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Starting with a procedure for dealing with general asymptotic behavior, we construct a quantum theory for
asymptotically anti—de Sitter wormholes. We follow both the path integral formalism and the algebraic quan-
tization program proposed by Ashtekar. By adding suitable surface terms, the Euclidean action of the asymp-
toically anti—de Sitter wormholes can be seen to be finite and gauge invariant. This action determines an
appropriate variational problem for wormholes. We also obtain the wormhole wave functions of the gravita-
tional model and show that all the physical states of the quantum theory are superpositions of wormhole states.

PACS numbg(s): 04.60.Kz, 04.60.Ds, 04.60.Gw, 98.80.Hw

[. INTRODUCTION explicit calculation of these effective interactions.
In this work, we construct the Hilbert space of asymptoti-

Wormholes are topology changes that connect differentally anti—de Sitter wormholes, suggesting a procedure for
regions of spacetime which may be far apdrt?]. In the dealing with other possible asymptotic behavior. We employ
dilute wormhole approximatiofl,3], these regions are re- the path integral approach to obtain the quantum states and
garded as asymptotically large. Wormholes can be repreAshtekar’s algebraic prografi4] to complete the quantiza-
sented by quantum states, i.e., solutions of the Wheeletion of these wormholes, including the determination of the
DeWitt equation(and the quantum momentum constraints physical inner product. Finding a well-defined set of worm-
which satisfy some suitable boundary conditions on the ashole boundary conditions becomes a central issue in both
ymptotic regiong4,5]. They can also be considered as in- approaches.
stantons, solutions of the Euclidean Einstein equations, Hawking and Pag¢4] have proposed that the boundary
which join the two asymptotic regions of spacetime by aconditions for the quantum wormhole states should guaran-
throat[2,6,7]. As saddle points of the Euclidean action, thesetee that their corresponding wave functions are exponentially
instantons would allow the Euclidean path integral to be apdamped for large three-geometries, so that one recovers the
proximated semiclassically, thus representing quantum tursemiclassical behavior expected in the asymptotic limit of
neling effects between the asymptotic regions. large Euclidean configurations. Besides, the wormhole wave

Asymptotically flat wormholes have been extensivelyfunctions should be regular for all regular matter fields and
studied in the literaturg8]. There exist, however, other as- three-geometries, including those geometries that degenerate
ymptotic behavior$7,9—-11 that are worth considering. For to zero because of an ill-defined slicing of spacetime. From
instance, wormholes whose asymptotic regions arghe path integral point of view, these conditions can be ac-
Kantowski-Sachs spacetime®], with the topology of complished if the wormhole wave functions are defined by
R3x St, may provide a link between black hole physics andthe sum over all possible spacetimes with the prescribed as-
the issue of topology change. Asymptotically anti—de Sitterymptotic behavior and over all matter fields that are compat-
wormholes are also of particular interest. In this case, théble with the given asymptotic spacetime via the vanishing of
asymptotic regions expand exponentialip proper timg  the first-class constraints in the asymptotic regions. For in-
due to the presence of an effective negative cosmologicatance, if we are dealing with asymptotically flat spacetimes,
constant. These wormholes could be regarded as excitdtie energy-momentum tensor of the matter fields will have to
states in the sense that the cosmological constant could b&nish at infinite proper timé4,5], or if an asymptotically
interpreted as a nonvanishing asymptotic energy of the magnti—de Sitter behavior is considered, then the matter content
ter fields. On the other hand, one should expect that theseill have to induce an effective negative cosmological con-
wormholes could give a nonvanishing contribution to thestant in the asymptotic region. As a previous step, we imple-
path integral and, consequently, they should be taken intment the wormhole boundary conditions canonically and find
account in calculations such as those leading to Colemanan appropriate gauge-invariant action, which is finite for
mechanism for the vanishing of the effective cosmologicalclassical wormhole solutions. This amounts to include the
constan{3]. surface terms that are characteristic of asymptotic spacetimes

It has been argued that wormholes might affect the con¢see Refs[5,15]) and that remove the infinite contribution of
stants of nature through low energy effective interactionghe asymptotic regions.
[2,3,13. The existence of a Hilbert structure in the space of In order to determine the Hilbert structure of the space of
wormhole wave functions is essential to turn the apparemtvormholes, and thus reach a consistent quantum theory to
nonlocal interaction introduced by wormholes into a localdescribe these states, we follow the algebraic quantization
one, as seen from one of the asymptotic regi@3,12,13. program put forward by Ashtekéf 4]. In the following, we
Such a Hilbert space structure is therefore necessary in tHariefly summarize the main steps of this program. One must

