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Starting with a procedure for dealing with general asymptotic behavior, we construct a quantum theory for
asymptotically anti–de Sitter wormholes. We follow both the path integral formalism and the algebraic quan-
tization program proposed by Ashtekar. By adding suitable surface terms, the Euclidean action of the asymp-
toically anti–de Sitter wormholes can be seen to be finite and gauge invariant. This action determines an
appropriate variational problem for wormholes. We also obtain the wormhole wave functions of the gravita-
tional model and show that all the physical states of the quantum theory are superpositions of wormhole states.

PACS number~s!: 04.60.Kz, 04.60.Ds, 04.60.Gw, 98.80.Hw
I. INTRODUCTION

Wormholes are topology changes that connect differ
regions of spacetime which may be far apart@1,2#. In the
dilute wormhole approximation@1,3#, these regions are re
garded as asymptotically large. Wormholes can be rep
sented by quantum states, i.e., solutions of the Whee
DeWitt equation~and the quantum momentum constraint!,
which satisfy some suitable boundary conditions on the
ymptotic regions@4,5#. They can also be considered as i
stantons, solutions of the Euclidean Einstein equatio
which join the two asymptotic regions of spacetime by
throat@2,6,7#. As saddle points of the Euclidean action, the
instantons would allow the Euclidean path integral to be
proximated semiclassically, thus representing quantum t
neling effects between the asymptotic regions.

Asymptotically flat wormholes have been extensive
studied in the literature@8#. There exist, however, other as
ymptotic behaviors@7,9–11# that are worth considering. Fo
instance, wormholes whose asymptotic regions
Kantowski-Sachs spacetimes@9#, with the topology of
R33S1, may provide a link between black hole physics a
the issue of topology change. Asymptotically anti–de Sit
wormholes are also of particular interest. In this case,
asymptotic regions expand exponentially~in proper time!
due to the presence of an effective negative cosmolog
constant. These wormholes could be regarded as exc
states in the sense that the cosmological constant coul
interpreted as a nonvanishing asymptotic energy of the m
ter fields. On the other hand, one should expect that th
wormholes could give a nonvanishing contribution to t
path integral and, consequently, they should be taken
account in calculations such as those leading to Colem
mechanism for the vanishing of the effective cosmologi
constant@3#.

It has been argued that wormholes might affect the c
stants of nature through low energy effective interactio
@2,3,12#. The existence of a Hilbert structure in the space
wormhole wave functions is essential to turn the appar
nonlocal interaction introduced by wormholes into a loc
one, as seen from one of the asymptotic regions@2,3,12,13#.
Such a Hilbert space structure is therefore necessary in
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explicit calculation of these effective interactions.
In this work, we construct the Hilbert space of asymptoti-

cally anti–de Sitter wormholes, suggesting a procedure for
dealing with other possible asymptotic behavior. We employ
the path integral approach to obtain the quantum states and
Ashtekar’s algebraic program@14# to complete the quantiza-
tion of these wormholes, including the determination of the
physical inner product. Finding a well-defined set of worm-
hole boundary conditions becomes a central issue in both
approaches.

Hawking and Page@4# have proposed that the boundary
conditions for the quantum wormhole states should guaran-
tee that their corresponding wave functions are exponentially
damped for large three-geometries, so that one recovers the
semiclassical behavior expected in the asymptotic limit of
large Euclidean configurations. Besides, the wormhole wave
functions should be regular for all regular matter fields and
three-geometries, including those geometries that degenerate
to zero because of an ill-defined slicing of spacetime. From
the path integral point of view, these conditions can be ac-
complished if the wormhole wave functions are defined by
the sum over all possible spacetimes with the prescribed as-
ymptotic behavior and over all matter fields that are compat-
ible with the given asymptotic spacetime via the vanishing of
the first-class constraints in the asymptotic regions. For in-
stance, if we are dealing with asymptotically flat spacetimes,
the energy-momentum tensor of the matter fields will have to
vanish at infinite proper time@4,5#, or if an asymptotically
anti–de Sitter behavior is considered, then the matter content
will have to induce an effective negative cosmological con-
stant in the asymptotic region. As a previous step, we imple-
ment the wormhole boundary conditions canonically and find
an appropriate gauge-invariant action, which is finite for
classical wormhole solutions. This amounts to include the
surface terms that are characteristic of asymptotic spacetimes
~see Refs.@5,15#! and that remove the infinite contribution of
the asymptotic regions.

In order to determine the Hilbert structure of the space of
wormholes, and thus reach a consistent quantum theory to
describe these states, we follow the algebraic quantization
program put forward by Ashtekar@14#. In the following, we
briefly summarize the main steps of this program. One must
3162 © 1996 The American Physical Society
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first choose a complete set of classical variables that is clo
under Poisson brackets and complex conjugation. To each
these elementary variables one associates an abstract op
tor and constructs the algebra generated by them, impos
on it the canonical commutation relations. One must ne
find a linear representation of this algebra on a complex ve
tor space and choose explicit operators to represent the fi
class constraints of the system. The subspace annihilated
these constraints supplies the space of quantum states,
the quantum observables are the operators that leave
space invariant@14#. The physical inner product on quantum
states can then be determined by requiring that the comp
conjugation relations between elementary variables~usually
called reality conditions! are realized as Hermitian adjoin
relations between quantum observables on the resulting H
bert space@16#. Actually, if an inner product satisfying this
condition exists, it is unique under very general assumptio
@17#. The elements in the Hilbert space obtained in this w
are the physical states of the theory.

