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Effect of gravitational radiation reaction on nonequatorial orbits around a Kerr black hole

Fintan D. Ryan
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

~Received 25 October 1995!

The effect of gravitational radiation reaction on orbits around a spinning black hole is analyzed. Such orbits
possess three constants of motion:i, e, anda, which correspond, in the Newtonian limit of the orbit being an
ellipse, to the inclination angle of the orbital plane to the hole’s equatorial plane, the eccentricity, and the
semimajor axis length, respectively. First, it is argued that circular orbits (e50) remain circular under gravi-
tational radiation reaction. Second, for elliptical orbits~removing the restriction ofe50), the evolution of
i, e, anda is computed to leading order inS ~the magnitude of the spin angular momentum of the hole! and
in M /a, whereM is the mass of the black hole. Asa decreases,i increases ande decreases.

PACS number~s!: 04.25.Nx, 04.30.Db
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I. INTRODUCTION

The Earth-based Laser Interferometer Gravitational Wa
Observatory–~LIGO-!VIRGO @1,2# network of gravitational
wave detectors~which is now under construction! and the
European Space Agency’s planned space-based Laser I
ferometer Space Antenna~LISA! @3# will be used to search
for and study the gravitational waves from ‘‘particles,’’ suc
as neutron stars and small black holes, spiraling into mas
black holes~massM up to;300M( for LIGO-VIRGO and
up to;107M( for LISA!. To search for the inspiral wave
and extract the information they carry will require templat
based on theoretical calculations of the emitted waveform
which in turn require a detailed understanding of how rad
tion reaction influences the orbital evolution.

When the orbital plane of the particle is inclined to th
equatorial plane of a spinning hole, only one method h
been successfully implemented to deduce how radiation
action influences the evolution of the orbit’s ‘‘Carter con
stant’’ @4,5#, which governs the orbital shape and inclinatio
angle. This method, which uses a ‘‘post-Newtonian’’ grav
tational radiation reaction force, was described in a previo
paper@6#, but there only applied to ‘‘circular orbits’’~orbits
of constant Boyer-Lindquist radial coordinater ) for simplic-
ity. This follow-up paper has a twofold purpose: First, in Se
II, we will argue that circular orbits remain circular unde
gravitational radiation reaction. Second, in Sec. III, we w
compute the evolution of elliptical orbits under radiation r
action, but only to leading order inS, the magnitude of the
spin angular momentum of the black hole, and leading or
in M /a, whereM is the black hole’s mass anda is the size
of the orbit, as defined more precisely below.~Here and
throughout, units withG5c51 are used.!

II. EVOLUTION OF CIRCULAR ORBITS

Several years ago, Ori@7# put forth the conjecture that
circular orbits in the Kerr metric remain circular even und
gravitational radiation reaction. Here, we will argue in fav
of the conjecture. We will start by reviewing some properti
of elliptical and circular orbits in the Kerr metric. Then w
will argue that a circular orbit and the reaction force actin
on it have a type of reflection symmetry that ensures that
53556-2821/96/53~6!/3064~6!/$10.00
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orbit remains circular under radiation reaction, in the limit
the particle’s mass being small compared to the hole’s ma

In the absence of gravitational radiation, the geodesic m
tion of a particle in orbit around a Kerr black hole is we
known and discussed, for example, in Sec. 33.6 of Ref.@5#.
The location of the particle can be described in Boye
Lindquist coordinatesr , u, f, and t. The orbit can be de-
scribed by three constants of motion: the energyE, the an-
gular momentum along the hole’s spin axisLz , and the
Carter constantQ. The particle’s rest massm can be counted
as another constant of the motion. The energyE is defined as
the relativistic energy of the particle minus its rest mass,
that ‘‘E2m ’’ in the language of Ref.@5# corresponds to
‘‘ E’’ here. We will restrict to bound orbits, that isE,0 and,
as a consequence~see Ref.@4#!, Q>0.

An interesting feature of the Kerr metric in Boyer
Lindquist coordinates is the existence of nonequatorial, c
cular, geodesic orbits. These orbits are circular in the se
that the particle maintains a constant Boyer-Lindquist co
dinater ; however, the plane of the circular orbit is not fixe
but rather precesses around the hole’s spin axis. Such o
exist and are stable for values ofE, Lz , andQ that give
R50, ]R/]r50, and]2R/]r 2,0, whereR @see Eq.~33.33c!
of Ref. @5## is defined by

R5@~E1m!~r 21S2/M2!2LzS/M #22~r 222Mr1S2/M2!

