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One would expect spacetime to have a foamlike structure on the Planck scale with a very high
topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology
occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of
S x S and K3 bubbles. Comparison with the instantons for pair creation of black holes shows
that the S x S bubbles can be interpreted as closed loops of virtual black holes. It is shown that
scattering in such topological Buctuations leads to loss of quantum coherence, or in other words, to
a superscattering matrix P that does not factorize into an S matrix and its adjoint. This loss of
quantum coherence is very small at low energies for everything except scalar fields, leading to the
prediction that we may never observe the Higgs particle. Another possible observational consequence
may be that the 8 angle of QCD is zero without having to invoke the problematical existence of a
light axion. The picture of virtual black holes given here also suggests that macroscopic black holes
will evaporate down to the Planck size and then disappear in the sea of virtual black holes.

PACS number(s): 04.60.—m, 04.70.Dy

I. INTRODUCTION

It was John Wheeler who erst pointed out that quan-
tum fl.uctuations in the metric should be of order one at
the Planck length. This would give spacetime a foamlike
structure that looked smooth on scales large compared
to the Planck length. One might expect this spacetime
foam to have a very complicated structure, with an in-
volved topology. Indeed, whether spacetime has a man-
ifold structure on these scales is open to question. It
might be a fractal. But manifolds are what we know how
to deal with, whereas we have no idea how to formulate
physical laws on a fractal. In this paper I shall therefore
consider how one might describe spacetime foam in terms
of manifolds of high topology.

I shall take the dimension of spacetime to be four. This
may sound rather conventional and restricted, but there
seem to be severe problems of instability with Kaluza
Klein theories. There is something rather special about
four dimensional manifolds, so maybe that is why nature
chose them for spacetime. Even if there are extra hidden
dimensions, I think one could give a similar treatment
and come to similar conclusions.

There are at least two alternative pictures of space-
time foam, and I have oscillated between them. One is
the wormhole scenario [1,2]. Here the idea is that the
path integral is dominated by Euclidean spacetimes with
large nearly Hat regions (parent universes) connected by
wormholes or baby universes, though no good reason was
ever given as to why this should be the case. The idea
was that one wouM not notice the wormholes directly,
but only their indirect eKects. These wouM change the
apparent values of coupling constants, like the charge on
an electron. There was an argument that the apparent
value of the cosmological constant should be exactly zero.
But the values of other coupling constants either were not

determined by the theory, or were determined in such a
complicated way that there was no hope of calculating
them. Thus the wormhole picture would have meant the
end of the dream of 6nding a complete unified theory
that would predict everything.

A great attraction of the wormhole picture was that it
seemed to provide a mechanism for black holes to evapo-
rate and disappear. One couM imagine that the particles
that collapsed to form the black hole went off through
a wormhole to another universe or another region of our
own universe. Similarly, all the particles that were ra-
diated &om the black hole during its evaporation could
have come from another universe, through the wormhole.
This explanation of how black holes could evaporate and
disappear seems good at a hand waving level, but it does
not work quantitatively. In particular, one cannot get
the right relation between the size of the black hole and
its entropy. The nearest one can get is to say that the
entropy of a wormhole should be the same as that of the
radiation-ulled Friedmann universe that is the analytic
continuation of the wormhole. However, this gives an
entropy proportional to size to the three halves, rather
than size squared, as for black holes. Black hole ther-
modynamics is so beautiful and fits together so well that
it cannot just be an accident or a rough approximation.
So I began to lose faith in the wormhole picture as a
description of spacetime foam.

Instead, I went back to an earlier idea [3], which I will
refer to as the quantum bubbles picture. Like the worm-
hole picture, this is formulated in terms of Euclidean
metrics. In the wormhole picture, one considered met-
rics that were multiply connected by wormholes. Thus
one concentrated on metrics with large values of the first
Betti number, B~. This is equal to the number of gen-
erators of infinite order in the fundamental group. How-
ever, in the quantum bubbles picture, one concentrates
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if the spacetime manifold is compact. If it is noncompact,
y = B2+ + B2 + 1 and the volume integrals acquire
surface terms.

Barring some pure mathematical details, it seems that
the topology of simply connected four manifolds can be
essentially represented by gluing together three elemen-
tary units, which I shall call bubbles. The three elemen-
tary units are S x S, CP, and K3. The latter two have

2
orientation reversed, versions, CP and K3. Thus there
are Gve building blocks for simply connected four mani-
folds. Their values of the Euler number and signature are
shown in Table I. To glue two manifolds together, one
removes a small ball from each manifold and identifies
the boundaries of the two balls. This gives the topolog-
ical and differential structure of the combined manifold,
but they can have any metric.

If spacetime has a spin structure, which seems a phys-
ically reasonable requirement, there cannot be any CP

2
or CP bubbles. Thus spacetime has to be made up just
of S x S, K3, and K3 bubbles. K3 and K3 bubbles will
contribute to anomalies and helicity changing processes.
However, their contribution to the path integral will be
suppressed because of the fermion zero modes they con-
tain, by the Atiyah-Singer index theorem. I shall there-
fore concentrate my attention on the S x S bubbles.

