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We have ,constructed the most general chirally invariant Lagrangian Ce for the meson sector 
at order ps. The result provides an extension of the standard Gasser-Leutwyler Lagrangian & 
to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The 
most difficult part of the construction was developing a systematic strategy so as to get all of 
the independent terms and eliminate the redundant ones in an efficient way. The claim to have 
obtained the most general Lagrangian relies on this systematic construction and on the elimination 
of redundant quantities using relations of which we are aware, rather than on a general formal proof 
of either completeness or independence. The “equation-of-motion’” terms, which are redundant in 
the sense that they can be transformed away via field transformations, are separated out explicitly, 
The resulting Lagrangian has been separated into groupings of terms contributing to increasingly 
more complicated processes, so that one does not have to deal with the full result when calculating 
ps contribtitions to simple processes. 

PACS number(s): 12.39.Fe, 11.3O.Rd 
I. INTRODUCTION 

Ever since the early days of current algebra and the 
PCAC (partial conservation of axial vector current) hy- 
pothesis (for an overview see, e.g., [l-3]), approximate 
chiral symrwtry and its application in terms of effective 
Lagrangians [4-71 have been cornerstones of the descrip 
tion of the low-energy interactions of hadrons. In our 
present understanding, chiral symmetry is interpreted in 
terms of QCD, the SU(3) gauge theory of the strong in- 
teraction involving quarks and gluons (see, e.g., [S,Q]). 
In the limit of massless u, d, and s quarks, the QCD 
Hamiltonian exhibits a global SU(3)~xSu(3)~ symme- 
try which is assumed to be spontaneously broken to 
SU(3)“, giving rise to eight massless Goldstone bosons. 
The experimentally observed small masses of the pseu- 
doscalar octet (x, K, 7) then originate from an explicit 
symmetry breaking due to the finite quark masses (see 
[lO,ll] and references therein). 

Extending a method originally proposed by Weinberg 
for the analysis of S-matrix elements [12], Gasser and 
Leutwyler [13,14] developed a technique which allows an 
expansion of QCD Green’s functions of quark currents 
in terms of momenta and quark masses. Their proce- 
dure, now known as chiral perturbation theory (ChPT), 
makes use of an effective Lagrangian approach for the in- 
teraction between the Goldstone bosons n, K, 11, and has 
been applied to a wide variety of processes, including in- 
teractions with external electromagnetic and electroweak 
probes (for pedagogical introductions and recent reviews, 
see [15-211). The lowest-order Lagrangian corresponds 
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to a nonlinear m model containing two free parameters, 
namely the pion decay constant and the scalar quark con- 
densate. At O(p4) the most general Lagrangian which is 
consistent with chiral symmetry, parity, and charge con- 
jugation invariance contains 10 structures. The renor- 
malized coefficients, L;, . . . , I& have been empirically 
determined by fitting experimental data [13,14] (for a re- 
cent analysis see [22] and references therein). Theoretical 
predictions for the chiral coefficients have also been ob 
tained by several authors using various techniques (see, 
e.g., [13,23-281). 

Without external fields (i.e., pure QCD) or including 
electromagnetic processes only, the effective Lagrangian 
of Gasser and Leutwyler has an additional symmetry 
resulting in the property that it contains interaction 
terms involving exclusively an even number of Goldstone 
bosons [29,30]. Such interaction terms are sometimes 
also referred to as being of normal or even intrinsic par- 
ity. In 1291, Witten discussed how to remove this sym- 
metry which is not a symmetry of nature (for example, 
?y” + yy,K+K- --t ?T+~-?F’, etc.). He essentially re- 
derived the Wess-Zumino anomalous effective action de- 
scribing the chiral anomaly [31]. The corresponding La- 
grangian, which is of O(p4), cannot be written as a stan- 
dard local effective Lagrangian in terms of the chiral ma- 
trix U but can be expressed directly in terms of the boson 
fields. In particular, by construction it contains interac- 
tion terms with an odd number of Goldstone bosons (odd 
intrinsic parity). It was subsequently shown by several 
authors that quantum corrections to the Wess-Zumino 
classical action do not renormalize the coefficient of the 
O(p4) Wess-Zumino term [32-361. Furthermore, the one- 
loop counter terms lead to conventional chirally invariant 
structures at O(p’) [33-361. For a review of chiral per- 
turbation theory involving the odd intrinsic parity sector 
we refer the reader to [30]. 

Chiral perturbation theory to O(p4) has become a,well- 
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developed effective representation of QCD at low energies 
in terms of Goldstone bosons, with many applications. 
However, there exist Casey where one-loop calculations 
to O(p4) do not appe’ar to lead to satisfactory agreement 
with experimental data (see, for example, [37,38]). AS 
consistent two-loop calculations in the even intrinsic par- 
ity sector for particular processes have started to become 
available [39] it is clearly important and timely to extend 
the most general chiral effective Lagrangian to O(p’). 
Moreover, it is now also possible to calculate the O(p’) 
coefficients from phenomenological models [40]. 

The purpose of this work is to obtain the most general 
structure of the chiral Lagrangian at O(p6) including the 
even, as well as the odd, intrinsic parity sector. The re- 
sult provides an extension in analogous form of the stan- 
dard Gasser-Leutwyler O(p4) Lagrangian to O(p’). To 
OIII knowledge there is no general formula, even at O(p4), 
for determining the number of independent structures to 
expect, though at O(p4) the fact that all of the coeffi- 
cients of the standard Lagrangian can be evaluated by 
appeal to experimental information [13,14,22] indicates 
that they are independent. Thus our claim that we have 
obtained the most general Lagrangian at O@‘) relies on 
the systematic enumeration of the various possibilities, 
as detailed in the sections below, and on the elimination 
of those which are not independent using all relations of 
which we are aware. 

In the even intrinsic parity sector we find 111 indepen- 
dent terms. This part of the O(p6) Lagrangian will be 
of relevance for processes which vanish at O(p’), so that 
O(p*) is the leading order and the O(p’) terms provide 
the leading-order c&rection. A two-loop calculation of 
such a process, namely, yy + ?y%r’, has recently been 
reported in [39] (see also [41]). It is a feature~of this pro- 
cess, and similarly of the decay 0 + ?r”yy [37], that the 
O(p4) contribution is exclusively generated by one-loop 
diagrams. According to the power counting scheme [12], 
at O(p’) contributions result from two-loop diagrams 
with vertices from the O(p’) Lagrangian, one-loop di- 
agrams with one vertex being O(p’) and the other O(p4) 
and, finally, &om tree-level diagrams from the O(p6) ef- 
fective Lagrangian. 

In the odd intrinsic parity sector we find 32 indepen- 
dent structures of O(p’). Our result differs from previous 
determinations of these structures [34,36] which in turn 
are not in agreement with each other. We will provide a 
detailed comment on these differences. This sector has al- 
ready been discussed in the literature in quite some detail 
1301, as it provides leading-order corrections to processes 
originating in the Wess-Zumino term. 

At present it appears extremely unlikely that all renor- 
malized coefficients at O(p6) may be determined empiri- 
cally. However, there is the hope that for simple processes 
the much smaller subgroups of relevant coefficients can be 
determined by one experiment and then provide predic- 
tive power for a related process. Furthermore, theoretical 
techniques which resulted in predictions of the O(p4) co- 
efficients might be extended to predict the coefficients at 
O(pe). For the corresponding discussion of techniques 
applying to the odd intrinsic parity sector see [30]. A 
derivation of the O(pe) even intrinsic parity sector using 
the Nambu-Jona-Lasinio model will be provided in 1401. 
Our main emphasis in this paper will be on developing 

a systematic procedure for the construction of the O(p6) 
Lagrangian so that the reader can be co&dent that the 
large number of terms we have found are indeed inde- 
pendent as well as sufficient to describe the most general 
effective chiral Lagrangian at O(p6). The derivation in- 
volves various technical points, such as total-derivative 
arguments, trace relations, use of the classical equation 
of motion in terms of field transformations, and special 
relations involving the completely antisymmetric tensor 
in four dimensions. We group the final str+ures ac- 
cording to the minimal number of Goldstone boson fields, 
assuming for the purpose of organizing the terms, a cou- 
pling to an external electromagnetic field. Our list will 
allow the reader to quickly identify the relevant terms 
at O(pa) needed for particular physical processes. The 
structures will, of course, be given in their full general- 
ity without any assumption concerning the nature of the 
external fields. 

Our work is organized as follows. In Sec. II, we dis- 
cuss some of the general foundations of chiral p&tuba- 
tion theory, define the basic building blocks for the La- 
grangian, discuss the strategy for obtaining a complete 
and independent set of terms, and describe a number of 
simplifications, symmetries and relations which will be 
used to reduce the result. In Sec. III, we describe the de- 
tails of the explicit construction of the Lagrangian. Sec- 
tion IV contains a discussion of the equation-of-motion 
terms, of some simplifications, and of a scheme of organi- 
zation which groups the most useful terms together and a 
comparison with some previous works. The final results 
are given in Tables II-VII. Section V, gives a brief sum- 
mary. Details of the derivation of trace relations used 
in the simplifications, a table of the equation-of-motion 
terms, and some tables showing relations among terms 
which are not independent are relegated to the appen- 
dices. 

The reader primarily interested in using the results 
should read Sec. II to understand the notation and the 
general strategy and Secs. IV and V for a listing and 
discussion of the results. 

II. CONSTRUCTION OF THE MOST GENERAL 
LAGRANGIAN Ce: INTRODUCTION 

AND BASIC APPROACH 

A. Introduction 

Our aim in this section is to lay the groundwork for the 
construction of &, the most general &rally invariant 
Lagrangian at order p”. This Lagrangian will provide 
an extension to the next higher order of the standard 
Gasser-Leutwyler La, as well as the odd intrinsic parity 
Lagrangian. Like Ca it will be expressed in terms of a set 
of basic building blocks, arranged in traces or products 
of traces such that the result is chirally invariant. 

The main problem with such a construction is that it 
is far too easy to think of terms satisfying the necessary 
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criteria. One quickly obtains many more terms than nec- 
essary, many that are not independent, though often not 
obviously so, and many expressed in a more complicated 
fashion than necessary. 

Thus, the most difficult task in such a construction is 
to develop a systematic strategy which allows one to get 
in an efficient man&r all of the independent terms while 
at the same time eliminating, or preferably never gen- 
erating, those terms which are redundant. Most of this 
section will be devoted to developing the various ingredi- 
ents of this strategy. Then in the following major section 
the strategy will be applied to derive the most general 
Lg. Some of this will be pedagogical, as it is important 
for the reader to be able to follow and understand the 
steps of the derivation and thus be convinced in the end 
that the result obtained is, in fact, complete and correct, 
something which is not necessarily possible when only a 
table of results is given. 

To our knowledge there have been no previous at- 
tempts to generate the complete and most general icB, 
though there have been several attempts [34,36] to de- 
rive the set of odd intrinsic parity terms, i.e., those in- 
volving the completely antisymmetric tensor eop76. In 
all of these attempts it appears that terms were missed, 
redundant terms were included. or both. 

B. Chiral symmetry of the QCD Lagrangian 

Before discussing the construction of the effective chi- 
ral Lagrangian we will shortly review the chiral symmetry 
of the QCD Lagrangian coupled to external fields. This 
discussion is relevant for the identification of the trans. 
formation properties of the external sources under the 
group, parity, and charge conjugation. 

Let us consider the QCD Lagrangian’ [8,9] 

&CD = c qf(i-/“D, - mf)qf - ;G;,G:” (1) 
f 

In Eq. (1) qf denotes a quark field of flavor f with current 
quark mass mf. The covariant derivative is defined as 

D,qf = 

where, for simplicity, we do not exhibit the fact that the 
quark fields have three color indices. In Eq. (2) 9 denotes 
the strong-coupling constant, A” are the usual G&Mann 
matrices, and A; represents a gluon field with color index 

a which may take the values 1-8. Summation over re- 
peated color indices is assumed. The gluon field strength 
tensor is defined as 

GEy = 8,A; - &A; - gf,s.A;A; , (3) 

where fab are the SU(3) structure constants. We do not 

‘We omit the gauge-fixing term and the Faddeev-Popov 
ghost term, since they are not relevant for the discussion of 
chiral symmetry. 
discuss the 0 term which induces P, T, and CP violations 
in the strong interactions [9]. 

In the following we will restrict ourselves to three fla- 
vors, u, d, .s, and consider the limit rn,, md, rn. + 0. In 
this limit Eq. (1) reduces to 

L&J,= c @h,d‘D,qw + i%fYD,m,f) 
f=u,d,a 

-1p (yY 
4 PU a ’ (4) 

where the left-handed and right-handed quark fields are 
defined as 

$2 = $1 - 75)% QR = $1+ 75)q 

The Lagrangian of Eq. (4) is invariant under the follow- 
ing global transformations of pr. and qa, respectively: 

(lk)=+), (.$)=uR(~zJ I(5) 

where UL and UR are independent U(3) matrices. This 
invariance, in principle, gives rise to 18 conserved cur- 
rents. However, due to quantum effects, the axial U(l)a 
current is not conserved. In the following we will only be 
concerned with the analysis of the G =SU(~)LXSU(~)R 
symmetry of Eq. (4). It is generally accepted that this 
symmetry is spontaneously broken to SU(3)v giving rise 
to eight Goldstone bosons. The finite quark masses in 
Eq. (1) then give rise to finite, but in comparison with 
other hadrons small, masses of the Goldstone bosom. 

In order to systematically study the consequences of 
chiral symmetry and its breaking through the quark 
masses, we follow the technique of Gasser and Leutwyler 
[13,14] and introduce external c-number fields u,(z), 
a,,(z), s(z), and p(z) into the Lagrangian 

L = &j + & = & + ~7ly’(ql+75~,)q 

-e(s - i75P)Q (6) 

The external fields are color neutral, Hermitian 3 x 3 
matrices, where the matrix character, with respect to 
the (suppressed) flavor indices u, d, s of the quark fields, 
is 

where the term in s and p containing XO = fihasnot 

bee! written explicitly. Of course, the three-flavor QCD 
Lagrangian is recovered by setting Vs = a, = p = 0 and 
s =diag(m,,md, rn,). 

Requiring the total Lagrangian of Eq. (6) to be in- 
variant under P, C, and 2’ leads to constraints on the 
transformation behavior of the external fields. Under a 
parity transformation the quark fields transform as2 

‘We suppress color indices since we are considering color- 
neutral external sources. 
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Pf(6 9 5 7%f C-6 q (8) 

The requirement of invariance under a parity transfor- 
mation, 

/q&t) 2 L(-3,i) ( (9) 

results in the following transformation properties of the 
external fields: 

P 
21s -+ ?.I#, 

P P P 
up+ -a,, s-s, p+ -p, P-4 

where it is understood that the arguments change from 
(2, t) to (-5, t). Under charge conjugation the quark 
fields transform as 

Qa,f 2 GP@,f, &Y,, 3 - qp,fC/$ . (11) 

In Eq. (11) the subscripts a and p are Dirac spinor in- 
dices, C = i7z70 is the usual charge conjugation matrix 
in the convention of (421 and f refers to flavor. Using 
Eq. (11) it is straightforward to show that invariance of 
.& under charge conjugation requires the transforma- 
tion properties 

tl.5 -tl,‘, ap 5 a;, S,P 5 ST,PT > (12) 

where the transposition refers to the flavor space. 
Finally, we discuss the properties of .L under the group 

G. To that end we rewrite Eq. (6) in terms of pr. and 

4R: 

L = L&J, -t m’L,a + hf’R,m 

+h(s - %+a2 + G(s + ip)a , (13) 

with R, = ‘up + aP and L, = zl,, - a,. We then pro- 
mote the global symmetry to a local symmetry. Equa- 
tion (13) remains invariant under qR + VR(z)qR and 
qf, + VL(z)qL, provided the external fields transform as 

0 

s - ip 5 VL(S - ip)Vi, s+ipSVx(s+ip)Vj. 

(14) 

C. Basic building blocks 

The Lagrangian ICe is constructed from the same ba- 
sic ingredients as &, namely the Goldstone boson fields, 
external gauge fields, scalar and pseudoscalar external 
sources, and their derivatives. The eight Goldstone 
bosons arising from the spontaneous symmetry breaking 
are collected in an SU(3) matrix 

4(4 U(z) = exp iFo 
( > 
with 

a”++ &r+ ,hK+ 

4(x) = d%- -no + 5~ &K” , (16) 

JZK- 1’ JziP -$ 

and Fo the pseudoscalar meson decay constant in the 
chiral limit [14]. The matrix U transforms linearly 
under the group G = SU(3)& x SU(3)a : U + 
U’ = V,UVL [14]. &rthermore, under charge con- 
jugation and parity the Goldstone bosom transform 
as C: 4 -+ c#? and P’ : 4(&t) --) -c$(-z&t), or equiv- 
alently C : U + UT and P : U(Z, t) + U+(-2,t). 

