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How many new worlds are inside a black hole?
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We propose a possible internal structure for a Schwarzschild black hole resulting from the creation of
multiple de Sitter universes with lightlike boundaries when the curvature reaches Planckian values. The inter-
section of the boundaries is studied and a scenario leading to disconnected de Sitter universes is proposed. The
application to the information loss problem is then discussed.
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[. INTRODUCTION considered in Ref3]. It was shown that a collapsing homo-
geneous isotropic universe must stop its contraction and be-
The internal structure of black holes and their final stategin expansion, while during the transition phase its evolution
are two intriguing problems of black-hole physics. Both of is described by a metric close to the de Sitter one. Mukhanov
these problems require knowledge of physics at Planckiaand Brandenbergg#] proposed a general nonlinear gravita-
scales for their solution. It is generally believed that only ational action which allows only regular homogeneous isotro-
union of quantum mechanics and gravity can provide us withpic solutions. PolchinsKi5] proposed a simple realization of
a proper theory. Until now such a theory, quantum gravitythe limiting-curvature principle by modifying the action and
has not been constructed. It seems that one cannot overcomerting inequality constraints into it, restricting the growth
its main problem, nonrenormalizability, without unifying of curvature. In the case of the collapse of an inhomogeneous
gravity with other physical fields. Superstring theory is oneuniverse, formation of a few “daughter universes” can be
of the most promising approaches in this direction. But inexpected2].
spite of the impressive development of superstring theory we |n the application to the black-hole-interior problem the
are still very far from understanding physics at Planckianimiting-curvature principle means that the singularity which,
scales. according to the classical theory exists inside a black hole,
Under these circumstances it is natural to use the followmust be removed in the complete quantum theory, so that the
ing approach. One might assume that the notion of a quanylobal structure of spacetime would be essentially modified.
tum average of a metrig=(g) is still valid in the regions We cannot hope to derive this result without knowledge of
under consideration, and the average megriobeys some the theory, but we may at least discuss and classify possibili-
effective equations. We do not know these equations at thges. Such a “zoological” approach is a natural first step and
moment, but we might assume that these equations and théirwas used in a number of publications. One of the first
solutions obey some general properties and restrictions. Fenodels of a spherically symmetric black hole without singu-
example, it is natural to require that the effective equationsarities was proposed by Frolov and Vilkovisk§]. In this
for g in the low-curvature limit reduce to the Einstein equa-model the apparent horizon does not cress0, so that
tions with possible higher-curvature corrections. It is alsor=0 is a regular timelike line. Two cases are logically pos-
possible to assume that the future theory of quantum gravitgible. (1) Inner and external parts of the apparent horizon
would solve the problem of the singularities of classical genremain disparate. In this case a black hole does not evaporate
eral relativity. One of the possibilities is that the equations ofcompletely and a permanent black-hole remnant remés.
the complete theory would simply not allow dynamically The apparent horizon is closed. In this case, there is no event
infinite growth of the curvature, so that the effective curva-horizon (and hence, strictly speaking, no black helbut
ture .72 of g is bounded by the Planckian valeel/2,. The practically all the observable properties of a black hole
principle of a limiting curvature was proposed by Markov would be present until late times, when the apparent horizon
[1,2]. This principle excludes curvature singularity forma- disappears. This model was discussed later in R@fand,
tion, so that the global properties of the solutions mustrecently, both types of these singularity-free models of a
change. black hole were used in the discussion of the final state of an
A special form of the gravitational action for cosmologi- evaporating black hole and information loss problésee,
cal models providing the limiting-curvature principle was e.g.,[8]).
Another logically possible singularity-free model of a
black-hole interior was proposed by Frolov, Markov, and
*Electronic address: barrabes@univ_tours.fr Mukhanov(FMM) [9,10]. According to this model, inside a
TElectronic address: frolov@phys.ualberta.ca black hole there exists a closed universe instead of a singu-
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larity . The metric is obtained by gluing the Schwarzschild F=r_/r—1, dQ?=d#?+sirtode> 2
metric to the de Sitter metric through a surface

