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Nontrivial directions for scalar fields
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We study the eigenvectors of the renormalization-group matrix for scalar fields at the Gaussian fixed point,
and find that there exist “relevant” directions in parameter space. They correspond to theories with exponential
potentials that are nontrivial and asymptotically free. All other potentials, including polynomial potentials, are
“irrelevant,” and lead to trivial theories. Away from the Gaussian fixed point, renormalization does not induce
derivative couplings, but it generates nonlocal interactions.
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[. INTRODUCTION AND SUMMARY consistency9] impose an upper bound, estimated to be 600
GeV[8], on the Higgs boson mass.

In a previous wor 1], we discussed the renormalization ~ (b) Even in the free-field limit, the theory is not entirely
group (RG) for scalar field theories, and reported RG trajec-trivial. The field can have a nonvanishing vacuum expecta-
tories near the Gaussian fixed point along which the scaldion, as shown in Monte Carlo simulatiof§]. Thus it can
theory is nontrivial and asymptotically free. In this paper, westill be used as a phenomenological method to generate par-
give the details, including a critical analysis of the calcula-ticle masses.
tions. In particular, we address the question of whether renor- These alternatives are not completely satisfactory, for they
malization generates interactions not originally present in thelo not take the field theory seriously. The purpose of this
Lagrangian. paper is to show that escape routes do exist in the framework

To address the question of closure under RG, we stamf renormalized quantum field theory. In the rest of this sec-
with the most general action conceivable for a real scalation, we describe our approach to the problem, and summa-
field ¢(x) in d space-time dimensions. Eventually, we focusrize the results.
our attention on a theory with local nonderivative couplings, Common belief holds that onlg* theories are renormal-
whose Euclidean action is given by izable, in the sense that higher powers in the potential will

give Feynman graphs requiring an infinite number of sub-
1 traction constants. This is true if the higher coupling con-
E(a¢)Z+U(¢Z)}, stants, which generally have dimensions, set independent
scales. From a physical standpoint, however, these scales
contain information about the system at momenta higher
U(p?)=0op?+gad*+---. (1)  thanA, of which nothing is supposedly known. Accordingly,
we shall assume thak is the only intrinsic scale in the

The potentiaU(¢2) is arbitrary' and not necessar“y po|yno_ problem. This means that all Coupling constants should be
mial. For simplicity we work with a one-component real scaled by appropriate powers of the cutoff:
field here; but extension to a multicomponent field with
O(N) symmetry is straightforward, and we shall quote re- g, =u, ATl 2
sults for that case. There is a high-momentum cutoffTo
make calculations feasible, we use a sharp cutoff, which alsehere theu, are dimensionless parameters. These factors of
proves to be a limitation, for it leads to ambiguous nonlocalA supply extra convergence to Feynman graphs, rendering
interactions. We only report results that are believed to béhem renormalizable in the usual sef6]. It can be shown
independent of the cutoff function. that theS matrix of the theory ird=4 is the same as that of
Scalar fields are used in the Higgs sector of the standardn effectiveg” theory, whose effective coupling is a function
model, where it is customary to assume that?) is quartic  of the u, [1]. However, the RG behavior of the effective
in ¢. It turns out that such a choice leads to “triviality,” in coupling is not the same as that ot theory, for it depends
that the renormalized value gf, vanishes in the limit\ —oo, on the RG flow of theu,, which can only be obtained from
and one is left with a free field. This startling result wasthe original theory.
implicit in the work of Larkin and Khumel'nitskii2], and Renormalization relates the coupling constants at different
demonstrated by Wilsof8]. It has been verified in a number momentum scales. In Wilson’s formulati¢8], the relation
of independent Monte Carlo simulatiofig—8]. There are is found through a RG transformation that represents a
proposals on how to deal with this awkward situation. coarse-graining process, eliminating the degrees of freedom
(a) Physical quantities are insensitive to the value of thewith momenta between and A/b, and effectively lowering
cutoff, because the approach to the free-field limit proceedthe cutoff by a factob. The new action should have the
with logarithmic slownes§2]. Thus, one can keep the cutoff same form as the old, except that the “bare” couplings
finite as a parameter of the model. Considerations of selfare replaced by the “renormalized” ones,. Making an in-