We define the field strength tensors asso,ciated with the 
external gauge fields Rp and L, as 

Fiv z 3,L” - a,L, - i[L,, L,] . (17) 

Note that FEW and Fkv are Hermitian and trace- 
less and that under the group they transform as 

F,$ 5 VxF%Vi and FL s VLF,“YV~. Furthermore, 
we follow [14r d t dPy an m ra uce the linear combination x = 

2Bo(s + ip), with 2 5 Vg&, where Bo is related to 
the vacuum expectation value (01qqlO). 

The effective Lagrangian is constructed in terms of U, 
Ut, x, xt and the field strength tensors F,$, Fkv as well 
as covariant derivatives of these objects. These covariant 
derivatives involve the gauge fields R, and L, and trans- 
form in the same way under the group as the quantities 
they act upon. Given the transformation properties of 
Rp and L, of Eq. (14) we define the covariant deriva- 
tives as 

A 3 VRAV~ : D,A E 8,A - iR,A + iAL, , 

B 3 VLBV~ : D,B q 8,B + iBR, - iL,B , 

C 3 V,CVi : D,C = 8,C - iR,C + ICR,, ( 

D -% V=DV,t : D,D = a,,D - iL,,D + iDL, , 

E%E: D,Eza,,E. (18) 

Note that we use the same symbol D, for the covariant 
derivative, independent of the transformation property 
of the object it acts upon.’ The advantage of this conven- 
tion is that a chain rule analogous to ordinary derivatives 
holds. Given the product 2 = XY where X, Y, 2 have, 
according to Eq. (18), well-defined but not necessarily 
the same transformation behavior, the chain rule applies: 

D,Z = D,(XY) = (D,X)Y + X(D,Y) , (19) 

which is straightforward to verify using the definitions of 
Eq. (18). 

This chain rule is valuable as an intermediate step in a 
number of the derivations of vtiious relations. In essen- 
tially all cases however the final results will be express&l 
solely in terms of quantities transforming as U and their 
covariant derivatives and ,thus require only the covariant 
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derivative defined in the first line of the definitions of Eq. 

(18). 
It will be very useful in the subsequent derivations to 

have all of the building blocks transform in the same way 
and also to be able to handle the external field terms 
x, F$ Fk” in the same way. To that end we d&ne 

G’” E FrU + UF”” L 1 
H’” E F$“lJ - UFY (20) 

We then let x““ = x and let x’“, with p # v, stand for 
Gfiy or iPy. Thus we can consider x’” with CL, u unspec- 
ified to stand for, collectively, the set (x, G“lY, Hp”). 

With these definitions, we have only two basic building 
blocks U, x’” and their adjoints and covariant derivatives 
acting on them. Note that by virtue of the chain rule, 
we do not need derivatives acting on products of these 
basic terms. All building blocks then transform as U (or 
Ut). In terms of the momentum expansion U is of order 
1, x“” is of order pz and each covariant derivative D, is 
of order p [14]. 

Finally, in order to construct terms which are invari- 
ant, we must put these basic pieces together so as to get 

quantities which transform as VR.. Vi. Thus, define for 

any A transforming as VRAV~, i.e., as U, the Hermitian 
(or anti-Hermitian) combinations 

[A]* E ;(AU+ f UA+) (21) 

We can then take as the basic building blocks [A]* with 
A taken as x“” or DJJ, or as some number of covari- 
ant derivatives acting on xp” or D,U. The trace of a 
string of such quantities, or the product of such traces, 
will then be invariant under the group. Observe also that 
by defining the building blocks this way we include each 
operator and its adjoint. By using building blocks trans- 
forming as VR. VA we also solve the problem of deter- 
mining whether or not extra U’s and U+‘s are necessary. 
In the usual approach, starting with a string of quantities 
transforming as V,. V,t or V, . . Vi, one can always in- 
sert extra U’s and U+‘s in the string, replace sxne terms 
by their adjoints, and get another invariant string.’ One 
then must check in each case whether the resulting string 
is in fact independent of the original one. However, by 
using the forms of Eq. (21) the only possible combination 
which can be inserted is UU+ which is unity and of course 
unnecessary. Observe also that if we were to insert UU+ 
between each term and after the last term in a trace of a 
string of terms of the form of Eq. (21) and use the rela- 
tion U+(AU+ztUA+)U = U+AfA+U we obtain a trace of 
the same form as the original, but constructed of build- 

ing blocks transforming as VL.. Vi which we could have 
defined in a fashion analogous to Eq. (21). This shows 
that such terms are not independent and that terms of 
the form of Eq. (21) are sufiicient. 

To summarize, we have seen that the basic building 
blocks necessary to construct the most general chirally in- 
variant Lagrangian are of the form [A]*, where A is D,U, 
x’” or (multiple) covariant derivatives of such quantities. 
The problem now, to be addressed in the next section, is 
how to put these building blocks together in an efficient 
way to get all possible terms in the Lagrangian. 

D. Strategy 

It is possible to generate a very large number of terms 
using just the building blocks defined in the previous sec- 
tion. The most difficult part of obtaining ice is develop 
ing a strategy which obtains all of the independent terms 
without generating a lot of extraneous terms which have 
to be eliminated by hand. 

To do this it is convenient to first define a hierarchy of 
terms. At each level we will then find the most general 
set ofterms. First, however, various relations can be used 
to eliminate some terms in favor of those lower down in 
the hierarchy. Since at each level we always find the 
most general set, it is not necessary to actually work out 
what these (often extremely complicated) relations are. 
To eliminate a term one must only show that there exists 
a relation expressing it in terms of quantities being kept 
at the fame level and others lower down in the hierarchy. 

We thus order the various classes of terms as follows: 
(I) those terms with six D,,‘s; 
(II) ,those terms with four D,‘s and one x!-‘“; 
(III) those terms with two D,‘s and two x’I”‘s; 
(IV) those terms with three x’%. 

At each major level terms which involve a single trace 
are considered higher up than those with multiple traces. 
Likewise the ordering ensures that the addition of an FM” 
always results in a term lower in the hierarchy. Since the 
result must be a Lorentz scalar and since the only avail- 
able tensors x’=‘, g’Ly, and cafly have an even number of 
indices there are no terms with an odd number of D,‘s. 

For each level one tist determines the form of the pos- 
sible structures. For this it often is easier to start ini- 
tially with the original building blocks U, x“” and their 
covariant derivatives. A number of simplifications and 
tricks to be discussed in the next section are then ap- 
plied to reduce the number of possible terms and ensure 
that each term satisfies parity and charge conjugation. 
The remaining structures are then written in terms of 
the final building blocks [A]*. The result is a set of gen- 
eral forms. Explicit results can then be read off directly, 
usually by simply. considering all possible permutations 
of the indices, and perhaps of the order of the terms, 
and all possible ways single traces can be broken up into 
multiple traces. 

Terms involving D,DW are of particular interest as 
this factor appears in the classical equation of motion and 
terms proportional to the equation of motion can, as we 
shall see in a later section (see also [43]), be transformed 
away by a transformation on, or a redefinition of, the 
fields. Thus our strategy will be to extract in so far 
as it is possible such terms, which will be referred to 
as “equation-of-motion terms.” At the end we can make 
such terms proportional to the full L2 equation of motion 
by simply adding in the rest of the terms in the equation 
of motion, as these terms will come from a lower level in 
the hierarchy. 
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E. Simplifications: General results 

i. Total derivative arguments 

It is convenient to make use of the fact that a total 
derivative in the Lagrangian density does not change the 
equation of motion. This “total derivative argument” can 
be applied as follows. For any pair of operators A and B 

which under the group either transform as A’ = VRAV~ 

and B’ = V.r,BVA or as A’ = I/TRAVi and B’ = VRBVJ 

the product AB transforms as VRABVJ and the chain 
rule and definitions of the covariant derivatives yield 

D,(AB) = (D,A)B + A(D,B) 

= +(AB) - i[R,, AB] , (22) 

and thus using the fact that the trace of a commutator 
D S. SCHERER 53 

vanishes: 

Tr[(D,A)B] + Tr[A(D,B)] = a,‘IY(AB) (23) 

The same result is obtained for combinations AB trans- 
forming as V,ABVl. 

Clearly this result generalizes to products of terms of 
the form BI.. B,, and one gets 

f... + ~[BI . . (DPB,J] = S,[Tr(B1.. Bn)] 

(24) 

It is also straightforward to extend the “total derivative 
argument” to products of traces. As an illustration, we 
find, applying Eqs. (23) and (19), 
n~(DeAI)A2]%(A3A4) + Tr[AI(D,A2)]n(A3A4) + n(A,A,)n~(D,A,)A4] + Tr(AIA2)TrrA3(D,A4)] 

= +[‘WLA,)~(AzA4)1 (25) 

I 
As a consequence of these arguments we may move co- 
varian$ derivatives from one factor to another either 
within a single trace or across multiple traces in accord 
with Eqs. (23)-(25). Terms involving total derivatives 
will result, but these will not contribute to the equation 
of motion and thus can be dropped from the Lagrangian.3 

g. Sgmmetrization of multiple covariant derivativea 

For any operator A transforming as U we have, using 
the definition of covariant derivatives Eq. (18) and of the 
field strength tensors Eq. (17), 

(D,D, - D;D,)A = iAFLv - iF,R,A (26) 

Any term of the form D,D,A can be written as a term 
symmetric and one antisymmetric in p ct Y. Thus, 
Eq. (26) implies that at any given level in the hierar- 
chy D,D,A can always be assumed to be symmetric in 
its indices, since the antisymmetric part can be expressed 
in terms of the field strength tensors and thus contributes 

‘In the context of a perturbative Feynman diagram approach 
such total derivative terms produce a factor at a vertex pro- 
portional to the difference of the total incoming and outgoing 
four-momenta, which vanishes by four-momentum conserva- 
tion at each vertex. 
only at a lower level in the hierarchy. Clearly this can be 
generalized to more than two covariant derivatives since 
Eq. (26) also implies that different orderings of any string 
of D,‘s differ by terms which are at a lower level in the 
hierarchy. Thus we can take the properly normalized sum 
of all different orders, which is symmetric, in place of any 
specific order. Hence we will always assume that a mul- 
tiple covariant derivative, D,,> . .D,+A, is .symm+ric in 
the interchange of any of its indices. Formally this means 
that we will always interpret D,D,A as 

D~D,A + ~(D,D, + D,DJA , (27) 

with an analogous definition when there are more than 
two covariant derivatives. 

3. Indez exchange 

In keeping with the strategy of extracting as many 
equation-of-motion factors as possible, one would like to 
arrange things so that covariant derivatives with summed 
indices, e.g., D,D”, act on the sane factor U. For exam- 
ple, consider Tr[(D,DpA)(DaD,B)C], where A, B, C do 
not contain any covariant derivatives. Using the results 
of Secs. IIE 1 and IIE2 one can move the Dp off of A 
and on to B and C and then move the D, off of B and 
on to A and C. The result is 
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!Ik[(D,DpA)(D”D,B)C] = Tr[(D,D”A)(DpD,B)C] 

+terms with multiple D’s on only one of A, B, C + total derivatives , (28) 
where we have dropped the terms arising from the corn- 
mutation of the D’s at various stages which can be ex- 
pressed via terms lower in the hierarchy using Eq. (26). 

4. Building blocks involving multiple 
covatiant derivatives 

Consider a term of the form [D,DoU]+. By starting 
with the trivial identity 0 = D,Dp(UU+) and using Eq. 
(19) one finds 

2[D,DpU]+ = -(D,U)(D&‘)+ - (D$J)(D,U)+ (29) 

which means that [D,DpU]+ can always be expressed 
in terms of quantities involving at most a single co- 
variant derivative acting on U. This can be general- 
ized, starting with 0 = D,, Dun (UU+), to show that 

Pm D,m ul+ can always be expressed as a sum of 
products of [A]* where A has at most one less covariant 
derivative. Symbolically, [D”U]+ - (DiU)(DnwiU)+ N 
[DiU]*[DnmiU]* for all (1 5 i 5 n-1). By iteration, one 
then shows that all terms of the form [D,, D,,” U]+ 
can be expressed via the combinations with relative neg- 
ative sign (A]- and the right- (or left-) hand side of Eq. 
(29). Note also that the simplest case (D,U]+ = 0, so 
that the right-hand side of Eq. (29) can also be expressed 
solely ih terms of [A]- as well. This means in prac- 
tice that we never need to include factors of the form 

P,, . ..D.nUl+. 
5. Symmetries, parity and charge conjugation 

Each term in the final Lagrangian must be Hermitian 
and must be invariant under parity and charge conjuga- 
tion. Hermiticity is normally trivial as all terms come 
out to be either Hermitian or anti-Hermitian once par- 
ity and charge conjugation invariance is imposed. The 
strategy ,for ensuring P and C invariance is to take each 
candidate term and add to it the parity transform of the 
term, thus getting a result which is trivially P invariant. 
Similarly one then adds to this result its C transform, 
and so generates a C- and P-invariant term. 

Consider first parity. We will be interested in candi- 
date terms for the Lagrangian which are of the form of 
a trace of a string of factors of the canonical form [A]+, 
or alternatively a product of such traces, where A can be 
D,U or x’” or their (perhaps multiple) covariant deriva- 
tives. Table I shows the transformation properties of the 
various factors. We see that under parity all allowed 
A’s transform as A --t (-l)PAt, where in addition all 
Lorentz indices in A+ have been raised (or lowered) with 
respect to those in A, and 2 + -2. The quantity p is 
an “intrinsic parity” which is 1 for HJ‘” and its covari- 
ant derivatives and 0 otherwise. In most cases Lorentz 
indices from one factor will be contracted with those of 
another factor, so that the raising or lowering of indices 
under P compensates in the two factors, and can be ig- 
nored. The exception to this is the case when the indices 
are contracted not with another term of the set of A’s 
but with the antisymmetric tensor E+,J. Parity does 
not affect this tensor, so to get a Lorentz invariant quan- 
tity one must raise or lower its indices by hand. This 
introduces a minus sign since ~~0~6 = -e‘@“*. This can 
be summarized neatly by including a (-1)” in the parity 
transform of a complete term, where E counts the number 
TABLE I. Transformation properties under the group (G), charge conjugation (C), and parity 
(P). The expressions for adjoint matrices are trivially obtained by taking the Hermitian conjugate . 
of each entry. In the parity-transformed expression it is understood that the argument is (-Z, t) 
and that partial derivatives 8, act with respect to I and not with respect to the argument of the 
corresponding function. 

Operator G P 
u VRUV~ s + 

DA, . ..D>.U VRDA, DA, lJV2 
x v& 

(DA, -$h.U)T (DAL .:&,)+ 

DA,.,.DA,x VRDA, . ..Dh.xV. (DA, ..:D*,,x)~ (DA’ .?bA”,)+ 

RH V,R,VA + iV&,V, L’ 

g, 
V&L,Vi + iV&V~ 

-4 

VnFR V+ 
-RZ Rfi 

!A” R -(FL )T F; 

F$f” W,L,Vi 
VRG& 

-(FE)T FL 

GV -G,vT Gd‘“’ 

DA, DA. G,v VRDA, DA. G,wVi -(DA\, ‘..DA,G,.)~ (0”’ D*-G”‘)’ 

HI‘” VRi-&“V~ 
VRDA, Dx,H,vV~ 

HjwT -HW+ 

DA, DA. H,u (DAM ..~D,,H,v)’ .s.(D*l .D”-HP”)’ 
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of capTa’s in the term4 
Using these preliminaries, we see that under parity 

[A]+ + f(-l)PU+[A]*tJ. Under a trace the U+ and U 
collapse to 1, using the cyclic properties of a trace. Thus 
we arrive at the following operational method of making 
a candidate term in the Lagrangian invariant under par- 
ity. Simply multiply the term by the factor l+(-l)sfP+” 
where P is the sum of the intrinsic parities p of the var- 
ious terms, e is the number of ~~p~~‘s in the term, and 
where the (-1)’ is determined from the product of signs 
coming from the individual factors in the term, counting 
+ for [A]+ and - for [A]-. Clearly this holds for a single 
trace or a product of several traces. Note also that by 
extracting this factor, we make it easy to see which terms 
are not allowed by parity conservation, namely those for 
which (-1) s+p+E is -1, 

Consider now charge conjugation and proceed in ex- 
actly the same way. From Table I it is easy to see that 
the necessary A’s transform under C as (-l)=AT where 
c is an “intrinsic charge conjugation quantum number” 
which is 1 for G’” and its covariant derivatives and 0 
otherwise and T is the transpose. We then have under 
charge conjugation [A]+ + (-l)c(U+[A]&)T. Using the 
fact that the trace of a quantity is equal to the trace of 
its transpose, we then find that under C the trace of a 
string of basic factors [A]+ goes simply to (-l)c times 
the trace with the basic factors in reverse order, where 
here C is simply the sum of the intrinsic charge conju- 
gation quantum numbers of the varidus terms. Clearly 
in the case of multiple traces the factors are reversed in 
each trace individually. 