0556-2821/96/5®)/316210)/$10.00 53 3162 © 1996 The American Physical Society



53 ASYMPTOTICALLY ANTI-de SITTER WORMHOLES 3163

first choose a complete set of classical variables that is closed which 7'/ and m , are the canonical momenta conjugate to
under Poisson brackets and complex conjugation. To each dlfie three-metrigy;; and the conformal scalar fieldl, and the
these elementary variables one associates an abstract opesaerdot denotes the derivative with respect to the time coor-
tor and constructs the algebra generated by them, imposindjnate 7. In the above expressionZ and.7%; are the stan-
on it the canonical commutation relations. One must nextlard Arnowitt-Deser-MisnefADM) Hamiltonian and mo-
find a linear representation of this algebra on a complex vecmentum constraints for Euclidean gravity conformally
tor space and choose explicit operators to represent the firstoupled to a scalar field in the presence of a negative cos-
class constraints of the system. The subspace annihilated Ipyological constant.
these constraints supplies the space of quantum states, andThe requirements of homogeneity and isotropy, i.e., the
the quantum observables are the operators that leave thisstriction to the minisuperspace under consideration, can be
space invariant14]. The physical inner product on quantum imposed by writing the spacetime metric in the form
states can then be determined by requiring that the complex
conjugation relations between elementary varialjlesially
called reality conditionsare realized as Hermitian adjoint
relations between quantum observables on the resulting Hil-
bert spacg16]. Actually, if an inner product satisfying this ();; being the metric on the unit three-sphere @hdNew-
condition exists, it is unique under very general assumptionson’s constant; likewise, the scalar field will depend only on
[17]. The elements in the Hilbert space obtained in this waythe time coordinatep= ¢(7). It is convenient to introduce a
are the physical states of the theory. new variabley to describe the conformal scalar field in the

For gravitational systems which exhibit quantum worm-following manner:
hole solutions, if one chooses properly the representation
space, it is possible to show that the space of quantum states [ 3 x
coincides with that spanned by the wormhole wave func- ¢= AnGa’ (2.4
tions, provided that the latter is invariant under the action of
the quantum observabl¢s8]. Therefore, the inner product ~ When particularized to this minisuperspace model, the
of wormholes can in fact be determined by imposing an adEyclidean action becomes
equate set of reality conditions, and the corresponding Hil-
bert space of wormholes can be identified with that of physi- ~ . :
cal states of the quantum theory. 'ZJ dr{ maa+ m,x—NH]. (2.9

In Sec. Il, we present a model which illustrates the gen-
eral features discussed above. It consists of a scalar fiekdere, (,,,) are the momenta canonically conjugate to the
conformally coupled to a homogeneous and isotropic spacesariables @, x), and are related to the superspace canonical
time with a negative cosmological constant. In Sec. Ill, wemomenta ¢, ) through the formulas
show that such a model possesses asymptotically anti—de
Sitter wormhole solutions. In Sec. IV, an appropriate action i 1

dSZZQ[NZ(T)d7'2+a2(T)QijdXIdXJ]v 2.3

Ta

X\
for asymptotically large spacetimes is constructed in the gen- ! “8xGla  aZ 010", (2.6
eral context of superspace and particularized then to our
minisuperspace model. The path integral quantization is dis- G
cussed in Sec. V. Using the results of this section, we carry Ty \/ﬁawxﬂl’z, (2.7

out the full algebraic quantization of the model in Sec. VI.

We finally summarize and conclude in Sec. VII. with Q@ =det;; . On the other handi denotes the Hamil-
tonian constraint in minisuperspace: namely,

Il. MODEL

2 2 2 2
We shall discuss in detail a homogeneous and isotropic H=55(-mta +aatt mi—x?), (2.9

gravitational minisuperspace model provided with a confor-
mally coupled scalar field and a negative cosmological con-
stant. As we shall see in Sec. Ill, this model possesses awherex=— EA>0'
ymptotically anti—de Sitter instanton solutions.

We start by performing the standard-3 splitting of the
Euclidean spacetime metric

Ill. CLASSICAL SOLUTIONS

The classical Euclidean solutions of this model can be
ds?=(N2+ NiNi)d72+2Nidexi+g”-dxidxj, (2.2 easily obtained by introducing the conformal time
dn=d+/a. If we denote the derivative with respect to this

whereN andN' are the lapse and shift functions agqgl is time by a prime, the dynamical equations read

the metric on the closed three-surfaces of constant time. The a'=—a 7 = —a—2nad 3.1)
Euclidean action can be written in the Hamiltonian form a a ' '
=X, (3.2

[
X =Ty X

T_ 3yl iify.. YN 77— Ni 77
! Jde X[ g+ myp—NA-N.Z], (2.2 while the Hamiltonian constraint is
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1 s 5 4l 2 o conformal time, for such a function diverges at the finite
5 (—mata+rat+ m—x)=0. (3.3 pointu=K(m), with K(m) being the complete elliptic inte-
gral of the first kind[19]. Second, all the solutions that we
In the above expressions, we have set the lapse functioh@ve obtained have asymptotically anti—de Sitter behavior,

equal to 1. as can be easily seen by considering the limite in Eq.
The general solution to Eqé3.2) is given by (3.11). The globally anti—de Sitter solution corresponds to
the limit D—1 in that equation. Finally, note that the flat
x =Acoshy+Bsinhy, (3.4  solutions ¢ =0) cannot be recovered by taking the limit

, ) , . .. A—0. This is not surprising, because theerm in Eq.(3.5
with A andB being two arbitrary real constants. Substitutingis gominant in the asymptotic regiom—o and therefore

this sqlutipn in the Hamiltonian constraint and using the ﬁrStprovides a singular perturbation to the=0 equations of
equation in(3.1), we get motion.