A[¢>]=f dx
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finitesimal RG transformation in the neighborhoodlsfl  we specifically refer to those for which the range of nonlo-
yields differential equations fau,,, the RG equations. They cality is large compared ta 2.
generate RG trajectories in the parameter space spanned byThe exact RG equations for the most general case have
theu,. The flow along a trajectory always proceeds in thebeen obtained by Wegner and Houghfdd], and we shall
coarse-graining direction, i.e., direction of increasing lengthreview the derivation. This remarkable calculation is made
scale. IfA and B are two points on a trajectory, with the possible by the simplicity of the sharp cutoff. The equations
sense of flow fromA to B, then A corresponds to a bare show that RG transformations do not induce derivative cou-
system, and a renormalized system. plings if none were present from the start. On the other hand,
It should be emphasized that the cutdfidoes not appear nonlocal terms are always generated. Some of these have
in A[¢] explicitly, for we can setA\=1 by choosing appro- infinite range, being of the foriv [fd%¢(x)]?, whereV
priate units. Its value is reflected solely in the values of thdas the space-time volume. Though consistent with the fact
coupling constants,. Thus, the RG equations give the tan- that the action i©O(V), such a term is indeterminate in the
gent vector to a trajectory at an arbitrary point. limit V—oo. The ambiguity can be ascribe to the infinitesimal
The actual value of the cutoff can be deduced only byRG transformation made with a sharp momentum cutoff. It
computing some physical quantity, such as the correlationvould disappear if gentle cutoff functions were used, or if
length. Thus, the only way to approach the limits is to  the momentum-shell integration had extended over a finite
go to some point in the parameter space at which the corrénstead of an infinitesimal shell. Both of these alternatives,
lation length is infinite. Since the length scale increases unhowever, make the problem intractable.
der a RG transformation, such a point must be a fixed point, Fortunately, the ambiguous nonlocal terms are second or-
where the system is invariant under RG transformations. der in the bare couplings. We can therefore neglect them in a
If a trajectory flows into a fixed pointin the coarse- linear approximation about the Gaussian fixed point, and the
graining direction then, to systems lying on that trajectory, action (1) becomes closed under RG in this approximation.
the fixed point is infraredIR), representing the low-energy We study the eigenvalue problem based on the RG matrix,
limit of the theory. If a trajectory flows out of a fixed point, which should be insensitive to the form of the cutoff. It tell
then to systems on this trajectory the fixed point is ultravioletus about the characteristics of various “principal axes” in
(UV), corresponding to the high-energy limit of the theory. parameter space at the origin. Our main results are as fol-
Although we are free to choose a bare action, the renorows.
malized action is determined by the RG transformation, and (a) There exist trajectories flowing into the Gaussian fixed
is not under our control. For example, if we start withpd  point, as well as flowing out of it. That is, the Gaussian fixed
theory at some value of the cutoff, a RG transformation maypoint is IR with respect to some trajectories, and UV with
generatep® and other couplings. Only at a fixed point are therespect to others.
couplings determined. When we approach a fixed point along (b) For all theories with polynomial potentials, the Gauss-
a trajectory, in the coarse-graining sense, some couplings n@n fixed point is IR. These theories are consequently trivial.
destined to be in the fixed-point action will tend to zero, andA similar result was obtained earlier by Hasenfratz and
these are called “irrelevant” couplings. Conversely, when weHasenfrat412].
go away from a fixed point in a coarse-graining sense, some (c) For a class of nonpolynomial potentials, the Gaussian
couplings that were infinitesimally small will grow, and these fixed point is UV. Ford>2, potentials in this class behave
are termed “relevant.” Triviality comes from the existence of like U(¢)~expc(d—2)¢?] for large ¢, wherec is a con-
an IR fixed point at zero couplings, the Gaussian fixed pointstant. Theories with such potentials are nontrivial and as-
By examining all possible trajectories in the neighborhood ofymptotically free. Some of the potentials exhibit spontaneous
the Gaussian fixed point, we find that, although the fixedsymmetry breaking.
point is IR in theories with polynomial potentials, it is UV to In summary, we can say that in a sufficiently small neigh-
a class of potentials with exponential asymptotic behavior. borhood of the Gaussian fixed point, conventional scalar
To insure that the parameter space is closed under R@heories with polynomial interactions are trivial, and that cer-
transformations, we have to consider an arbitrary actiontain models with exponential potentials are nontrivial. For
which should include derivative couplings as well as nonlo-conventional potentials, the road to oblivion is clear and in-
cal interactions. A derivative coupling refers to terms con-escapable, because with each RG step we are closer to the
taining a derivative of the field not of the form of the kinetic fixed point, and the linear approximation improves. For the
term [d%(d¢)?, as, for example, nontrivial models, on the other hand, the escape route is
clouded, since RG steps tend to take us out of the linear
region into unknown territory.
| a2 €
1. RENORMALIZATION PROCEDURE
A nonlocal term involves fields or derivatives at different