Thus to summarize, the operational way to get a term 
in the Lagrangian to be invariant under charge conjuga- 
tion is to add to it a term (-l)c times the term with the 
major factors reversed in each trace. If all of the traces 
have at most two factors, the cyclic property of a trace 
implies that the second term has the same structure as 
the fnst, and that effectively one is simply multiplying 
by the overall factor [l + (-l)‘]. 

As noted, ensuring Hermiticity is relatively simple 
since the basic building blocks satisfy [A]: = i[A]*. 
Thus the adjoint of a string of such terms is just (-l)b 
times the string in reversed order, where s is~calculated 
as in the parity discussion above. But, by virtue of C 
invariance, reversing the order produces an overall phase 

(-VT so that taking the adjoint of a term simply gen- 
erates an overall factor (-l)s+c = (-l)P+C+‘. Thus to 
get a Hermitian term we need only multiply by a factor 
of i when this factor is -1. This happens for terms with 
an even (odd) number of G““‘s and H’“‘s (or their co- 
.xwiant derivatives) combined and one (no) eupys factor. 
We will do this only in the final listing of results. 

In the construction of La a relation between SU(3) gen- 
erators was used to eliminate one term [14]. That rela- 
tion can be generalized and used to eliminate a number 
of possible terms of order p6. A proof of the relation and 
scarne discussion is given in Appendix A. For the present 
purposes we need only the result. in the following form. 
For any set of 3 x 3 matrices Bi, i = 1, . . . . n with 7~ 2 4, 
we can express 

as a sum of products of traces, each trace containing no 
more than n-l of the Bi. Since we are interested only in 
terms invariant under the group, and since we take the Bi 
in all permutations, we need Bi to transform as VRB;VL. 
Thus the Bi of interest will be the basic building blocks 
[A]*. Since a product of traces is always lower down in 
the hierarchy than a single trace, this relation allows us to 
discard one single trace term from each set of terms made 
up of all permutations of a particular group of building 
blocks. 

There is also a set of relations which relate various 
terms involving the tensor E~~,.J, and allow one to elim- 
inate some in favor of others [36]. These relations orig- 
inate from the observation that a tensor antisymmetric 
in five Lorentz indices must be zero since there are only 
four possible different indices. Such a tensor is 

Now consider a further tensor Qapyprt) which will ac- 
tually be the trace, or product of traces, of the basic 
building blocks [A]* and contract this tensor with that 
of Eq. (31) in all possible ways. This leads to the six 
equations 
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(-QayPpm f Q-l=*m - Q7puan, + Q-lper=n - Q~pcm,a!)~7Pr” = 0 > (34) 

(+Qw,pnm - QwPrn + Q-,wn-r) - Qy,,rcra., + Qyp~~~=)~7Pr” = 0 , (35) 

(-Qawv‘-q + Q&van - Q.,w=v + Qwra=v - Q7pTvaa)e-‘rq = o , (3’3) 

(+Qqpm,= - Q,a,wv” + Qwwv= - Qvur)“ + Qw,=* )c^IPTV = 0 . (37) 
Observe the symmetry of the Q’s across the diagonal 
and the fact that Eq. (37) is just the sum of the first 
five. Thus in general there are five independent equations 
which generate for each specific Qa~7prrl five relations 
among the terms involving E~P?‘J. However if Qop7pr,, 
has some symmetry in its indices, not all of these five 
relations are independent. For ex&nple, if QapTPTV is 
symmetric in the first two indices then Eqs. (34)-(36) 
are identities and Eqs. (32) and (33) are not independent 
and so there is only one independent “epsilon relation.” 

III. CONSTRUCTION OF THE MOST GENERAL 
LAGRANGIAN Ce: EXPLICIT CALCULATION 

Having completed these preliminaries we now proceed 
to the explicit calculation of LB. As noted earlier, the 
strategy will be to start with the highest level in our 
hierarchy a2d work down. At each level we Srst itemize 
the types of terms possible. At this stage it is useful 
to adopt a schematic notation. Thus an expression like 
(D2U)(DU) will mean the class of terms which have a 
(D,D,U) or its adjoint and a D,U or its adjoint, in any 
order, and with any contraction of indices which lead to 
a chirally invariant term when the trace is taken. We 
then use the results of Sec. IIE to eliminate as many 
classes of terms as possible and to force invariance under 
parity and charge conjugation. The results are a set of 
general expressions which satisfy the various constraints. 
One can then read directly from these expressions all 
of the allowed terms by simply taking all possible index 
contractions, and in some cases all possible orders. 

At a given level in the hierarchy the manipulations re- 
quired to reduce terms to lower levels and to ensure P 
and C invariance are essentially the same for multiple 
trace terms as for single trace ones. Hence we will gen- 
erally work, somewhat symbolically, with just a string of 
factors and only at the end take the single trace and all 
possible multiple traces. 

We will always attempt to extract a factor [D,D*u]- 
as the terms containing this factor can be made propor- 
tional to the classical equation of motion, and as dis- 
cussed below, transformed away via a transformation of 
the fields. 
A. Terms with six D,‘s and no x*“‘s 

Terms in this class will have six covariant derivatives 
acting singly or in multiples on U. Since there are six 
Lorentz indices, two must be contracted and the other 
four can be contracted pairwise in two pairs, or con- 
tracted with the indices of the antisymmetric tensor 
eaora. Using the total derivative arguments of Sec. IIE 1 
the covariant derivatives can always be moved back and 
forth, so as to get a factor (D,D,U) which will be pulled 
to the first of the string of terms which eventually will be- 
come an.argument of a trace. Either p = I/ in this factor 
or, if not, no other multiple derivative has a contracted 
index in it, since if it did we could move all but the two 
contracted D’s onto another term and pull the contracted 
pair out as the first term instead. Note that by virtue of 
Sec. IIE2 all multiple derivatives can be taken as sym- 
metric in their indices. This leads to structures of the 
following types: 

(1) (D,DJ’W4U) , 
(2) (D,DJ’)(D3U)(DU)U > 
(3) (DpDyU)(D2U)(D2U)U , (38) 
(4) (D,D,U)(D2U)(DU)(DU) , 
(5) (D,D,u)(Du)(DU)(Du)(Du)u. 

To get an expression transforming as VR. Vi so that 
the trace will be invariant we use Sec. IIE4 to write 
each of the stru&res in terms of products of factors 
[A]*. Each combination [A]+, again by the results of 
Sec. IIE4, can be expressed via terms with one fewer 
covariant derivative, and hence via structures lower down 
in the list of Eq. (38), and so does not need to be kept. 
However at the bottom of the list [D,D,U]+ is expressed 
in terms of (DU)(DU) and so generates a sixth structure 
involving six [DU]-‘8. 

Requiring parity invariance introduces an overall factor 
1+ (-1) s+p+e in accord with Sec. IIE5. The intrinsic 
paritiesp are all zero so we find that the parity-conserving 
terms must have an even number of [A]- factors and no 
cap,8 ar an odd number with an ~~0~6. Finally charge 
conjugation invariance simply adds in a term with the 
[A]- factors in reverse order. 

Thus we obtain terms of the following forms: 
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(I) [D?cJ]-[D%]- , 

(2) [DZUl-[D3Ul-[~Ul-~u~~6 , 
(3) [D2Ul-[D2Ul-[D2Ul-~~~py~ > 

(39) (4) [DW-[DW-[DU]-[DU]- , 

(5) [D*U]-[DUI-[DU]-[DU]-[DUl-~~~~a , 
(6) [DU]-[DU]-[DU]-[DU]-[DC+[DU]- , 

where in each case we must add a piece with all major 
factors in reverse order to ensure charge conjugation in- 
variance. We must also take all possible starting orders, 
which in this case, once C is taken into account, is rel- 
want only for (4) and generates two different structures 
there. 

Note that all manipulations so far hold for single or 
multiple traces, except that for multiple traces we reverse 
the terms in each trace separately. 

Finally we put in indices and the order reversal ex- 
plicitly to obtain the most general result for single trace 
expressions involving six covariant derivatives. It consists 
of all possible index contractions of 
[WWI-[D&&DaU]- , 
[D,D,U]-([D=DpD,U]-[DsU]- + rev)EPTqo , 
ID..D..u~-IID,D~UI-ID~D~U~- + revk-wm . 
~D;D;U~_~~D~D~U~-~D;U~-[D~V]- -iGj ,’ 

[D,,DJJ-([D,U]-[DpDJ$.[DaU]- + rev) , 
[D,DJJ-([D,U]-[D&$.[D,U]-[DsU]- +=ev)e,,, , 
[D,U]-[D,U]-[D=U]-[DpU]-[D,U]-[DsU]- +rev 

(46) 

Here “rev” stands for the terms in reverse order and ,it is understood that we must take all possible index contractions 
and in the end a trace. 

The general result for multiple traces will be essentially the same, except that we need to take all possible multiple 
traces, as well as all index contractions, and except that the reversed term in each of the above is modified so as to 
reverse the terms in each trace separately. 

We are now in a position to simply read off the results from Eq. (40), as the only thing that really needs to be done 
is to ensure that all independent index contractions are included. Note that a number of the possible contractions 
vanish because the multiple derivatives are symmetric in their indices while cap76 is antisymmetric. Also we are 
interested only in the structure, so overall factors will be neglected. 

For p = v we get, from (l), 

T~([D,D~u]_[D,D=D~D~~]-) , (41) 

tl-cm (4a), 

Tr([D,D“U]-[D=D=U]-[DpU]-[DpU]-) , (42) 

~{[D,D~u]-([DQDpU]-[D=~]-[~pU]- + [DpU]-[D”U]-[D=DpU]-)} , (43) 

from (4b), 

Tr([D,D“U]-[DpU]-[D=D=U]-[D@U]-) , (44) 

and from (5), 

Tr([D,D“U]-[D=U]-[D=DpU]-[D‘%]-) , (45) 

Tr([D,DpU]-[D=U]-[DpU]-[D’U]-[D6U]-)~=p,, . (46) 

Terms from (2) or (3) all vanish, using the symmetry of multiple covariant derivatives. 
For p # V, recall that we cannot have repeated indices in the multiple derivatives. Thus we obtain, from (4a), 

Tr([D,,DyU]-[D’D”U]-[D=U]-[D=U]-) , (47) 

Tr([D,D,U]-[D’D=U]-[D”U]-[D=U]-) , (46) 
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~([D,D,U]-[D’DV-[D,U]-[D”U]-) , 

from (4b), 

Tr([D,D,U]-[D,U]-[D“D”U]-[D”U]-) , 

n{[D,D,U]_(~D”U]_[D~DaU]-[D,U]- + [D,U]-[D”D”U]-[D”U]-)} , 

and from (5), 

Tr{[D“D”U]-([D,U]-[D@U]-[DYI]-[D’U]- + [DbU]-[D7U]-[DPU]-[D,U]-)}~lr~?6 , 

~{[DrD”U]-([DPU]-[D,U]-[D7U]-[DSU]- + [D6U]-[DYU]-[DYU]-[DPU]-)}~~~76 

(49) 

(50) 

(51) 

(52) 

(53) 
Finally from (6) we get 

lk([D,U]-[D’W-[D,U]-[DPU]-[D,U]-[DYI]-) , 

(54) 

Tr([D,U]-[DY’]-[DpU]-[D,U]-[D‘%]-[DW-) , 

(55) 

Tr([D,U]-[D”U]-[DpU]-[D,U]-[DW]-[DPU]-) , 

(56) 

Tr([D,U],-[DpU]-[D7U]-[D”U]-[DpU]-[D’IU]-) , 

(57) 

Tr([D,U]-[DpU]-[D,U]-IDpU]-[D”U]-[DyU]-) 

(58) 

A number of these terms differ from others only by a 
reordering of terms and thus we might expect that the 
trace relations of Sec. II E 6 might connect some of them. 
This is in fact the case. The sets Eqs. (42) and (44), Eqs. 
(43) and (45), Eqs. (47) and (50), Eqs. (48), (49), and 
(51), and Eqs. (54)-(58) in each case contain all of the 
independent permutations. Hence, one of each set can be 
eliminated using the trace relation, say Eqs. (44), (43), 
(50), (51), and (58). Likewise Eqs. (46), (52), and (53) 
are related by the epsilon relation of Sec. IIE 7 and we 
can use it to elimin&te, say, Eq. (53). 

It is interesting to note that this epsilon relation con- 
nects a term involving the equation of motion, Eq. (46), 
with two that do not obviously contain the equation of 
motion, Eqs. (52) and (53). As we discuss later, the 
equation-of-motion terms can be transformed away by 
an appropriate transformation of the fields, and so do 
not contribute. Had we chosen to use the epsilon rela- 
tion to eliminate the equation-of-motion term Eq. (46) 
rather than one of the others we would have ended up 
with two terms from tbis set instead of one, and it would 
have been extremely nonobvious, from just looking at the 
terms, that one was in fact redundant. 

Consider now the multiple trace terms arising from 
the general result of Eq. (40). We simply have to con- 
struct all possible combinations of traces, plus all pos- 
sible contractions of indices. The terms arising from 
charge conjugation have to be modified slightly, as we 
take the terms in reverse order within each separate 
trace. The result is simplified very much by the fact 
that ‘Ik([D,U]-) = Tr([D,D,U]-) = 0. That fact, plus 
the symmetry of multiple derivatives, means that there 
are no cofitributions from lines (l), (2), (3), or (5) of Eq. 

(40). 
With p = u we get, from (4a), 

Tr([D,D“U]-[D,DV-)Tk([DpU]-[DpL’-) , (59) 

Tr([DrD”U]-[D,DpU]-)Tr([D”U]-[D@U]-) , (60) 

and, from (4b), 

Tr([D,,D”U]-[D,U]-)‘([DpDpU]-[D”U]-) , (61) 

Tr([D,D”U]-[D,U]-)Tr([DaDPU]-[DpU]-) (62) 

With p # v we get, from (4a), 

‘Ik([D,D,U]-[D“D”U]-)Tr([D,U]-[D‘YJ]-) , (63) 

Tr([D,,D,U]-[D’D’TJ-)Tk([DW-[D,U]-) , (64) 

and, from (4b), 

Tr([D,,D,U]-[D,U]-)Tr([D’DyU]-[DV]-) , (65) 

~([D,D,Ul-[D”~]-)~((D’D”~l-[D,~~) > P-9 

Tr([D,D,U]-[D,U]-)Tr([D“DV]-[D”U]-) (67) 

Finally from (6) we get 
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Tr([D,u]-[DW]-)‘h([D,U]-[DY-[DpU]-[D@U]-) , 

n([D,U]-[D’U]-)Tr([D,u]-[Dpu]-[DY’]-[D”U]-) , 

‘J.k([DpU]-[DS-)Tk([DW]-[D”U]-[DJ&[D”u]-) , 

n([D,U]-[DJJ-)Tr([D’U]-[D-U]-[D”U]-[D”u]-) , 

Tr([D,U]-[D’U]-[D,u]-)Tr([DpU]-[DBU]-(D”u]-) , 

Tr([D,U]-[D,U]-[D,U]-)Tr([D~U]-[DyU]-[D”U]-) , 

Tr([D,U]-[D,U]-[D,U]-)Tr([DW-[DY’-[D”U]-) , 

Tk([D,U]-[DW]-)Tr([D,U]-[DYI-)Tr([DpU]-[DpU]-) , 

Tr([D,U]-[D’U]-)‘IY([D,U]-[DpU]-)Tr([D”U]-[DPU]-) , 

Tr([D,U]-[D,U]-)Tr([D’U]-[D”U]-)Tr((D”U]-[D,u]-) 

63) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 
There are two trace relations for the multiple trace 
terms, one relating Eqs. (68) and (69) and one relating 
Eqs. (70) and (71). We use these to eliminate Eqs. (69) 
and (71). 

B. Terms with four D,,‘s and one x’” 

Terms at this level will have four D,‘s and one x’“, 
which may be a simple x if ~1 = v or may be G’” or 
Hp” constructed from the F’“‘s according to Eq. (20) 
if p # V. In the former case there will be four Lorentz 
indices which may be contracted in two pairs or with an 
em@.+ symbol. In the second case there will be six indices 
and the types of contractions will be the same as in the 
preceding section, except that x’” is antisymmetric in its 
indices. 