F=ro=const Ipcated inside the black hole. The parametey, qiqe the gravitational radiusr€r ) describes the con-
ro is chosen in such a way that the value of a curvatur

calculated at coincides with a limiting curvature, which is F‘[racting homogeneous Kasner-like universe with the isom-
0 , : ! .
assumed to be of Planckian order. In this approach a fas try group R(1)xO(3). The section of fixed time

transition between regimes is assumed and the transition rb CONSKr, IS a homogeneous spacelike surfaewith

gion required for change of the regimes is approximated by 59‘30'093’ Rlxﬁz' Eheﬁ square of the curvature
thin spacelike shell. In the FMM modél1] the spacetime -7 =Rqg,5R™ =12r%/r°. The value of the curvature?
passes through the deflation stage and instead of the singi§-constant along. and it is of order of the Planckian cur-
larity a new inflating universe is created. Morgdh2] vature lp® at r~ro=(12)%r, /lp)*3p. In the FMM
showed that a similar resulfformation of a contracting model it is assumed that as soon as the spacetime curvature
closed de Sitter-like universe with its further inflatjaran be  reaches some critical valugz=1/2 a new de Sitter-like
obtained in the framework of the Polchinski approach to thephase is formed. In the application to the unperturbed
limiting-curvature principle. Different aspects of the model Schwarzschild metric the change to a new phase occurs ev-
of a Singularity—free black-hole interior with an inner de erywhere Simu|taneous|y [at the Space“ke surface
Sitter-like universe were also studied[5,12-14. . r=ro~(r+1%"3]. Another assumption of the FMM model is
One of the assumptions of the FMM and other similarihat the transition takes a short time, so that the transition
models is that a “phase transition” to the de Sitter-like phaseregion can be approximated by a thin shell.
takes place at the homogeneous spacelike surfatg. The "o 5 plack hole formed by the collapse of a body with
presence of perturbations and quantum fluctuations, growing i’ deviations from spherical symmetry the metric at a

asr—0, could spoil the homogeneity. The bubbles of thefinite radiusr tends to the Schwarzschild metfit) at large

new de Sitter-like phase could be formed independently at. .
points separated by spacelike distances. For these reasqg |§tance .from th_e _collgpsmg bodgt7]. On the_other hand
erturbations existing in the black-hole exterior and propa-

one could expect that different parts of a black-hole interiof MU 2 . .
ating inwards grow infinitely near the singularity. Quantum

can create spatially disconnected worlds. The aim of thi I . ¢ ic al ) h h
paper is to consider a simple model which could describdUctuations of metric also become important when the

possible features of this process. Namely, we suppose thgggcenme curvature reaches the limiti®janckian value
spherical bubbles of the new de Sitter-like phase which aré “- The “phase transition” into the new de Sitter-like phase
formed independently are separated from the(8ichwarzs- happens independently in different spatially separated parts
child) phase by relativistically moving boundaries. UnderOf the black-hole interior. It is also plausible that due to the
this assumption one can reduce the problem to the study diuctuations of the new-phase bubble formation there is a
the evolution of light shells representing the boundaries andlispersion in the times of bubble formation. Under these
their intersection. The general theory of lightlike shells wasconditions the assumption of spatial homogeneity used in the
developed by Barrabes and Isrg&b] (see alsd16]). This FMM model is rather restrictive and it is necessary to con-
approach is purely kinematic in the following sense. It al-sider a generalization of this model. Our purpose is to gen-
lows one to take into account the conservation of energy andralize the FMM model to the case where the transition to
momenta during the process of nucleation and the furthemhe de Sitter-like phase occurs independently in spatially
evolution of the boundaries, including possible intersectiorseparated regions. In order to describe the possible structure
does not answer questions concerning probability of bubblgymmetry is preserved. We assume that, near the singularity
formation or the structure of the transition regions betweeny 5 schwarzchild black hole. the transition to a new “de
phases. One of the interesting results of the model is that %itter phase” takes place at Mo-sphe&sWe preserve an-
Sﬁﬁlsergg:[s e_}(ﬁ::(ﬁcfrfgj'lgnhgrlea;ﬁrﬁ]ete?gsrggeram Infe\l’;’.'bo?bther assumption of the FMM model, namely, that the tran-

. L 9 applicalion 1Q4ion takes a short time and the transition region can be
theTlrllﬁtl;orga(talroir;-lgrssaﬁiuzzezdleés follows. Section Il contains th pproximated by a thin shell. In our generalization of the

bap 9 ' MM model we assume that the boundary between the two

discussion of the model and gives the conditions for th . o
nucleation of a de Sitter bubble inside a Schwarzschild blacRasesSchwarzschild and de Sittes composed of two null

hole. The creation of multiple de Sitter bubbles is consideredlyPersurfaces lying to the future &and intersecting a.
in Sec. Ill, and the interaction between the boundaries obsing this simple model we discuss different possibilities of

newly created de Sitter bubbles is discussed in Sec. IV, iucleation of bubbles with de Sitter-like interiors and the
Sec. V we discuss the possible application of the process dpteraction between the newly created bubbles.
multiple universe formation to the information-loss puzzle.

