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Constraints on the scalar-tensor theories of gravitation from primordial
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We present a detailed calculation of the light element production in the framework of scalar-
tensor theories of gravitation. The coupling function ~ is described by an appropriate form which
reproduces all the possible asymptotic behaviors at early times of viable scalar-tensor cosmological
models with a monotonic cu(C). This form gives an exact representation for most of the particular
theories proposed in the literature, but also a first-order approximation to many other theories. In
most scalar-tensor theories, the comparison of our results with current observations implies very
strong bounds on the allowed deviation from general relativity (GR). These bounds lead to cos-
mological models which do not significantly differ from the standard Priedman-Robertson-Walker
ones. We have found, however, a particular class of scalar-tensor theories in which the expansion
rate of the universe during nucleosynthesis can be very different from that found in GR, while the
present value of the coupling function u is high enough to ensure compatibility with solar-system
experiments. In the framework of this class of theories, right primordial yields of light elements can
be obtained for a baryon density range much wider (2.8 & rIio & 58.7) than in GR. Consequently,
the usual constraint on the baryon contribution to the density parameter of the universe can be
drastically relaxed (0.01 Abo 1.38) by considering these gravity theories. This is the first time
that a scalar-tensor theory is found to be compatible both with primordial nucleosynthesis and
solar-system experiments while implying cosmological models significantly different from the FRW
ones.

PACS number(s): 04.50.+h, 98.80.Ft, 98.80.Hw

I. INTRODUCTION

Prom a theoretical point of view, the most natural
alternatives to general relativity (GR) are scalar-tensor
theories which contain, in addition to the metric tensor
g„, a dynamical scalar Beld P, the relative importance
of which is determined by an arbitrary coupling function
w(P). In recent years, this class of metric theories has re-
ceived a renewed interest [1,2], because it provides a nat-
ural (non-fine-tuned) way to restore the original ideas
of inHation while avoiding the cosmological difhculties
coming from the vacuum-dominated exponential expan-
sion obtained in GR. Scalar-tensor theories also arise in
current theoretical attempts at deepening the connection
between gravitation and the other interactions. For ex-
ample, in modern revivals of the Kaluza-Klein theory and
in supersymmetric theories with extra dimensions, one or
several scalar fields arise in the compactification of these
extra dimensions [3—9]. Furthermore, scalar-tensor theo-
ries may also appear as a low-energy limit of superstring
theories [10].

Several scalar-tensor theories have been proposed to
date (1) the Brans Dicke theory [11],-where w = const g
—3/2, (2) Dirac 's theory [12], with ~ = —3/2, (3)
Barker's theory [13], where the gravitational coupling
constant is effectively constant, (4) Bekenstein's the-
ory [14], with variable rest mass, and (5) the Schmidt-
Greiner-Heinz-Muller theory [15], which also includes a
possible mass term for the scalar field. They are all
particular cases of the general scalar-tensor theory by

Bergmann, Wagoner, and Nordtvedt [16—18]. In addi-
tion, the scale covariant th-eory of Canuto et al. [19,20]
has a mathematical representation similar in many as-
pects to Dirac's gravitation but with a nondynarnical
scalar function P.

The viability of a given alternative gravity theory
can be analyzed by means of two kinds of tests [21]:
those which examine its weak field limit and those which
prove its full exact formulation. The first mainly con-
sists of comparing the theory predictions in the limit
of weak gravitational fields and slow motions with post-
Newtonian experiments. The only metric theory which is
discarded by these experiments is Dirac's gravitation [21].
On the other hand, strong field tests consist of matching
up the exact theory predictions to experiments. This is
mainly achieved by means of cosmological models, whose
predictions have to be consistent with any present obser-
vation of cosmological interest.

The astronomical data leading to the strongest bounds
on the alternative gravity theories are the light-element
abundance observations, which have to be explained as
an outcome of the primordial nucleosynthesis process
(PNP). Some authors [22—26] have got a first insight into
these PNP constraints by including a constant speedup
factor ( in the usual GR expression of the Universe ex-
pansion rate. Such a simple approach implies rather
stringent bounds on (. For example, Barrow [23] ob-
tained 0.8 & ( ( 1.2 while, using more recent reaction
rates and observational data, Casas et al. [26] found an
upper limit of 1.02.