Proceeding as before we write down schematically the 
types of terms which are possible, using the initial build- 
ing blocks, with the understanding that eventually traces 
of these terms will be taken. We find 

(DzU)(D2x”“) 
(DzU)(D2U)&U, 

(D2WWW’)xp” > 
(D2U)W)Px”“)U > (73) 
(D2xw”)(DWWu, 
Px““Wu)WWU) > 
xWJ(DU)(DU)(DU)(DU) 

In writing these down we have already used the total 
derivative arguments of Sec. IIEl to eliminate terms 
involving D4 and D3. In fact it is a general result that 
one needs at most half of the covariant derivatives in 
the term acting on a single factor. We have included 
explicitly the minimum number of U’s necess&y to give 
an even number of factors so that it is possible to get the 
right overall transformation properties. Note also that 
at the present stage there may in principle be additional 
nonadjacent U and Ut pairs distributed through some 
of the terms. Using again the total derivative argument 
one of the D’s in (5) can be moved off of the x to give 
terms like (6) and (4). Similarly in (6) the D can be 
moved from the x to give terms like (3) and, if there are 
extra U, Ut pairs, like (7). Thus (5) and (6) need not be 
considered. 

Using Sec. IIE 2 all multiple derivatives can be taken 
to be symmetric in their indices and this allows us to 
simplify (1) and (2). In these terms, to preserve Lorentz 
invariance, at least two D’s must be contracted together, 
or contracted with an ~-,a. Using the index exchange 
result of Sec. IIE 3 these two D’s can be brought together 
acting on a U, with the additional terms produced being 
either total derivatives or like some of the other terms. 
By symmetry the eaora term must vanish. Likewise by 
symmetry, the remaining two D’s cannot be contracted 
with the xpy, and so must also be contracted together. 
Thus x’Iy must be simply x and we find, for (1) and (2), 

(1) + (DJ’~W’~Dpx) > 
(2) --f (D,D”U)(DpDW)x~. (79) 

As before to get an expression transforming as 
VR.. Vi, so that the trace will be invariant, we write 
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each factor in Eq. (78) in the form [A]+. Then Sec. 
IIE4 and particularly Eq. (29) allows us to eliminate 
[D’U]+ in favor of terms we already have. 

The result of all these manipulations is the set of gen- 
eral forms 

(1) lQJ’“~l-IW’pxI~ > 
(2) [DaD”~l-[D,DpU]-[xI+ , 
(3) [D~Dp~l-lD,~l-[Da~l-[~““l~ , (80) 
(4) [D=D~U~-ID,U]-[D~X““]+ , 
(7) Ix”“li[D=Ul-[DpU]-[D&l-[DsUl- > 

where it is understood that we must still take all possi- 
ble contractions of indices, perhaps with E+,J, and all 
different independent orderings of terms. 

The last step is to impose parity and charge conju- 
gation invariance. In accord with Sec. IIE 5 requir- 
ing parity invariance simply leads to the overall factor 

1+ (-1) e+P+L just as before. P is the sum of intrin- 
sic parities p, but in effect here just counts the number 
of IPLY’s, as all other quantities have p = 0. For the 
five terms in Eq. (80) these factors are (1 + l), (1 zt l), 
[l ?z (-l)p+‘], [l+ (-l)p+“], and [l f (-l)p”“], respec- 
tively, where the upper (lower) signs correspond just to 
the factors [A]+ ([A]-) involving x or xfi”. Similarly 
to get charge conjugation invariance we must add a term 

!iijverse order. 
c x the original term with all the major factors [A]+ 

We can now put all of this together to get the gen- 
eral result for the four D one x’” terms analogous to 
the six D result of Eq. (40). It is most convenient to 
separate the /I = V, i.e., x, terms fram the p # v terms 
as there are some “accidental” simplifications which are 
different in the two cases, and since the values of the in- 
trinsic parity and charge conjugation quantum numbers 
are different. For /I = u observe that the symmetry of the 
multiple derivatives ensures that there will be no E~P.,~ 
terms arising tiam (3) or (4) in Eq. (80). For fi # Y we 
have by explicit~ calculation [x”“]- = 0. Furthermore we 
can show, by taking the covariant derivative of Ix”“]- 
and using the chain rule Eq. (19) that [D,x““]- can be 
expressed in terms of other factors we have kept. Hence 
it is not independent and can be dropped. 

We thus find the most general form for single trace 
expressions with four D’s and one x’~ to be, for P = V, 

[&PUl-lDpDpxl- , 
[DaDaU]-[DpD@U]-[x]+ + rev , 
ID~DP~I-ID,~]-[D~U]-[X]- +=ev , 
[D&U]-[D,U]-[%x1+ fm, 
[xI+ID=Ul-[D&S[D,Ul-[J&U]- +=w , 
[x]-[DQU]-[DpU]-[D,U]-[DaU]-~“76 + rev , 

(81) 

and, for /A # V, 

(3a) [D,DpU]-[D,U]-[DsU]-[G~“]+~,,,, -rev , 
(3b) [D,DpU]-[D,U]-[D&U]-[WV]+ + rev , 
(4a) [D,DpU]-[D,U]-[DJG““]+ -rev , 
(4b) [D,DpU]-[D7U]-[DaH~“J+E,,, + rev , 
(7a) [G”“]+[D,U]-[D~U]-[D,U]-[D& -rev, 
(7b) [Hr”]+[D,U]-[DpU]-[D,U]-[DaU]-e,,, +rev . 

(82) 

In both of these results “rev” stands for a piece with the 
factors in reverse order and it is understood that we still 
must take all possible contractions of free indices and all 
possible independent orderings of factors and, to get the 
final Contribution to the Lagrangian, take the trace. 

Everything ,done to derive these results ,holds also es- 
sentially unchanged for multiple traces, by virtue of the 
total derivative arguments of Eqs. (24) and (25). We 
simply must take all possible combinations of traces, in- 
stead of a single trace, and must reverse the order of the 
terms in each individual trace separately. 

It is now straightforward to tabulate the terms arising 
from Eqs. (81) and (82). Starting with Eq. (81) we get, 
for the terms involving x from (l), 

~([D,D=U]-[D,DPxl-), (83) 

from P), 

~([D=D=Ul-~D~DPUl-[~l+), (34) 

frdnl (3), 
~{[DaD~~l-([Dp~l-lDP~l-[~l- + [~]-[Dp~l-[D~Ul-)l , 

~(ID,D~UI-[D~U]-[X]-[D~U]-) , 

Tr{[D,D&]-([DW]-[DBU]-[x]- + [xl-[D’Ul-[D=Ul-)I , 

(35) 

(37) 

038) ~~~D=D~U~-~D=U]-[X~~[D~U]-) , 
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from (4), 

~~l~=~~~l-(lD~~l-lD~xl+ + [Dpx]+[DpU]-)} , 

(8% 

~~lD=DpUl-([D=~l-IDPxl+ + ~DpxI+~D=ul-)~ > 
(90) 

and from (7), 

~([x]+[DuU]-[D’U]-[DpVI-IDPVl_) , (91) 

~([xI+[D,U]-[D~U]-[D~UI-[D~U]-), (92) 

Tr([,y]-[D,U]e.[DpU]-[D,U]-[D~U]-)~aoyd. (94) 

It is equally straightforward to read off the multi- 
ple trace terms originating from Eq. (81). Recall that 
lk([D,DpU]-) = Tr([D,u]-) = 0. Thus we have no 
terms &am (1) and get, from (2), 

~~~~=~“~l-~~,~p~l-~~~~xl+~ , (95) 

frfm (3), 

~([D,D”U]-[D~~]-)~([~~~l-Ixl-) , (96) 

~([D,D=U]-[x]-)Tr([DpU]-[DPU]-), (97) 

Tr([D,DpU]-[DaU]-)Tr([DPU]-[xl-) , (99) 

Tr[(D,DpU]-[xl-)Tr([DaU]-[DPU]-) > (100) 
~~[xl+~~=~l-[~=~l-~~([~~~J-[~P~l-~ , (107) 

~([xl+)~([D,~l-[Dp~l-)~(lD~~l-[DP~I-) . (110) 

As in the previous section, here there are also several 
sets of terms consisting of all permutations of the factors. 
Thus we can use the trace relations of Sec. IIE6 to 
express one of each set in terms of the others and of terms 
with more traces which are lower down in the hierarchy. 
In particular Eqs. (85) and (86), Eqs. (87) and (SS), Eqs. 
(91)-(93), and Eqs. (104) and (105) form such sets and 
we choose to eliminate Eqs. (85), (8’7), (92), and (105) 
using the trace relations. 

~~~~=~=~l-~~~~l-)~~~~~xl+~ > 

~([D=Dp~l-[DaUl-)~([DPxI+) , 

and from (7), 

w 

(103) 

We now evaluate the terms coming from Eq. (82) 
which contain GfiY and Hp”. We obtain, for the single- 
trace terms from (3a), 
~{[D,DYJ]-([~fiu]-[~w]-[~~y+ - [G~~+[D~u]-[DW-)~~~ , (111) 

~([D~D=Ul-[DPUl-[G’“]+[D7U]-)~~p,~~ , (112) 

Tr{[DaDPU]-([D&J]-[DYU]-[G’=‘]+ - [G”“]+[DYU]-[D,$&.)}+,, , (113) 

Tr{[D”DPU]-([DpU].e[G’Y]+[D7U]- - [D’U]_[G~“]+[D~U]_)}~~~~~ ) (114) 

Tr{[D”DPU]-([DYU]-[DpU]-[G’“]. - [G”“]+[DaU]-[D’V]-)}e=~~” , 015) 
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from (3b), 

hm (4a), 

from (4b), 

from pa), 

~{lD=Dpu]-([~~U]-[~6~]-[~p"]+ - [GP"]+[D~U]-[DYU]-)}~~~~", 

~~~~“~~ul-I~7ul-[~P”l+(~6~l-~~,,a~ , 

~I[D,D~u]-([DpU]-~~,~]-[~~~]+++[~~~]+[~,~]_~~p~]_)}, 

~~[D,D~u]-(~DPU]-[~,~]-~~~~]++[~~~]+[~YU]-~~~~]-)), 

T~{[D,D~U]-([D,U]-[DPU]-[H'"]+ + [H~~]+[D~J]-[D,u]-)} , 

~{[D,Dpul-([D,ul-[H~“]+[DP~- + [D@U].-[Hp"]+ + [DJJ-)} , 

T~I[D,D~U]-([D~U]-[D,G'Y]+ - [D,GM~+[DJ-)I , 

~{[D,DPUl-([Dpul-[D,G’Y]+ - [D,GpY]+[DpU]-)} , 

~{[D,DP~l-([D~~J-[DpG’“l+ - [DpG'"]+[D,U]-)} , 

~{(D,DaUl-([DPu]-[D7~~Y]+ +[D~~']+[D@u]-)}Eo,,,., 

WD"DPu]-([DpU]-[D7H“"]+ +[D'H""]+[DpU]-)}E,,,., 

Tr{lD"DBU]-(IDYu]-[DpH'"]+ +[DpH""]+[D'U]-)}~,,,, , 

Tr{[DaDpu]-([D^IU]-[D6HPY]+ +[D6Hp"]+[D'U]-)}~~~s,, 

~{IG""I+([D,U]-[D~U]-[D~U]-[D~U]-- [DJ+[D"u]-[D,u]-[D,u]-)) , 

~~~~~Yl+~~~,ul-I~,~l-[~,~l-[~~~]~ - [DJJ]-[DJJ-[D"U]-[D,U]-)} , 

~([G~"]+lD,u]-[D,U]-[D=u]-[D,u]-) , 

~([G~"I+[D,U]-[D,U]-[D,U]-[D~U]-), 

and from (?b), 

~{[H~"]+([D=~]_[DPu]_[D,u]-[D~u]- + (D~u]_[D~u]-[D~u]-[D~U]-)}~~~~~, 

?~{[H~"]+([D~u]-[D~u]_[DPu]_[D~u]-+ [D,u]_[DPu]_[D~u]_[D=u]_))~,,,~ , 

'k{[H'"]+([DPU]-[D,U]-[DW-[D'U]- +[D6U]-[D7U]-[D,U]-[DPU]-)}e,,~,p7~ . 

(116) 

(117) 

(118) 

(119) 

(120) 

(121) 

(12‘4 

(123) 

(124) 

(125) 

(126) 

(127) 

(128) 

(129) 

(130) 

(131) 

(132) 

(133) 

(134) 

(135) 

(136) 
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In this group the set Eqs. (119)-(121) are related by the trace relatimis of Sec. IIEG, and we use that result to 
eliminate Eq. (121). Also a number of terms are related by the epsilon relations of Sec. II E 7. In particular there is 
one relation among terms of each of the sets Eqs. (112), (114), and (lli’), Eqs. (ill), (113), (115), and (116), and 
Eqs. (125)-(128) which we use to eliminate, say, Eqs. (114), (116), and (128). Just as in the discussion following Eq. 
(58) we here also keep the equation-of-motion terms, since they can be eliminated later via field transformations, and 
use these relations to eliminate other terms. There are two relations among the set Eqs. (133)-(136) which we use to 
eliminate Eqs. (135) and (136). 

Again we can write down directly from Eq. (82) the multiple trace terms. Many possible terms vanish because for 
/J # Y we have Tr ([xfi’“]~) = Tb([D,x'"]+) = 0, as can be shown by explicit evaluation using the definitions of Eq. 
(20). Because of these relations, and also Tr([D,DpU]-) = Tr([D,U]-) = 0, we obtain no terms from (3a), (4a), or 
(4b), and we get, from (3b), 

from (7a), 

and from (7b), 

(137) 

(133) 

(139) 

(140) 

(141) 

(142) 

(143) 

(144) 

(145) 
C. Terms with two D#‘s and two xp”‘s 

Consider now terms of the third level in the hierarchy, 
those containing two D,'s and two x’“‘s. The x”“s can 
be just x if /I = V, or can be the full x’” involving the 
Pu’s if fi # Y, or there can be one of each. Because 
of these different possibilities, and the fact that each xpy 
has its own parity and charge conjugation quantum num- 
bers there are so many options that it is much more dif- 
ficult in this case to develop a general result and simply 
evaluate it, as was done in the previous two &ctions. We 
will however proceed as far as possible in general, but will 
be forced in the end to simply enumerate the possibilities. 

Note that we will have to distinguish between the two 
xp”‘s. To do this we will call one x and the other 2. 
To simplify the notation we will also drop the Lorentz 
&dices on x until the end. 

We can then write the possible terms directly in terms 
of the building blocks [A]* as 
(1) Pxl&% , 
W W-Pxl&l* , 
Pb) Wl-P~l~[xl+ , 

(3) PWPW[X~&~+ 
(14’3) 

In these expressions we must take all independent orders, 
and of~course eventually put the Lorentz indices back in 
and take all possible contractions. The f signs on the x 
and 2 terms are unccrrelated, so that all combiriations 
must be included. 

To obtain these expressions we have already system- 
atically used the total derivative argument of Sec. II E 1 
to remove any 0%. However tbis procedure may have 
hidden some equation-of-motion terms in this set, which 
we want to extract. For example, moving the D acting 
on 2 in (2a) over to the DU using the total derivative 
argument could generate a [DaDaU]- term. There are 
some subtleties in such a transformation however. So far 
we have eliminated terms high &the hierarchy in favor 
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of those lower down, i.e., in this case we eliminate those 
with more D’s acting on a single factor in favor of those 
with fewer D’s. Since we always keep the most general 
set of terms at the lower level, it is never necessary to 
actually work out explicitly the relation used to elimi- 
nate the higher-level term. Here however we are asking 
whether a specific lower-level term can be eliminated in 
favor of a higher-level one. Thus to be sure one is not 
over or under counting the independent terms it will be 
necessary here to work out the transformation explicitly. 

To do this consider the total derivative 
&,([D,U]-[&[g]*), where the argument of the deriva- 
tive is understood to be a single or multiple trace. Since 
total derivatives can be dropped in the Lagrangian, this 
can be treated as if it were effectively zero. Thus using 
the results of Sec. IIE 1 and particularly Eq. (24) we 
find 

0 = P&Ul-[xl-+[& 
+PvW[D,~l,t~f& + Pv~l-[x1&& 
+terms of the class (3) , 047) 

where again the traces have not been put in explicitly. 
The terms of class (3) arise ftom the covariant deriva- 
tive acting on the U and Ut in the various factors [A]* 
together with some algebraic rearrangement to express 
everything in terms of the standard factors [A]+. 