When I first thought about S x S bubbles in the late

TABLE I. The Euler number and signature for the basic
bubbles.

~xS2
CP
CP
K3
K3

Euler number

4
3
3

24
24

Signature

0
1
-1
16
-16

on spaces with large values of the second Betti number,
B2. The spaces are generally taken to be simply con-
nected, on the grounds that any Inultiple connectedness
is not an essential property of the local geometry, and can
be removed by going to a covering space. This makes Bq
zero. By Poincare duality, the third Betti number, B3, is
also zero. On this view, the essential topology of space-
time is contained in the second homology group, H2. The
second Betti number, B2, is the number of two spheres
in the space that cannot be deformed into each other or
shrunk to zero. It is also the number of harmonic two
forms, or Maxwell fields, that can exist on the space.
These harmonic forms can be divided into B2+ self-dual
two forms and B2 anti-self-dual forms. Then the Euler
number and signature are given by

70s, I felt that they ought to represent virtual black holes
that would appear and disappear in the vacuum as a re-
sult of quantum Huctuations. However, I was never able
to see how this correspondence would work. That was
one reason I temporarily switched to the wormhole pic-
ture of spacetime foam. However, I now realize that my
mistake was to try to picture a single black hole appear-
ing and disappearing. Instead, I should have been think-
ing of black holes appearing and disappearing in pairs,
like other virtual particles. Equivalently, one can think
of a single black hole which is moving on a closed loop.
If you deform the loop into an oval, the bottom part cor-
responds to the appearance of a pair of black holes and
the top, to their coming together and disappearing.

In the case of ordinary particles like the electron, the
virtual loops that occur in empty space can be made
into real solutions by applying an external electric field.
There is a solution in Euclidean space with an electron
moving on a circle in a uniform electric field. If one ana-
lytically continues this solution from the positive definite
Euclidean space to Lorentzian Minkowski space, one ob-
tains an electron and positron accelerating away from
each other, pulled apart by the electric field. If you cut
the Euclidean solution in half along 7. = 0 and join it
to the upper half of the Lorentzian solution, you get a
picture of the pair creation of electron-positron pairs in
an electric field. The electron and positron are really the
same particle. It tunnels through Euclidean space and
emerges as a pair of real particles in Minkowski space.

There is a corresponding solution that represents the
pair creation of charged black holes in an external elec-
tric or magnetic field. . It was discovered in 1976 by Ernst
[4] and has recently been generalized to include a dilaton
[5] and two gauge fields [6). The Ernst solution repre-
sents two charged black holes accelerating away from each
other in a spacetime that is asymptotic to the Melvin uni-
verse. This is the solution of the Einstein-Maxwell equa-
tions that represents a uniform electric or magnetic field.
Thus the Ernst solution is the black hole analogue of the
electron-positron pair accelerating away from each other
in Minkowski space. Like the electron-positron solution,
the Ernst solution can be analytically continued to a Eu-
clidean solution. One has to adjust the parameters of the
solution, like the mass and charge of the black holes, so
that the temperatures of the black hole and acceleration
horizons are the same. This allows one to remove the
conical singularities and obtain a complete Euclidean so-
lution of the Einstein-Maxwell equations. The topology
of this solution is S x S minus a point which has been
sent to infinity.

The Ernst solution and its dilaton generalizations rep-
resent pair creation of real black holes in a background
field, as was first pointed out by Gibbons [7]. There has
been quite a lot of work recently on this kind of pair cre-
ation. However, in this paper I shall be less concerned
with real processes like pair creation, which can occur
only when there is an external field to provide the en-

ergy, than with virtual processes that should occur even
in the vacuum or ground state. The analogy between pair
creation of ordinary particles and the Ernst solution indi-
cates that the topology S x S minus a point corresponds
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to a black hole loop in a spacetime that is asymptotic to
R . But S x S minus a point is the topological sum of
the compact bubble S x S with the noncompact space
R . Thus one can interpret the S x S bubbles in space-
time foam as virtual black hole loops. These black holes
need not carry electric or magnetic charges, and will not
in general be solutions of the field equations. But they
will occur as quantum Huctuations, even in the vacuum
state.

If virtual black holes occur as vacuum Huctuations, one
might expect that particles could fall into them and re-
emerge as different particles, possibly with loss of quan-
tum coherence. I have been suggesting that this process
should occur for some time, but I was not sure how to
show it. In fact Page, Pope, and I did a calculation in
1979 of scattering in an S x S bubble, but we did not
know how to interpret it [8]. I feel now, however, that I
understand better what is going on.