(a')?=a’+\a*— 2E, (3.5
IV. SURFACE TERMS
whereE = 3(A%2—B?). This constraint will have solutions of
the wormhole type only if the polynomial that appears on its  Action (2.5) is not adequate for studying spacetimes that
right-hand side has at least a positive root. This implies thaloin onto an asymptotically anti—de Sitter region. Actually, it
E must be positive. We will restrict ourselves to this casediverges for classical solutiori40] and can be shown not to
hereafter. be invariant under time reparametrizations that map the ini-
SinceE>0, we can parametrize the constaAtandB as tial three-surface onto itself. Moreover, it is not quite clear
that this action could correspond then to a variational prob-
A=\2Ecoshy,, B=—2Esinhy,, (3.6 lem which guaranteed the anti—de Sitter asymptotic behavior
of the classical spacetimes. These difficulties can be none-
with 7o an arbitrary real parameter. The conformal figld  theless overcome by adding appropriate surface terms to the

can then be rewritten action. In order to obtain these terms, it appears most conve-
nient to being by considering the general superspace frame-
Xx=V2Ecosht 7= 7). (3.7 \work, without specializing to any particular asymptotic be-

havior. We shall then reduce the framework to the
homogeneous and isotropic model conformally coupled to a
a(n)=ay no(DY4 - 70)|m), (3.9 scalar field, discussing first the flat case 0 to circumvent
the subtleties that arise when introducing a negative cosmo-
where nc(i|m) is the Jacobian elliptic function with param- logical constant.
eterm [19], 7, is a real constant, and

In addition, integration of Eq(3.5 leads to

DY2_ 1)\ 12 A. Superspace
D=1+8\E, an= 2N ) ' (3.9 The gravitational systems under consideration join an ini-
tial three-surface onto an asymptotic region. The boundary
D~ Y241 conditions for the associated variational problem must reflect
m=—b5—": (3.10  this fact. The geometry of the initial three-surface and its

matter content will be chosen as one of the boundary condi-
One can check that Eq€3.1) are then straightforwardly sat- tions. The final time boundary conditions must guarantee the
isfied. prescribed asymptotic behavigat least for classical solu-

The classical wormhole solutions of the model are theretions). Besides, we would like our system to be invariant
fore parametrized by three independent real constaps: under gauge transformations that are not fixed at the final
70, andE>0. Notice thatD>1 and thata,, is the size of time, so that one can reach a semiclassical picture in which
the wormhole throat, which coincides with the only positive the final surface is not fixed, but asymptotically embedded in
root of the right-hand side of the constrai@t5). a classical spacetime.

It is also possible to obtain the solution to that constraint Let us assume that the final boundary conditions can be
in terms of the proper time. One arrives at the following imposed by fixing certain variablé3“ at the final timer;,
expression for the scale factor: namely,Q“|Tf=Q?. Notice that the proper time goes to in-

finity when 7— 7 for the models studied so f2,5-7). In

1 ~ terms of these new variabl€3* and their canonically con-
_ 1/2 _ _ 1/2
a= \/ﬂ{D costi2 N (r=70)]-1}*% (3.1 jugate moment#®, the action(2.2) acquires the form

where the new real constang appears instead af,. 1= fT'de d3x(P Qa_ N. 77— NR%"HJ d3x7]
Some comments are in order at this point. First, the con- 0 “ ' o

formal time # tends to a finite valuey,, as the proper time

7 goes to infinity. This is due to the fact that, the scale factor _ j d3x 71, (4.1)
being exponentially large at—, the integralf“d+/a(r)

converges. This feature is actually reflected by the elliptic

function nc@u|m) that describes the scale factor solutions inwhere.7 =71 g;; ,¢|Q%*] is a generating functional for the
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canonical transformation from the geometrodynamical variterm fd3xP,Q“ decreases fast enough in the limits ;.

ables to Q“,P,). Then, it can be seen that the action This further restricts the kind of variables that are allowed to
be fixed asymptotically.
_T_ 3y To summarize, the asymptotic boundary conditions can be
=1 d*x 71, 4.2 X ; ; :
f canonically implemented by choosing a suitable set of com-

_ _ - . ... patible variables and fixing their final values in such a way
is appropriate for fixing the initial three-geometry, the initial ¢ they become locally observable. These values must im-
scalar field, and the asymptotic variabl@s. ply, in particular, the asymptotic vanishing of the generators

As mentioned above, this action should be invariant undegy spatia| diffeomorphisms and time reparametrizations. This
spatial diffeomorphisms and time reparametrizations that arBrocedure ensures that the action for the system is gauge

restricted only to map the initial surface<0) onto itself. i, ariant, finite, and gives rise to a well-defined variational

These transformations are generated yand.7; 3\/ia the  problem for the boundary conditions under consideration.
standard Poisson bracket relationsA={A,[d°x(e#