Thus we see that we can express a particular sum of 
the terms from @asses (2a) and (2b) in terms of a class 
containing a double derivative term [D,D,U]-. TO get 
tbis particular sum we must take a new basis for the 
terms of (2a) and (2b) consisting of the sums and dif- 
ferences of terms. When this is done we can use this 
double derivative term instead of the sum if we wish, but 
we must keep the remaining (difference) terms from (2a) 
and (2b). Note that we could have started this discussion 
with alternative ordering, x ft T, but since we always in- 
clude all orders of the factors, this gives the same results. 

This means that in the general result of Eq. (146) we 
may use, instead of (2a) and (2b),, 

W’ W-(Pxl&l+ - Ixl+[Wli) , 
Pb)’ P&Ul-[xl&l* , (148) 
where as usual, all orderings must be taken and the f 
signs are not correlated. 

Observe that everything done so far applies to multiple 
traces just as to single traces. One sees, by following 
through the arguments leading to Eq. (148), that if we 
start in (2a) and (2b) with, say, the trace of the fist two 
factors times the trace of the third, then we will also get 
the trace of the first two factors times the trace of the 
third in each of the terms &king up (2a)’ and (2b)‘. 

Finally it is possible to apply essentially the same ar- 
gument to (1) of Eq. (146) and show that we can use 
either of the alternative forms 

(1)’ lxl&&~v2l+ > 
(1)” K’,Dvxl&l~ . (149) 

Next we must ensure that parity and charge conju- 
gation are satisfied. Recall that effectively under parity 
[A]+ + f(-l)Wt[A]*U withp being the intrinsic parity 
of the operator A. There is also the extra factor of (-l)“, 
where E counts the number of E,P.,~‘s in the term. Let p 
and 5 be the intrinsic parities of x and 2 and let (-l)a 
here account for the product of i signs coming i%-cm the 
[xl+ and [j& factors only, e.g., s = 0 for [x]+[g]+ and 
s = 1 for [X]+[%]-. Thus we get a parity invariant term 
by multiplying the forms (1) and (3) by [l+(-~)*+P+*+~l 
and the forms (2a)’ and (2b)’ by [l - (-l)a+P+*+e]. 

To ensure charge conjugation invariance we must add 
(-l)c+i: times the major factors in reverse order, where c 
and Z are the intrinsic charge conjugation quantum num- 
bers of x and 2. For terms of type (1) and the multiple 
trace terms from types (2a)’ and (2b)’ with only two fac- 
tors in the trace the cyclic property of the trace means 
that this amounts to multiplying by the overall factor 
[l + (-l)‘+“]. For the others the reversed term has to 
be added explicitly, though in many cases adding such a 
term makes different initial starting orders for the factors 
give the same result. 

We can now summarize the general form for the two 
D, and two x“” terms as 
(1) [I + (-~)~+=+fi+~][i + (-i)c+t][D,~“P]*[D,~q6]1 , 
(24’ [l - (-~)“+‘+“+‘]{[D,U]-([D~X”~]*[~~~]* - [~=~]i[Dv~~~]*) + (:l)“+“(rev)} , 
(2b)’ [l - (-1) “+‘+“+‘]{[D,DJY]-~a~],[~‘6]+ + (-l)“+“(rev)} , 

(3) [I + (-I)“+=+~+‘]{[D,~-~[D,U]-[X~~]*[~~~]* + (-I)=++v)} 

(150) 

I 
In these expressions one must contact the Lorentz in- 
dices in all possible ways, including perhaps contracting 
with an eap7a, must take all possible independent or- 
ders for the factors, and in the end must take a trace. 
The ?c signs are not correlated, though the (-1)’ in the 
parity factor will enforce a correlation for given values 
of the other quantum numbers. The indication “rev” 
means to take the major factors in reverse order. For 
multiple traces, one must in addition take all possible 
combinations of different traces. Just as in the pre- 
vious section the evaluation of the result, particularly 
the multiplti trace part, is simplified by the relations 
Tr([D,D,U]-) = Tk([D,U]-) = 0. Also for p # V, 
n([x”“]*) = [x”“]- = ‘Ik([D,x’“]+) = 0. Furthermore 
[D&“]- can be expressed in terms of other quantities 
lower in the hierarchy which have been kept, and so can 
be dropped. 

We now proceed to evaluate tbis general expression. 
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There are three main cases, namely, (I) x and 2 both 
simple x’s, (II) one a x and the other a x“” with /A # V, 
and (III) both xpy’s. Furthermore each x’Ly can be a 
Gp” or an IPY. We will evaluate the single and multiple 
traces together, as that seems simplest here, and will 
always drop irrelevant overall numerical factors. 

Consider case (I) where both x and 2 are simple x’s. 
The quantum numbers p = fi = c = i; = E = 0 so that 
s = 0 for terms from (1) and (3) and s = 1 for those from 
(2a)’ and (2b)‘. We obtain, from (l), 
(153) 

(159) 

(160) 

(161) 

(162) 

(163) 

(164) 

(165) 

(166) 

(167) 
~(lD~~l-[D’Ul-)~([xl-[xJ-) , (168) 

~~~~,~l-~xI+~~~l~‘~l-~x1+) , (169) 

Of these there are two sets of terms which consist of all 
permutations of factors, Eqs. (161) and (162) and Eqs. 
(163) and (164). Within each set the terms are thus 
related by the trace relations of Sec. IIE6 which we use 
to eliminate Eqs. (162) and (164). 

Now consider case (II) where, say, x is the simple x 
and 2 is one of GHY or X”“. Now p = c = 0, with fi = 0 
and t = 1 for GT6 or fi = 1 and Z = 0 for IfT’. There are 
now four indices so it is possible to have an +-,a factor. 
Observe that (2b)‘, and also (l), if we use the equivalent 
form (1)’ of Eq. (149), are symmetric in the interchange 
@ ct v and hence they will vanish when contracted either 
with li’” or ePV+. Thus nonzero terms come only kom 
(2a)’ and (3). 

We then obtain from (2a)’ without an e,,+ factor 
I 

Tr{[D,,U]-([Dvx]-[G““]+ - [xl-[D#‘“]+ - P‘“1+Pv~1- + P’vQ‘“l+k-)I I (173) 

~IlD,Ul-([D”xl+[~~‘“l+ - [xl+[DvH’“l+ + Iff’“l+[Dvxl+ - [D,H’“]+[x]+)} , (174) 
‘WD,xl+P”xl+) > 

TO,xl-P’xl-1 , 

‘WPP~I+PW~I+) 2 

~([D,xl-PW“xl-1 , 
hm (2a)‘, 

(151) 

(152) 

(153) 

(154) 
WP,Ul-([D“xl+[xl- - [xl+ID”xl- + [xl-P‘xl+ - P’xl-[xl+)} > (155) 

~~~~,~l-~~~xl+~~~Ixl-~ - ~~~~,~l-lxl+~~~~~‘x1-~ , (156) 

~~~~,~l-~~~xl-~~~Ixl+~ - ~~~~,~l-~xl-~~~~o”xl+~ > (157) 
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Tr([D,Ul-[H’“l+)~(lD,xl+) - ~([D,~l-[D~~~“l+)~([xl+) > 

and with an E,,+ factor 

(175) 

~{[D~UI-([D”XI+[G’~]+ - Ixl+[D”@l+ - [G”]+[D”xl+ + [D”G’61+[xl+)b+ , (17’3) 

~{[D~UI-([D”XI-[H~~I+ - [XI-[D”H+l+ + [R’61+P”x1- - lD”H’61+[x]-)h,s , (177) 

{~([~~ul-[~‘6]+)~(lD”~]-) - ~([D’U]-[DYHY6]+)Tr([x]-)}~,,,s . (178) 
From (3) without an zPy-,s factor we get 

~~lD,~l-~D~~l-~~~l+~~~~l+ + KW+[xl+)~ , (17% 

Tr{[D,U]-[D,U]-([x]-[H~“lt - lW’l+[xl-)I 1 (182) 

~([D,Ul-[~~“lt)~([D~Ul-Ixl-) > (183) 

and with an c,,+ factor 

~{[D~~l-[DY~l-([~l-[~~‘61+ + P’61+[xl-)1~pwa > 

(184) 

n([DcU]-[x]-[D”U]-[G~6]+)~~~y6 > (185) 
~~~D’~l-[~761+~~([DY~l-~~l+~~~vy~ . P3f3) 

Consider now the third case in which both x and 2 
are x“” with p # Y. Observe fist that s = 0 since 
all factors involving x’“‘s are of the form [. xMy.. .I+. 
This means that when p + $5 + c is even only (1) and 
(3) contribute while when it is odd only (24 and (2b)’ 
contribute. Furthermore for the HH or GG terms p -t 
9 + E -i e and c + E is even whereas for the GH terms 
p+p+~+l+~andc+Eisodd. Alloftheindividual 
factors are traceless, so the only multiple traces possible 
must involve two factors and thus can come only from 
(3). Finally by considering various permutations we see 
that we get fewer terms at this level if we use the (1)’ 
form instead of the (1) form. 

We thus obtain, from (l)‘, 

WF”‘?+P,P‘G=P~+) > (189) 

~W=Pl+lDPGp,l+) > (190) 

W~=Pl+[D,D’~=dt), (191) 

MH”ltP OI D’%rl+) (SW 

From (3) we get the following terms without an ~+,a: 
T~([D,UI-[D~UI-[G=~I+[G=PI+) > (193) 

~~~~,~l-~~=Pl+l~‘~l-[~=pl+~ > (194 

~~~~=~l-~~P~l-~~=~l+[~~~l+~ , (195) 

~~~~=~l-~~~a’lt~~P~l-l~~~l+ + [%l+[DpU]-[Ga’]+)} , (196) 
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~~~~,~l-~~~~l-)~~~~=~l+~~=~l+) > (198) 

~~I~,~l-~~=~l+)~~~~‘~l-~~=~l+) > (199) 

~~~~=~l-~~P~l-)~~~~ayl+~~~~l+) > (200) 

~{[D=Ul-([H=‘l+[DPUJ-[H~~]+ + [Hp7]+[DpU]-[IT=‘]+)} , (20‘3 

Tr([D,Ul-[HaPl+)Tr([D’Ul-[H up+ 3 1 ) WJ) 

~~l~=~l-~~~p-rl+)~~~~~~l-~~=,lt) (212) 

Of these there are four sets of terms whose elements me related by thti trace relations of Sec. IIEG, namely, Eqs. 
(193) and (194), Eqs. (195)-(197), Eqs. (203) and (204), and Eqs. (205)-(207). We use those relations to eliminate 
one term of each set, Eqs. (194), (196), (204), and (206). 

The eup,a terms from (3) are 

~~~~,~l-~~‘~l-~~~“lt~~Ybl+ - [f@lt[G=pl+))~=,m > (213) 

~~~~‘~l-~~“~l-~l~aPl+[~=71t + [H=‘]+[Gap]+)}q,vp, , (214) 

~([~“~l-I~=Pl+~~Y~l-~~=Yl+)~,~p, > (215) 

~{[D~U]-([~=~l-[~=P]t~~~‘61t - [~‘61+[G=~lt[D=Ul-))~~~~~ , (216) 

~{[D~U]-([G=P]+[D=U]-[~‘6]+ - [H’6]+[D=U]-[GaP]+)}~~~~~ , (217) 

~{[~~‘l-~~~=Pl+[~761t~~=~l- - I~=~l-[~761t[G=Pl+))~~~~~ , (2% 
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Tc{[D“U]-([D=U]-[H=~]+(G~~]+ - [G’61+[H=Plt[D=Ul-)}~~~~6 I cw 

~{[D~Ul-([~=Pl+IDu~l-(G761+ - IG761t~Du~l-~~=pl+)~~~~~~ > (220) 

Tr{[D’U]-([H”]+[GSS]+.D=U]- - [DuU]-[G76]t[~apl+)}~~~p76 (221) 

There are two sets of epsilon relations, as described in Sec. IIE 7, among this group of terms. One consists of two 
relations among the set Eqs. (215), (217), and (220) and will be used to eliminate Eqs. (217) and (220). The other 
involves three relations among the set Eqs. (213), (214), ‘(216), (218), (219), and (221) and will be used to eliminate 
Eqs. (218), (219), and (221). 

-krok (ii)’ we’obtairx’ 

~{[D,Ul-([D~‘GaPl+[~,pl+ - [Gd+[D’H=‘l+ - l~=pl+P‘~=pl+ + P”ff=pl+[G=~l+)} > 

~~~~a~l-~l~7~a~l+~~~~1+ - [@l+[D’%~d+ - [%l+lD7’GUPl+ + [~‘&1+[~=%)1 > 

Tr{[D’U]-([D=G=“].[H7fiJ+ - [G=pl+[D=W+ - [f&l+P=G”l+ + P=~7pl+[~=plt)~ 1 

Tr{[D’U]-([DYH=~]+[H=7]+ - [~=p]+lD”~=71+)~~,~~~ , 

~I[D”~l-([Du~=pl+[H’6]t - [HnP]+[D=IP6]+ - [D=H+]+.[H=~]+ + [H~‘~]+[D=H=~]+)}~~~~~ , 

n{[D=U]-([D~~=P]+[H7S]t - (H”]+[D“Hq6]+ - [D”H’s]+[H=p]t + [H’6]+[D”H=B]+)}~~~7s , 

~{[~~~l-([D”G=PJ+[G=71+ - I~=Pltl~“~=71+)~s~pr > 

Tk{[D’W-([D=G=P]+[G7’6]+ - [G=p]+[D=G’6]+ - [DuG76]+[G=Plt + (GY61t[DuGGUP]t)}~~~~6 > 

Tr{[D=U]-([D“G=B]+[GY6]t - [G=~]+[D”G”]+ - [D’Gq6]+[GuP]+ + [G~‘]+[D~G”]+)}E,~,~ 

(222) 

(223) 

(224) 

(225) 

(226) 

(227) 

(228) 

(229) 

(230) 

There are two sets in this group, Eqs. (225)-(227) and Eqs. (228)-(230), each related by a single epsilon relation 
which we use to eliminate Eqs. (227) and (230). 

Finally from (2b)’ we get 

~{l~~~“~l-~~~=pJtI~=~lt - P=/dt[~=pl+)~ > (231) 

~~l~=~‘~l-~~~=pl+l~~~lt - [~~d+I~“%)~ > (232) 

~([D,D~U]-~H=~]+[H’6]t)‘ap~6 , (233) 

~{lD~D,~l-([~=~]+[H76]+ + [f@]+[~=p]t)}%~p,6 , (234) 

~([D,D~u]-[G=~]+[~~sl+)~,,, , (235) 

~~~D’Du~l-([G=~lt[GY61+ + ~~‘6]+[~=p]+))~~~+ (236) 

There are two epsilon relations for this group, which allow us to eliminate Eq. (234) in favor of Eq. (233) and Eq. 
(236) in favor of Eq. (235). Note that this is again a case where it is important, if we are to minimize the number 
of terms, to use the relations to eliminate the non equation-of-motion terms, as the equation-of-motion terms can be 
eliininated in a d&rent way. 



336 H. W. FEARING AND S. SCHERER 53 
D. Terms with no D,‘s and three x”“‘s 

Consider now the final case with three x pu’s and no covariant derivatives. This is relatively simple compared with 

the previous cases and we can write the general case directly: 

P + C-1) a+p’+Pa+pg+E][X~]*{[X~P]*[[X~6]* + (-l)c,+c,+c,[,;a]*[x~~]*} (237) 
Here pi and Q are the intrinsic parity and charge conju- 
gation quantum numbers of the three x’s. The f signs 
are not correlated and as before (-1)’ iS the product of 
the signs coming i&n the parity transformation on the 
individual [A]+'s, counting + for [A]+ and - for [A]-. By 
virtue of the second term with factors in reverse order, 
which comes from charge conjugation, the interchange 
of ~2 and x3 gives, up to a sign, the original expression. 
Thus the three x’s can be treated as distinguishable from 
the beginning. 