The usual semiclassical approximation involves pertur-
bations about a solution of the Euclidean field equations.
One could consider particle scattering in the Ernst solu-
tion. This would correspond to particles falling into the
black holes pair created by an electric or magnetic field.
The energy of the particles would then have to be radi-
ated again before the pair came back together again at
the top of the loop and annihilated each other. How-
ever, such calculations are unphysical in two ways. First,
the Ernst solution is not asymptotically Hat, because it
tends to a uniform electric or magnetic field at infinity.
One might imagine that the solution describes a local
region of field in an asymptotically flat spacetime, but
the Geld would not normally extend far enough to make
the black hole loop real. This would mean that the field
would have to curve the universe significantly. Second,
even if one had such a strong and far reaching Geld, it
would presumably decay because of the pair creation of
real black holes.

Instead, the physically interesting problem is when a
number of particles with less than the Planck energy col-
lide in a small region that contains a virtual black hole
loop. One might try and find a Euclidean solution to de-
scribe this process. There are reasons to believe that such
solutions exist, but it would be very difBcult to Gnd them
exactly, and such effort would not really be appropriate,
because one would expect the saddle point approxima-
tion to break down at the Planck length. Instead, I shall
take the view that S x S bubbles occur as quantum
Huctuations and that the low energy particles that scat-
ter off them have little effect on them. This means one
should consider all positive definite metrics on S x S,
calculate the low energy scattering in them, and add up
the results, weighted with exp( —I) where I is the ac-
tion of the bubble metric. If one were able to do this
completely, one would have calculated the full scattering
amplitude, with all quantum corrections. However, we
neither know how to do the sum, nor how to calculate
the particle scattering in any but rather simple metrics.

Instead, I shall take the view that the scattering will
depend on the spin of the Geld and the scale of the metric
on the bubble, but will not be so sensitive to other details
of the metric. In Sec. III I shall therefore consider a par-

ticular simple metric on S x S in which one can solve
the wave equations. I show that scattering in this metric
leads to a superscattering operator that does not factor-
ize. Hence there is loss of quantum coherence. In Sec. IV,
I consider scattering on more general S x S metrics, and
again find that the g operator does not factorize. The
magnitude of the loss of quantum coherence and its pos-
sible observational consequences are discussed in Sec V.
Section VI examines the implications for the evaporation
of macroscopic black holes, and Sec. VII summarizes the
conclusions of the paper.

II. THE SUPERSCATTERING OPERATOR

In this section I shall briefly describe the results of
Ref. [9] on the superscattering operator P which maps
initial density matrices to Gnal density matrices,

A gAD C
P+a =& IBCP—D.

The idea is to define n point expectation values for a
field P by a path integral over asymptotically Euclidean
metrics,

Zfd] = f dfd]e

Because of the diffeomorphism gauge freedom, the ex-
pectation values have an invariant meaning only in the
asymptotic region near infinity, where the metric can be
taken to be that of flat Euclidean space. In this region,
one can analytically continue the expectation values to
points xq, x2, . . . , x„ in Lorentzian spacetime. In Eu-
clidean space, the expectation values do not depend on
the ordering, but in Lorentzian space they do, because
the field operators at timelike separated points do not
commute. In order to get the Lorentzian Wightman func-
tions (P(xi)P(x2). . . P(x„)), one performs the analytical
continuation from Euclidean space, keeping a small posi-
tive imaginary time separation between the points x; and
x, q. This generalizes the usual Wick rotation from flat
Euclidean space to Minkowski space.

One can interpret the field operators P in the
Lorentzian Hat space near infinity as particle and antipar-
ticle annihilation and creation operators in the usual way,

Pt = Z;(f;~b;+ f;~a)),

where (f,~) are a complete orthonormal basis of solu-
tions of the wave equation that are positive &equency at
future or past infinity.

In the case of a black hole formed by gravitational col-
lapse, the initial states, which are ~vP, ) = I;~0), where I,
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is a string of initial creation operators, form a complete
basis for the Hilbert space of Belds on the background.
However, the states created by strings E; of creation op-
erators at future infinity do not form a complete basis,
because one also has to specify the field on the future
horizon of the black hole. Indeed, it is this incomplete-
ness of states at future infinity that is responsible for the
radiation from the black hole. Spacetimes with closed
loops of black holes, like the Ernst solution, have both
future and past black hole horizons. Thus one might ex-
pect that in such spacetimes, the states at both past and
future infinity would fail to be a complete basis for the
Hilbert space.

If a spacetime is not asymptotically complete, that is,
if the states at future or past infinity are not a complete
basis for the Hilbert space, then quantum Beld theory on
such a background will not be unitary. We are used to
this already. Quantum field theory on the fixed back-
ground of a black hole formed by gravitational collapse
certainly is not unitary if one considers only the asymp-
totic states at past and future infinity. It might be ob-
jected that such a calculation ignores the back reaction
of the particle creation and that the Bnal state consists
not only of the asymptotic particle states at future in-
finity, but also the black hole itself, which contains the
states needed to restore unitarity. The answer to the
first objection is that if one calculates the scattering on
all backgrounds and adds them up with the appropriate
weights, one automatically includes the back reaction.
The answer to the second objection is that with a closed
loop of black holes, there is no black hole in the final
state: the black holes annihilate each other in a way that
is nonsingular at least in the Euclidean regime.