—€' 7))}, with e vanishing atr=0. The variation of the

action! under these transformations is B. Asymptotically flat wormholes
We first consider the case of asymptotically flat space-
Sl= _f d3x(e7+ € 7, —P,5Q%)| (4.3  times (\=0) [5] for which action(2.5 can be rewritten as
Ie% T .
~ nf
where we have used the standard gauge variation for the |=f0 dp[maa’ +mx'—NH], 4.7)

lapse and shift functiong20]. Since the gauge transforma-

tions are arbitrary at the final time, the vanishing of the first

two terms in the right-hand side of this expression is On|ywhere77 is again the conformal timey; =<0, and the Hamil-
ensured by choosing the variabl@s' so that the first-class tonian constraint is the difference of the Hamiltonians of

constraints are set to zero in the asymptotic region: two harmonic oscillators, one describing the scale factor and
. . the other the conformal field.
He=0, Hilqe=0. (4.4 We expect the wormholes solutions of this model to be

stationary trajectories of the variational problem with fixed
The valuesQf cannot therefore be fixed in a fully arbitrary injtial values ofa and y and suitable final values for a com-
way. For the vanishing of the third term {.3), on the other  plete set of compatible variables which are left invariant un-
hand, we need our canonical coordina@$ to be locally der time reparametrizations. These conditions on the vari-
observable in the asymptotic region, in the sense that thables fixed in the asymptotic region will be clearly satisfied
Poisson bracket$Q¢, 77} Qs and {Q“,.%HQ? vanish, so if they are compatible observables of the system.

that their asymptotic values are left invariant under the gauge Given the form of the Hamiltonian constraint, we can

transformations of the system. choose
The resulting actiod turns out to be finite for classical
solutions under sufficiently general conditions. To see this 1 1
we first note that, on classical solutions, Eazz(az— 72), EX=§(X2— ) (4.9

lclass™ fflde dSX(Wij.gij‘f'qu(.ﬁ)_f dsxﬁ«‘]T
0 1

as our set of compatible observables. The variables

X+ 7y

+f7fd7f dax(wijgij-i-qu(.ﬁ—.j“), (4.5
m T
N

X=In< (x=a,x) (4.9

where 71 is a finite intermediate time. Since the classical
solutions should be regular along the entire intef\@i |
but might blow up asymptotically as approaches, any are the momenta canonically conjugate to these observables.
possible divergence it%.5 must appear in the last integral. The canonical transformation fronx,r,) to (E4,®,) is
Taking into account the canonical transformation generategenerated by the function

by 71gi; . ¢|Q“], we rewrite this last integral as

X
B 3., p O F(X|E :—J dz(z>—2E,)?
ledrfd xP,Q°. 4.6 B== | o dd x)
2
If the variablesQ® are actually observables, i.e., if their X (x2—2E ) Y2+ E n X VX 2By
Poisson brackets with the constraints vanish weakly, integral 2 X X J2E, '

(4.6) vanishes, because these variables are then constant on

the classical trajectories. In the more general case in which (4.10
they are only locally observable at their asymptotic values,

Q“—0 as we approach, and the action will be finite if the In terms of the new variables, acti¢d.2) reduces to
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V. PATH INTEGRAL

7y
I=1—(F,+F :f dy[O®E.+0 E —N(E,—E
(Fat Pl 0 71 0aEat 0,E,~N(Ea—EY] The path integral which provides the anti—de Sitter quan-

tum wormholes parametrized by the asymptotic value of the
—(Fat FX)|0' (4.1 conformal field energfe>0 is given by
with 7;=c. On the other hand, the Hamiltonian constraint
H=E,—E, generates, via Poisson brackets, the time rep- ¥ [a ,Xi]zf INDp(a,my,x,7,) Appd(N—1)
arametrizations

SE,=€lE. H}, 60,=€[®,,H}, oN=¢, xexp —1 (@ ma,x,m N, 6.

(4.12 Here, we sum over histories satisfyin@(0)=a;,

where the parameter depends only on the conformal time. x(0)=x;, andEa(nw)=E,(7v)=E. We recall thatpy is
It is then easy to check that the acti¢h11), supplemented @ constant that depends on the valuesapfand E. The

with the wormhole boundary conditions Faddeev-Popov determinat, can be set equal to the
. unity, because it does not depend on any of the integration
Ea(n1)=E,(ns)=E, with E>0, (413  fields for our gauge-fixing conditiohl=1. Integration over

. . . L o |\Ileads then to
is invariant under time reparametrizations that map the initia

surface onto itselfnamely, with €(0)=0]. The stationary
points of this action are the classical trajectories that join an Tl g ,Xi]zf Iu(a, 7y, x,m)exp—1), (5.2
initial three-surface characterized by the scale factor

a(0)=a; and the conformal fielgk(0)= x; with an asymp-
totic region in which condition(4.13 is satisfied. This as-
ymptotic condition actually implies that the solutions of the ”
model are asymptotically flat, as can be straightforwardly| = J dzy
seen by solving the equatiorE2=a?— (a’)?. Finally, given

where

N
ma' +mx' — E(_ ’Ti'g‘l‘ a?+zat+ 77)2(—)(2)

th,e c/onstralnt H fO and the dynamical equations —(Fat FX)|”M_ (5.3
E.=E,=0, the action(4.11) reduces to
| e — Fa(ai|E)_FX(Xi|E) (4.14 The part of this path integral which depends on the confor-

mal field provides the propagatdt(E, 7y|x;,0) of a har-

on classical solutions. From E¢#.10, it then follows that ~monic oscillator between a fixed initial fielgy and a con-
the classical action is always finite provided tEati.e., the  stant energyE, =E at the final time»y . With a proper

asymptotic energy of the conformal figls positive. choice of the integration measure, this propagator would be a
linear combination of the normalized eigenstaiggy;) (n
C. Asymptotically anti—de Sitter wormholes =0,1, . ..) of the harmonic oscillator, namely,