space-time points, as, for example, We shall begin with the most general scalar field theory,

with arbitrary derivative and nonlocal couplings, and choose
units such that the cutoff momentum is unity:

dy, ~d _
f d%d%y d(X)K(x—y) p(y). (4) A=1. 6)

Actually, the action with a momentum cutoff is nonlocal We enclose the system in a periodic hypercube of voluine
within a spatial distance of ordex *. By “nonlocal terms,”  and define the Fourier transform of the field by
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¢k:V71/2J’ ddxefik-xqs(x) (6)

with ¢ =¢_,. Eventually, we take the limitv—o, in

which the Fourier component is replaced by the continuum

version ¢(k) =V~ 24, . For illustration, the actior{1) can
be written as

_is e Us
Alpl=3 2 (KHD gt 7 2 okt

tKe) b b, T (@)

where &(k) is the Kronecker deltd,.

To generalize the action, all we have to do is to replagce
by an arbitrary functioru(k;,...k,), which we abbreviate
asu,(k). Thus, our starting point is the action

ALgl=2 v1—“’2|k;<1 S(KU(K) e, i, (8)

where §(k) is an abbreviation fox(k; +--- +k,). Without
loss of generality, we may assume thig(k) is a symmetric

function of its arguments. To fix the normalization of the

field, we normalizeu,(k,,k,) as follows:

v(K)=2uy(k,—K)=K?+r+ck*+cek®+-+- . (9)

The generalized kinetic term is

1
Al d]= 28 v(K) i

1 d%
=§Jk<1(2—dv(k)¢(k)¢(—k)

(10)
)
from which we can see that(k)=v(—Kk) is the inverse
propagator for Feynman graphs.

Wilson's RG transformatiof3,13] is defined in terms of
the partition function

Z= J D ge Al¢l, (11

The object is to eliminate the Fourier components with mo

mentum magnitudes between 1 andb,Wwithout changing
the partition function. We decompose the field into a “slow”
partS, and a “fast” partf:

=St fi, (12)
where
S=0 unless|k|<1/b,
f,=0 unless M<|k|<1. (13

Let us split off the kinetic term in the action by writing

Al]=Al p]+A ],

whereA, is the “interaction” part. SinceS.f =0, as their
domains do not overlagh,[ S+ f] is additive:

(14
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A [SHT]=A,[S]+A,[f]. (15
We now write
Z:f Dsf DfeAdSI-Aglfl-A[S+f]
:Nf DSe AdSl(g-AlS+),
ENJ DSe AlS), (16)

whereN is a constant, andO); denotes averaging ovér
with weight exd— A,[f]}. The new action
A[SI=A,[S]— Ine™ A ), (17)

contains only the slow fields, with the cutoff lowered td.1/
Writing out the first few terms, we have

N 1
A[S]=§|k;l/b[zk2+r1+---]SkS_k+---. (19

The parameters, r,, etc., are proportiond ¥, wherey is a
characteristic index.

To make comparison with the original action, we must
restore the cutoff to 1, and normalize the field according to
the convention9). The cutoff can be restored by changing
the momentum integration variable to

k' =bk. (19

To restore the normalization, we transform the field to

b =Scpb 1TV (20)

where 7 is the index ofz in (18), i.e.,z=b™ 7. The partition
function can now be put in the form

Z=Nf Dgp'e ALl (21

where

A'[¢"]1=AlS]. (22)
The actionA'[¢’] should have the same form @4 ¢] in
(8), except that the bare coupling functiag(k) is replaced
by the renormalized coupling functiom (k’), which is of
course a function ob.

