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How many new worlds are inside a black hole?
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and Département d’Astrophysique Relativiste et Cosmologie, Observatoire de Paris, 92190 Meudon, Fran

Valeri P. Frolov†

CIAR Cosmology Program, Theoretical Physics Institute, University of Alberta, Edmonton, Canada T6G 2
and P. N. Lebedev Physics Institute, Moscow, Russia

~Received 20 November 1995!

We propose a possible internal structure for a Schwarzschild black hole resulting from the creation
multiple de Sitter universes with lightlike boundaries when the curvature reaches Planckian values. The in
section of the boundaries is studied and a scenario leading to disconnected de Sitter universes is propose
application to the information loss problem is then discussed.
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I. INTRODUCTION

The internal structure of black holes and their final sta
are two intriguing problems of black-hole physics. Both o
these problems require knowledge of physics at Planck
scales for their solution. It is generally believed that only
union of quantum mechanics and gravity can provide us w
a proper theory. Until now such a theory, quantum gravit
has not been constructed. It seems that one cannot overc
its main problem, nonrenormalizability, without unifying
gravity with other physical fields. Superstring theory is on
of the most promising approaches in this direction. But
spite of the impressive development of superstring theory
are still very far from understanding physics at Planckia
scales.

Under these circumstances it is natural to use the follo
ing approach. One might assume that the notion of a qu
tum average of a metricg5^ĝ& is still valid in the regions
under consideration, and the average metricg obeys some
effective equations. We do not know these equations at
moment, but we might assume that these equations and t
solutions obey some general properties and restrictions.
example, it is natural to require that the effective equatio
for g in the low-curvature limit reduce to the Einstein equa
tions with possible higher-curvature corrections. It is als
possible to assume that the future theory of quantum grav
would solve the problem of the singularities of classical ge
eral relativity. One of the possibilities is that the equations
the complete theory would simply not allow dynamicall
infinite growth of the curvature, so that the effective curva
tureR of g is bounded by the Planckian value'1/lPl

2 . The
principle of a limiting curvature was proposed by Marko
@1,2#. This principle excludes curvature singularity forma
tion, so that the global properties of the solutions mu
change.

A special form of the gravitational action for cosmologi
cal models providing the limiting-curvature principle wa
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considered in Ref.@3#. It was shown that a collapsing homo
geneous isotropic universe must stop its contraction and
gin expansion, while during the transition phase its evolutio
is described by a metric close to the de Sitter one. Mukhan
and Brandenberger@4# proposed a general nonlinear gravita
tional action which allows only regular homogeneous isotr
pic solutions. Polchinski@5# proposed a simple realization of
the limiting-curvature principle by modifying the action and
inserting inequality constraints into it, restricting the growt
of curvature. In the case of the collapse of an inhomogeneo
universe, formation of a few ‘‘daughter universes’’ can b
expected@2#.

In the application to the black-hole-interior problem th
limiting-curvature principle means that the singularity which
according to the classical theory exists inside a black ho
must be removed in the complete quantum theory, so that
global structure of spacetime would be essentially modifie
We cannot hope to derive this result without knowledge
the theory, but we may at least discuss and classify possib
ties. Such a ‘‘zoological’’ approach is a natural first step an
it was used in a number of publications. One of the fir
models of a spherically symmetric black hole without singu
larities was proposed by Frolov and Vilkovisky@6#. In this
model the apparent horizon does not crossr50, so that
r50 is a regular timelike line. Two cases are logically pos
sible. ~1! Inner and external parts of the apparent horizo
remain disparate. In this case a black hole does not evapo
completely and a permanent black-hole remnant remains.~2!
The apparent horizon is closed. In this case, there is no ev
horizon ~and hence, strictly speaking, no black hole!, but
practically all the observable properties of a black ho
would be present until late times, when the apparent horiz
disappears. This model was discussed later in Ref.@7# and,
recently, both types of these singularity-free models of
black hole were used in the discussion of the final state of
evaporating black hole and information loss problem~see,
e.g.,@8#!.