Some of the main properties of timelike and lightlike shells B. Lightlike shells
which are used in our model are summarized in the Appen- . . : . .
dix. _nghtllke shells separating two regions of a spacetime
with different characteristics have proved to be a convenient
Il. DESCRIPTION OF THE MODEL way of dealing with various physical or mathematical prob-
lems in general relativity15]. This happens because the dy-
A. Model namics of lightlike shells is simple and it is directly related
The Schwarzschild metric with geometrical properties at the junction of the two space-

time regions. A good example illustrating this is the collision
ds’=—F ldr?+ Fdt?+r2dQ?, (1)  of two null shells. It has been shown, first in the restricted
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b) FIG. 2. Asingle de Sitter phase bubble formation.

FIG. 1. The intersection of two lightlike shellg). The incom-  details see Ref16] and the Appendix Relations(5) and(6)
ing lightlike shells 3 and 4 after intersection at the two-dimensionalshow that the energy surface density of the lightlike shells
surfacer, propagate further as lightlike shells 1 and 2 with param-must vanish at the moment of creation
eters, different from the original ones. A special case of this Procespy (r,) = o,(ro) =0]. After the creation the shells possess
is shown in(b): The masses of the incoming shells 3 and 4 VaniSh’nonvanishing surface energy densities(r) and o,(r)
so that outgoing shells 1 and 2 are created from “nothing.” given by (6). The relative signs of,(r) ando,(r) depend

case of spherical symmetf$8,19 and later in more general on the values of th¢’s and the jump of the functioh.

situationg[20], that the geometries of the four spacetime do-

mains bounded by the ingoing and outgoing shells are c_de sitter phase bubble creation in the black-hole interior
matched at the collision by only two remarkably simple al- _ ) ) . )
gebraic relations. In the particular case of two concentric Ve consider at first the formation of a single de Sitter
spherical shells moving radially toward each other with thePhase bubble. Denote by the radius of the sphei@where
velocity of light one of the matching conditions is trivially & Single bubble is nucleated. We c&lithe vertex sphere

satisfied while the other takes the form According_to our assumpt_ion the cre_atior_l of the bubble is
accompanied by the creation of two lightlike shells separat-
fa(ro)fa(ro)=fc(ro)fp(ro). (3 ing a newly formed de Sitter phase from the “old”

Schwarzschild one. The corresponding Penrose-Carter dia-

Herer, is the radius of the collision sphere, and the func-gram is shown in Fig. 2.
tions fa,fg, ... for the spacetime domaimsB, ... [see Both shells converge towards=0. For this reason their
Fig. 1@)] are defined byf =g*#d,rasr=g". In what fol-  creation can only occur in the region-a of the de Sitter
lows we consider a spherically symmetric spacetime with thepacetime where all future-directed light rays contract. Intro-
metric ducingfa(r)=1-r?/a? andfg(r)=1—2m/r in the match-

ds?=—f(r)d2+f1(r)dr2+r2d02. (4y N9 equation() one gets
3_ 2
Both Schwarzschild and de Sitter metrics are of this form fo=2ma. @
[21].

As a special case formul@) describes the creation of a Here a
pair of lightlike shells from “nothing”[see Fig. b)]. When
two lightlike shells are created at the sphere of radjthe
geometries of the three spacetime dom&n€,D are iden-
tical and Eq.(3) becomes

is the radius of the de Sitter horizon,
a?=3/A=3/8wp (p being the false-vacuum energy den-
sity). We assume that the value afis a fixed parameter of
our model and thaa<<r,<<2m.
The two lightlike shells bounding the de Sitter universe
fa(ro)[fa(ro)—fa(ro)]=0. behave identically and both converge towards0. Their
surface energy densities are thus eqaar)=o,(r), and
If none of the shells coincides with the horizon of the regionfrom (7) they are given by
B [ fg(ro)# 0], the matching relationi3) reduces td22]

fa(ro)="fg(ro). 5

The consistency between the geometrical forntgjaand the
conservation laws which have to be satisfied at the moment

of fr:e:tlsomg:i;g? Ssher:l?n(;?rrilcbse gzgglr(need.an d in the absenCThis relation shows that the surface energy density is nega-
P y sy P ﬁve and the value of the negative mass of the shells grows to

of energy fluxes the surface stress-energy tensor of the null .
—m as their size goes to zero.