0556-2821/96/53(6)/3087(12)/$10. 00 53 3087 1996 The American Physical Society



3088 A. SERNA AND J. M. ALIMI 53

Since, in a general scalar-tensor theory, ( is not neces-
sarily constant at early times, the above approach only
explores a very limited range of models. In principle, if (
varies during nucleosynthesis, the resulting bounds could
be very different from those derived from the constant-
( approximation. Other authors [27—35] have thus pre-
ferred a more rigorous approach which consists of solving,
from numerical computations, both the cosmological and
nuclear equations. Since this approach follows the time
evolution of ~(P) and all the dynamical functions, it has
the additional advantage of determining how the PNP
bounds result in present limits on the parameters. Using
this approach, cosmological models and their correspond-
ing light-element production have been analyzed in all
the particular scalar-tensor theories proposed in the liter-
ature. The resulting bounds were always very stringent,
implying that the only viable models are those whose
predictions do not signi6cantly differ from the standard
GR ones up to at least temperatures of 10i K.

In the preceding paper [36] we found all the possible
early behaviors of scalar-tensor cosmological models with
a monotonic, but arbitrary, w(P) function. These behav-
iors exhibited a variety of models much wider than that
contained in all the previous particular cases. The aim
of this paper is to perform a detailed numerical study of
primordial nucleosynthesis bounds on theories presenting
each one of these possible early behaviors. Such a study
will allow us to elucidate whether the strong bounds pre-
viously found in some particular theories are also ex-
pected for any other one or, on the contrary, whether
there exist some cases in which such bounds can be con-
siderably relaxed. To that end, we will consider through-
out this paper a standard scenario (i.e. , a homogeneous
and isotropic universe with vanishing cosmological con-
stant, without exotic particles, etc.) in the framework of
scalar-tensor theories.

The paper is arranged as follows. We begin outlining in
Sec. II scalar-tensor theories and the basic equations to
analyze the light-element production. We also introduce
in that section a representation for the coupling function.
Predicted abundances for a sweep of initial conditions
and the constraints obtained &om comparison with ob-
servations are shown in Sec. III. Finally, conclusions and
a summary of our results are given in Sec. IV.

II. SCALAR- TENSOR THEORIES

A. Field equations and cosmological models

to the field equations

(3 + 2~) 0 P = 87rg —(u'P P' ), (3)

where u' denotes du/d4 and P = g" P „, . In addition
to Eqs. (2) and (3), we have the standard conservation
law T~ = 0, where T"" is the energy-momentum tensor.

In order to build up scalar-tensor cosmological models,
we consider a homogeneous and isotropic universe. The
line element has then the Robertson-Walker form

dr2ds' = —dt'+ R'(t) + r'dB'
1 —Kr2 (4)

T""= (p+ P/c )u„u„+Pg„,
where K = 0, +1, R(t) is the scale factor, p and P are
the energy-mass density and pressure, respectively, and
u„ is the four-velocity of the Quid. The field equations

(2) and (3) can be then written, in terms of H = R/R
and D = P/P, as

C2K 3 2 1. 4mH= — ——H + —DH— (p —3P/c )2R 2 2 (3+ 2u))P
I

( 4 2(3 + 2(u) )
D = D —3DH —+ (p —3P/c )(3+ 2~)P

(6.)

(3+ 2(u)
(6b)

where dots mean time derivatives.
By eliminating R from the time-time and space-space

components of Eq. (2), we obtain moreover the algebraic
expression

2c K 871 p
R2 3$ 6 (7)

Finally, by assuming a standard particle content, the
state equation is given by the usual form [37] and the
energy-momentum conservation law gives the usual ex-
pression for the time evolution of the temperature T:

and the energy-momentum tensor corresponds to that of
a perfect Quid,

The most general action describing a massless scalar-
tensor theory of gravitation is [16—18]

dt dpi/dT
dT 3H(pi + Pi/c2) ' (8)

1 ( ~(P)
16vr ( Q

'" )f 4', p4""
~

V'—a'&'&+ ~M (1)

where X. is the curvature scalar of the metric g~, g =
det(g~ ), P is the scalar field, and tu(P) is an arbitrary
coupling function determining the relative importance of
the scalar field.

The variation of Eq. (1) with respect to g~ and P leads

~h~~~ py = pg+ p~ + p~, Pi ——P + P~, and subscripts 6,
e and p refer to baryon, electron-positron, and photon,
respectively.

The differential equation system [Eqs. (6), (8), and the
definitions of H and D] can be integrated by taking as
variable the temperature and an explicit form for the
coupling function u(P) (see Sec. IIC). Thus, R, P, H,

'

D and t are considered as independent functions.
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B. Boundary conditions C. Coupling function u(P)

In order to build up realistic cosmological models, the
boundary conditions are fixed, as in Refs. [27—30,35], by
the present values of dynamical functions. By present
values (hereafter denoted by a subindex 0) of dynamical
functions we mean their current observational values or
their limits from observational data.