Let us now extend the above analysis to the asymptoti- o
cally anti—de Sitter case. The situation remains in fact un- U(E, pulxi,00= >, e ™ 124 (E)o (xi), (5.9
changed except in what refers to the scale factor. In the n=0
anti—de Sitter case, the part of the Hamiltonian constraint ) o .
which depends ora and , incorporates a cosmological In Which »,(E) are some coefficients which depend Bn
term, namely,E,= ¥(a2+\a*—72). The generating func- and we have sei=1. On the other hand, the result of the

tion F,(a|E,) has to be subsequently modified to take carePath integral should satisfy the quantum version of the con-
of the nonvanishing cosmological constant. One arrives at Straint

2 2
a — 7w+ yc—2E=0, 5.
Fa(a|Ea)=—f A2+ N~ 2E)Y2 (415 X (69

o which, sinceE, is preserved by the dynamics of the system

where ay, is the root of the polynomiak?+\a*—2E, and we have imposeH,=E at 7y, holds on all classical

which can be obtained from E¢3.9) by substitutingE, for  trajectories. Therefore using E¢5.4), we conclude thaE

E. can only take the values+ 3, if the path integral is to be
Expressions(4.11) and (4.13 still provide the gauge- well defined, and then that, up to a glolialdependent fac-

invariant action and the boundary conditions for the anti—ddor,

Sitter wormholes, respectively. Note, however, that, from our L (12

remarks at the end of Sec. Ill, the final conformal time U(n+3z,7ulxi,00=e" ™ enlxi)- (5.9

will now be finite for all the wormhole solutions of the )

model. We shall therefore fix; to coincide with the time Hence, the path integral reduces to

7u(a;,E) at which the solution(3.8—(10), verifying L

a(0)=a;, tends to+c. Finally, one can check that the ac- Wi oL@ xil= en(xi) Pn(@), (5.7

tion on classical solutions again takes the foinl4), but

with F,(a|E,) supplied now by Eq(4.15. where



_ ™ 1 2, .2
(Dn(ai)zJ',%,u(a,wa)ex —f dy Waa,—z[—ﬂa'Fa
0

+aat=(2n+ )] | +Fqdl, |- (5.9

In this expression, we sum over histories wat{0)=a; and
Ea(7m)=n+3. The functions®,(a) must be solutions to
the Wheeler-DeWitt equation which follows from the con-
straint

—m2+a?+ra*—(2n+1)=0. (5.9

The factor ordering in this Wheeler-DeWitt equation will de-
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| glass™ — L dZ 22+ Nz = (2n+1) "= Fla_.

Jaidz[zz+)\z4—(2n+1)]1/2, (5.12

where we have substituted E¢4.15), anday, is given by Eq.
(3.9 with E=n+ 3. The integral in the above expresion is
positive and diverges in the lim@;—o. As a consequence,
the function® ,(a;) is exponentially damped in that limit.

We thus conclude that the functiods,(a), solutions to
(5.10 withn=0,1,. . ., satisfy the wormhole boundary con-
ditions if a is restricted to run over the positive axis. Actu-
ally, we have shown that these functions are not only regular,
but analytic ina=0.

It is worth remarking that, even though the solutions

pend on the integration measure employed in the path intéPn(2) could be analytically extended to the whole real axis,

gral (5.8). We shall assume a factor ordering of the form

“ 1 1 5 4
Had)n(a)zi —f(—a)&af(a)&aJra +\a”" | P,(a)
1
= n+§ d . (a), (5.10

where the functiorf (a) will be supposed to be analytic and
strictly positive at least foa=0 and such that

f'(a)

lim —azf(a) =

a—®

0, (5.11

the prime denoting here the first derivative.
If we now restrict our attention to the regi@ae R*, so
that each different geometry of the tyf2.3) is considered

their asymptotic behavior a&— — o would not be damped
unless in exceptional situations, and never for all the func-
tions ®,(a) (n=0,1,...),because that would imply that
the operatoH, has exactly the eigenvalue spectrum which
characterizes the Hamiltonian of the harmonic oscillator.
Therefore, the restriction tac R* is essential if we want
the wave functionsb,(a) to represent quantum wormhole
states.