(S:Ef;l 'Svrlljiglhqlijsegiviitir;mned by the surface energy density In comparison with the FMM model, where the transition
' between the Schwarzschild and de Sitter spacetimes occurs
Amr2o(r)={r[fo(r)—f_(r)]/2. (6)  instantaneously along a spacelike shell, we now have a situ-
ation which is no longer homogeneous as one moves along
Here{=+1(—1) if r increaseddecreasesn the direction hypersurfaces = conskr,. This inhomogeneity can even
of the future-directed null generatons=d/dr and f . be enhanced if several bubbles are created and if their bound-
(f_) refers to the futurgpas) side of the shellfor more  aries intersect.

r3
47Tr201(r)=—m(1——3). 8
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FIG. 3. Multiple bubbles of the de Sitter-like phase creation.

I1l. CREATION OF MULTIPLE de SITTER BUBBLES
A. Conditions for the intersection of bubbles

Consider now the creation of multiple bubbles with a de

CLAUDE BARRABES AND VALERI P. FROLOV 53

FIG. 4. Free intersection of lightlike boundaries of two bubbles.

singularity. What happens after the intersection depends

Sitter-like phase interior. If a couple of bubbles is created nopPOn the assumptions made at the collision of the two light-

far from one another, their lightlike boundaries may intersec
before reaching the singularity=0. Let us obtain the con-

ditions when it occurs.

The Schwarzschild metri¢l) nearr=0 can be approxi-

mated by

r 2m
ds?=— —dr2+ —dt2+r2dQ
2m r

2

Introducing the proper time coordinater= — (r/2m)¥2dr

we get

2 4
37\°3 3
d32=—d72+( ——T) a2+ | -
4m

4m

The radiusr
r3=9m+2/2 andr decreases as increases.

Consider a couple of de Sitter bubbles created at the ve
tex spheredM andN of the same radiusy and intersecting
at the spherd® of the radiusr; (see Fig. 3. What happens
after the collision of the lightlike shells at the sphé&rés for
the moment left unspecified and will be discussed later.

Using the metric(9) it is easy to show that the proper
distancd between two vertex spher& andN expressed as

the function of the intersection radiug is

ri)

I=ro|1——
o

r2

1
1__
o

o

N :a

2m

while the coordinaté distance is

At rée—r2 a2
S 2m 3

2 2

The distancel reaches its maximum valué ., when

r,=0. One has

1
ro\2 r
Imax=T0o ﬁ =a, Atmax:ﬁza-

Two de Sitter universes created at the vertex sphires
and Q and separated by a proper distahoghich is larger
than | ,,5x remain completely disconnected. Florl .« the

- —)E(Zm)zdﬂz.

|

9

and the proper timer are related as

(10

(11)

12

ike shells. In this section we consider the simplest possible
scenario, when the two shells crossing one another have only
gravitational interaction and remain lightlike after their inter-
section. The second logically possible and more complicated
case of merging shells will be discussed in the next section.

B. Crossing of the boundaries

Consider at first the case when the incoming lightlike
shells pass through each other and produce two outgoing
lightlike shells. We assume that after the collision a new de
Sitter universe, with a different horizoa’, is formed. By
using the matching relatio(8) we get

-5

wherer  is the radius of the intersection sphere. Because the
intersection takes place inside the gravitational radius of the
black-hole €.<<2m), the collision can only occur if; is
larger thana'.

Using the dimensionless variables

;
1-22)=

rz\?
a __2) : (13

a

1
R 14
) X_Ey ( )

2m

a

fo
2= —=
a

one can rewrite Eq13) in the form

2 1 .
_X2

(1-x3)?
X(22—x)"

a

= (15

According to our assumptionssOx<z. Fora=a’' one has
x=1. Equation(15) shows thak>1 fora<a’ andx<1 for
a>a’. In the former case we haw <r;<a, while in the
latter casea<<a’'<r, . These two cases correspond to two
different ways of gluing the two de Sitter spacetimes shown
respectively in Figs. @) and 4b). A new bubble of false-
vacuum with a different energy density appears between the
two initially created false-vacuum bubbles. The new bubble
either coexists indefinitely with two othef&ig. 4(a)] or fi-
nally occupies the whole spaf€ig. 4(b)]. In the former case
the initial false-vacuum bubbles must be nucleated close
enough to one another. As the limiting valuergfseparating

the two cases is such thaj=a=a’, it follows from (10)