Some of these values, namely, Tp and Hp, can be di-
rectly measured from observations, whereas Pp Dp and
c K/Rp can be expressed iti terms of other better known
parameters. As a matter of fact, the Pp value can be
obtained from up provided that the coupling function
u(P) has been specified. On the other hand, by using
Eqs. (6a) and (7), Dp, and c K/Ro can be replaced by
qo = ( RR/R—') o = ( —(H' + H)/H') p and po

..

and

p

c2K
Bp2

Sw (dp
0 6 opo —H + D —H—oDo, (10)

I @
s 2(a+2 ) ~ qo —47r+opo/3Ho ~

and

Po —PR0 + pbo~ with pRo = &geg(TO)aTO, pbp = 6.639 x
10 (To/2. 7) pip, g,fr(TO) is the effective nuinber of rela-
tivistic degrees of freedom, and gzp is the present baryon-
to-photon ratio in units of 10

Note that, in order to have a real Dp, the present value
of the deacceleration parameter must satisfy

) FRw3+ ~p
q

which, when wp )) 1 and Tp )) 1, implies qp )
qp

The numerical integration of Eqs. (6)—(8) needs to
specify the set of parameters Hp Tp ca)p qp and pp, to-
gether with the usual constants (neutron mean life num-
ber of light neutrino families) appearing in the state equa-
tion. A choice for the double-valued Dp solution given
by Eq. (9) must be also specified.

In order to avoid an excessive number of f'ree param-
eters, we have taken the average values of the present
photon temperature Tp ——2.73 + 0.02 (2o) [38], and of
the neutron mean life, w = 889 + 4 s [39]. The present
Hubble parameter has been taken to be 50 km s Mpc
[40], and it has been assumed that the number of light
neutrino families, N, is 3, in accordance with the results
from the CERN e+e collider LEP and the SLAC Linear
Collider (SLC) results [41]. We will nevertheless discuss
in Sec. III B how our results could be modified by the un-
certainties in some of these quantities or by observational
constraints difFerent from those used here [42].

We have then considered as &ee parameters the present
values of wp, pp (or pip), and qp. Numerical computations
show nevertheless that, for scalar-tensor (ST) theories
which converge towards GR, the less stringent bounds are
obtained when qp qp . A detailed discussion on this
point for some particular cases can be found in [30,29,35].
To facilitate the discussion, we will just present here our
results with Dp (qo, ...) chosen to give the most conserva-
tive constraints on ST theories.

In the preceding paper [36] we showed that a conve-
nient form for the coupling function w(P) is given by

3+ 2~ ~= (3/A )(x '+ k),

where

1 —I (if 4 &1),
C —1 (ifC )1), (13)

III. B.ESULTS

A. Primordial nucleosynthesis bounds

Light-element production in scalar-tensor theories has
been computed by using the updated reaction rates given
by Caughlan and Fowler [44] and Smith et al. [42].
Boundary conditions were set as explained in Sec. IIB.
We will discuss here the yields of light elements as a func-
tion of the baryon-to-photon ratio in units of 10 gyp,
the present value of the coupling function wp, and the
parameters A: and A characterizing the form of w(O) [see
Eq. (12)]. Although we now consider e = 1, we will show
in the next subsection that our conclusions just depend
very weakly on this parameter. Only the He, (D/H),
and (D + sHe)/H primordial yields have been used to
constrain each scalar-tensor theory. We have also com-
puted the Li/H primordial abundance (briefly discussed
in section III B) but, due to its well-known uncertainties,
it has not been used in our analysis.

and 1/2 & e & 2 in order to ensure that theories con-
verge at present towards GR. Equation (12) gives an ex-
act representation for most of the particular scalar-tensor
theories proposed in the literature [43] and, in addition,
it contains all the possible early behaviors of any theory
where ip(P) is a monotonic, but arbitrary, function of P
[36].

Our analysis in terms of the k and A parameters re-
vealed the existence of scalar-tensor cosmological models
with early expansion rates diBerent from that found in
the standard FRW scenarios [36]. This change in the
expansion rate of the Universe can modify the PNP in
diferent ways. In the next section we will discuss the
light-element yields by distinguishing four main classes of
viable scalar-tensor cosmological models (Table I). The
first and the second classes correspond to singular models
with a monotonic speedup factor ((T) = H/H faster
or slower, respectively, than in GR. Nonsingular models
or models with a critical temperature where 3+ 2w = 0
constitute the third class. Finally, the last class corre-
sponds to models with a nonmonotonic ((T) function.

We know that each one of these classes can be sub-
divided according to other criteria as, for instance, the
( value at the singularity, the increasing or decreasing
evolution of 4 . . Such analysis has been performed in
the preceding paper [36]. However, we will see that the
classification using the four above classes is enough for
the purposes of this paper.