VI. ALGEBRAIC QUANTIZATION

Our minisuperspace model possesses only one constraint,
namely, the Hamiltonian constraif8.3). To carry out the
algebraic quantization, it is convenient to introduce the
Lorentzian momental{,,II,) canonically conjugate to the
scale factor and the conformal field. Then, the Hamiltonian
constraint reads

1 1
H=>(Ii+a’+xa) - S (II3+x%)=0. (6.

only once, it is possible to prove that the_re actually_ exists a The symplectic structure on phase space is supplied by
solution ®,(a) to Eqg. (5.10 such that it is regular in the the Poisson brackes, IT,} =1 and{x,IT} =1. For Lorent-
positive semiaxis and decreases exponeptially for large scalgan geometries and real conformal fields, we have

factor. In order to see this, let us considés— (n+3) as a
second order differential operator which annihilates(a).
The coefficient of?? in this operator is constant. The coeffi-
cient of 95, given by f’(a)/f(a), is analytic ina=0, be-
causef(a) is positive and analytic in this semiaxis. Finally,

the nonderivative term is also analytic, as it is a polynomial

in a. It then follows[21] that, for each fixeah, the differen-

tial equation(5.10 possesses two linearly independent solu-

tions which are analytic at least for @k=0. Moreover, pro-
vided that condition(5.11) is satisfied, an asymptotic
analysis of this differential equation shows that one of thes
solutions must be exponentially damped in the lianit oo,
while the other increases exponentially.

We want to show now thab ,(a) should be the exponen-
tially damped solution. Foa;>1, we expect the semiclassi-

cal aproximation to become valid in the path integral, i.e.,

®,(a;)~e 'dass | ,,.sbeing the action of the classical solu-
tion to the constrain¢s.9) with a(0)=a; . For this solution,
a(n— my)— and, admitting thad’' = — 7, is positive for
a>1, one gets

X111, e R. In addition, we shall restrict the scale factor

to be positiveaecR*, so that each different four-geometry

is considered only once.

A. Elementary variables

As pointed out in the Introduction, our first task will con-
sist in choosing a suitable complete set of elementary vari-
ables in the phase space of the model. Since the part of the
Hamiltonian constraint which depends on the conformal field

&an be interpreted as the Hamiltonian of a harmonic oscilla-
tor, we will describe the degrees of freedom of this field by
the annihilation and creation variables

1 _ :
—2(X+|HX), Al=

2

For x,IT, e R, both A, andA! take on all complex values.
In addition, {A, ,Al}=—i and A=A}, the bar denoting

1
A= E(X—iHX). 6.2

complex conjugation.
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The remaining part of the Hamiltonian constraint, i (AT

h=AIA., 6=—=In —a). (6.9
a’‘a 2 Aa

1
h= E(HanaZJr rat), (6.3
The change of variables frong(h) to (Aa,A;) is therefore

can be regarded as the Hamiltonian of a point particle mov&nalytic in the whole phase space of the mode[r.

i T
ing on the a axis under the influence of the potential !N the following, we shall regardA, ,A,,Aa,Az) as our
a2+ xa* A canonical set of variables in the corresponding?omplete set of elementary variables. Notice that this set is

phase space is given liyand indeed closed both under Poisson brackets and complex con-
jugation.
a 5 Let us define now
0=f dz(2h—z2—\z*% ~Y?2=D, Ycn Y(a;, ta|my),
on 6.4 N,=AlA , N=AlA,, (6.9
where cn(u|m,) is the inverse Jacobian elliptic function 14y 1
with parametern,, [19], andDy,, a,, andm,=1—m, are J+:EAan’ ‘]_:EAXAE" (6.10

the values taken by the parametBrsa,, , andm [defined in
Egs.(3.9), (3.10] whenE=h. It is not difficult to check that
h is the momentum canonically conjugate @o
From the above equations, it follows tha& R*, and that
a;, is the maximum value permitted classically farwhen {Ax:AI}:—i, {A NG =—iA,, {Al'Nx}:iAI (6.1D
the energy of the point particle is. On the other hand,
taking into account that na§|m)=cn(u|1—m), Eq. (6.4  with x=y,a, one can check that the variablé&9), (6.10
can be seen to provide the analytic continuation to theare actually observables of the model, because their Poisson
Lorentzian regime of the Euclidean classical soluti@8),  brackets withH vanish. SinceN, andN, coincide modulo
with h and @ substituting forE and the Lorentzian conformal the constraintH=0, we will restrict all further consider-
time, respectively. ations to the setX, ,J_,N,). This set of observables can be
Had we neglected the restrictian= R*, Eq. (6.4 would  easily proved to béovencomplete.
have implied that, forh fixed, the scale factor should de-  Given thatA andA; can take on any complex value, the
scribe orbits in phase space which are periodi@jmwith  range ofJ, andJ_ is the whole complex plane. Besides,

period recalling thatA,= A (x= x,a), we get the reality conditions

The Hamiltonian constraint6.1) can then be rewritten as
H=N,—N,=0. Moreover, taking into account that

a, — —
4f0 “dz(zh—z2—>\z4)*1’2=4D,;1’4K(mh), (6.5) Jy;=J_, N,=N,eR". (6.12

- i . S Finally, we also have
K(m,) denoting again the complete elliptic integral of the

first kind. However, the restriction to positive scale factors {34 N F=id,, {I_ N J=-id_, (6.13
breaks this periodicity, limiting the classical motion in the