The RG transformation can be formulated in terms of
Feynman graphs. By expanding éxpA,[S+ f]} in powers
of f, we can obtaimPA[S] as a sum of connected Feynman
graphs, in which all external momenta are “slow,” while all
internal momenta are “fast.” That is, an external line is as-
sociated withS, ; an internal line is associated wifl, and
gives the propagator d(k) after functional integration
weighted with A,[f]. A vertex represents a momentum-
dependent factoun ,(K).
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IIl. RENORMALIZATION-GROUP EQUATIONS - '

p1 e N p
P . 4 k ~ 1
We shall carry out an infinitesimal RG transformation at )/ ! \
the cutoff momentum. The fast momenta are contained in a ) )
shell o in momentum space: 7
o={kle"t<|k|<1}, (23) P, K, P,
where we have put=e'. Calculating to first order i will FIG. 1. A one-loop graph. The internal lines correspond to high-

yield equations fodu,/dt, which are the RG equations. To momentum components to be eliminated in the RG transformation.
this order, all internal momenta in Feynman graphs are intethe external lines represent low-momentum components left un-
grated over a shell of infinitesimal thicknesgust below the  touched.

surface of the unit sphere. Each independent integration

therefore yield€(t). This circumstance leads to the follow- of the external lines emerging from any one vertex is zero.
ing simplifications:(a) To first order, we need to keep only An equivalent statement is that all the internal lines should
tree and one-hoop graphd) a one-loop graph with two or carry exactly the same loop momentum.

more vertices must have two or more propagators, and is To show(b), consider the simple one-loop graph in Fig. 1,
superficiallyO(t?). But it is O(t) when the total momentum which is proportional to

, P U4(p1,p2,kl,k2)U4(k1,kz,p’,pé)
f ddklf d%,8%(p1+ pa—ky— ko) 8%(pi+ps—ki—ky) - (24
kieo koeo v(kl)v(kZ)
|

This is O(t%) in general; but an exception occurs when A[S]=A[S]+tB[S],
p;+p,=0. The integrations are then constraint by
8k, +k,), and the graph become&3(t). This argument ap- 1 |P2
plies to any vertex of a graph, even if it is a subgraph. Thus, B[S]= EE In Q— . (28
in order for a one-loop graph to l@(t) instead ofO(t?), the keo Q«

total external momentum emerging from any one vertex mu
be zero.

Wegner and Houghtofll] sum the tree and one-loop
graphs by means of a functional method, as follows. First
expand the action in powers 6f

S‘E’he quantityQ, arises from one-loop graphs, whilB(k)|?
arises from tree graphs.

We now transform to the rescaled variab{&8) and(20).
To first order int it is only necessary to do so in the first term
of A[S], since the second term B(t). We obtain, after a
straightforward calculation,

1
A[S+EI=A[S]+ X Pyt 52 Qefif oyt
keo keo

(25 Z=Nf Dg'e A'le] (29)
where where
Pk:{ﬁAWW A'[¢'1=Al¢']+t{B[$']+C[¢']},
I Jeo”
1 oo
[ PAL4] o6 Clel=72, &, d0ldy b
Q= Ifat i) g

X

A+ 52— 7-d)-3 ko |uu(k). (30
The terms represented by the dots(b) may be omitted 2 [ ki
because they do not contribute@gt). In the second term in o
(25), we have a singl& sum instead of a sum over two This is the result of Wegner and Houghtfirt].
independenk’s, because of the restriction to a single-loop ~ BY expandingB[#] and C[#] in powers of ¢ we can

momentum. This circumstance makes it possible to calculat@XPress the new actioh’[¢] in the form(8), and read off
the functional integral ovef to obtain the new coupling functiona /(k). The first-order change of

the action can be written in the form

Z=N| Dse Asl, 27 -
J A'[¢]—A[¢]=t§2 ‘k% 8(K) Ba(K) (k) p(Ky),

where (3D
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where the Gaussian fixed point. It can be seen that if there were no
odd powers of the field initially, then none will be generated.
Ba(K)=U,(K) —uy(k). (32 The reason is tha®, in (28) is even in the field.
Graphs withn external lines contribute tai,, and are
Note that, to RG transformationﬂu(k) is a function oft shown in F|g 2 forn:2,4,6_ In any one_|00p graph, the
only, with « andk acting as labels for the type of coupling. external lines emerging from any vertex give rise to a factor