3@m2r 21~Lz2Sm/M2SE/M !21Q#. ~1!

For an arbitrary orbit with constantsE, Lz , andQ, there
might be some other energyĒ<E (Ē depends onLz and
Q) such that, if the orbit had energyĒ(Lz ,Q) rather than
E, the orbit would be circular and stable. In such a case,
an alternative set of constants toE, Lz , andQ, the constants
i, e, anda can be defined as

cosi[
Lz

~Q1Lz
2!1/2

, ~2a!

12e2[
E

Ē
, ~2b!
3064 © 1996 The American Physical Society
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a[
Ēr̄

E
. ~2c!

Here r̄5 r̄ (Lz ,Q) is the radius of the circular orbit with con
stantsĒ, Lz , andQ. Note thata should not be confused
with the conventional notation for the spin of the black ho
which isS here.

The positive root in Eq.~2a! or in any other square root is
always chosen. We choose the anglei to lie in the range
0<i<p, so thati,p/2 corresponds to an orbit corotatin
relative to the spin andi.p/2 to counterrotating. Also,e is
chosen as non-negative.

This set of constantsi, e, anda has the conceptual ad
vantage that in the Newtonian limit of largea, the orbit of
the particle is an ellipse of eccentricitye and semimajor axis
length a, on a plane with inclination anglei to the hole’s
equatorial plane. When not in the Newtonian limit, interpre
ing i, e, and a as the inclination angle, eccentricity, an
semimajor axis length must be done with the caveat t
since the orbit is not an ellipse; then, words such as ‘‘ecc
tricity’’ are subject to a modified interpretation and can b
misleading.

Even though the particle’s motion is complicated whe
not in the Newtonian limit, some of the parameters that d
scribe the particle’s motion need not be specified. For
ample, we are not concerned with the value off or t, be-
cause making af or t translation does not change th
physics in the axisymmetric, stationary Kerr metric. Anoth
symmetry is that if the orbital motion is flipped over th
hole’s equatorial plane, i.e.,u(t) is replaced byp2u(t), the
motion can be considered the same. All suchf and t trans-
lations andu reflections leave the shape of the orbit u
changed.

We can think of the particle as undergoing oscillator
coupled motion in ther and u directions. We define one
orbital revolutionto be one oscillation cycle as measured b
the u motion. Given any chosen starting point of an orbit
revolution with coordinateu0 , the revolution can be broken
into two half revolutions, the first when the particle goe
from u0 to p2u0 half a u cycle later, and the second whe
the particle goes fromp2u0 back tou0 another halfu cycle
later. @Because of the coupling of ther motion with theu
motion, theu motion does not peak at the same extrem
every cycle. Therefore,up/22u0u has to be chosen smal
enough that the orbit does indeed go throughp2u0 andu0
in the following cycle. However, this is a very minor restric
tion for the rest of Sec. II, where in proving that circula
orbits stay circular, we only consider circular and almo
circular orbits~we do not have to consider generally ecce
tric orbits since we know that a circular orbit cannot imm
diately become generally eccentric without first bein
slightly eccentric!. In such case, the peaks of theu motion
are almost the same every cycle.#

Now we consider the effect of gravitational radiation r
action on an orbit. We assume that the rest massm is small
enough for the adiabatic approximation to hold: The tim
scale of the gravitational radiation reaction is much long
than any other time scale in the problem. Then the parti
moves very nearly on a geodesic path characterized by
constants of motioni, e, anda, and only on a very long time
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scale~which varies like 1/m asm→0, because the radiation
reaction acceleration scales likem) is this motion substan-
tially modified by gravitational radiation reaction.