Another logically possible singularity-free model of a
black-hole interior was proposed by Frolov, Markov, an
Mukhanov~FMM! @9,10#. According to this model, inside a
black hole there exists a closed universe instead of a sin
3215 © 1996 The American Physical Society
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3216 53CLAUDE BARRABÈS AND VALERI P. FROLOV
larity . The metric is obtained by gluing the Schwarzsch
metric to the de Sitter metric through a surfac
r5r 05const located inside the black hole. The parame
r 0 is chosen in such a way that the value of a curvatu
calculated atr 0 coincides with a limiting curvature, which is
assumed to be of Planckian order. In this approach a
transition between regimes is assumed and the transition
gion required for change of the regimes is approximated b
thin spacelike shell. In the FMM model@11# the spacetime
passes through the deflation stage and instead of the si
larity a new inflating universe is created. Morgan@12#
showed that a similar result~formation of a contracting
closed de Sitter-like universe with its further inflation! can be
obtained in the framework of the Polchinski approach to t
limiting-curvature principle. Different aspects of the mod
of a singularity-free black-hole interior with an inner d
Sitter-like universe were also studied in@5,12–14#.

One of the assumptions of the FMM and other simil
models is that a ‘‘phase transition’’ to the de Sitter-like pha
takes place at the homogeneous spacelike surfacer5r 0 . The
presence of perturbations and quantum fluctuations, grow
as r→0, could spoil the homogeneity. The bubbles of th
new de Sitter-like phase could be formed independently
points separated by spacelike distances. For these rea
one could expect that different parts of a black-hole inter
can create spatially disconnected worlds. The aim of t
paper is to consider a simple model which could descr
possible features of this process. Namely, we suppose
spherical bubbles of the new de Sitter-like phase which
formed independently are separated from the old~Schwarzs-
child! phase by relativistically moving boundaries. Und
this assumption one can reduce the problem to the stud
the evolution of light shells representing the boundaries a
their intersection. The general theory of lightlike shells w
developed by Barrabes and Israel@15# ~see also@16#!. This
approach is purely kinematic in the following sense. It a
lows one to take into account the conservation of energy a
momenta during the process of nucleation and the furt
evolution of the boundaries, including possible intersecti
of the boundaries of two different bubbles. But it certain
does not answer questions concerning probability of bub
formation or the structure of the transition regions betwe
phases. One of the interesting results of the model is tha
does not exclude creation of a large number of new-bo
universes. This fact could have an interesting application
the information-loss puzzle.

The paper is organized as follows. Section II contains
discussion of the model and gives the conditions for t
nucleation of a de Sitter bubble inside a Schwarzschild bla
hole. The creation of multiple de Sitter bubbles is conside
in Sec. III, and the interaction between the boundaries
newly created de Sitter bubbles is discussed in Sec. IV.
Sec. V we discuss the possible application of the proces
multiple universe formation to the information-loss puzzl
Some of the main properties of timelike and lightlike she
which are used in our model are summarized in the App
dix.

II. DESCRIPTION OF THE MODEL

A. Model

The Schwarzschild metric

ds252F21dr21Fdt21r 2dV2, ~1!
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F5r1 /r21, dV25du21sin2udf2 ~2!

inside the gravitational radius (r,r1) describes the con-
tracting homogeneous Kasner-like universe with the isom
etry group R(1)3O~3!. The section of fixed time
r5 const,r1 is a homogeneous spacelike surfaceS with
topology R13S2. The square of the curvature
R2[RabgdR

abgd512r1
2 /r 6. The value of the curvatureR

is constant alongS and it is of order of the Planckian cur-
vature lPl

22 at r;r 05(12)1/6(r1 / lPl)
1/3lPl . In the FMM

model it is assumed that as soon as the spacetime curva
reaches some critical valueR51/l 2 a new de Sitter-like
phase is formed. In the application to the unperturbe
Schwarzschild metric the change to a new phase occurs
erywhere simultaneously @at the spacelike surface
r5r 0;(r1l

2)1/3#. Another assumption of the FMM model is
that the transition takes a short time, so that the transiti
region can be approximated by a thin shell.