For gravitational systems which exhibit quantum worm
hole solutions, if one chooses properly the representat
space, it is possible to show that the space of quantum sta
coincides with that spanned by the wormhole wave fun
tions, provided that the latter is invariant under the action
the quantum observables@18#. Therefore, the inner product
of wormholes can in fact be determined by imposing an a
equate set of reality conditions, and the corresponding H
bert space of wormholes can be identified with that of phy
cal states of the quantum theory.

In Sec. II, we present a model which illustrates the ge
eral features discussed above. It consists of a scalar fi
conformally coupled to a homogeneous and isotropic spa
time with a negative cosmological constant. In Sec. III, w
show that such a model possesses asymptotically anti–
Sitter wormhole solutions. In Sec. IV, an appropriate actio
for asymptotically large spacetimes is constructed in the ge
eral context of superspace and particularized then to o
minisuperspace model. The path integral quantization is d
cussed in Sec. V. Using the results of this section, we ca
out the full algebraic quantization of the model in Sec. V
We finally summarize and conclude in Sec. VII.

II. MODEL

We shall discuss in detail a homogeneous and isotro
gravitational minisuperspace model provided with a confo
mally coupled scalar field and a negative cosmological co
stant. As we shall see in Sec. III, this model possesses
ymptotically anti–de Sitter instanton solutions.

We start by performing the standard 311 splitting of the
Euclidean spacetime metric

ds25~N21NiNi !dt212Nidtdxi1gi j dx
idxj , ~2.1!

whereN andNi are the lapse and shift functions andgi j is
the metric on the closed three-surfaces of constant time. T
Euclidean action can be written in the Hamiltonian form

Ĩ5E dtE d3x@p i j ġi j1pfḟ2NH2NiH i #, ~2.2!
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in whichp i j andpf are the canonical momenta conjugate to
the three-metricgi j and the conformal scalar fieldf, and the
overdot denotes the derivative with respect to the time coor-
dinatet. In the above expression,H andH i are the stan-
dard Arnowitt-Deser-Misner~ADM ! Hamiltonian and mo-
mentum constraints for Euclidean gravity conformally
coupled to a scalar field in the presence of a negative cos-
mological constantL.

The requirements of homogeneity and isotropy, i.e., the
restriction to the minisuperspace under consideration, can be
imposed by writing the spacetime metric in the form

ds25
2G

3p
@N2~t!dt21a2~t!V i j dx

idxj #, ~2.3!

V i j being the metric on the unit three-sphere andG New-
ton’s constant; likewise, the scalar field will depend only on
the time coordinate,f5f(t). It is convenient to introduce a
new variablex to describe the conformal scalar field in the
following manner:

f5A 3

4pG

x

a
. ~2.4!

When particularized to this minisuperspace model, the
Euclidean action becomes

Ĩ5E dt@paȧ1pxẋ2NH#. ~2.5!

Here, (pa ,px) are the momenta canonically conjugate to the
variables (a,x), and are related to the superspace canonical
momenta (p i j ,pf) through the formulas

p i j5
1

8pG S pa

a
1

pxx

a2 DV i jV1/2, ~2.6!

pf5A G

3p3apxV1/2, ~2.7!

with V5detV i j . On the other hand,H denotes the Hamil-
tonian constraint in minisuperspace: namely,

H5
1

2a
~2pa

21a21la41px
22x2!, ~2.8!

wherel52
2G

9p
L.0.

III. CLASSICAL SOLUTIONS

The classical Euclidean solutions of this model can be
easily obtained by introducing the conformal time
dh5dt/a. If we denote the derivative with respect to this
time by a prime, the dynamical equations read

a852pa , pa852a22la3, ~3.1!

x85px , px85x, ~3.2!

while the Hamiltonian constraint is
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1

2
~2pa

21a21la41px
22x2!50. ~3.3!

In the above expressions, we have set the lapse func
equal to 1.

The general solution to Eqs.~3.2! is given by

x5Acoshh1Bsinhh, ~3.4!

with A andB being two arbitrary real constants. Substituti
this solution in the Hamiltonian constraint and using the fi
equation in~3.1!, we get

~a8!25a21la422E, ~3.5!

whereE5 1
2(A

22B2). This constraint will have solutions o
the wormhole type only if the polynomial that appears on
right-hand side has at least a positive root. This implies
E must be positive. We will restrict ourselves to this ca
hereafter.

SinceE.0, we can parametrize the constantsA andB as

A5A2Ecoshh0 , B52A2Esinhh0 , ~3.6!

with h0 an arbitrary real parameter. The conformal fieldx
can then be rewritten

x5A2Ecosh~h2h0!. ~3.7!

In addition, integration of Eq.~3.5! leads to

a~h!5aM nc„D1/4~h2h̃0!um…, ~3.8!

where nc(uum) is the Jacobian elliptic function with param
eterm @19#, h̃0 is a real constant, and

D5118lE, aM5SD1/221

2l D 1/2, ~3.9!

m5
D21/211

2
. ~3.10!