3090 A. SERNA AND J. M. ALIMI 53

Singular models with a monotonic g(T) faster than
sn GR (class 1)

Some scalar-tensor models (see Fig. 1) imply that,
during all the PNP, the expansion rate of the Universe
is faster than in GR. The range of parameters defining
these models can be seen in Table I. Most of the partic-
ular scalar-tensor theories proposed in the literature are
included within this category.

Our computations show that all these theories have
qualitatively similar implications on the primordial abun-
dance of hght elements. Before a general discussion, we
first present as an example our results for the theory de-

fined by A2 = 3/2, k = 0 and e = l.
Figure 2 shows the primordial abundance of 4He (de-

noted as Y„), (D/H), and (D + sHe)/H as a function
of wp and gyp. %e see &om these figures that, for any
fixed value of gqp, these abundances increase as up de-
creases. This behavior can be interpreted in the follow-
ing way. When uo decreases, the expansion rate ( during
nucleosynthesis is faster (Fig. 1). The temperature T,
at which the n/p ratio &eezes out is then higher, i and
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FlG. 2. Primordial abundances of (a) He, (b) D/H, and

(c) (D+ He)/H, as a function of aaao. The theory shown in
this figure is defined by mo ) O, C's ) 1, A: = O, A = 3/2. The
solid line corresponds to gqo ——1, dashed line to gq() ——3, and
dotted line to gyp = 5.

FIG. 1. Expansion rate ( = H/H as a function of T for
difFerent types of cosmological models. Solid lines correspond
to uo values smaller than those of dashed lines. The logarithm
is to base 10.

The freezing-out temperature T is roughly determined by
the condition A(T, )t(T, ) 1, where A(T, ) is the rate for the
weak interactions changing protons into neutrons and vice
versa, and t(T ) is the age of the Universe.
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TABLE I. Range of parameters defining the four main classes of scalar-tensor cosmological models.

Cp ) 1
k&o k&0

A ~ 1 A (
Class 4 Class 1 Class 1

ca)p ) 0
C'p & 1

k& —1

/k~1 1 ~I.~1
Class 1 Class 3 GR-like

k( —1 k+0

Wp (0
Cp) 1 Cp &1

k=0
A) 1 A=1 A&1

Class 3 Class 3 Class 1 GR-like Class 2 Class 3

this in turn implies a higher light element production
[45]. On the other hand, the bio dependence of primor-
dial abundances for a given value of up is such that the
He production increases with idio while those of D/H

and (D+sHe)/H decrease. The reason of this behavior is
that reaction rates increase with gzp and, consequently,
the He production from the D and He burning is more
efBcient for larger values of pip.

In order to analyze the compatibility between observed
and predicted light-element yields, we have depicted the
observational bounds [42] by a thick line on the abun-
dance axes of Figs. 2. As can be seen &om these figures,
the constraints on this theory are essentially imposed by
He and (D + He)/H. To have a right abundance of

these elements, the conditions (a)p + 10 and g~p 3 are
required. In particular, for very large ~p values, He
requires 1 +

folio
& 3.7, while (D + He)/H imposes

gyp + 2.8. Consequently, the interval 2.8 & gpp & 3.7 is
required to have simultaneously right primordial yields
for all the light elements. This q~p interval is even more
narrow for smaller values of wo until, for uo + 10 [or,
equivalently, (io = ((10 K) + 1.024], simultaneously
right abundances are not further obtained for any value
of 77yp.

Primordial nucleosynthesis bounds on other class-1
scalar-tensor theories, with different A, k, and e pararne-
ters, can be obtained by performing a similar computa-
tion as before. However, since the predicted abundances
in this class of cosmological models essentially depend on
the T, value (or, equivalently, on the (io value), the up-
per bound on (io will remain nearly the same whatever
the theory is:

Y
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Clearly, these bounds on up are Inuch more stringent

On the contrary, since such a (io value is obtained for
up values depending on the theory under consideration,
the up bounds will be in general difFerent. The A; and A

dependence of these up bounds can be deduced from Figs.
3(a) and 3(b), where we show the results for that value
of ihip (=3) leading to the less restrictive constraints. We
see from these figures that the larger A and the smaller A:,

the higher bounds on up are found. Such a dependence
does not, however, imply small up bounds in the limits
of small A or large A: values because, in these limits, the
constraint on wp does not further decrease and it remains
equal to

0.18— Class 2 (sio(0, 40&1)
dependence

0.16
20 24

iog~o(i~pl)

FIG. 3. A, k, and cup dependence of Y„ in theories with
a monotonic ((T). Theories shown in this figure are de-

fined by (a) uo ) 0, C'o ) 1, k = 3, and A = 1.5
(solid lines), 0.75 (dashed lines), and 0.01 (dotted lines);
(b) ceo ) 0, 4'o ) 1, A = 3/2, and k = 26.5 (solid
lines), 10 (dashed lines), and 3 (dotted lines); and (c) '

~0 ( 0, Co ) 1, k = 0, and A = 0.75 (solid lines), 0.5 (dashed
lines), and 0.3 (dotted lines).