For a black hole formed by the collapse of a body wit
small deviations from spherical symmetry the metric at
finite radiusr tends to the Schwarzschild metric~1! at large
distance from the collapsing body@17#. On the other hand
perturbations existing in the black-hole exterior and prop
gating inwards grow infinitely near the singularity. Quantum
fluctuations of metric also become important when th
spacetime curvature reaches the limiting~Planckian! value
l22. The ‘‘phase transition’’ into the new de Sitter-like phas
happens independently in different spatially separated pa
of the black-hole interior. It is also plausible that due to th
fluctuations of the new-phase bubble formation there is
dispersion in the times of bubble formation. Under thes
conditions the assumption of spatial homogeneity used in
FMM model is rather restrictive and it is necessary to co
sider a generalization of this model. Our purpose is to ge
eralize the FMM model to the case where the transition
the de Sitter-like phase occurs independently in spatia
separated regions. In order to describe the possible struc
of spacetime we consider a toy model in which spheric
symmetry is preserved. We assume that, near the singula
of a Schwarzchild black hole, the transition to a new ‘‘d
Sitter phase’’ takes place at two-spheresS. We preserve an-
other assumption of the FMM model, namely, that the tra
sition takes a short time and the transition region can
approximated by a thin shell. In our generalization of th
FMM model we assume that the boundary between the t
phases~Schwarzschild and de Sitter! is composed of two null
hypersurfaces lying to the future ofS and intersecting atS.
Using this simple model we discuss different possibilities
nucleation of bubbles with de Sitter-like interiors and th
interaction between the newly created bubbles.

B. Lightlike shells

Lightlike shells separating two regions of a spacetim
with different characteristics have proved to be a convenie
way of dealing with various physical or mathematical prob
lems in general relativity@15#. This happens because the dy
namics of lightlike shells is simple and it is directly relate
with geometrical properties at the junction of the two spac
time regions. A good example illustrating this is the collisio
of two null shells. It has been shown, first in the restricte
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53 3217HOW MANY NEW WORLDS ARE INSIDE A BLACK HOLE?
case of spherical symmetry@18,19# and later in more general
situations@20#, that the geometries of the four spacetime d
mains bounded by the ingoing and outgoing shells a
matched at the collision by only two remarkably simple a
gebraic relations. In the particular case of two concent
spherical shells moving radially toward each other with th
velocity of light one of the matching conditions is trivially
satisfied while the other takes the form

f A~r 0! f B~r 0!5 f C~r 0! f D~r 0!. ~3!

Here r 0 is the radius of the collision sphere, and the fun
tions f A , f B , . . . for the spacetime domainsA,B, . . . @see
Fig. 1~a!# are defined byf5gab]ar ]br5grr . In what fol-
lows we consider a spherically symmetric spacetime with t
metric

ds252 f ~r !dt21 f21~r !dr21r 2dV2. ~4!

Both Schwarzschild and de Sitter metrics are of this for
@21#.

As a special case formula~3! describes the creation of a
pair of lightlike shells from ‘‘nothing’’@see Fig. 1~b!#. When
two lightlike shells are created at the sphere of radiusr 0 the
geometries of the three spacetime domainsB,C,D are iden-
tical and Eq.~3! becomes

f B~r 0!@ f A~r 0!2 f B~r 0!#50.

If none of the shells coincides with the horizon of the regio
B @ f B(r 0)Þ0#, the matching relation~3! reduces to@22#

f A~r 0!5 f B~r 0!. ~5!

The consistency between the geometrical formula~5! and the
conservation laws which have to be satisfied at the mom
of creation of two shells can be checked.

In a spherically symmetric spacetime and in the absen
of energy fluxes the surface stress-energy tensor of the n
shell is uniquely determined by the surface energy dens
s(r ), which is given by

4pr 2s~r !5zr @ f1~r !2 f2~r !#/2. ~6!

Herez511(21) if r increases~decreases! in the direction
of the future-directed null generatorsn5z]/]r and f1

( f2) refers to the future~past! side of the shell~for more

FIG. 1. The intersection of two lightlike shells~a!. The incom-
ing lightlike shells 3 and 4 after intersection at the two-dimension
surfacer 0 propagate further as lightlike shells 1 and 2 with param
eters, different from the original ones. A special case of this proce
is shown in~b!: The masses of the incoming shells 3 and 4 vanis
so that outgoing shells 1 and 2 are created from ‘‘nothing.’’
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details see Ref.@16# and the Appendix!. Relations~5! and~6!
show that the energy surface density of the lightlike shells
must vanish at the moment of creation
@s1(r 0)5s2(r 0)50#. After the creation the shells possess
nonvanishing surface energy densitiess1(r ) and s2(r )
given by ~6!. The relative signs ofs1(r ) ands2(r ) depend
on the values of thez ’s and the jump of the functionf .

C. de Sitter phase bubble creation in the black-hole interior

We consider at first the formation of a single de Sitter
phase bubble. Denote byr 0 the radius of the sphereSwhere
a single bubble is nucleated. We callS the vertex sphere.
According to our assumption the creation of the bubble is
accompanied by the creation of two lightlike shells separat
ing a newly formed de Sitter phase from the ‘‘old’’
Schwarzschild one. The corresponding Penrose-Carter di
gram is shown in Fig. 2.