One can check that Eqs.~3.1! are then straightforwardly sa
isfied.

The classical wormhole solutions of the model are the
fore parametrized by three independent real constants:h0 ,
h̃0 , andE.0. Notice thatD.1 and thataM is the size of
the wormhole throat, which coincides with the only positi
root of the right-hand side of the constraint~3.5!.

It is also possible to obtain the solution to that constra
in terms of the proper timet. One arrives at the following
expression for the scale factor:

a5
1

A2l
$D1/2cosh@2Al~t2 t̃0!#21%1/2, ~3.11!

where the new real constantt̃0 appears instead ofh̃0 .
Some comments are in order at this point. First, the c

formal timeh tends to a finite valuehM as the proper time
t goes to infinity. This is due to the fact that, the scale fac
being exponentially large att→`, the integral*`dt/a(t)
converges. This feature is actually reflected by the ellip
function nc(uum) that describes the scale factor solutions
tion
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conformal time, for such a function diverges at the finite
point u5K(m), with K(m) being the complete elliptic inte-
gral of the first kind@19#. Second, all the solutions that we
have obtained have asymptotically anti–de Sitter behavior
as can be easily seen by considering the limitt→` in Eq.
~3.11!. The globally anti–de Sitter solution corresponds to
the limit D→1 in that equation. Finally, note that the flat
solutions (l50) cannot be recovered by taking the limit
l→0. This is not surprising, because thel term in Eq.~3.5!
is dominant in the asymptotic regiona→` and therefore
provides a singular perturbation to thel50 equations of
motion.

IV. SURFACE TERMS

Action ~2.5! is not adequate for studying spacetimes that
join onto an asymptotically anti–de Sitter region. Actually, it
diverges for classical solutions@10# and can be shown not to
be invariant under time reparametrizations that map the ini
tial three-surface onto itself. Moreover, it is not quite clear
that this action could correspond then to a variational prob
lem which guaranteed the anti–de Sitter asymptotic behavio
of the classical spacetimes. These difficulties can be none
theless overcome by adding appropriate surface terms to th
action. In order to obtain these terms, it appears most conve
nient to being by considering the general superspace frame
work, without specializing to any particular asymptotic be-
havior. We shall then reduce the framework to the
homogeneous and isotropic model conformally coupled to a
scalar field, discussing first the flat casel50 to circumvent
the subtleties that arise when introducing a negative cosmo
logical constant.

A. Superspace

The gravitational systems under consideration join an ini-
tial three-surface onto an asymptotic region. The boundar
conditions for the associated variational problem must reflec
this fact. The geometry of the initial three-surface and its
matter content will be chosen as one of the boundary cond
tions. The final time boundary conditions must guarantee th
prescribed asymptotic behavior~at least for classical solu-
tions!. Besides, we would like our system to be invariant
under gauge transformations that are not fixed at the fina
time, so that one can reach a semiclassical picture in whic
the final surface is not fixed, but asymptotically embedded in
a classical spacetime.

Let us assume that the final boundary conditions can b
imposed by fixing certain variablesQa at the final timet f ,
namely,Qaut f5Qf

a . Notice that the proper time goes to in-

finity when t→t f for the models studied so far@2,5–7#. In
terms of these new variablesQa and their canonically con-
jugate momentaPa the action~2.2! acquires the form

Ĩ5E
0

t f
dtE d3x~PaQ̇

a2NH2NiH i !1E d3xF ut f

2E d3xF u0 , ~4.1!

whereF 5F @gi j ,fuQa# is a generating functional for the
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canonical transformation from the geometrodynamical va
ables to (Qa,Pa). Then, it can be seen that the action

I5 Ĩ2E d3xF ut f ~4.2!

is appropriate for fixing the initial three-geometry, the initi
scalar field, and the asymptotic variablesQa.

As mentioned above, this action should be invariant un
spatial diffeomorphisms and time reparametrizations that
restricted only to map the initial surface (t50) onto itself.
These transformations are generated byH andH i via the
standard Poisson bracket relationsdA5$A,*d3x(eH
2e iH i)%, with e vanishing att50. The variation of the
action I under these transformations is

dI52E d3x~eH1e iH i2PadQa!ut f , ~4.3!

where we have used the standard gauge variation for
lapse and shift functions@20#. Since the gauge transforma
tions are arbitrary at the final time, the vanishing of the fi
two terms in the right-hand side of this expression is on
ensured by choosing the variablesQa so that the first-class
constraints are set to zero in the asymptotic region:

HuQ
f
a50, H i uQ

f
a50. ~4.4!

The valuesQf
a cannot therefore be fixed in a fully arbitrar

way. For the vanishing of the third term in~4.3!, on the other
hand, we need our canonical coordinatesQa to be locally
observable in the asymptotic region, in the sense that
Poisson brackets$Qa,H%uQ

f
a and $Qa,H i%uQ

f
a vanish, so

that their asymptotic values are left invariant under the gau
transformations of the system.