Thus we can write fd9%g!(x), since they have total momentum zero. Thus, a
one-loop graph is generally proportional to a product of such
dug(k) =B,(K) (33) factors. For example, Figs.(@-2(c) lead to the following
dt o contributions to the actioA’[]:

which is an exact RG equation. The functigp(k) depends

on theu,(k), but not ont explicitly. This equation therefore G,= ugf d9x¢®(x),

gives the tangent vector to the trajectory at an arbitrary point

in parameter space. Although this point is identified a9

in the derivation, we can shift the origin bfat will, because UsUg

the equation is invariant under a translatiort.in Gb:TJ ddxdf‘(x)f dYy¢*(y),
Since the coupling function, obeys a differential equa-

tion in t, we can trace its evolution both forward and back- g

ward int. This might seem puzzling, since the RG transfor- GC:_‘;U d¥x (%)

mation as defined appears to be irreversible. What renders it \

reversible is the fact that one and only one trajectory passes

through any given point in the parameter space, except at @he first contribution, coming from the “diamond ring”

fixed point. graph with only one vertex, gives a local interaction. All
At this point, we can easily see that no derivative cou-others give uncorrelated products of the fields, which corre-

plings are induced if none were present initially. Terms in-spond to nonlocal interactions of infinite range. The powers

volving derivatives are generated by the momentum-of the space-time volum& in front of these expressions

dependent terms iB[ ¢] + C[ ¢]. As we can see fron28)  arise from the fact that the action should ®¢€V). All these

and (30), such terms can occur only i@[¢], through the uncorrelated nonlocal contributions are indeterminate in the

3
. (35

expression infinite-volume limit. The ambiguity clearly arises from the
infinitesimal RG step implemented with a sharp momentum
E K iu (K) (34 cutoff. The products of field would have been correlated, if a
= ok gentle cutoff function had been used, or if the internal lines

were integrated over a finite instead of infinitesimal shell.
If only nonderivative local couplings were present at theHowever, the nonlocal terms are second order in the bare
start, then the above vanishes exceptder2, for which it ~ couplings, and can be neglected in a linear approximation
gives a term proportional tk?. Therefore no derivative cou- about the Gaussian fixed point.
plings are generated. This also shows that a massless free The tree grapfd in Fig. 2 contributes t&\'[ ¢] a term of
field, which corresponds to the origin of the parameter spacdhe form
is invariant under RG. The origin is therefore a fixed point—

>@ Gy=U2 ; S(ky+ - +kg)
[kil<1

X 8([Kky kot kg = 1) by~ i (36)

% >O< which gives rise to a correlated nonlocal interaction. As

shown in[11] this term gives rise to the “nontrivial fixed
point” in d=4—¢€ (e—0). But, since it is second order in the

couplings, we shall ignore it here.
In view of the critical examination above, those results in
v [1,12] pertaining to nonlinear terms in the RG equation must
be taken with reservation.
C

a b
IV. LINEARIZED RG EQUATIONS

>_<— In the linear approximation, the actigh) is closed under

d RG, and we have a well-defined system. To obtain the lin-
earized RG equations, we ned&l¢] defined in(28), in
FIG. 2. Contributions to renormalized-field couplings for ~ which the term/P,|? can be neglected. A straightforward cal-
n=2,4,6. culation gives
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Qk=1+f+é, trajectory is specified by some initial condition at an arbi-
trary pointt=t,, and it flows away from the Gaussian fixed
X point. The latter can be reached by letting —, in which
Q= E ala+ 1)V 2y, , limit the couplings vanish. This is asymptotic freedom.
a=2 (c) The casen=0 corresponds to “marginal” coupling
constants. In this case, we have to go beyond the linear ap-
X O(ki+---+Kk,) by -y , (37 proximation in order to determine the true behavior.
[kl <1 ' : Using(39), we can put the eigenvalue equati@®) in the

which is a sum over “diamond rings,” and is independent Ofform

k. To first order in theu,,, we have n(d—2)—d+\

u2n+2:sd(n+l)(2n+N) Uzn (n:1121---100) (44)

1 -
B[ ¢]=5; V., Q. (39)
which is a recursion relation starting with,=r/2. To solve
it in terms of known functions, it is convenient to introduce a

whereV  is the volume of the thin momentum shell " _ _
parameterm by writing the eigenvalue in the form