Both shells converge towardsr50. For this reason their
creation can only occur in the regionr.a of the de Sitter
spacetime where all future-directed light rays contract. Intro
ducing f A(r )512r 2/a2 and f B(r )5122m/r in the match-
ing equation~5! one gets

r 0
352ma2. ~7!

Here a is the radius of the de Sitter horizon,
a253/L53/8pr (r being the false-vacuum energy den-
sity!. We assume that the value ofa is a fixed parameter of
our model and thata!r 0!2m.

The two lightlike shells bounding the de Sitter universe
behave identically and both converge towardsr50. Their
surface energy densities are thus equals1(r )5s2(r ), and
from ~7! they are given by

4pr 2s1~r !52mS 12
r 3

r 0
3D . ~8!

This relation shows that the surface energy density is nega
tive and the value of the negative mass of the shells grows t
2m as their sizer goes to zero.

In comparison with the FMM model, where the transition
between the Schwarzschild and de Sitter spacetimes occu
instantaneously along a spacelike shell, we now have a situ
ation which is no longer homogeneous as one moves alon
hypersurfacesr5 const,r 0 . This inhomogeneity can even
be enhanced if several bubbles are created and if their boun
aries intersect.

al
-
ss
h,

FIG. 2. A single de Sitter phase bubble formation.
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III. CREATION OF MULTIPLE de SITTER BUBBLES

A. Conditions for the intersection of bubbles

Consider now the creation of multiple bubbles with a d
Sitter-like phase interior. If a couple of bubbles is created n
far from one another, their lightlike boundaries may interse
before reaching the singularityr50. Let us obtain the con-
ditions when it occurs.

The Schwarzschild metric~1! nearr50 can be approxi-
mated by

ds252
r

2m
dr21

2m

r
dt21r 2dV2.

Introducing the proper time coordinatedt52(r /2m)1/2dr
we get

ds252dt21S 2
3t

4mD 2
2
3
dt21S 2

3t

4mD
4
3
~2m!2dV2.

~9!

The radius r and the proper timet are related as
r 359mt2/2 andr decreases ast increases.

Consider a couple of de Sitter bubbles created at the v
tex spheresM andN of the same radiusr 0 and intersecting
at the sphereP of the radiusr 1 ~see Fig. 3!. What happens
after the collision of the lightlike shells at the sphereP is for
the moment left unspecified and will be discussed later.

Using the metric~9! it is easy to show that the prope
distancel between two vertex spheresM andN expressed as
the function of the intersection radiusr 1 is

l5r 0S 12
r 1
2

r 0
2D S r 02mD

1
2
5aS 12

r 1
2

r 0
2D , ~10!

while the coordinatet distance is

Dt5
r 0
22r 1

2

2m
5
a2

r 0
3 ~r 0

22r 1
2!. ~11!

The distancel reaches its maximum valuel max when
r 150. One has

lmax5r 0S r 02mD
1
2
5a, Dtmax5

r 0
2

2m
5
a2

r 0
. ~12!

Two de Sitter universes created at the vertex spheresN
andQ and separated by a proper distancel which is larger
than lmax remain completely disconnected. Forl, lmax the
boundaries of the two bubbles intersect before they reach

FIG. 3. Multiple bubbles of the de Sitter-like phase creation.
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singularity. What happens after the intersection depends
upon the assumptions made at the collision of the two light-
like shells. In this section we consider the simplest possible
scenario, when the two shells crossing one another have only
gravitational interaction and remain lightlike after their inter-
section. The second logically possible and more complicated
case of merging shells will be discussed in the next section.

B. Crossing of the boundaries

Consider at first the case when the incoming lightlike
shells pass through each other and produce two outgoing
lightlike shells. We assume that after the collision a new de
Sitter universe, with a different horizona8, is formed. By
using the matching relation~3! we get

S 12
2m

r 1
D S 12

r 1
2

a82
D 5S 12

r 1
2

a2D
2

, ~13!

wherer 1 is the radius of the intersection sphere. Because the
intersection takes place inside the gravitational radius of the
black-hole (r 1,2m), the collision can only occur ifr 1 is
larger thana8.