The resulting actionI turns out to be finite for classica
solutions under sufficiently general conditions. To see t
we first note that, on classical solutions,

I class5E
0

t1
dtE d3x~p i j ġi j1pfḟ!2E d3xF ut1

1E
t1

t f
dtE d3x~p i j ġi j1pfḟ2Ḟ !, ~4.5!

where t1 is a finite intermediate time. Since the classic
solutions should be regular along the entire interval@0,t1#
but might blow up asymptotically ast approachest f , any
possible divergence in~4.5! must appear in the last integra
Taking into account the canonical transformation genera
by F @gi j ,fuQa#, we rewrite this last integral as

E
t1

t f
dtE d3xPaQ̇

a. ~4.6!

If the variablesQa are actually observables, i.e., if the
Poisson brackets with the constraints vanish weakly, integ
~4.6! vanishes, because these variables are then constan
the classical trajectories. In the more general case in wh
they are only locally observable at their asymptotic valu
Q̇a→0 as we approacht f , and the action will be finite if the
ri-
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term *d3xPaQ̇
a decreases fast enough in the limitt→t f .

This further restricts the kind of variables that are allowed to
be fixed asymptotically.

To summarize, the asymptotic boundary conditions can b
canonically implemented by choosing a suitable set of com
patible variables and fixing their final values in such a way
that they become locally observable. These values must im
ply, in particular, the asymptotic vanishing of the generators
of spatial diffeomorphisms and time reparametrizations. This
procedure ensures that the action for the system is gaug
invariant, finite, and gives rise to a well-defined variational
problem for the boundary conditions under consideration.

B. Asymptotically flat wormholes

We first consider the case of asymptotically flat space
times (l50) @5# for which action~2.5! can be rewritten as

Ĩ5E
0

h f
dh@paa81pxx82NH#, ~4.7!

whereh is again the conformal time,h f5`, and the Hamil-
tonian constraintH is the difference of the Hamiltonians of
two harmonic oscillators, one describing the scale factor an
the other the conformal field.

We expect the wormholes solutions of this model to be
stationary trajectories of the variational problem with fixed
initial values ofa andx and suitable final values for a com-
plete set of compatible variables which are left invariant un-
der time reparametrizations. These conditions on the vari
ables fixed in the asymptotic region will be clearly satisfied
if they are compatible observables of the system.

Given the form of the Hamiltonian constraint, we can
choose

Ea5
1

2
~a22pa

2!, Ex5
1

2
~x22px

2! ~4.8!

as our set of compatible observables. The variables

Qx5 lnS x1px

Ax22px
2D ~x5a,x! ~4.9!

are the momenta canonically conjugate to these observable
The canonical transformation from (x,px) to (Ex ,Qx) is
generated by the function

Fx~xuEx!52E
A2Ex

x

dz~z222Ex!
1/2

52
x

2
~x222Ex!

1/21ExlnS x1Ax222Ex

A2Ex
D .
~4.10!

In terms of the new variables, action~4.2! reduces to
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I5 Ĩ2~Fa1Fx!uh f
5E

0

h f
dh@QaEa81QxEx82N~Ea2Ex!#

2~Fa1Fx!u0 , ~4.11!

with h f5`. On the other hand, the Hamiltonian constrai
H5Ea2Ex generates, via Poisson brackets, the time re
arametrizations

dEx5e$Ex ,H%, dQx5e$Qx ,H%, dN5e8,
~4.12!

where the parametere depends only on the conformal time
It is then easy to check that the action~4.11!, supplemented
with the wormhole boundary conditions

Ea~h f !5Ex~h f !5E, with E.0, ~4.13!

is invariant under time reparametrizations that map the ini
surface onto itself@namely, with e(0)50#. The stationary
points of this action are the classical trajectories that join
initial three-surface characterized by the scale fac
a(0)5ai and the conformal fieldx(0)5x i with an asymp-
totic region in which condition~4.13! is satisfied. This as-
ymptotic condition actually implies that the solutions of th
model are asymptotically flat, as can be straightforward
seen by solving the equation 2E5a22(a8)2. Finally, given
the constraint H50 and the dynamical equation
Ea85Ex850, the action~4.11! reduces to

I class52Fa~ai uE!2Fx~x i uE! ~4.14!

on classical solutions. From Eq.~4.10!, it then follows that
the classical action is always finite provided thatE ~i.e., the
asymptotic energy of the conformal field! is positive.

C. Asymptotically anti–de Sitter wormholes

Let us now extend the above analysis to the asympt
cally anti–de Sitter case. The situation remains in fact u
changed except in what refers to the scale factor. In
anti–de Sitter case, the part of the Hamiltonian constra
which depends ona and pa incorporates a cosmologica
term, namely,Ea5

1
2(a

21la42pa
2). The generating func-

tion Fa(auEa) has to be subsequently modified to take ca
of the nonvanishing cosmological constant. One arrives a

Fa~auEa!52E
aM

a

dz~z21lz422Ea!
1/2, ~4.15!

where aM is the root of the polynomiala21la422Ea
which can be obtained from Eq.~3.9! by substitutingEa for
E.

Expressions~4.11! and ~4.13! still provide the gauge-
invariant action and the boundary conditions for the anti–
Sitter wormholes, respectively. Note, however, that, from o
remarks at the end of Sec. III, the final conformal timeh f
will now be finite for all the wormhole solutions of the
model. We shall therefore fixh f to coincide with the time
hM(ai ,E) at which the solution ~3.8!–~10!, verifying
a(0)5ai , tends to1`. Finally, one can check that the ac
tion on classical solutions again takes the form~4.14!, but
with Fa(auEa) supplied now by Eq.~4.15!.
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V. PATH INTEGRAL

The path integral which provides the anti–de Sitter quan-
tum wormholes parametrized by the asymptotic value of the
conformal field energyE.0 is given by

CE@ai ,x i #5E DNDm~a,pa ,x,px!DFPd~N21!