For the simplest case with three simple x’s all of the 
pi and ci as well as E are zero, which requires s = 0 also. 
Thus we get 

v[xl+[xl+[xl+) > (238) 

Wxl-[xl-[xl+) 1 (239) 

wxl+P([xl+[xl+) 9 (240) 

wxl+Puxl-[xl-) 9 (241) 

~(lxl-P([x1-[x1+) 1 (242) 

~~~xl+~~~~xl+~~~~xl+~ , (243) 

~~~xl+~~~~xl-~~~~xl-~ . (244) 

There are no terms with two x’s and one x“” as there 
is nothing with which to contract the indices. With only 
one simple x the general form of Eq. (237) reduces to 

P + ,-~,s+~~+*~+~l,xl*,,x,~l+~x~61+ 

+(-I) ca+“s[x;61+[x;~l+~ (245) 

since [x”“]- = 0 for fi # v. We see fmm this that if 
xz = x3, so that both are H’“‘s or both are G’“‘s, then 
8 = 1 if there is an epsilon term and .s = 0 if not. Tbis is 
reversed if xz # x3. The number of multiple traces will 
be quite limited because ‘Ik([x““]*) = 0 when p # u. 
Thus we obtain 

~([xl+w”1+Ll+) 3 (246) 

~([~1+P‘“1+F4~1+) I (247) 
(248) 

(249) 

(250) 

(251) 

(252) 

~I[xI+([~~~I+[G’~I+ - [G’Sl+[f@l+)}~ap~a , (253) 

rll([X1-)~([H”Pl+[H7Sl+)E,p?6 I (254) 

~([xI-)~([G~~I+[G~~I+)~,P~~ (255) 

Finally when all three x’s are x’“‘s the number of 
terms is very limited because of the parity and charge 
conjugation factors and because all factors are traceless. 
We find 

~([G”“l+lG~~lt[G,“l+) > (256) 

~(lG”“l+[~,=l+[~~“l+) 7 (257) 

~~I~““lt~I~~PltI~~Ylt - Wpl+[~~‘lt)hvw 
(258) 

The last of these, Eq. (258), is identically zero by virtue 
of the epsilon relations of Sec. II E 7. 

IV. SIMPLIFICATION AND REORGANIZATION 
OF TERMS IN THE LAGRANGIAN: 

FINAL RESULTS 

We have now derived in Secs. III A-III D the complete 
set of terms contributing to the order pa Lagrangian &. 
The results are scattered through these sections in the 
order they were derived. We now want to collect those 
results in one place in the form of a Lagrangian with 
effective coefficients analogous to the standard Gasser- 
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Leutwyler Lagrangian. In the course of doing this we 
want to simplify the forms as much as possible and to 
reorganize them so as to select out those terms which are 
likely to be most immediately useful. 

A. Equation-of-motion terms 

In the course of the derivation we have extracted as 
many terms as possible which are proportional to the 
factor [D,PU]- which we have called the equation-of- 
motion terms and have stated, but not proved, that these 
can be transformed away. Details of this transforma- 
tion procedure are given with respect to & in 1431 and 
with respect to lower orders in a number of earlier pa- 
pers [14,16,17]. Here we just outline the general idea, as 
it produces a large reduction in the final number of terms 
which need to be considered for the general Lagrangian. 

The lowest order Lagrangian is given by 

cs = $Tr{Dpu(D~u)t} + Tn(xut + UXf) (259) 

From this one can obtain the lowest-order or clasSica1 
equation of motion U.&, = 0, where 

O& = Z[D,ti“U]- - 2[x]- + ;Tr([,$) (260) 

We observe tist that we can make the replacement 

[D,D”U]- -+ o& in each term where it appears, 
where as always we have dropped the irrelevant numeri- 
cal factor. Since we have the most general form the extra 

terms added and subtracted to get U&, are just terms 
we already have. 

Now make a transformation on the fields of the form 

u + U’ = exp(iS)U , (261) 

where S = St and n(S) = 0. It is a general result 
144-491 that such a transformation does not affect mea- 
surable quantities such as the S matrix. Applied to icp 
it generates a correction to lowest order in S of the form 

1431 

6L2 = ~lyiS&~,) (262) 

and we can choose an S of order p2 so that this term 
cancels the equation-of-motion terms in Lq. This trans- 
formation generates corrections at order ps as well [43], 
both from the second order in 5’ correction to & and the 
fnst order in S correction to Cd. For our purposes these 
corrections can simply be absorbed in the terms of /Zg 
since we have the most general form. Finally we make a 
second transformation on .Cz using an S of order p4 and 
thus generate a correction term analogous to that of Eq. 

(262) which is of order ps and proportional to Of&. By 
choosing S properly we can eliminate those terms of CB 

which contain O&. 
The conclusion one draws from this discussion is that 

in order to generate the most general IZs in its simplest 
form, we can just drop all terms proportional to Og&. 
This allows us to eliminate the 23 terms given by Eqs. 

(4% (42), (45), (59)-W, (83), (84), (86), (8% (95)- 
(98), (102), (118), (122), (137), (158)-(160), (231), and 
the additional 6 terms containing an ~++,a given by Eqs. 
(46), (ill), (112), (125), (233), (235). For completeness, 
these terms are given explicitly in Table IX in Appendix 
B. Recall that three additional equation-of-motion terms, 
Eqs. (43), (44), and (85), had previously been eliminated 
using the trace relations. 

It is important to note that this argument must be 
applied with extreme care if one works in the other di- 
rection. Thus if one starts with a particular iCe generated 
from some model which contains terms proportional to 

U&,, and tries to put it into the general form we have 
derived it will be necessary to keep track of the changes 
in the coefficients generated by the successive transfor- 
mations, par&larly the second order correction to & 

which would be missed by just dropping the O&,, terms. 
Tbis is explained in more detail in [43]. 

B. Reorganization 

In the cowse of the derivations of the preceding sec- 
tions we devoted a great deal of effort to getting all of 
the terms of the Lagrangian in a systematic way, without 
any thought at all as to which terms would be of most 
practical importance. It is clew however that there will 
be some terms which will be of immediate importance for 
simple processes. In fact there have been already recent 
calculations, e.g., [39], which in the absence of the ga- 
era1 &, have included a few ad hoc pe terms, motivated 
by the need to cancel M&ties arising from the loops in- 
volving fp and &. On the other hand some terms in 
& contribute only to processes which are so complicated 
that they probably will not be of practical interest for a 
long time. For example, naively the factor [D,U]- goes 
like a,$ in leading order and so it would seem that a term 
like that of Eq. (54) would contribute at tree level only 
to a process involving six boson fields, which is probably 
not of much immediate interest. 

One concludes from the preceding discussion that it 
would be useful to organize the terms in the Lagrangian 
in such a way as to separate out those contributing to 
simple processes. Such an organization is more sub- 
tle than it might seem however. Consider, for exam- 
ple, the simplest factor appearing in many terms of 
the Lagrangian, [DpU]-. If we start with Eq. (15) 
for U and expand in powers of 4 we get symbolically 
U - 1 + i4 + O(@), where we have absorbed the Fo into 
~4 for the purposes of tbis section. Now using the first 
line of Eq. (18) we expand [D,,U]- as 

[DpU]- - ia,& - i(R, - Lp) + [L,,4] + O(&) (263) 

If RH = L, = 0, corresponding to pure QCD with no 
external fields, then [DJ- N a,,,6 and a term like Eq. 
(54) which involves six D,‘s does contribute only to a 
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process with six bosoms in accordance with our naive ex- 
pectation. In general however when R,, # Z; this term 
could contribute to anything with n bosom and 6 - n. 
external fields, where 0 I n 5 6. Thus for the general 
case it does not appear possible to sort the terms in a 
useful way. 

However, if we limit the external fields to the electro- 
magnetic field, which is a useful physical situation, then 
we can take R, = Z, = -eA,,Q, where A,, is the elec- 
tromagnetic field, e > 0 is the electric charge, and Q is 
the diagonal quark charge matrix 3Q =diag(2, -1, -1). 
This allows us to classify the various terms according to 
the number of boson and external electromagnetic fields 
required in the process in order that the term produce 
a nonzero contribution in this limit. The explicit term 
of course remains perfectly general, but the sorting into 
various groups depends on this special assumption. 

With the assumption of only external electromagnetic 
fields, i.e., R,, = Z, = -eA,Q, and with x = xt the 
various building blocks contribute to order 4 and lower 
as 

[xl+ N x,x4 > 

P’ixl+ - x,x4, AX, AX+ , 

[xl- -x4 I 

I%xl- - x4, Ax4 , 

[D,G’“]+ - A, A+ , 

[D,DpGPY]+ - A, A+ , 

[H’“l+ - 4 > 

[D,H”“]+ - 4, A26 , 

[DaDpW‘“]+ - AqS, A%$, A34 (264) 

Note that for the electromagnetic case and in addi- 
tion the usual choice of x = 2BoM, with M the di- 
agonal quark mass matrix, M =diag(nz,,m~,m.), the 

quantities [D,& and [D,D,x]+ actually vanish since 
[Q, x] = 0 implies D,x + a,,~. We keep them, however, 
to preserve a bit more generality. 
There is another useful simplification we can use also. 

Under parity, using the results of Sec. IIE5, we have 
in effect for each term U --t Ut, x --t xt, R, +t ZJ‘, 
and Fr tf F$ with an extra minus sign for the cap.,6 
terms. This meam that for the electromagnetic or pure 
QCD case, with R, = Z, and Fr = Fr, and with 
x = xt, we can use the fact that U + Ut is equivalent 
to 6 + -4 to show that parity invariance implies that 
terms without an cap78 will have only even powers of 4 
while those with an eup+ will have odd powers [29,30]. 

We have used both of these simplifications to group 
the terms in the final result of Tables II-VII according 
to the smallest number of &.s and A,‘s which a term can 
have. There can be more than the minimum number of 
coupse, if one goes past leading order in the expansion in 
powers of $. Also it is possible that there may be acci- 
dental cancellations which make the leading term vanish 
so that a given structure may in fact have more 4’s or A’s 
than indicated in the tables. In a few case8 the leading 
behavior of the structure contains no es. These terms 
have been included with the terms having two &s, since 
such nonleading contributions would seem most relevant 
for practical calculations. 

To see how this sorting works, suppose we are inter- 
ested in the contact terms at order p’ contributing to 
the process y + y --t ?r + n. We thus need two 4’s and 
two A,,% in tree level. Thus none of the terms of Tables 
III-VII contribute as they require an odd number’or too 
many +‘s. Of the terms in Table II the first group has 
no A,,% and the last group has too many, so neither will 
contribute. Thus we need consider only the middle three 
groups, and even some of those terms will vanish because 
a~ noted above [0,.x]* and [D,D,+ vanish. 

If one wishes to consider a general external interac- 
tion which has R, # Z, then there seems to be no sub- 
stitute for considering each term in detail to determine 
which will contribute. We emphasize again that the re- 
sults listed in Tables II-VII are completely general and 
appropriate also for general external interactions. Only 
the classification into groups depends on the assumption 
of just the electromagnetic interaction. 

C. Simplifications 

The notation used so far was developed to simplify the 
derivations. It has the advantage of leading to a La- 
grangian which depends on a relatively small number of 
building blocks which have well defined and simple trans- 
formation properties under parity and charge conjugation 
and Hermitian conjugation. 

For the purposes of calculation however there are a few 
simplifications which will be collected here for reference, 
though most have been mentioned earlier. Some may 
simplify the evaluations in specific cases. 

The building block [D,,U]- can be ‘written as 
[D& = (D,U)U+ = -U(D,,U)t. Under the trace the 
U’s and Ut’s for the most part commute through and 
collapse to unity so that the effect is to convert a string 
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TABLE II. Terms in the Lagrangian with two or more. @s, sorted according to the minimum number of electromagnetic 
fields A,. The formulas are general, but the sorting order and number of +4’s depend on the specific assumption of external 
electromagnetic fields only, i.e., on the sssurpption R,, = L, = -eA,Q, and on x = x’ as detailed in Sec. WB. The quantities 
[D,x]* and [DeDvx]* vanish if one in addition makes the usual choice 2 = 2&M, but have been kept here for generality. 
Terms with leading behavior independent of 4 have been included with the two 4 terms. The double covariant derivative 
D,D.A is assumed to be symmetric in its indices in accord with Eq. (27). 

Terms in the Lagrangian with two or more +‘s and no A,‘8 possible Eq. 

+~lw[xl+lxl+kl+) (233) 

+BzWIxl-lxl-[xl+) W) 
+BaWxl+P(lxl+lxl+) (240) 

+BdWxl+PUxl-[xl-) (341) 

+Bs’Wxl-PW-[xl+) (242) 

+~~~~lul+~~~~l+~~~lxl+~ (243) 
+~~~~lxl+~~~~x~~~~~~xl-~ (244) 

Terms in the Lagrangian with two or more @s, with an A, possible but not necessary Eq. 

+Ba~~lD~D~~l-(lDa’U1-ID~~l+ + ID”xl+ID”W)~ 
+Bs~([D,Da~l-[D”~l-)~(l~B~l+) 

(90) 
(103) 

+B~oW~,xl+P~xl+) (151) 

+BII’WD,XI-[D’xl-1 (152) 

+B~a~(l~,xl+)~(l~‘xl+) (153) 

+~~~lfT~l~~~l-~~~[~~xl-~ (154) 
+Bla?t{[D,UJ-([D’x]+[x]- - [x]+[D”xl- + [xl-lD”x]+ - [D“x]-Lx]+)} (155) 

+B,h{n(ID~uI-[D”x)+)~(~l-) -~~~~~~l-lxl+~~~~~“xl~~~ (156) 

+B~B{~([D~~I-[D’xI-)~([xI+) -~(lD,~l-[xl-)~([D’xl+)} (157) 

+~~~~~l~,~l-l~‘~l-~~l+l~l+~ (161) 
+~~s~r(~~,~l-~~‘~l-~~I+~~~~l+~ (165) 

+~~~~~~~,~~-~~‘~~-~~~~xI+IY~+~ (167) 

+~~~~~~~,~l-[Xl+~~~~~‘~l-~~l+~ (169) 
+~a~~~~~~~l-~~C~l-~~~~xl+~~~Lxl+~ (171) 

Terms in the Lagrangian with two or more @s and at least one A,, 

+~B~sT~{[D,D~U]-([D~U]-[DVG’~]+ - [DvG’“l+[~,&Jl-)} 
+iBaaTr{[D,DBU]-([D.U]-[DpG”]+ - [D~G”“]+[D.U]-)} 

+iB~~~{ID,~l-l~~~l-~~l+[~~“l+ + P’“l+[xI+)I 
+iBzaTr((D,U]-[xl+(D,U]-[G’“]+) 

+iB~e~([~,~l-[~.~~-[G”l+)~([xl+) 
+iB,,n{[D,Ul-([D”xl-IG’“l+ - [xl-IDvG““l+ - lG”“l+~D~xl- + W.W+~X~-)~ 
+iB~,s~{[D,U]-([D~x]+[H’“]+ - fx]+[D3‘“1+ + [~‘“l+~~~xl+ - I~~~‘Yl+l~l+)~ 
+iBa~{~([DrU]-[X’“]+)~([D,xI+) - ~(I~,~l-[~.~‘“l+)~(lul+)} 

024) 
(179) 

I::;; 

(173) 
074) 
(175) 

Terms in the Lagrangian with two or more $‘s and at least two A,‘8 

+B~o~([G”p]+[D,D’G,sl+) 

+B31~([GnB]+[D=D7G8,1+) 
+B~a~([HaLBl+ID,D’~~~l+) 

+B~~~([~“pl+[D,D’~,~l+) 
+Bsa~([D,Ul-[D’~l-lG”PJ+[G~pl+) 
+Bss~([D,UI-[DD~l-l~“‘l+(Gp,l+) 
+B~~~([D,Ul-[DBUl-[Gp,l+[G=~‘l+) 
+Bs,n([D,Ul-ID’UI-)~(lG”“l+lG~~l+) 
+B~~~([D,Ul-[GuBl+~~~~~“~l-~~~~l+~ 
+Bss~(lD,Ul-[DBUl-)~([G”‘l+[G~,l+) 
+B~~~([D,U]-[Gn7]+)~([DPUl-[Gp,l+) 
+B~~~([D~U]-[GB-l]+)~(ID~Ul-lGo~]~) 
+B~a~{[D~U]-((D~GnPI+(Ho~l+ - [Ge:al+[D“H-‘I+ - [Hael+[D“G”Pl+ + P’f+l+[Gal+)~ 
+B,,~{[D~~l-([~7G-al,[H,,1+ - [@l+[~7~,d+ - ~&d+I~‘~“% + P’W+[@l+)~ 
+B~~~{[D7U]-([D,G~~‘IIl+[H781+ - [G”pl+[D&~l+ - [H~al+[~.&“Bl+ + KJ=~~d+P@1+)~ 
+B~~~{[~,~7Ul-([GnBl+l~~~l+ - [~~pl+I@l+)~ 
+~~~~~l~1+~H~“l+l~~~l+~ 
+~~~~~~~1+~~“l+l~,~l+~ 

(190) 
(191) 
(1921 
(193) 
(195) 
097) 
(198) 
Pw 
WJ) 
PW 
(202) 

IE; 
(224) 
(333) 

(24’3) 
(247) 
(343) 
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TABLE II. (Continued). 