Using the dimensionless variables

z5
r 0
a

5S 2ma D
1
3
, x5

r 1
a
, ~14!

one can rewrite Eq.~13! in the form

S aa8D
2

5
1

x2
1

~12x2!2

x~z32x!
. ~15!

According to our assumptions 0<x<z. For a5a8 one has
x51. Equation~15! shows thatx.1 for a,a8 andx,1 for
a.a8. In the former case we havea8,r 1,a, while in the
latter casea,a8,r 1 . These two cases correspond to two
different ways of gluing the two de Sitter spacetimes shown
respectively in Figs. 4~a! and 4~b!. A new bubble of false-
vacuum with a different energy density appears between the
two initially created false-vacuum bubbles. The new bubble
either coexists indefinitely with two others@Fig. 4~a!# or fi-
nally occupies the whole space@Fig. 4~b!#. In the former case
the initial false-vacuum bubbles must be nucleated close
enough to one another. As the limiting value ofr 1 separating
the two cases is such thatr 15a5a8, it follows from ~10!
that this occurs whenever the proper distance between the

FIG. 4. Free intersection of lightlike boundaries of two bubbles.
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vertex spheres is smaller thana(12a2/r 0
2). In the latter

case, shown in Fig. 4~b!, the new de Sitter spacetime is fla
ter than the original ones.

For symmetry reasons the equations of motion of b
shells as well as their surface energy density are identi
s18(r )5s28(r ). The surface energy density of the shells af
their intersection can be obtained from Eq.~6! and it is of the
form

4ps18~r !5
zr

2 S 1a2 2
1

a82D . ~16!

This relation shows that the surface energy density of
shells after their intersection is a linear function of the rad
r . In the case wherea8,r 1,a, we havez51 and the light-
like shells which were initially contracting bounce at th
collision and expand to infinity@see Fig. 4~a!#. In the second
case@Fig. 4~b!# we havez521 and the lightlike boundaries
contract to zero radius. In both casess18(r ) is negative as it
is expected to be from the law of conservation of energy
the collision~the ingoing shells have negative energies!. For
the case shown in Fig. 4~b! the mass of the shells vanishes
the point when the shells crossr50.

IV. INTERACTION OF THE LIGHTLIKE BOUNDARIES
OF TWO de SITTER UNIVERSES

A. Merging of the boundaries

A different situation which may occur at the collision o
the two false-vacuum bubbles is when their lightlike boun
aries interact strongly and merge into a single timelike sh
~this process is in some sense analogous to the creation
massive particle from two colliding photons!. In that case the
two bubbles remain attached after the collision through
spherical surface layer moving with subluminal velocity~see
Fig. 5!.

Both incoming lightlike shells are contracting, so that t
radius of collisionr 1 is smaller thanr 0 . The metrics in the
regionsA andB shown in Fig. 5 are de Sitter metrics, whil
the metric in the regionC is the Schwarzschild one. Th
corresponding metric functionsf (r ) are

f A~r !5 f B~r !512
r 2

a2
, f C~r !512

2m

r
. ~17!

Let us obtain the expression for the parameters of
timelike shell in terms of the parameters for colliding nu
shells. For this purpose we use the matching condit
~A15!:

@ ṙ 11«AAf A~r 1!1 ṙ 1
2#@ ṙ 12«BAf B~r 1!1 ṙ 1

2#52 f C~r 1!.
~18!

~This relation as well as other useful formulas for movin
and colliding shells are collected in the Appendix.! Herer 1 is
the radius of the collision sphere, and the parameter« which
enters this expression is defined as«5 sgn(na]ar ). Since
the spacetime domains bordering the timelike shell are id
tical, we must take«A52«B ; otherwise, there is no shel
@see Eq.~A5! of the Appendix#. Equation~18! implies
t-
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@ f A~r 1!1 f C~r 1!#
2

4 f C~r 1!
. ~19!

On the other hand for the timelike shell one has@see Eq.
~A5!#

M ~r !

r
52«A@ f A~r !1 ṙ 2#1/2, ~20!

whereM (r )54pr 2s(r ) is the inertial mass of the timelike
shell ands(r ) its energy surface density. By combining re-
lations ~19! and ~20! we get the initial massM (r 1) of the
timelike shell at the moment of the collision:

M ~r 1!5
2M1~r 1!

u f C~r 1!u1/2 . ~21!