Even if the asymptotic states do not form a complete
basis for the Hilbert space, one can ask for the proba-
bility of observing the final state ~@s) (@4~ if one creates
the initial state ~@i)($2~ with strings of initial creation
operators. This will be related to

(I2t FsF4t Ii ) .

If the asymptotic states at future and past infinity are
complete bases for the Hilbert space, this superscattering
matrix element can be factored,

(I2tF3F4Ii) = (I2tF3)(F4Ii).

The second factor is the S matrix and the first is its ad-
joint. However, when black holes are present, the asymp-
totic states are not complete and the P' operator does not
factorize.

One can now use the Wightman functions to calculate
the superscattering operator. One can calculate the ex-
pectation values of annihilation and creation operators
by taking the scalar products of the Wightman functions
with initial and final wave functions f; and f, on space-
like or null surfaces in the infinite future or past. To
get the right operator ordering, these surfaces should be
given small displacements in the imaginary time direction
increasing from left to right in the expectation value.

III. A SIMPLE BUBBLE METRIC

I now review a particularly simple example, previously
discussed in [8]. Start with the four-sphere S . This is
conformally equivalent to Aat Euclidean space B with a
point p added at infinity. One can see this by blowing up
the round metric g on S with a conformal factor

0 = G(x, p),

where G is the Green function for the conformally invari-
ant scalar Beld.

Choose coordinates 0, P, y, and g on the four sphere.
Now identify the point with coordinates (0, P, y, g) with
the point (vr —0, —P, m —y, vr —g). This identification has
two fixed points q and r at opposite points on the equator
it = m/2. At the fixed points, the identified sphere is an
orbifold, not a manifold. However, one can make it a
manifold again by cutting out small neighborhoods of
the two fixed points and replacing them by an Eguchi
Hanson metric and an Eguchi Hanson with the opposite
orientation, respectively. This identification and surgery
changes the topology of the S into S x S . One can
now pick a point p which is neither q nor r, and send it
to infinity with a conformal factor

O(x) = G(x, p).

This gives an asymptotically Euclidean metric with
topology S2 x S2 —(p).

There will be well-defined expectation values or Green
functions on this Euclidean space, which one can con-
struct with image charges. One can then use these ex-
pectation values to calculate particle scattering by the
bubble. One can define the data for ingoing and outgo-
ing plane waves on the light cone of the infinity point p,
on which the metric is asymptotically Lorentzian. This
light cone is like X and X+ in asymptotically Hat space.
One then uses the analytically continued expectation val-
ues to propagate the in states to the out states.

This scattering calculation was done some time ago but
it was not understood how to interpret it. I now think
I see what is happening. A positive frequency solution
of the wave equation in Minkowski space can be analyt-
ically continued to be a solution that is holomorphic on
the lower half of Euclidean space. One can conformally
map Euclidean space to S —(p) so that p, q, and r lie
on the equator. Then a positive frequency solution is
holomorphic on the lower half sphere. The identification
I described connects points in the lower half sphere with
points in the upper half sphere. Thus, it maps a positive
frequency function into a negative frequency one.

Recall f'rom Sec. II that the P' operator element

(I2t FsF4t Ii)

can be calculated by taking the scalar product of the
Wightman functions with the initial and final wave func-
tions on X and X+. To get the right operator ordering,
the contours of integration over the aKne parameter u
on the null geodesic generators of 2 and 2+ should be
displaced slightly in the order 2341 in increasing imagi-
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Bubble metric

FIG. 1. The complex t plane for the calculations of the su-
perscattering operator, showing how the Wightman functions
are integrated over contours with a small imaginary time dis-
placement. The upper diagram corresponds to Hat space and
the lower to the extra scalar products that occur in the iden-
ti6ed sphere bubble.

nary u. If there were no identifications and the spacetime
was just fIat space, the negative frequency wave &om the
final state annihilation operators E4~ can only propagate
upwards in the complex u plane. This means the only
contour with which they can have a nonzero scalar prod-
uct is that for the initial creation operators Ii. Similarly,
the positive &equencies from the final state creation op-
erators E3 can only propagate downwards in imaginary u,
and can have a nonzero scalar product only with the con-
tour on which the initial state annihilation operators I2
act (Fig. 1). Thus in this case the $ operator factorizes,

(I2FsF4It) = (I2Fs)(E4I&).

There is a unitary evolution with no loss of quantum
coherence.

On the identified four sphere however, the data from
the final state annihilation operators E4t will also prop-
agate downwards &om an image of the contour 4 below
the real u axis. It thus can have a nonzero scalar product
with the contour 2 on which the initial state annihilation
operators I2 act. Similarly, there can be a nonzero scalar
product between the data from the final state creation
operators E3 and the initial state creation operators Ii
(Fig. 1).