3exp@2I ~a,pa ,x,px ,N!#. ~5.1!

Here, we sum over histories satisfyinga(0)5ai ,
x(0)5x i , andEa(hM)5Ex(hM)5E. We recall thathM is
a constant that depends on the values ofai and E. The
Faddeev-Popov determinantDFP can be set equal to the
unity, because it does not depend on any of the integration
fields for our gauge-fixing conditionN51. Integration over
N leads then to

CE@ai ,x i #5E Dm~a,pa ,x,px!exp~2I !, ~5.2!

where

I5E
0

hM
dhFpaa81pxx82

N

2
~2pa

21a21la41px
22x2!G

2~Fa1Fx!uhM
. ~5.3!

The part of this path integral which depends on the confor-
mal field provides the propagatorU(E,hMux i ,0) of a har-
monic oscillator between a fixed initial fieldx i and a con-
stant energyEx5E at the final timehM . With a proper
choice of the integration measure, this propagator would be a
linear combination of the normalized eigenstateswn(x i) ~n
50,1, . . .! of the harmonic oscillator, namely,

U~E,hMux i ,0!5 (
n50

`

e2hM~n11/2!vn~E!wn~x i !, ~5.4!

in which vn(E) are some coefficients which depend onE
and we have set\51. On the other hand, the result of the
path integral should satisfy the quantum version of the con-
straint

2px
21x222E50, ~5.5!

which, sinceEx is preserved by the dynamics of the system
and we have imposedEx5E at hM , holds on all classical
trajectories. Therefore using Eq.~5.4!, we conclude thatE
can only take the valuesn1 1

2, if the path integral is to be
well defined, and then that, up to a globalE-dependent fac-
tor,

U~n1 1
2 ,hMux i ,0!5e2hM~n11/2!wn~x i !. ~5.6!

Hence, the path integral reduces to

Cn1
1
2
@ai ,x i #5wn~x i !Fn~ai !, ~5.7!

where
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Fn~ai !5E Dm~a,pa!expF2E
0

hM
dhS paa82

1

2
@2pa

21a2

1la42~2n11!# D 1FauhMG . ~5.8!

In this expression, we sum over histories witha(0)5ai and
Ea(hM)5n1 1

2. The functionsFn(a) must be solutions to
the Wheeler-DeWitt equation which follows from the con
straint

2pa
21a21la42~2n11!50. ~5.9!

The factor ordering in this Wheeler-DeWitt equation will de
pend on the integration measure employed in the path in
gral ~5.8!. We shall assume a factor ordering of the form

ĤaFn~a![
1

2 S 2
1

f ~a!
]af ~a!]a1a21la4DFn~a!

5S n1
1

2DFn~a!, ~5.10!

where the functionf (a) will be supposed to be analytic an
strictly positive at least fora>0 and such that

lim
a→`

f 8~a!

a2f ~a!
50, ~5.11!

the prime denoting here the first derivative.
If we now restrict our attention to the regionaPR1, so

that each different geometry of the type~2.3! is considered
only once, it is possible to prove that there actually exist
solutionFn(a) to Eq. ~5.10! such that it is regular in the
positive semiaxis and decreases exponentially for large s
factor. In order to see this, let us considerĤa2(n1 1

2) as a
second order differential operator which annihilatesFn(a).
The coefficient of]a

2 in this operator is constant. The coeffi
cient of ]a , given by f 8(a)/ f (a), is analytic ina>0, be-
causef (a) is positive and analytic in this semiaxis. Finally
the nonderivative term is also analytic, as it is a polynom
in a. It then follows@21# that, for each fixedn, the differen-
tial equation~5.10! possesses two linearly independent so
tions which are analytic at least for alla>0. Moreover, pro-
vided that condition ~5.11! is satisfied, an asymptotic
analysis of this differential equation shows that one of the
solutions must be exponentially damped in the limita→`,
while the other increases exponentially.

We want to show now thatFn(a) should be the exponen
tially damped solution. Forai@1, we expect the semiclassi
cal aproximation to become valid in the path integral, i.
Fn(ai);e2I class, I classbeing the action of the classical solu
tion to the constraint~5.9! with a(0)5ai . For this solution,
a(h→hM)→` and, admitting thata852pa is positive for
a@1, one gets
-

-
te-

a

ale

-

,
al

u-

se

.,
-

I class52E
ai

`

dz@z21lz42~2n11!#1/22Faua5`

5E
aM

ai
dz@z21lz42~2n11!#1/2, ~5.12!

where we have substituted Eq.~4.15!, andaM is given by Eq.
~3.9! with E5n1 1

2. The integral in the above expresion is
positive and diverges in the limitai→`. As a consequence,
the functionFn(ai) is exponentially damped in that limit.