HereM1(r 1)54pr 1
2s1(r 1) is the mass of the lightlike shells

at the collision. As expected from the conservation of energy,
it follows from ~21! that the masses of the ingoing lightlike
shells and of the outgoing timelike shell have the same nega-
tive sign~recall that the lightlike shells have negative energy
densities!.

The further evolution of the timelike shell is given by Eq.
~20!. It can be rewritten in the form

ṙ 21V~r !521, ~22!

whereV(r ) is an effective potential given by

V~r !52
r 2

a2
24p2r 2s2~r !. ~23!

Equation~22! shows that the motion is only possible when
V(r )<21.

To study this equation it is convenient to use the dimen-
sionless radiusy5r /a and timeT5t/a as well as the vari-

FIG. 5. Merging of two lightlike shells into one timelike shell.
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ablesx andz already defined by~14!. (x is an initial value of
y anddy/dT5 ṙ .) In these variables the equation of motio
~22! takes the form

S dydTD
2

1V~y,x,z!521, ~24!

wherez is a given quantity andx a free parameter such tha
z@1 andxP@0,z#. The initial mass~21! of the timelike shell
can be rewritten as

M ~r 1!5aF~x,z!, ~25!

with

F2~x,z!5
~z32x3!2x

z32x
. ~26!

B. Evolution of a merging boundary

The motion of the timelike shell depends on the equati
of state for the matter forming the shell. For simplicity w
assume a dustlike equation of state. Under this assump
sr 25 const,0 along the shell and the mass of the shell
conserved and coincides withM (r 1) given by Eqs.~25! and
~26!.

For a dustlike equation of state the potentialV is

V~r !52
r 2

a2
2
M2~r 1!

4r 2
,

and written in terms of the dimensionless variables it tak
the form

V~y,x,z!52y22
F2~x,z!

4y2
. ~27!

If the initial condition is chosen so thatT50 wheny5x, the
solution of Eq.~24! is given in the implicit form

T5
1

2
lnU2y2211~4y424y21F2!1/2

2x2211~4x424x21F2!1/2
U. ~28!

The solution depends onx ~the initial value ofy) and on the
parameterz. We consider a black hole of large mass, so th
we havez@1.

Motion of the timelike shell is possible only in the region
whereV(y,x,z)<21. Denote byym the value ofy where
the potentialV reaches its maximum valueVm5V(ym).
Equation~27! implies that

ym5
F1/2~x,z!

A2
, Vm52F~x,z!. ~29!

It is easy to show that there exist two values ofx (x1 and
x2) for which Vm521. Forz@1 one has

x15
1

z3
1oS 1z7D , x25z2

1

3z
1oS 1z5D . ~30!

Vm,21 for xP@x1 ,x2# @curve B in the Fig. 6# and
n

ion
s

s

at

21,Vm,0 for xP@0,x1# or xP@x2 ,z# ~curvesA andC in
the Fig. 6!.

For a fixed parameterz the evolution of the shell depends
on the initial conditionx ~the initial radius of the timelike
shell!. A timelike shell is created at a stage of contraction, so
that (dy/dT)T505 ṙ 1,0. Under this condition only two
qualitatively different types of motion are possible.

~1! 0,x<x2 . In this case the timelike shell monotoni-
cally contracts from its initial radiusr 1 down to zero@23#.
The two de Sitter universes which were initially attached
through the timelike shell become disconnected after the
time intervalTsep:

Tsep5
1

2
lnU F21

2x2211~4x424x21F2!1/2
U. ~31!

For xP@0,x1# ~curveA in Fig. 6! the separation time is less
thanz26a and the bubbles separate almost immediately afte
their intersection. ForxP@x1 ,x2# ~curve B of Fig. 6!, the
time of the separation can reach values of the order ofa.

~2! x2,x,z. The trajectory admits a turning point
V(yt)521 at the valuey5yt :

yt
25

1

2
@11~12F2!1/2#. ~32!

In that case the timelike shell first contracts, bounces atyt ,
and then expands to infinity~curveC in Fig. 6!. The two de
Sitter universes remain connected through a spherical she
which has a radius that bounces and increases to infinity. Th
time which is needed for the shell to bounce from its initial
radius can be estimated asT; lnz.

The conformal Penrose-Carter diagrams for these two
qualitatively different cases are shown in Fig. 7. Figure 7~a!
illustrates the evolution of a timelike shell with the initial
conditiony5xP@0,x2# at the moment of its formation. The
contraction of the timelike shell results in the separation of
two de Sitter-like universes at the momentP. Figure 7~b!
illustrates the evolution of a timelike shell with the initial
conditiony5xP@x2 ,z#. The timelike shell changes its con-
traction into expansion. The two de Sitter-like universes re-
main connected.