We now consider, for an orbit slowly inspiraling due to
radiation reaction, an orbital revolution that satisfies the fol-
lowing condition, to which we give the namereflection sym-
metry: Consider the point on the orbit that is at the beginning
of the orbital revolution. Denote byr 0 , u0 , ṙ 0 , u̇0 , and
ḟ0 the Boyer-Lindquist spatial coordinates of that point and
their time derivatives.~Here and throughout, an overdot rep-
resentsd/dt.) Then there are two other locations later on the
path with coordinates

r n5r 01mnr̃1HO, ~3a!

un2p/25~21!2n~u02p/21mnũ !1 HO, ~3b!

ṙ n5 ṙ 01mnr81HO, ~3c!

u̇n5 u̇01mnu81HO, ~3d!

ḟn5ḟ01mnf8 1HO, ~3e!

for n5 1
2 ~a half revolution aftern50) andn51 ~a full or-

bital revolution aftern50). The functions with tildes are not
functions ofm. The ‘‘HO’’ terms are any terms that go to
zero faster thanm asm→0 ~higher orderin m than linear!.

Because of the initial conditions at the beginning of the
first and second half revolutions~at n50 andn5 1

2, respec-
tively!, the shape of the first half revolution~the path con-
necting then50 andn5 1

2 locations! deviates from the shape

of the second half revolution~the path connecting then5 1
2

and n51 locations! by a path deviation of orderm. Of
course, these two paths also differ by af translation, at
translation, and a reflection across the equatorial plane. B
as we discussed above, these are unimportant differences b
cause of the symmetries; the shapes of the paths are t
same.

Now that we have written Eqs.~3!, we temporarily~for
the remainder of this paragraph! go back to the case of no
radiation reaction; i.e., we set to zero them terms and the HO
terms in Eqs.~3!. Clearly, a circular orbital revolution satis-
fies Eqs.~3! for any initial n50 location chosen on the cir-
cular orbit. But could there be an eccentric orbit which also
satisfies Eqs.~3!? The answer is negative, as we shall now
show. A slightly eccentric orbit~one with the value ofe
small enough thate2 terms are negligible! would have the
sameu(t) andf(t) motion regardless of the value ofe, but
r2 r̄ would oscillate with an amplitude proportional toe.
This can be verified from the Kerr-metric geodesic equa
tions, Eqs.~33.32! of Ref. @5#. In the Newtonian limit, the
oscillation of r2 r̄ would be periodic with the same period
thatu(t) has, but when not in the Newtonian limit theu and
r oscillations would have different periods. If an orbit were
to be reflection symmetric, thenr2 r̄ would have to have the
same value when the orbital motion is atu0 as it does when
it is atp2u0 at the next value ofn. This would require that
either r2 r̄ oscillate at a frequency that is an even integer
multiple of the u oscillation frequency orr2 r̄ have zero
amplitude~a circular orbit!. The former is never the case, as
can be verified by numerically@8# examining circular orbits
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in the Kerr metric over the space of possible physically a
ceptable values ofS, Lz , andQ. The fact thatr2 r̄ does not
resonate with an even multiple of theu frequency implies
that a slightly eccentric orbit cannot be reflection symmetr

Now we shall return to the case of interest: that wi
gravitational radiation reaction. What precisely do we re
to when we discuss circular orbital revolutions, when t
orbital revolution is not actually circular but is slowly in
spiraling? A good, but not unique, definition is one th
agrees with the result in the case of no radiation reaction:
define that a circular orbital revolution is one that satisfi
Eqs. ~3!, while an eccentric orbital revolution is one tha
does not~at least for slight eccentricity, as mentioned abov
we are not considering generally eccentric orbits!. An orbital
revolution with weak radiation reaction is defined as circu
if and only if it is reflection symmetric.

We now consider starting with an initial orbital revolutio
that is circular or, equivalently, that is reflection symmetr
i.e., that satisfies conditions~3!. For smallm, ignoring the
HO ~higher thanm) corrections, we would expect that th
third half revolution~the first half of the next orbital revolu-
tion! would have a shape that deviates from that of the s
ond half revolution by the same amount as the shape of
second half revolution deviates from that of the first. W
expect this, because from conditions~3! above, the initial
conditions of the third half revolution differ from those of th
second by the same amount~to linear order inm) as those of
the second differ from those of the first, and the accelerat
on the particle should similarly be equally~also to linear
order inm) different between corresponding locations on t
second and third half revolutions as between correspond
locations on the first and second. The orbit remains circu
for the additional half revolution. If there is any eccentrici
added, it is in the HO terms, but in them→0 limit, this is
ignorable compared to the shrinking of the orbit, which va
ies likem ~the terms involving tildes!.