These scalar products have been calculated for confor-
mally invariant fields of spin s propagating on this back-

+(q k2)(q . k4)

- 1/2

where p~ = 2(x~ + x„") and q" = x~ —z„" Th. e scalar
product 3 ~ 1 has a similar factor for each particle, but
kz and k3 appear with the opposite signs.

There will be factors like this for each of the n particle
lines passing through the bubble. There will also be a
factor A ~ exp( —I) where A is the determinant of the
conformally invariant field wave operator and I = &mq
is the action of the asymptotically Euclidean bubble met-
ric. One then integrates over the positions of the points
q and r or equivalently over the vectors p and q. The
integral over all p produces b(k2 + k4 —ks —kq). This
does not guarantee energy momentum conservation be-
cause it would be satisfied by kz ——kz g ks ——k4. As
discussed below, energy momentum conservation comes
from the path integral over all metrics equivalent under
difI'eomorphisms. The integral over all q averages over the
orientation and scale of the bubble metric. The dominant
contribution to the integral over the scale will come from
bubbles of order the Planck size.

These nonzero scalar products that would not occur in
fiat space have two consequences. First, consider a field &P

with a global symmetry such as U (1) that is not coupled
to a gauge field. Take the initial state operators Ii and I2
to be particle creation operators and the final state op-
erators E3 and E4 to be antiparticle creation operators.
Then there will be a nonzero probability for a particle
to change into its antiparticle. This is what one would
expect. In the presence of black holes, real or virtual,
global charges will not be conserved. However, if the par-
ticles are coupled to a gauge field, averaging over gauges
will make the amplitude zero unless the gauge charge
is conserved. Similarly, averaging over diKeomorphisms,
the gravitational gauge degrees of &eedom, should ensure
that the amplitude is zero unless energy is conserved. As
was seen above, energy conservation is not guaranteed by
integration over the position of the bubble. When there
is loss of quantum coherence, it is only local symmetries
and not global ones that imply conservation laws.

The second consequence of the nonzero scalar products
is that the P' operator giving the probability to go from
initial to final will not factorize into an S matrix times
its adjoint. This means that the evolution from initial to
final will be nonunitary and will exhibit loss of quantum
coherence. This is what you might expect in a bubble
with nontrivial topology, because the Euler number of
three will mean that one cannot foliate the spacetime
with a family of time surfaces. One thus cannot show
there is a unitary Hamiltonian evolution. However, any
suggestion that quantum coherence may be lost seems to
arouse furious opposition. It is almost like I was attacking
the existence of the ether.
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IV. SCATTERING BY BLACK HOLE LOOPS

The metric considered in the last section was a special
liiniting case of an asymptotically Euclidean S x S —(p)
metric. However, one might be concerned that because it
is so special, scattering in it would not be typical of S x
S —(p) bubbles. In this section I shall therefore consider
scattering in a difFerent class of metrics that correspond
more directly with the intuitive picture of S x S bubbles
as closed loops of real or virtual black holes.

One cannot analytically continue a general real Eu-
clidean metric to a section of the complexified manifold
on which the manifold is real and Lorentzian. This does
not matter for scattering calculations, because one can
analytically continue to Lorentzian at infinity, and one
does not directly measure the metric at interior points,
but one integrates over all possible metrics. The idea
is that the path integral over all Lorentzian metrics is
equivalent to a path integral over all Euclidean ones in
a contour integral sense. However, in order to give the
scattering a physical interpretation, it is helpful to con-
sider metrics that have both Euclidean and Lorentzian
sections. This will be guaranteed if the metric has a
hypersurface orthogonal Killing vector. If the metric is
asymptotically Euclidean, one can interpret this Killing
vector as corresponding to a Lorentz boost at infinity.
For simplicity, I shall also assume that there is a second
commuting hypersurface orthogonal Killing vector corre-
sponding to rotations about an axis. The is the maxi-
mum symmetry that an asymptotically Euclidean metric
on S x S —(p) can have. In particular, virtual black
holes cannot be spherically symmetric.

The Lorentzian section of the metric will have a struc-
ture like that of the C metric or the Ernst solution, with
two black holes accelerating away from each other. By
the positive action theorem, there are no asymptotically
Euclidean solutions of the vacuum Einstein equations
with topology S x S —$p). The C metric has sin-
gularities on the axis, which can be interpreted as cosmic
strings pulling the black holes apart, and the Ernst so-
lution is asymptotic not to Hat Euclidean space, but to
the Euclidean Melvin solution. However, as was said ear-
lier, I shall consider asymptotically Euclidean metrics on
S x S —(p) that correspond not to real black holes, but
to virtual black hole loops that arise as vacuum Huctua-
tions. These will not be solutions of the Einstein equa-
tions, and will be similar to the C metrics, but without
singularities on the axis.

The Lorentzian metrics will be asymptotically Oat with
zero mass. They will have good past and future null in-
finities 2 and X+, which are the light cones of the point
p at infinity in the conformally compactified Euclidean

Lorentzian solutions with nonzero mass have a weak con-
formal singularity at the in6nity point. However I shall ignore
this for center of mass energies low compared to the Planck
mass. Such a singularity would acct the propagation only in
the asymptotic region.