The condition x2,x,z which guarantees that two
bubbles form the same de Sitter-like universe after merging

FIG. 6. The potentialV(y,x,z) for different values of the pa-
rameterx.
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of their boundaries can be rewritten in terms of the sepa
tion between the vertex spheres of the bubble nucleat
First we remark that this condition, written in dimension
form, is r 02a2/3r 0,r 1,r 0 . @We use here the relation~30!
valid for z@1.# Using relations~10! and~11! we get that this
condition is equivalent to

0, l,
a

3 S ar 0D
2

, 0,Dt,
a

3 S ar 0D
3

. ~33!

Sincea/r 0!1, two bubbles form a unique de Sitter univers
only if their vertices are extremely close one to another.
other words, in the framework of the chosen model the c
ation of multiple disconnected de Sitter-like universes is t
most plausible process.

V. CONCLUDING REMARKS

We discuss now some physical consequences of the p
sible multiple de Sitter-like universe formation inside
black-hole. The above consideration indicates that the nu
ation of bubbles of the de Sitter-like phase might result in t
formation of disconnected worlds as soon asDt*a4/r 0

3 . It
means that during the timetevap;tPl(m/m Pl)

3 of the quan-
tum evaporation of a black hole of massm there might be
formed as many as

Nmax;S lPla D 2S mmPl
D 4 ~34!

new de Sitter-like disconnected universes. (tPl , l Pl , and
mPl are Planckian time, length, and mass, respectively.! For
a; lPl when the curvature of a newly created de Sitter wo

FIG. 7. Conformal Penrose-Carter diagrams for a spacet
with two de Sitter-like phase bubbles with merging boundaries
different distances between bubbles at the moment of creation
both figures two double lines beginning at the radiusr 1 and lying to
the future represent the same timelike shell and must be identifi
ra-
ion.
al

e
In
re-
he

os-
a
cle-
he

rld

is Planckian,Nmax;(m/mPl)
4. Remarkably this quantity is

much larger than the dimensionless Bekenstein-Hawking e
tropy of a black-holeSBH or the number of emitted quanta of
the Hawking radiationN;(m/mPl)

2 ~both are of the same
order of magnitude!.

The number of different possibilities for the distribution
of N identical particles inNmax ‘‘boxes’’ ~representing newly
created worlds! is Nmax!/(Nmax2N)!N!. If these possibili-
ties are equally likely, then the corresponding entropyS is

S5 ln@Nmax!/ ~Nmax2N!!N! #. ~35!

Using the relation lnN!'Nln(N/e) we get, forN!Nmax

S'Nln~Nmax/N!. ~36!

In other words forNmax@N the entropy connected with all
possible distributions of the created Hawking quanta over th
newly born worlds inside a black hole is greater than th
entropy of these quanta. It means that entropy consideratio
in principle do not exclude the situation where the interna
state of each newly created universe is pure while the e
semble of universes is described by a density matrix. Th
remark might have quite interesting applications to th
information-loss puzzle.

To summarize, we proposed a simple model for the blac
hole interior. In the framework of this model we showed tha
at least kinematically the creation of many separated un
verses is the most probable process. Certainly the model
self contains a lot of simplifications. But the obtained result
indicate that multiple universe formation in the black-hole
interior should be taken seriously in the discussion and cla
sification of different nonsingular black-hole models.
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APPENDIX: TIMELIKE AND LIGHTLIKE SHELLS
IN A SPHERICALLY SYMMETRIC SPACETIME

In this appendix we derive the matching relations whic
have to be fulfilled when two ingoing lightlike shells merge
into a single timelike shell. We only consider the case o
concentric spherical shells that move radially. The thre
spacetime domains bounded by the shells are static a
spherically symmetric with line elements of the form

ds252 f ~r !dt21 f21~r !dr21r 2~du21sin2udf2!.
~A1!

We callA, B, C the three spacetimes,S1 , S2 the lightlike
shells, andS the timelike shell~see Fig. 5!.