boundaries of the two bubbles intersect before they reach thidat this occurs whenever the proper distance between the
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vertex spheres is smaller thai(l—azlré). In the latter 5
case, shown in Fig.(®), the new de Sitter spacetime is flat- -+
ter than the original ones.
For symmetry reasons the equations of motion of both u
shells as well as their surface energy density are identical,
a1(r)=o5(r). The surface energy density of the shells after A n B

their intersection can be obtained from KE@). and it is of the
form

1
a2 a/2

. (16)

dmoi(r)= é;—r

This relation shows that the surface energy density of the A
shells after their intersection is a linear function of the radius )
r. In the case whera’' <r;<a, we have/=1 and the light-

like shells which were initially contracting bounce at the

collision and expand to infinitjsee Fig. 4a)]. In the second +

caseFig. 4b)] we have/=—1 and the lightlike boundaries -

contract to zero radius. In both casefr) is negative as it 2,

is expected to be from the law of conservation of energy at
the collision(the ingoing shells have negative energi¢or

the case shown in Fig(l) the mass of the shells vanishes at
the point when the shells cross-0.

FIG. 5. Merging of two lightlike shells into one timelike shell.

2 [fa(r)+fe(ry)]?

1
IV. INTERACTION OF THE LIGHTLIKE BOUNDARIES 4fc(ry)
OF TWO de SITTER UNIVERSES

(19

On the other hand for the timelike shell one Hase Eq.
A. Merging of the boundaries (A5)]

A different situation which may occur at the collision of
the two false-vacuum bubbles is when their lightlike bound- M(r) _ £271/2

e : . L 2ep[fa(r)+17]75, (20
aries interact strongly and merge into a single timelike shell
(this process is in some sense analogous to the creation of a ) _ o o
massive particle from two colliding photonsn that case the WhereM(r)=4mr“o(r) is the inertial mass of the timelike
two bubbles remain attached after the collision through hell anda(r) its energy surface density. By combining re-
spherical surface layer moving with subluminal veloggge lations (19) and (20) we get the initial mas$(r,) of the

Fig. 5. timelike shell at the moment of the collision:
Both incoming lightlike shells are contracting, so that the
radius of collisionr, is smaller tharr,. The metrics in the M(ry) = 2My(ry)
regionsA andB shown in Fig. 5 are de Sitter metrics, while VT fe(rp] 2. (21)

the metric in the regiorC is the Schwarzschild one. The
corresponding metric function{r) are HereM(r,)=4mr204(r,) is the mass of the lightlike shells
(2 om gtfth”e coll]icsion.éi)eﬁpec:]ed from the ?oEse_rvati_on c|>_f ﬁr}_ekrgy,
_ 1 _q_ it follows from that the masses of the ingoing lightlike
fa(r)=fs(r=1 a®’ fe(n=1 ' an shells and of the outgoing timelike shell have the same nega-
tive sign(recall that the lightlike shells have negative energy
Let us obtain the expression for the parameters of thelensitie$.
timelike shell in terms of the parameters for colliding null  The further evolution of the timelike shell is given by Eq.
shells. For this purpose we use the matching conditior{20). It can be rewritten in the form
(Al15):

[riteaVia(r)+ril[ri—egyfg(ry) +ril=—"fc(ry).

(18  WhereV(r) is an effective potential given by

r2+V(r)=-1, (22

. . . 2
(This relation as well as other useful formulas for moving V(r)=— r——47r2r202(r) 23)
=—— )

and colliding shells are collected in the AppendliAerer ; is

the radius of the collision sphere, and the parametehich

enters this expression is defined &s sgn(“d,r). Since  Equation(22) shows that the motion is only possible when
the spacetime domains bordering the timelike shell are idenvV(r)<—1.

tical, we must takesp= —¢g; otherwise, there is no shell To study this equation it is convenient to use the dimen-
[see Eq.(A5) of the Appendi}. Equation(18) implies sionless radiuy=r/a and timeT= 7/a as well as the vari-
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ablesx andz already defined byl4). (x is an initial value of v X " Xz z
y anddy/dT=r.) In these variables the equation of motion

(22) takes the form /’\
il

2 ! 4 T

dy
(— +V(y,x,z)=-1, (24 s X
dT ) \\\

wherez is a given quantity and a free parameter such that
z>1 andxe[0,z]. The initial masg21) of the timelike shell
can be rewritten as

a

M(rq)=aF(x,2), (25)
AC B
with
3 32 FIG. 6. The potentiaM(y,x,z) for different values of the pa-
2 _(ZZ=x%)°X rameterx.
F (X,Z)— —Z3T (26)

—1<V,<0 forxe[0x,] or xe[X,,z] (curvesA andC in

the Fig. 6.