3092 A. SERNA AND J. M. ALIMI 53

0.01 + Obp + 0.09,

where the relation

(16)

Oqph = 3.77 x 10 ihip(Tp/2. 73) /f(4p) (17)

than those obtained Rom the pest-Newtonian experi-
ments (up + 500). They imply that any class-1 scalar-
tensor theory is indistinguishable from GR from the be-
ginning of PN up to the present. The allowed range for
rlip is then similar to the usual one (2.8 & ihip & 3.7),
which in turn implies the usual constraints on the bary-
onic contribution to the density parameter,

that obtained in GR by at most 4%:

0.96 & (ip & 1. (19)

These bounds are stronger for theories defined by smaller
A values [see Fig. 3(c)], contrary to what we found in
models of class 1. A A: dependence is now meaningless
because, in order to have the kind of behavior defining
this class of theories, a A: = 0 value is required. Finally,
the allowed range of gqp is somewhat wider than that
obtained in FRW cosmologies (2.8 & rlip & 8.4). This in
turn also implies a slightly wider range for Obp.

has been used, and where we have adopted the more con-
servative uncertainty 0.4 & h & 1 [42] for the Hubble
parameter (in units of 100 kms Mpc ). The cor-
rection factor f (C'p) appearing in Eq. (17) takes into
account that, in scalar-tensor theories, the density pa-
rameter has an additional dependence on Ci'. However,
since f (Cip) = 4p[1 —(~p/6) (Dp/Hp) + (Dp/Hp)], where

(Dp/Hp) 1/(up and
] 4p

~

1/~p/' [see Eqs. (7), (9),
and (12)], the strong PNP bounds on ~p (15) imply that
f(4'p) is extremely close to unity and, consequently, its
inQuence on Obp is absolutely negligible.

0.24—

Y 0.22—

0.01 & Obp + 0.2.

ass 2
(0, io&1

(20)

2. Singular models upwith a monotonic ((T) sloiser
than in GR (class 2)

In models where ( is, during nucleosynthesis, effec-
tively slower than in GR (see Fig. 1 and Table I for the
range of parameters A and k implying this kind of behav-
iors), the freezing-out temperature T, is now smaller than
in GR. The smaller ~p, the smaller the T, value is, and
also the light-element production. Such a ~p dependence
is shown in Fig. 4 for the theory defined by A = 3/4,
k = 0 ((dp & 0 and Cip ) 1). On the other hand, con-
cerning the gqp dependence of primordial abundances, we
have again that the He production from the D and He
burning increases for larger and larger values of gqp. If
the expansion rate is slower than in GR, this burning
works over a longer period. Consequently, the smaller

(ip (or, equivalently, up for this class of models), the
stronger the D/H and (D+ He)/H decreasing with ihip

is. Compatibility with observations requires again rather
stringent bounds on urp, (ip, and pip. When wp )) 10
(or (ip 1), the lower and uPPer bounds on rlip are,
respectively, imposed by (D+sHe)/H and 4He, like in
class-1 theories. However, when ~p 10 ((ip & 1),
the resulting underproduction of He can be balanced by
increasing gqp. In this last case, the upper bound on qqp
is instead imposed by D/H and, hence, this bound is ex-
pected to have a value somewhat larger than in class-1
models.

Primordial nucleosynthesis bounds on other class-2
scalar-tensor theories have been deduced from similar
computations. Figure 3(c) illustrates the case rIip = 3.
When A is very close to 1,we get

) 10»

and the expansion rate of the Universe can deviate &om
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FIG. 4. Primordial abundances of (a) 4He, (b) D/H, and

(c) (D+ He)/H, as a function of ugp. The theory shown jn
this figure is defined by ~p & O @p ) 1 A;: O p —3/4
solid line corresponds to pip = 1, dashed line to pip = 3, and
dotted line to gyp = 5.
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3. Models with a cutog: nonsingular or 3+2cy = 0 at
a finite temperature (class 3)

29

Class 3
0)0, eo

fj27
CO

3

o 26

25

0.5 1.5

Nonsingular models have a maximum value of the uni-
verse temperature, T „,which corresponds to the mini-
mum of the scale factor. Similarly, models where 3+ 2~
vanishes at some finite temperature have also a maximum
value of T. The smaller uo, the smaller the T „value is.
Consequently, in this class of models, the bounds on (qo
and uo are mainly imposed by the condition that T
must be high enough to allow the PNP itself. Figure 5

shows, as a function of k and A, the minimum uo satisfy-
ing this last condition. As can be seen from these figures,
the occurrence of PN is only possible for very large values
of ~0, implying an expansion rate during nucleosynthesis
extremely close to that obtained in FRW models. Thus,
in spite of its very different behavior at early times, this
class of theories must be extremely close to GR from the
beginning of PN up to the present. The required bounds
on gio and Opo are then very close to the standard ones
(see Sec. IIIA 1).