Terms in the Lagrangian with two or more B’s and at least two A,‘s (continued) 

+~49~([XI+)~(I~““l+~~~“l+) 
+B~~~([xl+)~~[~~“l+~~~~l+~ 

Eq. 

Terms in the Lagrangian with two 01‘ more 4’s and three A,‘s 

+iBs~~([G~“l+[G,=l+[G~=l+) 
+iB~~~([G’“]+~~,=]+~H,“l+) 

Eq. 

(256) 
(257) 

TABLE III. Terms in the Lagrangian with four or more 4%~ sorted according to the minimum 
number of electromagnetic fields A,. The formulas are general, but the sorting order and number 
of $5 depend on the specific assumptions described in Sec. IVB and the caption of Table II. The 
double cavariant derivative D,D,A is assumed to be symmetric in its indices in accord with Eq. 

(27). 

Terms in the Lagrangian with four or more 6s with an A, possible but not necessary 
+B&k([D,D,U]-[D’D’U]-[D=U]-[D=U]-) 
+BJk([D,D,U]-[D’D=U]-[D’U]-[D=U]-) 

+B&r([D,D,U]-[D’D”U]-[D=U]-[D”U]-) 
+B~~~([D~D~U]-[DI~DYU]-)~I~([D=U]-[D=U]-) 
+B6,Tr([D,,DyU]-[DPD=U]-)IIt([D”U].e[D=U]-) 

+BssTt([D,D,U]-[D=U]-)Tr([D’D”U]-[DY]-) 
+B&t([DI.DvU]-[DV-)Tr([D“D=U]-[D=U]-) 
+Beo’IY([D,D,U]-[D=U]-)Tr([D’D=U]-[D”U]-) 

+B~LT~([D=Dc&J-[D=U]-[X]-[D~U]-) 
+Bmn([x]+[D=U]-[D=U]-[DgU]-[DOCI]-) 
+Bss?t([x]+[D=U]-[Doul-[D@U]-[D=U]-) 
+BB~~([D=DPU]-[D=U]-)~([D~U]-[X]-) 

+BB~~([D~D~U]-[X]-)~([D=U]-[D~U]-) 

+Baa~([D,DgUl-[D=U]-[DBUl-)~([x]-) 
+Ba,‘It([x]+)Tr([D=U]-[D=U]-[DoU]-[D@U]-) 
+Bas~([xl+[D~Ul-)~([D=Ul-[Dp~l-[DB~l-) 
+BBI)~([x]+[D=U]-[D=U]-)Tr([DpU]-[DBU]-) 

+BroTr((x]+[D=U]-[DgU]-)Tr([D=U]-[DDU]-) 
+BnP([x]+)T[D=U]-[D=U]-)‘W[DpU]-[D’u]-) 
+B,a~([x]+)?t([D=U]-[DpU]-)Tr([D=u]-[DBU]-) 

+~~~~~~~~~l-~~~~l-I~1-~~1-~ 
+~~~~~~~~~1-~~(1~1-~~1-~~~~~1-~ 
+B~s~([D,~I-L~“~l-)~~~l-[xl-) 
+~~e~~~~,~l-lyl-~~~l~“~l-~~l-~ 
+~~~~~~~,~l-~~‘~l-~~~l~I-~‘It~~l-~ 

Terms in the Lagrangian with four or more @s and at least one A, Eq. 
+iBraTr(ID,DoUl-(IDpU]-ID,Ul-IH”l+ + [H”]+[D,U]-[DpU]-)} 019) 
+iB,8TTiiD;DgUj-iiD,Uj-iDBUj-iHPYj+ + @P”~+~DpU~-~DvU]-)} 
+iBx,Tk{[G“‘]+([D,U]-[D,U]-[D=U]-[D=U]- - [D=U]-[D=U]-[D.U]-[D,U]-)} 
+~B~ITT{[G““]+([DJJ-[D=U]-[DuU]-[D=U]- - [D=U]-[D,U]-[D”U]-[D,U]-)} 

+iB,aTk([G““]+[D,.U]-[D=U]-[D=U]-[DvU]-) 

+i&Tk([G”‘]+[D=U]-[D,U]-[DJJ]-[D~U]-) 
+iB~sn~(ib,DeUl-IDPUI-)Tr([D,Ul-[H’V]+) 

+i~~,BniiGL’i+i~,~j-iD,ij]-)?t(iD,uj-i~=~j-j 

+iBssTr{(Gp”]+([DI(U]-[D=U]- - [D=U]-[D,U]-)}P([D=U]-[D,U]-) 

+iBg~n{[D~U]-[D,U]-([Xl-[H”]+ - [fP“]+[x]-)) 

+iB~~~([Dp~l-l~PYl+~‘It~~~~~l-~xl-~ 
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TABLE III. (Continued). 

Terms in the Lagrangian with four or more 4’s and at least two A,% 

+BezTr([D,U]-[D~U)-[H=P]+[H=p]+) 

+Bs~~([D=ul-[D~Ul-[~“‘l+[~a~1+) 
+Bs~?t([D=~~-(~BUl-[~~~l+~B=‘71+~ 
+B,,n([D,ul-[D~ul-)n([H=‘l+[H=pl+) 
+Bss~([D~U]-[H=~J+)TT([D’UI-[~=~~+) 
+Bs~?t((D=UJ-~DBul-)~([~“71+[~p~l+) 
+B~~~([D=ul-[~=71+)~([DBUl-~~~~l+) 
+BB,~([D=U~-[~~‘I+)~(IDBUI_IH,,I+) 

Eq. 

(203) 

g;; 

m3) 
(209) 
Gm 
(211) 
(212) 

TABLE IV. Terms in the Lagrangian with six or more c$‘s. The formulas are general, but the 
sorting order and number of&s depend on the specific assumptions described in Sec. IVB and the 
caption of Table II. 

Terms in the Lagrangian with six or more @s with an A, possible but not necessary 
+B~ooTr([D=U]-[D=U]-[DpU]-[DPUJ-[D~U]-[D^rU]-) 
+BmTk([D=U]-[D=U]-[D&m[D,U]-[D@U]-[D’U]-) 
+BlazTr([D,U]-[D=U]-[DBU]-[D,U]-[D7U]-[DPU]-) 
+B,,,‘lk([D=U]-[D&J-[D,U]-[D”U]-[DBU]-[DV]-) 

+Blon~([D,U]-[D”U]-)n([D=U]-[D=U]-[DpU]-IDPU]-) 
+BI~~?~([D,U]-[D,UJ-)T~([D’U]-[D’U]-[D=U]-[D”UJ-) 

+B~aen([DrUJ-[D’U]-[D=U]-)?lp([DpU]-[DBU]-[D”U]-) 
+B~~~T~(~D,u~-~D,u~-~D=u~-)~((D~~~-~D”u~-~D=u~-) 
+B,,,n([D,U]-[D,U]-[D=U]-)Tr([D’U]-[D=U]-[D”U]-) 
+B,,,n([D,U]-[D’U]-)Tr([D=U]-[D=U]-)Tr([D~U]-[DBU]-) 

TABLE V. Terms in the Lagrangian with one or more c++‘s and an ca@+ (6nz3 = +l) sorted according to the minimum 
number of electromagnetic, fields A,. The formulas are general, but the sorting order and number of #s depend on the specilic 
assumptions described in Sec. IVB and the caption of Table II. 

Terms in the Lagrangian with one or more &, an 6=076, and at least one A, Eq. 

+~~~t~~‘~l-~I~‘xl+[~‘“l+ - [xl+lD”@l+ - [G7’l+KJ”xl+ + ~D’G’dl+l~l+)l~,ws (17’3) 

Terms in the Lagrangian with one or more @s, an e=@+, and at least two A,% Eq. 

+iA,Tr{[D”U]-([D’G=P]+[G=‘]+ - [G=P]+[DYG=7]+)}e(lY~7 

+~A~T~{[D~u]-([D=G=P]+[G~~I+ - [G=@]+[D=G~~]+ - [D=G~~]+[G=@], + IG’~I+[D=G=P]+)}~~~~~ 
cm 

+iAaTr([~l-[G=~l+[G’~]+)e,p,s 
(229) 

+~~~~~lxl+~~~=Pl+~~~‘61+ - [~‘61+[ff=Pl+)}~=~~s 
(353) 

+iAeTr([~l-)~([G=~]+[G~‘]+)eol~~6 
(253) 
(255) 

TABLE VI. Terms in the Lagrangian with three or more @s and an s=+,s, (e,n23 = +l) sorted according to the minimum 
number of electromagnetic fields A,. The formulas are general, but the sorting order and number of ~$5 depend on the specific 
assumptions described in Sec. IVB and the caption of Table II. The double covariant derivative D,D,A is assumed to be 
symmetric in its indices in accord with Eq. (27). 

Terms in the Lagrangian with three or more @s, an e=o+, and at least one A, Eq. 
+A,‘Jk{[D=D”U]-([D,sU]-[DV-[G’“]+ - [G’“]+[DW-[D,&)}a=,,, 
+A~‘h{[D=DPU]-((D7U]-[D$J~(G”]+ - [G”“]+[DpU]-[D’U]-)}c=.,pv 

(113) 

+AsTk([D=D,U]-[D’U]-[G”“]+[D6U]_)E,,s, 
(115) 
(117) 

+Alo~{[D=DPU]-([DpU]-[D7~~“]+ + [D’H”‘]+[DpU]-)}6=~~” (126) 
+An’It{[D”DPU]-([DV-[D#‘“]+ + [DpH’“]+[D7U]-)}e=,,. W7) 
+A~~~~~D~~I-~D”~~-(IxI-[~‘~~+ + [G’61+]xl-))~,..,s (134) 
+A,,~([D~U]-[X]-[D”U]-[G~~]+)~~Y~~ 

+A~,~([D’U]-[D”U]-[Gq61+)~([x1-)~~v7~ 

(135) 

(W 
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TABLE VI. (Continued). 

Terms in the Laaangian with three or more $‘s, an e,o,+, and at least One A,, (continued) 

+A~sTT{[D~U]-[D”~]-([X]+~~~~~+ - [~‘61+[xl+)~*,w~s 
+A,s~([D’~l-[~‘6]+)~(~D’~l-~l+)*,~,a 
+A,,~{[D~U]-([D’X]-[X~~]+ - [xl-[D”P61+ + [~‘bl+[D”xl- - P”~761+[~1-)h,s 
+A,,{P([D’U]-[H~‘]+)Tr([D”x]-) - ~([D’Ul-[D”H’61+)Tr([Xl-)}f.u,s 

Eq. 

(137) 

(188) 
(177) 
(173) 

Terms in the Lagrangian with three or more @s, an “=,+,a, and at least two A,‘* 

+iA~s~{[~,~]-[~‘~l-~~~=pl+~~*“l+ - [H’dl+[G=“l+)}~=m 
+iAm’It{[D’U]-[DYU]-([G=p]+[H=‘]+ + [ff=‘]+[G=B]+)}w-, 

+iAa~~([D~U]-[G=P]+[D’U]-[H=‘]+)~lrva~ 
+iAaz~{(D’U]-([D=U]-[G=‘B]+[Hy6]+,- [H~~l+[~=Bl+[D=Ul-)}~~~~6 
+iAas~{[D”U]-([D’H=P]+[H=7]+ - [H=B]+[D’~=‘l+)}~,~~~ 

+iAzrllr{[D”U]-([D=H=P]+[H76]+ - [H=P]+[D=H76]+ - [D=~‘61+[~=pl+ + [X’61/[D=H=Pl+)}a~,p~b 
+iAzsTr([~]-[H=~l+[~~~l+)*ola~d 
+iAas~(~]-)~([H=Bl+[H761+))e=816 

(“2:) 
(314) 

(215) 
(21‘3 
(335) 
W) 
(351) 
(254) 

TABLE VII. Terms in the Lagrangian with five or more #‘s and an eaa76 (eon3 = fl) sorted according to the minimum 
number of electromagnetic fields A,. The formulas are general, but the sorting order and number of $‘s depend on the specific 
assumptions described in Sec. IVB and the caption of Table II. The double covariant derivative D,D,A is assumed to be 
symmetric in its indices in accord with Eq. (27). 

Terms in the Lagrangian with five or more @s and an eol~+, with an A, possible but not necessary 
+iAmTr{[D“D”U]-([D,U]-[D’U]-[DW-[D’UJ- + [D”U]-[DV]-[DpU]-[D,U]-)}~,~,s 
+iA,,Tk(~]-[D=U]-(DeU]-[D.,U]-[DsU]-)a=’B-, 

Eq. 

Terms in the Lagrangian with five or more #‘s, an erno+, and at least one A, Eq. 

+A~,T~{[H”]+([D=U]-[DW-[DJJ]-[D~U]- + [D-,U]-[D7U]-[DBU]-[D=U]-)}~lrv=p (133) 

+A~~Tr{[H“‘]+([D=U]-[DJ]-[D@U]-[DV]- + [D,U]-[DPU]-[D7U]-[D=U]-)}81rv=a (134) 

+Asl’R((H’Y]+[D=U]-)~([DBU]-[D7U]-[D-rU]-)611y=p (144) 
+A~~‘Ik{(H~“]+([D”U]-[DW- + [DW]-[D=U]-)}%([DBU]-[D&‘]-).p~=p (145) 
of [DJJ]-‘s to a string of (D,U)‘s and (D,U)t’s. 
The factors [G”“]+ and [Hfi”], can be expressed in 

terms of the original $” and Fr via 

[G’“]+ = G’“U+ = UG!-=‘+ = (Fr + UFrU+) , (265) 

[i-P”]+ = H’“U+ = UiT”+ = (Fr - UF~U+) (266) 

For purely electromagnetic external gauge fields, with 
A,, proportional to the (diagonal) quark charge matrix, 
or for pure QCD with no external gauge fields, and for 
the usual choice for x as a diagonal quark mass matrix 
the covariant derivative D,x + 8,~ --t 0. Thus in this 
situation the terms containing [Dp& or [D,,D,& all 
vanish. 

D. Final results 

We have collected our final results for & the com- 
plete Lagrangian to order pe, in Tables II-VII, ordering 
the various terms according to the scheme described in 
Sec. IVB above. Each term has been written in such a 
way that it is &rally invariant and for real coefficients 
is Hermitian and invariant under parity and charge con- 
jugation. There are a total of 32 terms of odd intrinsic 
parity, corresconding to the coefficients A; and involving 
an Ed,++ There are 111 terms of even. intrinsic parity, 
corresponding’ to the coefficients Bi. In the course of 
the derivation we obtained 23 independent equation-of- 

motion terms proportional to the operator OgAM of Eq. 
(260). For completeness these have been listed in Table 
IX in Appendix B though we assume that for the sim- 
plest Lagrangian these will have been transformed away 
via an appropriate field transformation [16,43]. 

Also in the course of the derivation we used trace rela- 
tions to express 18 structties originally obtained in t&ms 
of others. Table VIII in Appendix A shows which of the 
original terms are related and which we chose to elimi- 
nate. Likewise epsilon relations were used to eliminate 
16 dependent structties from the ,original set of odd in- 
trinsic parity terms. Table X of Appendix C indicates 
which of the original equations were eliminated. Both of 
these tables, though not strictly necessary for the final 
results, should make it easier to compare our work with 
that of others. 

We have tried to start with all possible structures and 
to eliminate those which are not independent and, to 
extract from the remaining terms as many equation-of- 
motion terms as possible. The procedure for doing this 
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requires several tricks, i.e., the trace and epsilon rela- 
tions, and depends in some cases on the way in which 
one writes the various terms. We cannot prove in a gen- 
eral and rigorous way that the resulting terms we all 
independent. Thus the reader should be aware that it is 
possible that there may be additional tricks which have 
been missed which could be used to express some of the 
structures in terms of others and thus reduce the number 
of independent terms. 

E. Comparison with other results 

The set of independent structures of 0(p6) in the odd 
intrinsic parity sector has already been discussed by Is&r 
[34] and by Akhoury and Alfakih [36]. However, the num- 
her of independent terms we find does not agree with 
either of the above references, which mutually disagree 
with each other. In,the following, we will try to locate 
potential sources of this discrepancy. A direct term-by- 
term comparison is made difficult by the fact that, in 
general, different conventions and, furthermore, different 
basic building blocks are used. 

Let us start with [34] which quotes 49 independent 
terms. This number is close to our starting number of 
54 terms. However, we made use of the epsilon relations 
to eliminate 16 terms. It appears that these relations 
were not used in any derivation prior to the work by 
Akhoury and Alfakih [36] (see, for example, [33]). Thus 
one has to conclude that, in general, too many terms were 
found which, in fact, are not independent. Furthermore, 
there is no reference in [34] to the use of the equation of 
motion or field transformations to eliminate terms. For 
example, of the four terms proportional to kr) - kf) in 
[34], the epsilon relation can;: used to eliminate, say, the 

structure proportional to k, , and from the remaining 

three terms the ones proportional to k$@ and kr) can be 
related using a field transformation, resulting in only two, 
instead of four, independent structures. We made use of 
6 field transformations which reduces our final number 
to 32 as coinpared with 49 in [34]. 