(a,I1,) plane to only half of each periodic orbit. Since the i )

dynamics is invariant under a flip of sign & and we have {J+,9-3=5(Na+ N ~iN, (6.14
chosen the origin ob at the turning point,, of the scale

factor, we conlude that all allowed trajectories on phasehe last identity holding weakly. Therefore, the observables

space can actually be described by lettmgR™ and (J+,J-,N,) generate the Lie algebra of €01) under Pois-
. _ya, son brackets.
66(_|h,|h) with lh:Dh K(mh) (66)
We can now introduce the annihilationlike and creation- B. Representation space
like variables In order to quantize the system, we should represent the
) ) elementary classical variables of the model via linear opera-
A,=+he 1 Al=he". (6.7 tors acting on a certain vector space. The space that we shall
) . ] — choose for this task will be that of complex functions on
These variables verifjA, Al}=—i andA,=Al. However, R+x R spanned by the basis
given restriction(6.6), their range is not the whole complex
plane. Nonetheless, this will not lead to any problem in the Uoml@x) =P (@) en(x) (acR*,xeR), (6.19

guantization of the system, because the only physically rel-
evant conditions on quantum operators reflecting restrictionwith n and m two arbitrary non-negative integers and
on the range of classical variables are those which refer te,(x) the normalized wave functions of the harmonic oscil-
the observables of the quantum theory. lator. Here, the functionsb,(a) are the solutions to Eq.
The quotient Al/A,=e?? distinguishes all points¢  (5.10 which decrease exponentially at infinity. We have
e(—Iy,l,) for fixed h, becausel,, can be shown to be shownin Sec.V that these functions are analytic in the semi-
within the interval (0s7/2) for positiveh. As a consequence, axisa=0. This and the damped asymptotic behavior guaran-
expressiong6.7) admit the inversion tee that the integralf+dad,(a)d,(a) converge. We shall
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assume hereafter that the functiehg(a) have been normal-
ized so that the above integrals are equal to the unity.
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early independent, it is then straightforward to see that all
quantum solutions to the Hamiltonian constraint have the

Our representation space contains all the wormhole soluform

tions constructed in Sec. V, namely,.(a,x). We finally
want to show that the basig,(a,x) is linearly indepen-

dent. Since the wave functions,(x) are known to possess

©

T(a’X):go Cntnn(a,x),

(6.23

this property, it will suffice to prove the linear independence

of the functions®,(a), with ac R*. Let us then suppose
that

p
21 c Py (a)=0, (6.16

where{ng} is an ordered set of non-negative integgrs; 1
is another integer, and tITe,,S’s are complex constants. Act-

ing on both sides of this equation with the operator

p_l 1
11 (Ha—ns— —), (6.17
s=1 2
in which I:|a is defined in Eq(5.10, we get
Cnp(np_np—l)' ) '(np_nl)q)np(a)zo- (6.19

We thus conclude thai:tnp must vanish, sinc@np(a)io and
n,>ng for s=1,... p—1. Substituting now:np=0 in EQ.

where thec,’s are arbitrary complex numbers. The vector
space of quantum state¢,,, is thus spanned by the worm-
hole wave functions/,,(a, x)-

Defining
- 1 Apat o oa 1. .
J+:EAXA3’ J*:EAXAa’ (624)
we get, from Eqs(6.19 and (6.20),
- 1
Ji 'ﬂnnzﬁ(n"‘ D binr1yin+) (6.2
~ 1
Jflr//nnzﬁn'//(nfl)(nfl)a (6.26
~ 1 ~
lepnn: n+ 5 Ynn=Nathnn. (6.27

(6.16 and iterating the above procedure, we arrive atrhe above operators are hence quantum observables, for they

c,=0 for all ne{ng}. Therefore, the functiond,(a) on

R* are linearly independent, and so is then the basi

Yan(a, x) of our representation space.

C. Quantization

The elementary variablesA( Al A, Al) will now be

represented as linear operators on the complex vector spac

spanned by the functiong,(a,x), wheren,m=0,1....

The action of the corresponding operators on this basis wi

be given by
AX‘//nm: \ﬁwn(mfl) ) A;‘/lnm: vm+ 1wn(m+1) , (6.19
Aa'r/fnm: \/ﬁ'p(n—l)mv Arz'anm: Vn+1'p(n+1)m- (6.20

where we have set agaifhi=1. Let us also introduce the
operators

~ 1 ~.- a A
NX=§(A:£AX+AXAI) (X=x,a), (6.21)

to represent the derived classical variablé$). From the

above definitions, we obtain the nonvanishing commutators?

[AX’AI]:iY [Avax]:Axv [Alva]:_Aly
(6.22

which reproduce the Poisson brackets algeftral up to
the usual factor. Here, lis the identity operator.

leave the spac¥, of quantum states invariant.