Bla
ho

lack
hole

FIG. 2. The Lorentzian section of an asymptotically Eu-
clidean metric on S x S —pt.

metric or the spatial infinity point I in the conformally
compactified Lorentzian metric. The boost Killing vector
( and the axisymmetric Killing vector g can be extended
to 2+. On 2+, ( will have two fixed points, q&+ and q+,
on the left and right of Fig. 2. The past light cones of
these fixed points, apart from the two generators p&+ and
p+, which lie in 2'+, form the left and right acceleration
horizons 'R

~ and 'R „. These light cones focus again to
two fixed points q„and q& on the right and left of 2
respectively. The acceleration horizons divide the region
outside the black holes into the left and right Rindler
wedge, labeled IV and II, and the future and past re-
gions, labeled I and III.

There are also two black hole horizons 'RM and 'Rg„.
The horizon Qg~ consists of 'R&&, the future horizon of
the left black hole, and 'R&&, the past horizon of the right
black hole. Similarly, 'Bb„consists of the future horizon
of the right black hole and the past horizon of the left
black hole.

The region outside the black holes is globally hyper-
bolic. One can therefore analyze the behavior of a mass-
less field P in a manner similar to that on static black
holes [10I. One can take a past Cauchy surface to be 2'

and the past left and right black hole horizons 'R&„and
'R&&. Similarly, X and future black hole horizons will
form a future Cauchy surface. Now consider a solution p
of the wave equation which has positive frequency on 2+
with respect to the afBne parameter and zero data on the
future black hole horizons. As Yi [11] has pointed out,
it is reasonable to ignore p&+ and p+ as sets of measure
zero on 2+, and to take the support of p to be away from
them. In other words, one ignores waves directed exactly
along the axis asymptotically.

In this case, p will propagate backwards through the
future region I to the future V formed by the future halves
of the acceleration horizons. On W+& and 'R+ one can
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decompose p, into modes with definite frequency ~' with
respect to the Rindler time associated with the boost
Killing vector (. One can also separate into eigenmodes
with respect to the axial Killing vector g, but the wave
equation probably cannot be separated in the remaining
two dimensions. I shall therefore label the eigenmodes

„where n labels the eigenmodes of the wave equa-
tion in the remaining two dimensions.

One can now consider the wave equation in the right
hand Rindler wedge II. Since one is ignoring p+ as a set
of measure zero, a Cauchy surface for this region will be
the future acceleration horizon 'R+„and the future black
hole horizon 'R&„. The data for p will be zero on '8&+„(by
assumption), and will be a mixture of eigenmodes g
on 'R+„. A fraction I' of the Aux of each eigenmode
will cross the past black hole horizon 'R&&, and the re-
maining (1—I' ) will reflect on the effective potential
and will cross the past acceleration horizon 'R

&. Simi-
larly, one can solve the wave equation in the left hand
Rindler wedge IV and find that a fraction I' goes
into the black hole and a fraction (1 —I' ) crosses the
past acceleration horizon.

One now has data on the two past acceleration horizons
'R

&
and 'R „and can solve the wave equation on the past

region III. For each eigenmode, the data on the left and
right acceleration horizons will both be reduced by the
same factor (1 —I' I ) ~ . Thus it seems likely that
p will be purely positive frequency on X . However, it
will not be purely positive frequency on the black hole
horizons, because it is nonzero on the past parts 'R&„and
A.

&&
but it is zero by assumption on the future parts 'R&&

and Ab„. This means that an observer at X+ will observe
particles in the mode p, contrary to the claims of Yi [11].
Another way of saying this is that the positive frequencies
from the final state creation operators E3 on X+ will have
a nonzero scalar product with the final state annihilation
operators F4, so that

(FsF4t) g 0.

Similarly, the positive frequencies from the initial cre-
ation operators Ii can go into the black holes and have a
nonzero scalar product with the initial annihilation op-
erators. This gives a diagram like Fig. 3. Note that the
initial annihilation and creation operators can belong to
different particle species from those of the final opera-
tors. This is what one might expect because the No Hair
theorems imply that a black hole forgets what fell into
it apart from charges coupled to gauge fields. It means
that the full superscattering matrix element will not fac-
torize. Further discussion of scattering in metrics of this
type will be given in another paper.

V. OBSERVATIONAL CONSEQUENCES

Obviously, quantum coherence is not lost under nor-
mal conditions to a very high degree of approximation,
so one has to ask what order of magnitude the bubble
scattering calculation would indicate. It seems that the
scattering at low energies depends strongly on the spin

Im,
Contour for initial
creation operators I

1

0

Contour for final
annihilation operators F

4

Re,

Contour for initial

annihilationt
operators I2

ur for final
on operators F3

Virtual black
hole loop

FIG. 3. The complex t plane for scattering on an asymp-
totically Euclidean virtual black hole metric.