We quote the linearized RG equations generalized to a
N-component fieldg;(x) (i=1,...N) with O(N) internal

symmetry: A=2+(d—2)a. (45)

du, The recursion relation can then be put in the form
n

=(2n+d—nd)u,,+ Sy(n+1)(2n+N)u
dt 2n d 2n+2 (d—2)(a+n—1)

Uon+2= Usp (46)
(N=12,...20), (39) 254(n+1)(n+N/2)
where S, is the surface area of a urdt sphere divided by whose solution is
(2’77) . r/d-—2 n-1
21-d_—di2 u2n=§ Z_Sd
S
T'(di2) y a(a+1)---(a+n—2)
1 n'(n—1+N/2)(n—2+N/2)---(1+N/2) "
84252' (40) (47)
Let  be the column matrix whose elements arg. We  The potential with these coupling constants is referred to as
can write(39) in the form the “eigenpotential.” Using the abbreviation
dy (d—2) $*(x)
S =M, (42) 2= %5 (48)

whereM is a matrix. Consider now the eigenvalue problemwhere¢2:2i¢>i2, we have

M=\ (42 , o ,
. . . UL *(0]= 2, Uznd™(X)
The eigenvectors) correspond to “principal axes” in the n=1
parameter space, along which we have the behalgodt NS,
=Ny, or — _ _
r2(a—1)(d—2)[M(a 1N/2,2)—1],

P(t)=(ty)ert o), (43 (49

The origint, is arbitrary, except that it should be such thiat
is small; but it should not correspond to the Gaussian fixe
point, wherey=0. az a@a+l) 2
The eigenvaluex characterizes the trajectory tangent to  M(a,b,z)=1+ — o CTR
the corresponding principal axis at the Gaussian fixed point. b1t b(b+1) 2!
(@) If A<0, theny—0 ast—ce. The coupling constants are T'(b) 1
said to be “irrelevant.” Under coarse graining, they tend to = mj dtefta 1(1—t)P-a" 1,
the Gaussian fixed point, or triviality. On such a trajectory, 0
the Gaussian fixed point is IR. (50)
(b) If A>0, theny grows witht. The coupling constants
are said to be “relevant.” Under coarse graining, they tend tdf a is a negative integer, the power series breaks off to
go away from Gaussian fixed point. On such a trajectory thddecome a polynomial of degréag. Otherwise, its asymptotic
Gaussian fixed point is UV, and the theory is nontrivial. Thebehavior for largez is given by

gvhereM (a,b,z) is the Kummer functio14]:
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['(b)z2 Pe? L A sufficient condition is that)’(0)<0, andU >0 for large
M(a,b,z)~ W[H O(z )] (51)  z. The first is satisfied by choosing<0. AsymptoticallyU is
proportional tor[(a—1)I'(a)] "%, the rest of the factors be-

The eigenpotentidll ,(¢%) describes a field theory lying on a "9 positive. Thus we must havea(—l)F(a)<0, which is
trajectory tangent tg a particular principal axis with respectequ'v‘f1Ient tol'(a—1)<0. Using t_he for_rnulaF(a)F(—a)
to the Gaussian fixed point. The principal axis is identified - 7/SiN(7a). and the fact thal'(a) is positive fora>0, we
only through the eigenvalue parameter find thata must be in one of the open intervdd,—1),(—2,

For a polynomial potential of even degre&,2hen, we —3), etc. For a .npntnwal theor)_/, we have>0, or.2+(d

havea=—2K. The corresponding eigenvalues are f.2)a>0. qubmmg these requirements, we obtain the suf-
ficient condition
A=2[1-(d-2)K] (K=1,2,..), (52
o . . , —1<a<O0. (57)
which is negative fod=4. Ind=3 it is negative except for
the marginal case oK=1; but that corresponds to a free
theory. Therefore, ird>2, all polynomial even potentials A family of eigenpotentials for this range af andd=N=4,
lead to triviality. is plotted in Fig. 3.