We thus conclude that the functionsFn(a), solutions to
~5.10! with n50,1, . . . , satisfy the wormhole boundary con-
ditions if a is restricted to run over the positive axis. Actu-
ally, we have shown that these functions are not only regula
but analytic ina>0.

It is worth remarking that, even though the solutions
Fn(a) could be analytically extended to the whole real axis,
their asymptotic behavior ata→2` would not be damped
unless in exceptional situations, and never for all the func
tions Fn(a) (n50,1, . . . ), because that would imply that
the operatorĤa has exactly the eigenvalue spectrum which
characterizes the Hamiltonian of the harmonic oscillator
Therefore, the restriction toaPR1 is essential if we want
the wave functionsFn(a) to represent quantum wormhole
states.

VI. ALGEBRAIC QUANTIZATION

Our minisuperspace model possesses only one constrai
namely, the Hamiltonian constraint~3.3!. To carry out the
algebraic quantization, it is convenient to introduce the
Lorentzian momenta (Pa ,Px) canonically conjugate to the
scale factor and the conformal field. Then, the Hamiltonian
constraint reads

H5
1

2
~Pa

21a21la4!2
1

2
~Px

21x2!50. ~6.1!

The symplectic structure on phase space is supplied b
the Poisson brackets$a,Pa%51 and$x,Px%51. For Lorent-
zian geometries and real conformal fields, we have
x,Pa ,PxPR. In addition, we shall restrict the scale factor
to be positive,aPR1, so that each different four-geometry
is considered only once.

A. Elementary variables

As pointed out in the Introduction, our first task will con-
sist in choosing a suitable complete set of elementary var
ables in the phase space of the model. Since the part of th
Hamiltonian constraint which depends on the conformal field
can be interpreted as the Hamiltonian of a harmonic oscilla
tor, we will describe the degrees of freedom of this field by
the annihilation and creation variables

Ax5
1

A2
~x1 iPx!, Ax

†5
1

A2
~x2 iPx!. ~6.2!

For x,PxPR, bothAx andAx
† take on all complex values.

In addition, $Ax ,Ax
†%52 i and Āx5Ax

† , the bar denoting
complex conjugation.
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The remaining part of the Hamiltonian constraint,

h5
1

2
~Pa

21a21la4!, ~6.3!

can be regarded as the Hamiltonian of a point particle m
ing on the a axis under the influence of the potentia
a21la4. A canonical set of variables in the correspondin
phase space is given byh and

u5E
ah

a

dz~2h2z22lz4!21/25Dh
21/4cn21~ah

21aum̃h!,

~6.4!

where cn21(uum̃h) is the inverse Jacobian elliptic function
with parameterm̃h @19#, andDh , ah , andmh512m̃h are
the values taken by the parametersD, aM , andm @defined in
Eqs.~3.9!, ~3.10!# whenE5h. It is not difficult to check that
h is the momentum canonically conjugate tou.

From the above equations, it follows thathPR1, and that
ah is the maximum value permitted classically fora when
the energy of the point particle ish. On the other hand,
taking into account that nc(iuum)5cn(uu12m), Eq. ~6.4!
can be seen to provide the analytic continuation to t
Lorentzian regime of the Euclidean classical solution~3.8!,
with h andu substituting forE and the Lorentzian conforma
time, respectively.

Had we neglected the restrictionaPR1, Eq. ~6.4! would
have implied that, forh fixed, the scale factor should de
scribe orbits in phase space which are periodic inu, with
period

4E
0

ah
dz~2h2z22lz4!21/254Dh

21/4K~m̃h!, ~6.5!

K(m̃h) denoting again the complete elliptic integral of th
first kind. However, the restriction to positive scale facto
breaks this periodicity, limiting the classical motion in th
(a,Pa) plane to only half of each periodic orbit. Since th
dynamics is invariant under a flip of sign ina, and we have
chosen the origin ofu at the turning pointah of the scale
factor, we conlude that all allowed trajectories on pha
space can actually be described by lettinghPR1 and

uP~2I h ,I h! with I h5Dh
21/4K~m̃h!. ~6.6!

We can now introduce the annihilationlike and creatio
like variables

Aa5Ahe2 iu, Aa
†5Aheiu. ~6.7!

These variables verify$Aa ,Aa
†%52 i andĀa5Aa

† . However,
given restriction~6.6!, their range is not the whole comple
plane. Nonetheless, this will not lead to any problem in t
quantization of the system, because the only physically
evant conditions on quantum operators reflecting restrictio
on the range of classical variables are those which refe
the observables of the quantum theory.

The quotient Aa
†/Aa5e2iu distinguishes all pointsu

P(2I h ,I h) for fixed h, becauseI h can be shown to be
within the interval (0,p/2) for positiveh. As a consequence
expressions~6.7! admit the inversion
v-
l
g

he

-

e
rs
e
e

se

n-

e
el-
ns
to

h5Aa
†Aa , u52

i

2
lnSAa

†

Aa
D . ~6.8!

The change of variables from (u,h) to (Aa ,Aa
†) is therefore

analytic in the whole phase space of the model.
In the following, we shall regard (Ax ,Ax

† ,Aa ,Aa
†) as our

complete set of elementary variables. Notice that this set i
indeed closed both under Poisson brackets and complex co
jugation.

Let us define now

Nx5Ax
†Ax , Na5Aa

†Aa , ~6.9!