These amplitudes are of the same order as those that
would be produced by effective interactions of the form

4—2n(1+s) (y)
2n

where n & 2 is the number of pairs of ingoing or outgoing
momenta scattered through the bubble. The field P in the
effective interaction is the scalar field for s = 0 and the
spinor field for s = 2. For s = 1, it is the field strength
F„.The scattering calculations have not been done ex-
plicitly for spin 2 and 2, but on this basis one would
expect the effective interactions to involve the gradient
of the spin 2 field. and the curvature, respectively.

One would like to know whether this spin dependence
of the scattering is peculiar to the special bubble metric
considered in Sec. III, or whether it is a general feature.
In fact, consideration of scattering in the more general
metrics of Sec. IV suggests that the effective interactions
depend on spin in a similar way. The nonfactoring part
of the scattering can be thought of as a scattering cross
section for a wave to get into a black hole and a thermal
factor. Calculations of scattering by static black holes
indicate that for black holes much smaller than the wave
length u, the absorption cross sections are of the order
of the geometrical cross sections for both s = 0 and s = 2,
while they are of order u for s = 1. The Bose-Einstein
thermal factor will be of order u while the Fermi-Dirac
factor will be order 1. Thus one will get the same t" '
dependence on spin. It is therefore reasonable to suppose
that any bubble metric will give effective interactions of
the same order.

The effective interactions induced by bubbles are lo-
cal, in that the scale of the bubble will be of order of the

of the field. One can see this explicitly in the case of the
identified sphere metric in Sec. III. Here the amplitudes
were products of Bessel functions J2, (c) for each pair of
momenta, where s was the spin and c was a quantity of
order of the center of mass energy in the scattering. For
low energy scatterings, c (( 1,

J2, (c) = c".
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Planck length, while the center of' mass wavelength will
be larger for low energy scatterings. However, they will
be nonlocal in that they will mix up the separation that
one has in Bat space between the diagrams for the S ma-
trix and its adjoint. This separation is of order e, and one
takes the limit e —+ 0. Thus the separation will become
less than the size of the bubble. If the effective interac-
tions had been purely local, they would have produced
a unitary evolution, but the fact that they are nonlocal
means that quantum coherence can be lost [12,13].

One can see that almost all these effective interactions
are suppressed by factors of the Planck mass. The only
exceptions are s alar Belds, which would get an effective
P4 or P2P2 interaction, with coefficients of order one. But
we have never yet observed an elementary scalar Beld.
Particles like the pion are really bound states of fermions.
When scattering off a bubble, they would behave like
individual fermions. This suggests that we may never
observe the Higgs particle, because it will be strongly
coupled to every other scalar Beld, or that if we do detect
it, it will turn out to be a bound state of fermions.

Effective interactions between fermions will be sup-
pressed by two powers of the Planck mass for a four
fermion vertex and Bve powers for a six fermion vertex.
The first could contribute to KL decay and the second
to baryon decay. However, the lifetimes are of the or-
der of 10 and 10 years, respectively, so they are not of
much experimental interest. The quantum coherence vio-
lating effective interactions induced between spin 1 Belds
are even more suppressed, so we would not have observed
them. On the other hand, there might be a g P fermion
scalar efFective interaction that was suppressed by only
one power of the Planck mass. The possible consequences
of such an interaction will be investigated elsewhere.

Another observational feature that might be explained
by loss of quantum coherence is the fact that the 0 angle
of QCD is zero. One way of interpreting the 0 angle is
to regard the QCD vacuum as a coherent sum

) e*e~n)

of states labeled with a winding number n. Although
there are no asymptotically Euclidean vacuum solutions,
there are asymptotically Euclidean Einstein-Maxwell so-
lutions. These have an asymptotically self-dual uniform
Maxwell field at infinity. They were investigated by Alan
Yuille, and are in his Ph. D. thesis, but are otherwise un-
published. If one takes a U(l) subgroup of a Yang-Mills
group, one can promote them to Einstein-Yang-Mills so-
lutions. The ordinary Yang-Mills instantons in Oat space
have self-dual Yang-Mills fields which can be taken to be
uniform over suFiciently small regions. Thus one could
imagine gluing small bubbles onto a Rat space Yang-Mills
instanton and obtaining an instanton with warts that was
a solution of the Beld equations. One might expect that
the bubbles, or warts, would produce loss of coherence
between the different ~n) vacua. In other words, there
would be a nonzero probability to go from the product
density matrix

to a density matrix with other coeKcients. Presumably
the density matrix would tend to the state with lowest
energy, which is probably the 0 = 0 density matrix with
equal coeRicients.