However, even after taking these two observations into 
consideration, there remain some discrepancies. It ap- 
pears that in 1341 not all independent orderings of oper- 
ators under the trace have been taken into account. As 
an example, in ow opinion, there should be another term 

similar to the structure proportional to k$‘,’ involving a 
different contraction of indices. 

Finally, it appears that the set of terms includes struc- 
tures which can be related using the total derivative ar- 
gument resulting in a reductioq bf the number of terms. 
To be specific, let us consider as an example the stiucture 

proportional to kit’. It is straightforward but tedious to 
show that up to a total derivative it is related to the 

terms proportional to k!), kr), kii’, and kg’). For that 
purpose one has to take the covariant derivative off of 

the field strength tensor in the term proportional to k$,) 
and use the total derivative argument as outlined in Sec. 
IIEl. 

A comparison with the work of Akhoury and Alfakih 
[36] turns out to be more difficult as their choice of the 
building blocks is very different from ours. The final 
number quoted in [36] is 30 where 5 terms have been 
eliminated using the +quation of motion. This has to be 
compared with our 32 terms using 6 equation-of-motion 
terms. 

Even though the use of epsilon relations was first pro- 
posed in [36] it seems that their set still contains struc- 
tures which are not independent as a consequence of such 
relations. To give an example, the terms proportional to 
wll - w13 can be interpreted to originate from a ten- 
sor Qapwvp,, which is antisymmetric in the index pairs 
(a,@), (p,v), and (p,n), respectively. Without the ep- 
silon relation, one would naively expect three indepen- 
dent contractions from such a tensor, of which only one 
independent term remains after use of the epsilon rela- 
tion. In a similar fashion one can show that of the four 
terms proportional to w7 - ~10 only three are indepen- 
dent. Finally, the very first structure proportional to WI 
vanishes identically [see our Eq. (258)). 

On the other hand, .it appears that there are terms 
missing in [36]. To be specific, there exists an additional 
independent contraction of indices for the structure of 
the type proportional to we. Furthermore, 136) does not 
contain any terms involving covariant derivatives of x of 
which we find three independent terms. Finally, note that 
in 1361 the equation of motion is used so as to eliminate 
terms which are proportional to Ix]- instead of the struc- 
tures proportional to [D,,D‘.V]-. On the other hand, 
this means that in [36] terms proportional to [D,D‘U]- 
should have been kept. In fact, we find six terms (see 
Table IX) whereas [36] quotes only three. 

Thus it appears that in both of the previous cases 
where a systematic study of the odd intrinsic parity terms 
was made there are terms in the resulting sets which are 
not independent and terms which have been missed. 

V. SUMMARY 

In the preceding sections we have developed the com- 
plete chirally invariant Lagrangian & for the meson see 
tor to order p6. This is intended to be an extension of the 
order p4 Lagrangian Lc4 ,of Gasser and Leutwyler which 
has become the standard in chiral perturbation theory 
and has been used in m&y applications. Such an ex- 
tension is important at this time because we are begin- 
ning to see two-loop calculations of processes for which 
the leading contributions are order p4. Such calculations 
generate some p’ contribu+ms, but the full Ce is needed 
to produce a consistent result. 

Throughout we have emphasized a careful and peda- 
gogical development of the steps leading to the full La- 
grangian, since We feel that it is only via such an approach 
that the reader can be confident that the extremely com- 
plicated final result is complete and correct. To do this 
we have first outlined a hierarchical strategy which allows 
us to eliminate terms in favor of ones lower in the hierar- 
chy. We then discussed a number of general results which 
allowed us to simplify and reduce the number of terms. 
After imposing parity and charge conjugation invariance 
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we could obtain a set of general structures at each level; 
which could then be evaluated to find the set of possible 
terms. Trace relations and epsilon relations were then 
used to eliminate terms which were not independent and 
we described how field transformations could eliminate 
those terms proportional to the lowest-order equation of 
motion. 

The resulting set of terms was then sorted, for the 
usual QCD plus electromagnetic case, according to the 
minimum number of boson and electromagnetic fields ap 
pearing. The final result for te is given in Tables II-VII. 
It consists of 111 terms in the even intrinsic parity sector 
and 32 terms in the odd intrinsic parity sector. 

To our knowledge there have be no prior systematic 
studies of the even intrinsic parity sector to this order, 
though isolated terms have been used in a variety of cal- 
culations. In the odd sector however there have been two 
previous analyses [34,36], which disagree in the number 
of terms with our result and with each other. We have 
shown that in each of these previous cases, terms have 
been missed and terms which are not independent have 
been included. 

It is clear that the coefficients of all of these terms will 
never be evaluated from experiment. However a much 
smaller subset actually contributes to most simple pro- 
cesses, and it may be possible to get information about 
some of them. 

In any case we hope that our derivation of the complete 
and most general & Lagrangian will stimulate system- 
atic chiral perturbation theory studies of processes at this 
order. 
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APPENDIX A: RELATIONS BETWEEN TRACES 

Following the lecture notes of Coleman [50], we will 
derive relations between traces of 3 x 3 matrices. Let A 
be any complex 3 x 3 matrix with eigenvalues al, as, and 
a3 (possibly complex and identical). The solution of the 
characteristics equation is then equivalent to 

(A - a&(A - aJ)(A - ad) = 0 , C-41) 

where I is the 3 x 3 identity matrix. As A is similar to a 
matrix B of the form (511 
A = TBT-’ , 

B= 

&cS’=0 orl, 

one finds 

%(A’) = Tr(B’) = UT + cx; + cz; , 

C-42) 

d&(A) = d&(B) = alaza3 (A3) 

These relations may be used to rewrite Eq. (Al) as 

A3 - ‘Ik(A)A’ + ;{[Tr(A)]’ - Tr(A’)}A - d&(A) = 0 . 

(A4) 

A first important observation is made by taking the trace 
of Eq. (A4), namely that the determinant of a matrix 
can be expressed in terms of traces. This is the justifica- 
tion for not considering determinants as separate build- 
ing blocks in the construction of the chiral Lagrangian 
[52]. Taking the trace of Eq. (A4) one eliminates the 
determinant to obtain (see also Eq. (80) of 1531) 

A3 - TEAM + +(A)]“A - ~T~(A’)A 

+(AS) + +I(A~)T~(A) - ipk(~)]~ = 0 ., (~5) 

Starting from Eq. (A5) we will derive various trace re- 
lations for traces involving between four and six 3 x 3 
matrices. 

Multiplying Eq. (A5) by A and taking the trace results 
in 

Ta - +(A~)~(A) - ~[~(A~)]~ 

+‘lk(A2)[Tr(A)]2 - $(A)14 = 0 (As) 

Inserting A = XlAl +&AZ +&As + &A4 into Eq. (A6) 
and comparing the coefficients of X1X$& one finds (see 
also Eq. (81) of [53]) 
I 

+B~~TP(AlAZ)~(A3)TT(Aq) ~ n(Adn(A2)n(A3)n(A4) = 0 (A7) 



53 EXTENSION OF THE CHIRAL PERTURBATION THw)RY 345 
In the following, we list special cases of Eq. (A7) which we used to relate different terms and thus eliminate redundant 
structures in the chiral Lagrangian: 

AIAzAsA~) - T~(AIAsAs + A,AsAs)Tr(Aa) - c TT(AIAZ)Tk(ABAI) = 0 
s perm 

for Tr(A1) = ‘Ik(A,) = Tr(A3) = 0, and Aq arbitrary; 

6$-mW-MAA4) - 3&WMz)%,A,) = 0 

for ‘Ik(Ai) = 0; 

2Tr((A2B + ABA + BA’)C) - 2Tr(A’B)Tk(C) - Tr(A’)‘Ik(BC) - 2 lk(AB)‘TY(AC) = 0 

for W(A) = Tr(B) = 0, and C arbitrary; 

2 lk((A’B + ABA + BA’)C) - Tk(AZ)Tr(BC) - 2’Ik(AB)Tr(AC) = 0 

for l’k(A) = Tr(B) = ‘h(C) = 0; 

(Al”) 

(All) 

4 Tr(AZBZ) + 2 Tr(ABAB) - 4 Tr(A2B)Tr(B) - lk(A2)Tr(B”) - 2[lk(AB)]2 + Tr(A”)[Tr(B)]’ = 0 

for Tr(A) = 0, and B arbitrary; and 

W2) 

4Tr(AZB2) + 2Tr(ABAB) - Tk(A’)Tr(B’) - 2[Tr(AB)]’ = 0 (A13) 

C-48) 

for ‘h(A) = Tr(B) = 0. 
The last relation, Eq. (A13), was already used by Gasser and Leutwyler in the construction of the p4 Lagrangian 

[14]. Note, however, that the matrices A and B do not have to be Hermitian for Eq. (A13) to hold, as is sometimes 
stated in the literature. Furthermore, Eq. (Ag) is the result obtained in [50]. 

Next we multiply Eq. (A5) by AZ, take the trace, and rewrite Tr(A4) using Eq. (A6) to obtain 

n(.Q) - :*(A3p(~“) - i~r(A~)pk(~)]~ + ~n(~~)p(~)]” - ip(~)]~ = 0 

Inserting A = Cf=, &A; into Eq. (A14) one finds 

AIAsA~&As) - c T~(AIAzA+(A~A$ - c T+‘LAzAs)Tr(A$l(As) 
20 perm 20 perm 

(A14) 

+2 c ~(A,Az)~(A~)~(A,)~(A~) - ~~(AI)T~(A~)T~(A~)T~(A~)~(A,) = 0 (A15) 
10 perm 

We applied the followbig special case of Eq. (A15): 

C n(AAmc) - ~T~(A%)T~(B~) - ~I~(B%)TF(A~) - ~r(ABCpk(~i3) 
6 perm 

for ‘R(A) = Tr(B) = 0, and C arbitrary. 

-Tr(ACB)Tr(AB) - ‘Ik(A*B)Tk(BC) - Tr(AB’)Tk(AC) = 0 (Al6) 

For ow final application we can restrict ourselves to Tr(A) = 0. Multiplying Eq. (A5) by AZ, and taking the trace 
one obtains 

n(A’) - in(A4)Tk(~Z) - ~[TI(A~)]~ = 0 C-417) 

for TI(A) = 0. Inserting A = cf=, Xi& with Tr(A;) = 0 into Eq. (A1’7) yields 

AIAzA~A~AsAB) - 5 c Tr(AtAzAsAdTr(AtsAe) - c T~(AIA~A~)%(A~A~A~) = 0 (A18) 
90 perm 40 perm 
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TABLE VIII. Application of trace relations: The first column contains the relevant equation numbers of structures which 
are related by trace relations. The second column refers to the specific trace relation which has been applied. The third column 
denotes the equation number of the structure which we have chosen to eliminate. 

Trace structure 
Related structures relation eliminated 

(42),W,W,W (A13) 
(43),(45)>(6%(62) (Ag) IiS 

(47),(%(‘%(65) (AI3) 
(48),(49),(51),(64),(66),(67) (Ag) 1:;; 

W-(58),(68)-(74) W’) 
W,W,O’W’6) (AI3) $i] 

(W,WWW77) (All) 
(85),(86),(96),(97),(98) (AlO) $:j 

(8~),(88),(99),(lOO),(lOl) C-48) (87) 
(91)-(93),(106)-(108) @W (92) 

(lO4),(lO5),(lO9),(11~) (AI3) 
(119)-(121),(138)-(140) (9 I::;{ 

(161),(162),(165),(167),(169),(171) (A=) (162) 
(163),(164),(166),(168),(170),(172) kW 064) 

(193),(194),(198),(199) 
(195)-(197),(200)-(202) (pA193: 

094 

(203),(204),(208),(209) IE; 
(205)-(207),(210)-(212) (206) 

for Tr(A;) = 0. As a special application we insert A1 = P,, AZ = Pa, Aa = Pp, Ad = P@, As = PT, and Ag = P7 
into Eq. (A18) to obtain 

2 Tr((P P)3) + 3 Tr(P . PP,,P PPp) + 6 n(P PP,,PyP”P”) + 3 Tb(P,P,P’P,P”P”) + Tr(P,P,PpPMP”Pp) 

-Tr(P . P)Tr((P P)2) - +(P P)Tr(P,P”P~P”) - ?Tr(P,P”)Tr(P . PP’P”) - 2 qP,P”)n(P~P,P”Pp) 

-3Tr(P. PPJTr(P. PPP) - qP,P”P,)l-k(P~P”Pp) - Tr(P,P”P,)Tk(PPPPP”) = 0 (W 

for Tr(P,) = 0. 
In Table VIII we summarize how we applied the trace relations. It contains the equation numbers of structures which 

are not independent due to trace relations as well as the specific trace relation which connects them. Furthermore, 
we list which structure we have chosen to eliminate. 

APPENDIX B: EQUATION-OF-MOTION TERMS 

For the purposes of completeness we list in Table IX in the same form as our final results all of the terms of the 

original Lagrangian which are proportional to the factor [D,,DW-, which has been replaced by C$&. As detailed 
in Sec. IV A these terms can simply be dropped from the most general form. 

APPENDIX C: EPSILON RELATIONS 

We list in Table X the equation numbers of the origirial structures we derived which are related by the epsilon 
relations of Sec. IIE7 and the ones which we chose to eliminate. 
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TABLE I& Tmm,s in the Lagrangian proportional to the classical equation of motion. The lowest order equation of motion 
operator O,,, LS gmen by Eq. (260). The double covariant derivative D,D,A is assumed to be symmetric in its indices in 
accord with Eq. (27), as are all multiple covariant derivatives. 

Terms in the Lagrangian without an ~.,a and proportional to the classical equation of motion Jh 

(41) 

(42) 

(45) 

(59) 

(60) 
(‘31) 
(62) 
(63) 

(84) 

(86) 
(89) 
(95) 
(96) 
(97) 
(98) 

Pw 
+iE1,~{O~~,([D,U]-[D.U]-[H"]+ +[H"]+[D.u]-[D,u]-)} W8) 
+iElsa{U~~,([D~U]-[DyGrY]+ - [D,G’“]+[D,U]-)} (122) 
+iE,,n(o~~,[D,U]-)n([D,u]-Ix""]+) (137) 

+WW%%,([xl+lrl- + [x14x1+)1 (156) 

+&lp(o~~,[xl+)Tr(M-) (159) 
+Ez*n(o~~,[xl-)Tr([xl+) W’J) 
+Ea~Tr{U~~~([G”~l+[~~sl+ - [~a~l+P”~l+)~ (231) 

Terms in the Lagrangian with an ~~p,,a, (ram = +l), and proportional to the classical equation of motion Eq. 
+~E~~T~(o~~~[D~~]-[DBu]-[D~~]-[D~u]-)E,~,~ (46) 
+E,,n{o~~~([DBU]_[D7U]-[G'"]+ -[G”“]+[D’U]-[DPU]-)}~~~~” W) 
+Eas?t(0'~,[DPU]-[G'Y]+[D~U]-)~~87a" 

+Ea,~~O~~M([DPU]-[D~H'Y]* +[D7H"']+[DBU]-)}~~~rv 

(11-4 
(125) 

+iEas~(0'2',[H"P]+[H'd]+)e,~~6 

+iEzs~(O~~,[G~P].[G~6j+)s,p,a 

(233) \ 
(235) 

TABLE X. Application of ep+lon relations: The first column contains the relevant equation numbers of structures which 
are related bv emilon relations. The second column denotes the equation number of the structure which we have chosen to . _ 
eliminate. 

Related structures 

(W,W,63) 

Structure eliminated 

(53) 

(1~‘4,OW,O17) (1~‘4,OW,O17) 
(111),(113),(115),(116) (111),(113),(115),(116) 
(125),(126),(127),(128) (125),(126),(127),(128) (128) (128) 
(133),(134),(135),(136) (133),(134),(135),(136) (135),(13‘$ (135),(13‘$ 

W),WV,W’J) W),WV,W’J) (217),(226) (217),(226) 

(213),(214),(216),(218),(~~9),(221) (213),(214),(216),(218),(~~9),(221) W8),(219),@1) W8),(219),@1) 

(225M’W,W’) (225M’W,W’) 
Pww,(2w Pww,(2w g:; g:; 

(W,GW (W,GW 
CW,CN CW,CN ;;z; ;;z; 

(253) (253) (256) (256) 
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