For d=2, the linear approximation breaks down com- The eigenpotentidl, corresponds to a theory that lies on
pletely. The reason is undoubtedly the formation of vorticesa trajectory tangent to a principal axis. Generally, we can
that lead to the Kosterlitz-Thouless phase transifill. It ~ consider a theory on an arbitrary trajectory, which is repre-
would be very interesting to discover vortices within the sented near the Gaussian fixed point by a linear superposition
present framework, for in the existing literature they are sim-of the eigenpotentials. This gives us considerable freedom in
ply put in by hand. We shall not pursue this topic here, ancthoosing potentials.

will assumed>2 from now on. The asymptotically free theory may be useful for models
of the inflationary univers¢16], for it offers a nontrivial
V. NONTRIVIALITY AND ASYMPTOTIC FREEDOM quantum field theory with spontaneous symmetry breaking.

o . B . From a philosophical point of view, it seems more sensible to
Nontrivial theories correspond to positive eigenvalueshave a cosmological potential that was zero at the Big Bang

A>0, which means that and grow at decreasing energies, rather than the conventional
polynomial potential, which would have the opposite behav-
2 ior if taken seriously. For such applications, one needs a
az - 4=z (53 potential whosep? term is very small, of order 132 [17].

This turns out to be very natural in terms of our eigenpoten-
They correspond to nonpolynomial potentials with the fol-tials U,(¢°). As we can see from the power-series expansion
lowing asymptotic behavior for large: (56), the ¢? term is independent cd. Therefore the differ-
ence of any two eigenpotentials

(d—2)¢?

2y A
U(¢9) ex;{ 25, | (549 .

L . ' . Ua(4?)
Nothing in canonical field theory rules out such a potential. of
Sufficiently close to the Gaussian fixed point, the poten-

tial is proportional tor, which evolves int according to o
r(t)y=r(ty)ert"t=ceM (55) T
with C=r(ty)exp(—ty). This is a running coupling constant, %

with a given renormalized valug(t,) at the reference point
tg. The theory is nontrivial because the potential does not
tend to zero in the low-momentum limit. Instead, we have
asymptotic freedom, corresponding to the fact that the poten-
tial vanishes in the limit— —o, which corresponds to infi- ol
nite momentum.
In order to have spontaneous symmetry breaking on the .l
semiclassical level, the eigenpotential must have at least one
minimum in ¢. The power-series expansion for the eigenpo- FIG. 3. Eigenpotentialé),(¢?) as functions ofg=y= L, ¢?,
tential reads for d=N=4, in units in which the momentum cutoff is unity. The
ordinate is in arbitrary units. From top to bottom, they correspond,
az? a(a+1)z° respectively, to values of the eigenvalue parar_natanniformly_
z+ (1TN/2)21 + (1+N/2)(2+N/2)3] szgced from—0.999 to—0.001. AII of .the potentla!s behave like
e? for large ¢, and lead to theories with asymptotic freedom. The
limiting casea=—1 represents & potential, which gives a trivial
(56)  theory.
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V(?)=U, () — U, (¢?) tudes, which contain extra momentum scales. The conven-
tional renormalized coupling constants may be calculated by
r(a—a’)Sy integrating the RG equations along a trajectory. We plan to
= (1+N/2)(d—2) address this topic in a separate paper. .
The low-energy behavior of the asymptotically free theo-
ZZ (a—a'+1)7° ries lies beyond the capability of the present formulation,
X §+m+”' (58 pecause the sharp momentum cutoff used here introduces

ambiguities. It is an important problem to implement Wil-
has nog? term. Since this is a linear approximation, it meansson’s renormalization program with a gentle cutoff function,
that the ¢? term is O(r?). By takingr<0 anda>a’, we and extract results independent of the cutoff function.
make the potential go negative for smaff. At large ¢? it An interesting extension of the present work would be to
must turn positive, because the curves of thewith differ- make similar analyses of gauge fields and spinor fields. We
enta’s intersect, as we can see in Fig. 3. Therefore the pohope the present paper will stimulate interest in this direc-

tential has a negative minimum. tion.
Note added in proofG. Immirzi (private communication
VI. CONCLUSION AND OUTLOOK has pointed out that Eq44) for d=2 leads to an eigenpo-

tential corresponding to the sine-Gordon equation. V. Periwal

We have shown that, near the Gaussian fixed point, allprinceton University reportunpublishedl] has derived our
scalar theories are trivial free fields in the low-energy limit, resyits using Polchinski’s form of the RG.

except for a specific class with exponentially rising poten-
tials, which are nontrivial at low energies, but become free in
the high-energy limit.

The renormalized coupling constants used in this paper This work was supported in part by funds provided by the
are not the same as the conventional ones in particle physick}.S. Department of Energy under cooperative agreement No.
the latter are defined in terms of physical scattering ampliDE-FC02-94ER40818.
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