If 0 were nonzero (and in ffat space Yang-Mills theory,
there is no reason why it should not be), it would have
produced effects like a dipole moment for the neutron,
which would have been observed. To explain the absence
of a dipole moment, the Peccei-Quinn [14] mechanism
was proposed. The original version of the mechanism was
ruled out because it predicted an axion of a few hundred
keV mass that was not observed. There was a grand uni-
fied theory version of the mechanism, which would have
given rise to a very light and weakly interacting axion.
At one time, it was hoped that this axion might make
up the cold dark matter required to give the universe the
critical density. However, recent work on the damping of
axion cosmic strings [15] has almost closed the window
of possible masses for the axion. So we badly need an
explanation of the zero dipole moment of the neutron.
My bet is that it is loss of quantum coherence.

In the case of the wormhole picture, it seemed at first
that quantum coherence would be lost because worm-
holes would connect the upper and lower halves of di-
agrams for the $ matrix. However, it turned out that
effects of wormholes on low energy physics could be de-
scribed by a number of alpha parameters [2]. These
would act as the coupling constants for ordinary local
effective interactions that did not lose quantum coher-
ence. Their values would not be determined by the the-
ory. However, one could conduct experiments to measure
all the effective coupling constants up to a certain order.
After that, there would be no unpredictability or loss of
quantum coherence. One would have ordinary quantum
field theory with coupling constants that could not be
predicted but could be chosen to agree with experiment.

Could the situation be similar with the quantum bub-
bles picture'? Could the unpredictability associated with
loss of quantum coherence be absorbed into a lack of
knowledge of coupling constants? I cannot rule this out,
but I do not think it will be the case. There is an im-
portant difference between the wormhole and bubble pic-
tures. With wormholes, one can integrate over the posi-
tion of each end of the wormhole separately. This allows
the effect of the wormhole to be factorized into separate
local interactions at each end of the wormhole. How-
ever, with a quantum bubble, there is only one integral
over the position of the bubble. Thus, one cannot fac-
torize the effect of a bubble. It will therefore give rise
to a nonlocal interaction that connects the evolution of
a quantum state with that of its complex conjugate. I
therefore expect that when one sums over all the bub-
bles in spacetime foam, one will still get loss of quantum
coherence.

VI. EVAPORATION OF MACROSCOPIC
BLACK HOLES

The picture of virtual black holes as occurring in pairs
and corresponding to S x S topological fluctuations
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has implications for the end point of the evaporation of a
macroscopic black hole. For twenty years, I tried to think
of a Euclidean geometry that would describe the disap-
pearance of a single black hole. But the only thing that
seemed possible was a wormhole, and I have already said
why I came to reject that idea. However, I now think
that when a black hole evaporates down to the Planck
size, it will not have any energy or charge left, and it
will just disappear into the sea of virtual black holes. If
this picture is correct, it implies that two dimensional
models cannot describe the disappearance of black holes
in a way that is nonsingular. This agrees with our ex-
perience. The best we can do in two dimensions is the
RST [16] model. In this, a black hole evaporates down to
zero mass. However, one then has to cut the solution ofF

by hand and join on the vacuum solution. This is very
ad hoc and introduces a naked singularity. Strominger
and Polchinski [17] have tried to argue that a baby uni-
verse branches off. However, I think that is wrong for the
reasons for which I rejected the wormhole scenario.

VII. CONCLUSIONS

It seems that topological fluctuations on the Planck
scale should give spacetime a foamlike structure. The
wormhole scenario and the quantum bubbles picture are
two forms this foam might take. They are characterized
by very large values of the first and second Betti numbers,
respectively. I argued that the wormhole picture did not
really fit with what we know of black holes. On the other
hand, pair creation of black holes in a magnetic field or
in cosmology is described by instantons with topology

S x S . This shows that one can interpret S x S
topological fluctuations as closed loops of virtual black
holes.

I then went on to discuss particle scattering by S x S
bubbles. Because of the nontrivial topology, one cannot
cover the manifold with a family of time surfaces. One
cannot therefore act with a Hamiltonian and get a uni-
tary evolution from the initial state to the Anal one. It
is therefore possible that quantum coherence could be
lost, and I showed that indeed it was, both explicitly,
in a simple bubble metric, and in more general cases. I
gave estimates of the magnitude of bubble induced ef-
fects. They are all suppressed by powers of the Planck
mass, with the exception of scalar fields. We have not yet
observed an elementary scalar particle, and I predict we
never will. Another prediction of the quantum bubbles
picture is that the 0 angle of @CD should be exactly zero,
without having to invoke the existence of an axion. This
is almost ruled out by observation, anyway. There may
well be other predictions of the quantum bubble picture
which are testable at low energy. Thus, the question of
the Planck scale structure of spacetime may not be as
esoteric as it is sometimes made out to be. In the Buc-
tuations in the Inicrowave background, we are already
observing efI'ects on scales of about 10 Planck lengths.
This would have been the horizon size of the universe at
the time the fluctuations were produced during inflation.
So quantum gravity is real physics. I think it is quite
possible that we can observe the consequences of space-
time structure on even smaller scales. This will be one
of the challenges for the next few years. Unless quantum
gravity can make contact with observation, it will be-
come as academic as arguments about how many angels
can dance on the head of a pin.
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