J15
1

A2
Ax
†Aa

† , J25
1

A2
AxAa . ~6.10!

The Hamiltonian constraint~6.1! can then be rewritten as
H5Na2Nx50. Moreover, taking into account that

$Ax ,Ax
†%52 i , $Ax ,Nx%52 iAx , $Ax

† ,Nx%5 iAx
† ~6.11!

with x5x,a, one can check that the variables~6.9!, ~6.10!
are actually observables of the model, because their Poiss
brackets withH vanish. SinceNx andNa coincide modulo
the constraintH50, we will restrict all further consider-
ations to the set (J1 ,J2 ,Nx). This set of observables can be
easily proved to be~over!complete.

Given thatAx andAx
† can take on any complex value, the

range ofJ1 and J2 is the whole complex plane. Besides,
recalling thatĀx5Ax

† (x5x,a), we get the reality conditions

J̄15J2 , N̄x5NxPR1. ~6.12!

Finally, we also have

$J1 ,Nx%5 iJ1 , $J2 ,Nx%52 iJ2 , ~6.13!

$J1 ,J2%5
i

2
~Na1Nx!' iNx , ~6.14!

the last identity holding weakly. Therefore, the observable
(J1 ,J2 ,Nx) generate the Lie algebra of SO~2,1! under Pois-
son brackets.

B. Representation space

In order to quantize the system, we should represent th
elementary classical variables of the model via linear opera
tors acting on a certain vector space. The space that we sh
choose for this task will be that of complex functions on
R13R spanned by the basis

cnm~a,x!5Fn~a!wm~x! ~aPR1,xPR!, ~6.15!

with n and m two arbitrary non-negative integers and
wm(x) the normalized wave functions of the harmonic oscil-
lator. Here, the functionsFn(a) are the solutions to Eq.
~5.10! which decrease exponentially at infinity. We have
shown in Sec. V that these functions are analytic in the sem
axisa>0. This and the damped asymptotic behavior guaran
tee that the integrals*R1daF̄n(a)Fn(a) converge. We shall
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assume hereafter that the functionsFn(a) have been normal-
ized so that the above integrals are equal to the unity.

Our representation space contains all the wormhole so
tions constructed in Sec. V, namely,cnn(a,x). We finally
want to show that the basiscnm(a,x) is linearly indepen-
dent. Since the wave functionswm(x) are known to possess
this property, it will suffice to prove the linear independenc
of the functionsFn(a), with aPR1. Let us then suppose
that

(
s51

p

cnsFns
~a!50, ~6.16!

where$ns% is an ordered set of non-negative integers,p.1
is another integer, and thecns’s are complex constants. Act-
ing on both sides of this equation with the operator

)
s51

p21 S Ĥa2ns2
1

2D , ~6.17!

in which Ĥa is defined in Eq.~5.10!, we get

cnp~np2np21!•••~np2n1!Fnp
~a!50. ~6.18!

We thus conclude thatcnp must vanish, sinceFnp
(a)Þ0 and

np.ns for s51, . . . ,p21. Substituting nowcnp50 in Eq.
~6.16! and iterating the above procedure, we arrive a
cn50 for all nP$ns%. Therefore, the functionsFn(a) on
R1 are linearly independent, and so is then the bas
cnn(a,x) of our representation space.

C. Quantization

The elementary variables (Ax ,Ax
† ,Aa ,Aa

†) will now be
represented as linear operators on the complex vector sp
spanned by the functionscnm(a,x), wheren,m50,1 . . . .
The action of the corresponding operators on this basis w
be given by

Âxcnm5Amcn~m21! , Âx
†cnm5Am11cn~m11! , ~6.19!

Âacnm5Anc~n21!m , Âa
†cnm5An11c~n11!m , ~6.20!

where we have set again\51. Let us also introduce the
operators

N̂x5
1

2
~Âx

†Âx1ÂxÂx
†! ~x5x,a!, ~6.21!

to represent the derived classical variables~6.9!. From the
above definitions, we obtain the nonvanishing commutato

@Âx ,Âx
†#51̂, @Âx ,N̂x#5Âx , @Âx

† ,N̂x#52Âx
† ,

~6.22!

which reproduce the Poisson brackets algebra~6.11! up to
the usual factori . Here, 1̂is the identity operator.

We shall next represent the Hamiltonian constraint b
Ĥ5N̂a2N̂x . Recalling that the functionscnm(a,x) are lin-
u-

t

is

ce

ill

s

y

early independent, it is then straightforward to see that all
quantum solutions to the Hamiltonian constraint have the
form

C~a,x!5 (
n50

`

cncnn~a,x!, ~6.23!

where thecn’s are arbitrary complex numbers. The vector
space of quantum states,Vp , is thus spanned by the worm-
hole wave functionscnn(a,x).

Defining

Ĵ15
1

A2
Âx
†Âa

† , Ĵ25
1

A2
ÂxÂa , ~6.24!

we get, from Eqs.~6.19! and ~6.20!,

Ĵ1cnn5
1

A2
~n11!c~n11!~n11! , ~6.25!

Ĵ2cnn5
1

A2
nc~n21!~n21! , ~6.26!

N̂xcnn5S n1
1

2Dcnn5N̂acnn . ~6.27!