The A and k dependence of ~0;„is different for dif-
ferent intervals of these parameters. Theories defined by
wo & 0, C'p & 1 [Fig. 5(a)] imply larger uo;„values for
larger A or smaller k values (note that we do not write

~

k ~). The same dependence on A but the opposite on k
is, however, found in theories defined by uo ( 0, @0 ( 1
[Fig. 5(b)]. Finally, theories with clap & 0, Co & 1 [Fig.
5(c)] imply larger values of wo;„ for smaller k values,
but they have a nonmonotonic dependence on A. No
class-3 models exist for uo ) 0, @0 ) 1.

It is important to note that an appropriate choice of A

[for instance, the limit A ~ 0 in Fig. 5(a) or 5(b)] and k
could allow for not very large values of ~o;„(&10").
However, in that case, the bounds on uo and (qo are those
found for models with a monotonic ((T) (Secs. IIIA1
and III A 2).
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FIG. 5. A dependence of the smallest value of coo needed to
have a high enough temperature for the PNP in theories with
a cutofF. (a) up ) 0, 4p & 1, and k = 0.5 (sohd hne), —2.5
(dashed line), and —23.5 (dotted line). (b) ceo & 0, 4s & 1,
and k = 10 (solid line), 1 (dashed line), and —8 (dotted line).
(c) top & 0 C'p & 1 and k = —0.5 (solid line), —3 (dashed
line), and —5 (dotted hne).

Singular models unth a nonmonotonic ((T)
function (class g)

Theories with a non-monotonic evolution of the
speedup factor ( (see Fig. 1 and Table I) have an ini-
tial phase where the expansion of the Universe is slower
than in GR but, afterwards, it becomes faster than in the
standard cosmology. Figure 6 shows the light-element
yields as a function of ~o and bio in the theory defined
by A2 = 3/2 and k = 1/2. For extremely large uo values,
the maximum of ( is reached much before the PNP (Fig.
1). Consequently the speedup factor is greater than unity
during nucleosynthesis and the resulting bounds on uo,
(yp, and g~o are then equal to those found for theories
of class 1 (Sec. III A 1). However, we can also see from
these figures that each element has another allowed in-
terval for not so large values of uo. In this last interval,
simultaneously right primordial abundances can be ob-
tained for large gio values. For instance, if u)o ——6 x 10

He requires 10.0 & gqo & 15.2, D/H requires qqo & 11.6,
and (D+ He)/H imposes gqo & 4, which leaves the al-
lowed range 10.0 & gio & 11.6. Other values of wo in this
particular theory imply different bounds on g~o, making
possible any value between 2.8 and 12.4. The last upper
bound on gqo needs a present value of the coupling func-
tion uo & 10 and, hence, the theory can differ from GR
much more than in the previous classes (( „&1.6).

The above example shows that the right primordial
abundances can be obtained in the framework of a class-
4 theory clearly distinguishable &om GR. Furthermore,
this class of theories allows for quite large g~o values. The
achievement of such gio values can be explained in the fol-
lowing way. In the previous particular theory, the expan-



3094 A. SERNA AND J. M. ALIMI

0.3
ss 4
0, 4o&1-

Y
0.25

0.2

/
/

0.15 '
16

15—

20
'ogio(Idol)

I
I

22

Class 4
a)o&0, Co&i

sion rate of the Universe at the beginning of nucleosyn-
thesis is slower than in GR ((io ——0.72 if ~o ——6 x 10
and g]o = 11). Similar to what we found for class 2 the-
ories, there exists a tendency to the underproduction of

He, which can be balanced by considering larger g1p val-
ues. Consequently, the upper bound on g1p is here con-
strained by the D/H abundance. However, unlike class-
2 theories, the expansion rate of the Universe becomes,
during the PNP, faster than in GR. The D burning is not
then very effective because it occurs in a shorter time and,
hence, large g1p values are allowed.