_ o _ For a fixed parameter the evolution of the shell depends
The motion of the timelike shell depends on the equatioryn the initial conditionx (the initial radius of the timelike

of state for the matter forming the shell. For simplicity we ghe). A timelike shell is created at a stage of contraction, so

assume a dustlike equation of state. Under this assumptigfat dy/dT)1_o=F,;<0. Under this condition only two

or?= consk 0 along the shell and the mass of the shell isqualitatively different types of motion are possible.

B. Evolution of a merging boundary

conserved and coincides wi(r;) given by Egs(25) and (1) 0<x=<X,. In this case the timelike shell monotoni-
(26). _ . . cally contracts from its initial radius; down to zero[23].
For a dustlike equation of state the poteniais The two de Sitter universes which were initially attached
2 2 through the timelike shell become disconnected after the
r M=(r1) ; ; .
V(r)=——— time interval T
a’?  4r?
. _ . L1 F-1 |
and written in terms of the dimensionless variables it takes sep o n 22— 1+ (4" — ax2+ FZ)l/Z" (31)
the form
F2(x,2) Forxe[0x4] (curveA in Fig. 6) the separation time is less
V(y,X,z)=—y?— . (27 thanz~®a and the bubbles separate almost immediately after

4y their intersection. Fox € [X4,X,] (curve B of Fig. 6), the
time of the separation can reach values of the ordex. of

(2) x,<x<z. The trajectory admits a turning point
V(y;)=—1 at the valugy=vy;:

If the initial condition is chosen so th@t=0 wheny=x, the
solution of Eq.(24) is given in the implicit form

L 2y?—1+(4y*—4y*+F?*)'?
~ 2" 2T (A a3+ PR Y

(28) y$=%[1+(1—F2)1’2]. (32

The solution depends on(the initial value ofy) and on the In that case the timelike shell first contracts, bounceg; at

airig\?;i; 1We consider a black hole of large mass, so thatand then expands to infiniticurve C in Fig. 6). The two de

: S : . . . Sitter universes remain connected through a spherical shell
Motion of the timelike shell is possible only in the region ~ . : . o
which has a radius that bounces and increases to infinity. The
whereV(y,x,z)< — 1. Denote byy,, the value ofy where . hich i ded for the shell to b f its initial
the potentialV reaches its maximum valu¥,,=V(y.) time which is needed for the shell to bounce from its initia
Equation(27) implies that m m radius can be estimated @s-Inz.
q P The conformal Penrose-Carter diagrams for these two
FY2(x.2) qualitatively different cases are shown in Fig. 7. Figufa) 7
= ' V.= —F(x,2). (29 illustrates the evolution of a timelike shell with the initial
V2 conditiony=xe[0x,] at the moment of its formation. The
contraction of the timelike shell results in the separation of
It is easy to show that there exist two valuesxofx; and  two de Sitter-like universes at the momdnt Figure 7b)
X,) for which V,,= —1. Forz>1 one has illustrates the evolution of a timelike shell with the initial
conditiony=xe[X,,z]. The timelike shell changes its con-
traction into expansion. The two de Sitter-like universes re-
main connected.
The condition x,<x<z which guarantees that two
V,<—1 for xe[x1,X2] [curve B in the Fig. § and bubbles form the same de Sitter-like universe after merging

1
X;=—3+0
1 ZS

1

77| Xp=Z— =—+0 (30

3z z°)
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is Planckian,N .~ (m/up)*. Remarkably this quantity is
much larger than the dimensionless Bekenstein-Hawking en-
tropy of a black-holes®" or the number of emitted quanta of
the Hawking radiatiorN~ (m/up)? (both are of the same
order of magnitude

The number of different possibilities for the distribution
of N identical particles ifN,,,, “boxes” (representing newly
created worldsis Nya!/(Nmax— N)IN!. If these possibili-
ties are equally likely, then the corresponding entr&oig

S=IN[Nnad/ (Nimas— N)IN! . (35)

Using the relation IN!~NIn(N/e) we get, forN<<N .y

S~NIN(Nyae/N). (36)