Before deriving the matching relation at the intersectio
let us recall the main equations describing timelike and ligh
like shells~for more details see@16#!.

ime
for
. In
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We call u5d/dt the normalized four-velocity andn the
unit normal along the timelike surfaceS. With the line ele-
ment ~A1! the components of these vectors are

ua5„«1f
21~r !Af ~r !1 ṙ 2, ṙ ,0,0…, ~A2!

na5„«2ṙ f ~r !,«Af ~r !1 ṙ 2,0,0…, ~A3!

with «1 ,«2561, «5«1«25 sgn(na]ar ), andṙ5d/dt. The
induced metric ofS is equal to

ds252dt21r 2~t!~du21sin2udf2!. ~A4!

A spherically symmetric timelike shell is a two-dimension
perfect fluid with surface energys and surface pressurep.
Let us callA54pr 2 the area andM5sA the internal
mass. Spherical symmetry reduces the number of inde
dent equations describing the motion of the shell to the
lowing two:

2
M

r
5@«Af ~r !1 ṙ 2#, ~A5!

dM

dt
52p

dA

dt
1@Tabu

anb#. ~A6!

HereTab is the stress-energy tensor of the external med
and the square brackets represent the jump of the enc
quantity across the surface, i.e.,@F#5F12F2 . It is as-
sumed that the normaln is directed toward the1 side.

Equation~A5! is the equation of motion of the shell an
Eq. ~A6! the equation of conservation of energy. To spec
the problem one needs also to give an equation of state
for instance, one takesp5(a21)s with a5 const and if
@Tabu

anb#50, one gets, from~A6!,

sr 2a5 const. ~A7!

This relation allows one to defineM5M (r ) which enters
Eq. ~A5!.

The description of a null shell is very different from
timelike one and in some sense simpler because the equ
of motion is fixed. What makes a null hypersurface so pe
liar is that its normal vector is at the same time tangent t
and that its induced metric is degenerate.

Let us callS i with i51,2 the two ingoing null shells. Th
basis vectorse(A)5]/]jA where jA5(u,f) are tangent to
the shells and one takesn( i )5z i]/]r as the null vector tan
gent to the null generators ofS i . Herez i511(21) when-
everr increases~decreases! toward the future along the nu
generators. The ‘‘extrinsic’’ curvature is defined by

KiAB52n~ i !

de~A!

djB
, ~A8!

whered/djB is the four-dimensional covariant derivative. A
n( i ) is tangent toS i , JiAB is an intrinsic property of the she
which actually describes the behavior of its null generat
For instance, the traceKi5gABKiAB represents their expan
sion rate and is equal to
al
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Ki5
2

r
n~ i !

a ]ar . ~A9!

Finally when no energy is transferred to the shell, i.e
@Tabn( i )

a n( i )
b #50, the surface stress-energy tensor of a sphe

cal null shell is characterized only by a surface energy de
sity s i(r ), which is given by

4pr 2s1~r !5
z1r

2
@ f A~r !2 f C~r !#, ~A10!

4pr 2s2~r !5
z2r

2
@ f B~r !2 f C~r !#. ~A11!

Let us now find the matching relations at the intersectio
of the shells. This intersection is in fact a two-sphereS with
radiusr 1 and at any point ofS we can write the decomposi-
tions

n~1!
a 5~ua1na!/h1A2, ~A12!

n~2!
a 5~ua2na!/h2A2, ~A13!

whereh1 andh2 are arbitrary positive scalars. Furthermore
the four-vectors (n( i ) ,e(A)) form a basis at any point ofS
and we have the completeness relation

gab5gABe~A!
a e~B!

b 2
2n~1!

~a n~2!
b

n~1!•n~2!
. ~A14!

In order to get the matching relation we use the fact th
Ki are intrinsic quantities and express the productK1K2 in
two different manners using the spacetime domainsA, B,
andC. First using~A2!, ~A3!, ~A9!, and~A12! one gets

K1K25
2

r 1
2h1h2

@ ṙ 11«AAf A~r 1!1 ṙ 1
2#@ ṙ 12«BAf B~r 1!1 ṙ 1

2#.

Second, using~A9! and ~A14! in sectorC one gets

K1K252
2n~1!•n~2!

r 1
2 f C~r 1!.

One then immediately derives the matching relation

@ ṙ 11«AAf A~r 1!1 ṙ 1
2#@ ṙ 12«BAf B~r 1!1 ṙ 1

2#52 f C~r 1!.
~A15!

This equation gives the initial velocityṙ 1 of the timelike
shell after the merging of the lightlike shells. When this re
sult is inserted in~A5! one gets the initial mass of the time
like shell.
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