In order to obtain the largest g1p value allowed in the
framework of this class of models, we must then analyze
those theories with the largest ( value during the PNP,

but with (io & 1 at the beginning of PN. These two con-
ditions are better obtained if the slope of ((T), in its
increasing interval, is as high as possible. Figure 7 shows
the A and A; dependence of primordial abundances in this
class of theories with g1p ——3. We see that the form
of these curves is similar to that of ((T) (especially Y„'

because it has the strongest dependence on (io). Conse-
quently, any discussion about the behavior of $(T) will be
performed in terms of, for example, Yz(wo). The sharp-
ness of the maximum of ( depends mainly on k. The
smaller k, the sharper the maximum of ( is. On the other
hand, the ( „value increases as A decreases while the
k dependence of( „is nonmonotonic, with higher (
values in the limits of very large and very small A; values.
In order to have a very large ( value during nucleosynthe-
sis we then need to analyze the limit of very small A and k
values. We have performed such an analysis and we have
found that, in fact, the allowed Ogp value is considerably
increased with respect to that obtained in other classes of
scalar-tensor theories. However, the lower bound on wp
is smaller as the allowed Ogp is larger. The upper bound
on the baryon contribution to the density parameter is
then determined by the compatibility with solar-system
experiments, which requires ~p ) 500. This is found for
the theory A = 0.08 and k = 2 x 10—,which leads to
right primordial abundances with g]p ( 58.7, that is,
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FIG. 7. A, k, and ~p dependence of Y„ in theories with
a nonmonotonic ((T). Theories shown in this figure are de-
fined by (a) ufo ) 0, Co ) 1, k = 0.01, and A = 1.0 (solid
lines), 0.4 (dashed lines), and 0.3 (dotted lines); and (b)) 0, C'o ) 1, A = 3/2 and k = 1.0 (solid lines), 1/2
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obtained with h = 0.5. The constraints on (qo do not
change and neither those on gqo. As before, the high wo
bounds we have found imply that the uncertainty intro-
duced on this constraint is not physically important.

With respect to the e inhuence, our computations with
1/2 & e & 2 show that the resulting bounds on wo are
slightly smaller if e is greater than unity (they decrease
at most by a factor of 10 when e is close to 2), but they
increase very strongly for e values smaller than unity (for
example, when e = 0.95 in a class-1 theory, the bound on
&0 typically increases by a factor of 10, then implying
coo & 1027). On the contrary, the bounds on (qo and gjo
do not depend significantly on e. We then And that our
constraints on scalar-tensor theories cannot be relaxed by
the inhuence of this parameter more than by considering,
for example, the effect of the uncertainty in Ho.

2. Consequences due to oth, ev' obsess vational
constraints on

purim,

ov dial abundances

Concerning the observational constraints on primordial
abundances, we have used in this paper the most widely
accepted ones. Recent measures of primordial abundance
of deuterium [48] from the absorption spectra of high-
redshift quasars seem, however, to indicate a rather high
observational lower bound for D/H ( 1.9x 10 ). These
measures are at present preliminary and cannot be recon-
ciled with the upper bound of (D+ He)/H ( 9 x 10 ).
If we accept, however, such a constraint for D/H, and
we then ignore that for (D+ He)/H, the upper bound
'gyo is considerably reduced in GR and also in scalar-
tensor theories. In particular, in GR and scalar-tensor
theories with a monotonic ((T), compatibility with such
observations would require gyo & 1.6 and Qbo & 0.04,
which leaves few room for nonluminous baryonic matter
in the Universe. This effect would be, however, much less
dramatic for scalar-tensor theories with a nonmonotonic
((T). For example, in the theory defined by A = 0.1 and
k = 10 [see Eq. (22)], simultaneously right abundances
of He and D/H can be obtained for qqo & 12.5 and
uo & 5 x 10, which implies Obo & 0.3. This last bound
can be increased to Obo & 0.4 by considering other class-
4 theories. These values of Obo are compatible with most
of measures of the total density parameter Obo. Conse-
quently, even when the high-redshift quasar measures are
considered, class-4 theories allow for large gqo values and
a Universe content largely dominated by baryons.

Finally, we remark that primordial productions of
Li/H were computed in all runs of our nucleosynthe-

sis code. However, because of its well-known uncer-
tainties, we have not used that element to constraint
scalar-tensor theories. We note, however, that all the
above constraints imply a Li/H production compati-
ble with the more conservative observational constraint
for this element (~Li/H& 1.3 x 10 9). Consequently,
our bounds would not be modified by considering this
abundance. This is also true for class-1 to class-3 the-
ories when a more severe observational range is used
(1.0 x 10 ~o &~Li/H& 2.3 x 10 ). However, the Ago up-
per bound obtained in class-4 theories would be reduced
by a factor of 0.5, then implying Obq & 0.65.

IV. CONCLUSIONS AND GENERAL
DISCUSSION

Primordial production of light elements has been cal-
culated in the framework of scalar-tensor cosmological
models for a sweep of initial conditions compatible with
astronomical data. Our results and conclusions are abso-
lutely different for theories with a monotonic evolution of
the speedup factor ((T) and those with a nonmonotonic
&(T).