S Notice thatN, andN, coincide onV, due to the Hamil-
tonian constraint. On the other hand, comparison of Egs.
(6.10 and(6.24) shows thatl, andJ_ represent the classi-
cal observables, andJ_. We also have, oWV,

Jd3: 3 1=-N,, [J, N J=-J3., [J-.NJ=3_,
(6.28

I\I/vhich is the algebra of commutators that follows from the
corresponding Poisson brackets. The vector spacearries
then a linear representation of the algebra of physical observ-
ables of the model, namely, the Lie algebra of(3@. This
representation is actually irreducible, because all the ele-
ments in the basig,y(a,x) of V, can be reached from each
other through the repeated action of the observableand

J_.

To determine the inner product dry,, we must impose
the reality condition$6.12 as adjointness relations between
quantum observables, i.d} =J_ andN}=N, (the star de-
noting the Hermitian adjoint In addition, sinceN, e R*, the
operatoN, should be positive on the resulting Hilbert space
f physical states. In fact, the relatidfi = J_ suffices to fix
the following inner product oV, up to a positive constant
factor:

©

(I‘,\]f>: mz=o dmwmmvz Cntnn

n=0

=> d.c,, (6.29
n=0

_ We shall next represent the Hamiltonian constraint bywhere we have made use of expressi6r23), valid for all

H=N,—N, . Recalling that the functiong,(a, x) are lin-

quantum states.
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The completion of the vector spabg with respect to the  conformally coupled massless scalar field. The classical so-
above product supplies then the physical Hilbert spage lutions to the Euclidean equations of motion and the Hamil-
of the quantum theory. It is clear from E(.29 that 77, is  tonian constraint are asymptotically anti—de Sitter worm-
isomorphic tol?, the space of square summable sequencedioles. Such solutions are parametrized by three arbitrary
One can also easily check that the observabjes indeed a constants that account for the initial scale factor and confor-
positive operator orvZ,. So all the reality conditions on the mal field as well as for the energy of the conformal field,
observables of the system have been satisfactorily dealt withvhich must be positive. o

It is worth pointing out thatV, being spanned by the  Starting with a general analysis in superspace, we have
wormhole wave functions/,,(a,x), every physical state in Seen that adding suitable surface terms renders the Euclidean
the Hilbert space’, can be interpreted as a superposition ofaction finite on classical solutions, while ensuring its gauge
guantum wormholes. The inner produét29 can then be invariance and determining a well-defined variational prob-
regarded as the one picked out on the space of wormholes #§m consistent with appropriate wormhole boundary condi-

the reality conditions. tions. For our minisuperspace model, these boundary condi-
To close this section, we shall prove that the product obfions essentially amount to identifying the gravitational and
tained onV, can be equivalently written in the form conformal field energies with an equal fixed value in the

asymptotically anti—de Sitter region. Since the obtained ac-
— tion is finite on classical solutions, it could be used to reach
(r,w)= f‘wdaﬁﬁdxf(a,x)\lf(a,x). (6.30 a consistent semiclassical treatment for the asymptotically
anti—de Sitter wormholes.
Given that the eigenstates,(x) of the harmonic oscillator Two procedures have been employed in order to quantize
form an orthonormal basis df?(R,dy) and that the func- our minisuperspace model. We have first written the path
tions ®,(a) have been chosen to have unit norm inintegral in terms of our Euclidean action. We have argued
L?(R*,da), we get that wormhole wave functions can be obtained from this path
integral as the product of an eigenfunction of the harmonic
” ” — _ oscillator for the conformal field and a wave function for a
> A Cnf +da¢m(a)¢n(a)f dxem(x)enlx) scale factor restricted to be positive.
m=0 n=0 R R . .
To carry out a thorough and complete quantization of the
o system we have then followed Ashtekar’s program. Thus, we
— 2 anCn, (6.31) have represented an appropriately chosen set of elementary
n=0 variables as quantum operators acting on a vector space of
functions which contains the wormhole solutions of the
model. The Lorentzian reality conditions have then enabled
us to determine the physical inner product. This can be un-
derstood as an inner product in the space of quantum worm-
VII. CONCLUSIONS holes. All the wormhole wave functions turn out to have
Among the topology changes that may take place in as{_gnte norm ?n(:], mor(IaO\t/etr, provide an orthonormal basis of
ymptotically large regions, the study of tunneling effects me- € space of physical states.
diated by wormholes in asymptotically anti—de Sitter regions
of the universe, in which the effective cosmological constant
is negative is of particular interest in cosmology. It did not We are very grateful to Mariano Moles for helpful discus-
seem quite clear whether these tunnelings could be consisions and support. C.B. was supported by a Spanish Ministry
tently described quantum mechanically or, at least, semiclassf Education and SciendMEC) grant. L.J.G. was supported
sically. In this work, we have shown that it is actually pos- by the MEC and the British Council. P.G.-D. acknowledges
sible to construct a quantum theory for this kind of topologyDGICYT for financial support under Research Projects Nos.
changes, at least at the level of a minisuperspace model. PB94-0107 and PB93-0139. G.A.M.M. was supported by
We have considered a homogeneous and isotropic minisdunds provided by DGICYT and MEC under Contract Ad-
perspace model with a negative cosmological constant andjanct to the Project No. PB93-0139.

from what it follows that the right-hand sides of E¢6.29
and(6.30 actually coincide orV,,.
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