In other words forN,,,,N the entropy connected with all
possible distributions of the created Hawking quanta over the
newly born worlds inside a black hole is greater than the
entropy of these quanta. It means that entropy considerations
in principle do not exclude the situation where the internal
state of each newly created universe is pure while the en-
) ~ semble of universes is described by a density matrix. This
_FIG. 7. anforr_nal Penrose-Carter .dlagram.s for a spa_cetlmqaemark might have quite interesting applications to the
with two de Sitter-like phase bubbles with merging boundaries fofjtqrmation-loss puzzle.
different distances between bubbles at the moment of creation. In 14 <\ ,mmarize. we proposed a simple model for the black-
both figures two double lines beginning at the radiyand lying 10 416 interior. In the framework of this model we showed that
the future represent the same timelike shell and must be identifie t least kinematically the creation of many separated uni-
. . . . verses is the most probable process. Certainly the model it-
of their boundaries can be rewritten in terms of the separa- . L X
: ._self contains a lot of simplifications. But the obtained results
tion between the vertex spheres of the bubble nucleation, . . ; o
: . . : S . Ihdicate that multiple universe formation in the black-hole
First we remark that this condition, written in dimensional. =~ = . . : .
form, isro—a2/3ry<r,<ro. [We use here the relatiaf30) m;cgno_r sh()fu(;qﬁbe taken sgr|ou|slyt|)r|1 thkehd||scuss(|jor; and clas-
valid for z>1.] Using relationg10) and(11) we get that this sification of different nonsingular black-hole models.

condition is equivalent to
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APPENDIX: TIMELIKE AND LIGHTLIKE SHELLS
V. CONCLUDING REMARKS IN A SPHERICALLY SYMMETRIC SPACETIME

We discuss now some physical consequences of the pos- In this appendix we derive the matching relations which
sible multiple de Sitter-like universe formation inside a have to be fulfilled when two ingoing lightlike shells merge
black-hole. The above consideration indicates that the nucldnto a single timelike shell. We only consider the case of
ation of bubbles of the de Sitter-like phase might result in theconcentric spherical shells that move radially. The three
formation of disconnected worlds as soonss=a?/r3. It~ spacetime domains bounded by the shells are static and
means that during the timg, s~ tp(m/ u )3 of the quan- spherically symmetric with line elements of the form

tum evaporation of a black hole of massthere might be

formed as many as ds?=—f(r)dt?+f (r)dr2+r?(d6?+sirfod ¢?).
(A1)

lp\ 2

a 349 we callA, B, C the three spacetimey,;, 3, the lightlike

shells, and® the timelike shell(see Fig. 5.
new de Sitter-like disconnected universesg (| p, and Before deriving the matching relation at the intersection
up are Planckian time, length, and mass, respectivélgr  let us recall the main equations describing timelike and light-

a~|p when the curvature of a newly created de Sitter worldlike shells(for more details segl6]).

max

m)“

Mpi
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We callu=d/dr the normalized four-velocity and the
unit normal along the timelike surfac. With the line ele- Ki=1NG)dal - (A9)
ment(Al) the components of these vectors are

=(e,f " L(r)VF(r)+rZr1,0,0), (A2)  Finally when no energy is transferred to the shell, i.e
[Taﬁng)ng)] =0, the surface stress-energy tensor of a spheri-
ne= (s, f(r) SW 0,0) (A3) cal null shell is characterized only by a surface energy den-

sity o;(r), which is given by

with £4,8,=*1,e=g,8,= sgn(n*d,r), andr=d/dr. The
induced metric o is equal to
4arioy r)— [fA(r) c(n], (A10)

ds?=—d7r?+r2(7)(d6?+sirfod p?). (A4)

A spherically symmetric timelike shell is a two-dimensional 5 2
perfect fluid with surface energy and surface pressuge 4mroy(r) = —-[Te(r) —fc(n)]. (A11)
Let us call.Z=4nr? the area andM=o¢.# the internal

mass. Spherical symmetry reduces the number of indepen-

dent equations describing the motion of the shell to the fol- Let us now find the matching relations at the intersection

of the shells. This intersection is in fact a two-sph8maith

I t
owing two: radiusr, and at any point o we can write the decomposi-
M tions
—T=kwm+ﬂ, (A5)
Ny =(u*+n*)/91y2, (A12)
dMm d.# [T A (A6)
——=—p 2gU“NP].
dr  Pdr s n%,= (U =N/ 92, (AL3)

HereT,; is the stress-energy tensor of the external medium
and the square brackets represent the jump of the enclos
guantity across the surface, i.¢F]=F,—F_. It is as-
sumed that the normal is directed toward the+ side.
Equation(A5) is the equation of motion of the shell and
Eq. (A6) the equation of conservation of energy. To specify 2”21‘)”52)
the problem one needs also to give an equation of state. If, g*f= QABe(A e(BB)— PN
for instance, one takep=(a—1)o with o= const and if
[T.pu*nf]=0, one gets, fronfA6),

g@ere 7, and », are arbitrary positive scalars. Furthermore,
the four-vectors ;) ,e)) form a basis at any point db
and we have the completeness relation