In the erst case, our results imply that the expansion
rate of the Universe at the beginning of primordial nu-
cleosynthesis can differ &om that obtained in the usual
FRW model by at most 4%%uo.

.

0.96 & (je & 1.024. (23)

Consequently, the present value of the coupling function
must be greater than

RPO ~+ 10 (24)

and, if ( ) 1, the allowed range for the baryon density
parameter is essentially the same as in GR,

2.8 & gyo & 3.7
0.01 & ObP & 0.09 (class 1)

or, if ( & 1, just slightly wider,

2.8 & ggo & 8.4
0.01 & Obo & 0.2 (class 2).

These bounds, together with the cosmological evolu-
tion of scalar-tensor theories studied in paper I [36], im-
ply that all these cosmological models are indistinguish-
able &om the standard FRW ones &om the beginning
of PN up to the present (except for slight differences on
the qqo bounds in class-2 models). The uncertainties on
the usual input PN parameters can just slightly relax
the above bounds and, hence, they do not modify our
conclusions.

Primordial nucleosynthesis is then a very strong test
for the viability of this kind of gravitational theory. Very
small deviations from GR during the early stages of the
evolution of the Universe imply a light-element produc-
tion inconsistent with present observations. However, we
cannot assure that these theories are also indistinguish-
able from GR at very early epochs before nucleosynthe-
sis or with a nonstandard composition of the universe
[36,49].

We would like also to note that the general PN con-
straints given by Eq. (24) for scalar-tensor theories with
a monotonic ((T) are of the same order of magnitude as
those obtained by us and by other authors in the frame-
work of the particular cases proposed in the literature
[29—35]. These PN constraints are instead much higher
than those implied by the post-Newtonian experiments
[21],and also than those found by Damour and Nordtvedt
[50] [who estimated the matter-dominated evolution oi
u(P) in Bat scalar-tensor theories by assuming u(P) 1
at the beginning of that era]. Primordial nucleosynthesis
then arises as a test which imposes constraints on the
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(up & 500. (27)

In such cases, the maximum value of ( is much higher
than unity,

( .„&350, (2S)

and the allowed range for the baryon density parameter
is much wider than in GR:

2.8 & gyp & 58.7,

0.01 & Ogp & 1.38.
(29)

early value of w(P) which are roughly similar to those
found from post-Newtonian experiments for the present
(dp value. However, since cu(P) increases during the Uni-
verse evolution, such constraints are much stronger at
the beginning of the matter-dominated era, and even
much stronger at present. Note also that, by construc-
tion, other cosmological tests (measured values of Ho, qo,
To, etc. [40]) are also satisfied in all the models analyzed
in this paper.

Concerning theories with a nonmonotonic ((T), our
analysis leads to very different conclusions. This class
of theories can reproduce the right yields of light ele-
ments even when they are very different from GR during
the radiation-dominated era. In some theories, the con-
straint on up is similar to that imposed by solar-system
experiments:

Eq. (29): Ot, o & 1.33. The Universe closure by baryons is
then possible in the framework of these theories without
requiring a nonstandard composition for the cosmic gas
[46].

Furthermore, we have shown in Sec. IIIB that, if we
accept some recent measures of D/H from high-redshift
quasars, the resulting upper bound on Opp would be dras-
tically reduced in the framework of GR as well as in theo-
ries with a monotonic ((T): Atp & 0.04. On the contrary,
the Ot, o bounds in models with a nonmonotoinc ((T)
would be much less severely affected by such measures.
They would be still much larger (Ago & 0.4) than the
usual one. On the other hand, it is also important to note
that all the bounds given by the above expressions also
imply a right abundance of Li/H when the most conser-
vative observational constraints (7Li/H& 1.3 x 10 9) are
considered. Nevertheless, if we use more severe observa-
tional constraints (1.0 x 10 & "Li/H & 2.3 x 10 io),
the upper bound on Opp imposed by the class-4 theories
would be Opp 0.65, which is still considerably wider
than the usual one.

This is the erst time that a class of scalar tensor theo-
ries is found to be compatible both with primordial abun-
dances and with solar-system experiments while remain-
ing clearly distinguishable from GR. This last feature is
not only manifested in the much wider allowed range for
77' p but also in the cosmological evolution of the Uni-
verse during the PNP and, in the extreme case of Eq.
(21), during all the radiation-dominated era.

Allowed Opp values greater than unity can also be ob-
tained in other class-4 theories, implying a Inuch larger
present value of the coupling function ~p. For instance,
theories as that of Eq. (22) imply ~o & 10 while the up-
per limit of Opp is only slightly smaller than that given by
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