54,
is plotted in Fig. 3.

The eigenpotentialUa corresponds to a theory that lies on
a trajectory tangent to a principal axis. Generally, we ca
consider a theory on an arbitrary trajectory, which is repre
sented near the Gaussian fixed point by a linear superposit
of the eigenpotentials. This gives us considerable freedom
choosing potentials.

The asymptotically free theory may be useful for model
of the inflationary universe@16#, for it offers a nontrivial
quantum field theory with spontaneous symmetry breakin
From a philosophical point of view, it seems more sensible
have a cosmological potential that was zero at the Big Ban
and grow at decreasing energies, rather than the conventio
polynomial potential, which would have the opposite behav
ior if taken seriously. For such applications, one needs
potential whosef2 term is very small, of order 10212 @17#.
This turns out to be very natural in terms of our eigenpoten
tialsUa~f

2!. As we can see from the power-series expansio
~56!, thef2 term is independent ofa. Therefore the differ-
ence of any two eigenpotentials

FIG. 3. EigenpotentialsUa~f
2! as functions off[A( i51

N f i
2,

for d5N54, in units in which the momentum cutoff is unity. The
ordinate is in arbitrary units. From top to bottom, they correspon
respectively, to values of the eigenvalue parametera uniformly
spaced from20.999 to20.001. All of the potentials behave like

ef2
for largef, and lead to theories with asymptotic freedom. Th

limiting casea521 represents af4 potential, which gives a trivial
theory.
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V~f2!5Ua~f2!2Ua8~f2!

5
r ~a2a8!Sd

~11N/2!~d22!

3F z22! 1
~a2a811!z3

~21N/2!3!
1••• G ~58!

has nof2 term. Since this is a linear approximation, it mea
that thef2 term isO(r 2). By taking r,0 anda.a8, we
make the potential go negative for smallf2. At largef2 it
must turn positive, because the curves of theUa with differ-
ent a’s intersect, as we can see in Fig. 3. Therefore the
tential has a negative minimum.

VI. CONCLUSION AND OUTLOOK

We have shown that, near the Gaussian fixed point,
scalar theories are trivial free fields in the low-energy lim
except for a specific class with exponentially rising pote
tials, which are nontrivial at low energies, but become free
the high-energy limit.

The renormalized coupling constants used in this pa
are not the same as the conventional ones in particle phys
the latter are defined in terms of physical scattering amp
ns

po-

all
it,
n-
in

per
ics;
li-

tudes, which contain extra momentum scales. The conven
tional renormalized coupling constants may be calculated by
integrating the RG equations along a trajectory. We plan to
address this topic in a separate paper.

The low-energy behavior of the asymptotically free theo-
ries lies beyond the capability of the present formulation,
because the sharp momentum cutoff used here introduce
ambiguities. It is an important problem to implement Wil-
son’s renormalization program with a gentle cutoff function,
and extract results independent of the cutoff function.

An interesting extension of the present work would be to
make similar analyses of gauge fields and spinor fields. We
hope the present paper will stimulate interest in this direc-
tion.

Note added in proof. G. Immirzi ~private communication!
has pointed out that Eq.~44! for d52 leads to an eigenpo-
tential corresponding to the sine-Gordon equation. V. Periwal
@Princeton University report~unpublished!# has derived our
results using Polchinski’s form of the RG.
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