(A14)

In order to get the matching relation we use the fact that
or2¢= const. (A7) K; are intrinsic quantities and express the prodieK,, in
two different manners using the spacetime domainsB,
This relation allows one to defin®l=M(r) which enters andC. First using(A2), (A3), (A9), and(A12) one gets
Eq. (A5).
The description of a null shell is very different from a 2
timelike one and in some sense simpler because the equati®,K,= —2—[r1+ eaVTa(r)+15[F —egVfa(ry)+r1l.
of motion is fixed. What makes a null hypersurface so pecu- 17
liar is that its normal vector is at the same time tangent to it
and that its induced metric is degenerate. Second, usingAg) and (A14) in sectorC one gets
Let us call3; with i = 1,2 the two ingoing null shells. The
basis vectore = d/d&* where é*=(6,¢) are tangent to )
the shells and one takesg;,={;d/dr as the null vector tan- K Kp=— ”(1)2”(2) fo(ry).
gent to the null generators &f;. Here{;=+1(—1) when- ry
everr increasegdecreasestoward the future along the null
generators. The “extrinsic” curvature is defined by One then immediately derives the matching relation

5e(A)

Kias= Ny 5.8 5E8 (A8) [Fi+eaVia(r) +ri[Fi—egVia(ry) +r5]=—fc(ry).

(A15)

whered/ 8£8 is the four-dimensional covariant derivative. As

N is tangent ta;, Jiag is an intrinsic property of the shell This equation gives the initial velocity; of the timelike
which actually describes the behavior of its null generatorsshell after the merging of the lightlike shells. When this re-
For instance, the tracé;=g"BK;,g represents their expan- sult is inserted ifA5) one gets the initial mass of the time-
sion rate and is equal to like shell.



53 HOW MANY NEW WORLDS ARE INSIDE A BLACK HOLE? 3223

[1] M.A. Markov, JETP Lett.36, 266 (1982. [15] C. Barrabes and W. Israel, Phys. Rev4B 1129(1991J).
[2] M.A. Markov, Ann. Phys(N.Y.) 155 333(1984. [16] V.A. Berezin, V.A. Kuzmin, and I.I. Tkachev, Phys. Rev.43,
[3] M.A. Markov and V.F. Mukhanov, Nuovo Cimento 86, 97 1129(1992).
(1985. [17] A.G. Doroshkevich and 1.D. Novikov, Sov. Phys. JETR 3
[4] V. Mukhanov and R. Brandenberger, Phys. Rev. 1&8}.1969 (1978.
(1992. [18] I.H. Redmount, Prog. Theor. Phy&3, 1401(1985.
[5] J. Polchinski, Nucl. PhysB325 619 (1989. [19] P. Dray and G. 't Hooft, Commun. Math Phyg.613(1985.
[6] V.P. Frolov and G.A. Vilkovisky, Phys. LetL06B, 307(1981.  [50] c. Barrabes, W. Israel, and E. Poisson, Class. Quantum Grav.
[7] I.A. 3Roman and P.G. Bergmann, Phys. Rev.2B 1265 7, 1273 (1990.
1983.

[21] In general a spherically symmetric solution of Einstein equa-

[8] A. Strominger, Phys. Rev. B6, 4396(1992. tion is of the form(4) provided the stress-energy tensor obeys

[9] V.P. Frolov M.A. Markov, and V.F. Mukhanov, Phys. Lett. B o
216, 272(1989. the conditionT", =T, .

[10] V.P. Frolov M.A. Markov, and V.F. Mukhanov, Phys. Rev. D [22] It should be stressed that this relation is valid only at the sur-
4'1 .383(1990. ' ’ o ’ ' ' face of collision. Similar relations can be easily obtained for

the time-reversed procegannihilation of two lightlike shells

[11] In this paper we consider a generalization of the model pro- S i
and for the bounce of a lightlike shell; see examples in Ref.

posed in Refs[9,10]. For briefness we refer to this model as

the FMM model. [1(?]- ) _ _
[12] D. Morgan, Phys. Rev. 23, 3144(199)). [23] This is evident forx;<x<x, because there are no turning
[13] W. Israel and E. Poisson, Class. Quantum GiByv.L201 points. For G<x<x, there are turning points, but the contrac-

(1988. tion begins at the initial valug=x lying to the left of the

[14] R. Balbinot and E. Poisson, Phys. Rev4d, 395 (1990. turning points.