The above operators are hence quantum observables, for the
leave the spaceVp of quantum states invariant.

Notice thatN̂x and N̂a coincide onVp due to the Hamil-
tonian constraint. On the other hand, comparison of Eqs.
~6.10! and~6.24! shows thatĴ1 and Ĵ2 represent the classi-
cal observablesJ1 andJ2 . We also have, onVp ,

@ Ĵ1 ,Ĵ2#52N̂x , @ Ĵ1 ,N̂x#52 Ĵ1 , @ Ĵ2 ,N̂x#5 Ĵ2 ,
~6.28!

which is the algebra of commutators that follows from the
corresponding Poisson brackets. The vector spaceVp carries
then a linear representation of the algebra of physical observ-
ables of the model, namely, the Lie algebra of SO~2,1!. This
representation is actually irreducible, because all the ele-
ments in the basiscnn(a,x) of Vp can be reached from each
other through the repeated action of the observablesĴ1 and
Ĵ2 .

To determine the inner product onVp , we must impose
the reality conditions~6.12! as adjointness relations between
quantum observables, i.e.,Ĵ1

! 5 Ĵ2 andN̂x
!5N̂x ~the star de-

noting the Hermitian adjoint!. In addition, sinceNxPR1, the
operatorN̂x should be positive on the resulting Hilbert space
of physical states. In fact, the relationĴ1

! 5 Ĵ2 suffices to fix
the following inner product onVp , up to a positive constant
factor:

^G,C&5K (
m50

`

dmcmm,(
n50

`

cncnnL 5 (
n50

`

d̄ncn , ~6.29!

where we have made use of expression~6.23!, valid for all
quantum states.
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The completion of the vector spaceVp with respect to the
above product supplies then the physical Hilbert spaceHp
of the quantum theory. It is clear from Eq.~6.29! thatHp is
isomorphic tol 2, the space of square summable sequenc
One can also easily check that the observableN̂x is indeed a
positive operator onHp . So all the reality conditions on the
observables of the system have been satisfactorily dealt w

It is worth pointing out that,Vp being spanned by the
wormhole wave functionscnn(a,x), every physical state in
the Hilbert spaceHp can be interpreted as a superposition
quantum wormholes. The inner product~6.29! can then be
regarded as the one picked out on the space of wormhole
the reality conditions.

To close this section, we shall prove that the product
tained onVp can be equivalently written in the form

^G,C&5E
R1
daE

R
dxḠ~a,x!C~a,x!. ~6.30!

Given that the eigenstateswn(x) of the harmonic oscillator
form an orthonormal basis ofL2(R,dx) and that the func-
tions Fn(a) have been chosen to have unit norm
L2(R1,da), we get

(
m50

`

d̄m(
n50

`

cnE
R1
daF̄m~a!Fn~a!E

R
dxw̄m~x!wn~x!

5 (
n50

`

d̄ncn , ~6.31!

from what it follows that the right-hand sides of Eqs.~6.29!
and ~6.30! actually coincide onVp .

VII. CONCLUSIONS

Among the topology changes that may take place in
ymptotically large regions, the study of tunneling effects m
diated by wormholes in asymptotically anti–de Sitter regio
of the universe, in which the effective cosmological const
is negative is of particular interest in cosmology. It did n
seem quite clear whether these tunnelings could be con
tently described quantum mechanically or, at least, semic
sically. In this work, we have shown that it is actually po
sible to construct a quantum theory for this kind of topolo
changes, at least at the level of a minisuperspace model

We have considered a homogeneous and isotropic min
perspace model with a negative cosmological constant a
es.

ith.
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conformally coupled massless scalar field. The classical so
lutions to the Euclidean equations of motion and the Hamil-
tonian constraint are asymptotically anti–de Sitter worm-
holes. Such solutions are parametrized by three arbitrar
constants that account for the initial scale factor and confor
mal field as well as for the energy of the conformal field,
which must be positive.

Starting with a general analysis in superspace, we hav
seen that adding suitable surface terms renders the Euclide
action finite on classical solutions, while ensuring its gauge
invariance and determining a well-defined variational prob-
lem consistent with appropriate wormhole boundary condi-
tions. For our minisuperspace model, these boundary cond
tions essentially amount to identifying the gravitational and
conformal field energies with an equal fixed value in the
asymptotically anti–de Sitter region. Since the obtained ac
tion is finite on classical solutions, it could be used to reach
a consistent semiclassical treatment for the asymptoticall
anti–de Sitter wormholes.

Two procedures have been employed in order to quantiz
our minisuperspace model. We have first written the path
integral in terms of our Euclidean action. We have argued
that wormhole wave functions can be obtained from this path
integral as the product of an eigenfunction of the harmonic
oscillator for the conformal field and a wave function for a
scale factor restricted to be positive.

To carry out a thorough and complete quantization of the
system we have then followed Ashtekar’s program. Thus, we
have represented an appropriately chosen set of elementa
variables as quantum operators acting on a vector space
functions which contains the wormhole solutions of the
model. The Lorentzian reality conditions have then enabled
us to determine the physical inner product. This can be un
derstood as an inner product in the space of quantum worm
holes. All the wormhole wave functions turn out to have
finite norm and, moreover, provide an orthonormal basis o
the space of physical states.
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