We can repeat the above argument to get the shape o
fourth half revolution, as well as the fifth, sixth, etc. In fac
the argument can be repeated to any chosen numbern max of
orbital revolutions, as long as that chosen number does
go to infinity asm→0; for if it did, then we would not be
guaranteed that after an infinite numbern max of orbits, the
HO corrections of the above paragraph would be ignorab
For example, we could choosenmax to be 100, but we could
not choose it to be 100M /m. The orbit remains reflection
symmetric~or, equivalently, it remains circular! for n up to
n max, wheren increments by12. In other words, there is a
location, with coordinatesr n , un ṙ n , u̇n , andḟn , satisfying
Eqs.~3! for anyn up tonmax.

The constants of motionE, Lz , andQ ~or, equivalently,
i, e, anda) evolve in such a way that in going fromn50 to
n5n max a circular orbit remains circular. By assigning ne
values ofr 0 , u0 , ṙ 0 , u̇0 , and ḟ0 as the oldr nmax, un max

,

ṙ nmax, u̇n max
, andḟn max

, the argument can be repeated, ov

and over again. The rates of loss ofE, Lz , andQ will then
continue at such a rate so as to maintain circularity.

A more intuitive picture of why a circular orbit remain
circular was provided by Ori@7#, who first pointed out that
the incommensurability of ther and u periods is the key
reason why the argument can be made without knowing
c-
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nature of the reaction force: Even if the radiation reaction
were to take the bizarre form of somebody with a hamme
hitting the particle every time the particle is at some value o
u, there would have to be another person across the equa
rial plane atp2u with a hammer hitting the particle in a
corresponding way, as dictated by the orbital symmetrie
Since ther2 r̄ frequency is not an even multiple of theu
frequency, the hammer hits cannot constructively interfer
with each other and produce an eccentricity.

If an orbit is circular, then just knowing the rates of
change ofE andLz ~for example, by knowing the energy and
angular momentum carried off in the gravitational waves! is
enough to determine the full orbital evolution since the evo
lution of Q is constrained such that the conditions listed
immediately before Eq.~1! are satisfied, for as long as the
orbit itself is stable.

III. LEADING ORDER EFFECT OF SPIN
ON ECCENTRIC ORBITS

We now wish to consider general, not just circular, orbits
around a black hole. But in doing so, we restrict ourselves t
only considering the leading order effect of spin. We will use
the formalism of a radiation reaction force described in a
previous paper@6# and merely state how the method as de
scribed in that paper generalizes to orbits with eccentricity

When one is only interested in leading order inS and in
M /r ~or, equivalently,M /a, in terms of orbit parameters!,
the effect of the hole’s Kerr metric on the particle’s motion
can be substituted with a spin-orbit interaction in three
dimensional flat space. Let spherical polar coordinatesr ,
u, andf, centered on the black hole, be used to describe th
location of the particle~these coordinates describe the rela
tive separation of the two bodies!, with the hole’s spin along
the polar axis. The Lagrangian@Ref. @9#, Eq. ~4!# for the
motion of the particle is given, to linear order inS but oth-
erwise in solely Newtonian theory, by

L5
m

2
@ ṙ 21r 2u̇21r 2sin2~u!ḟ2#1

mM

r
2
2mS sin2u

r
ḟ.

~4!

To leading order inS and inM /r , the motion resulting from
this Lagrangian is the same as in the Kerr metric. The use
flat space coordinates, which ignoresM /r corrections, is ad-
equate to leading order. Using the same coordinate variab
namesr , u, and f for these coordinates as for the Kerr
metric’s Boyer-Lindquist coordinates does not cause conflic
and should not cause confusion. Alternatively, we can us
Cartesian coordinates,x15r sinu cosf, x25r sinu sinf, and
x35r cosu.

The Lagrangian~4! admits three constants of motion,
calledE, Lz , andQ because they are the same constants a
we have in the Kerr metric, to leading order inS and in
M /r . The values of these constants are

E5
m

2
@ ṙ 21r 2u̇21r 2sin2~u!ḟ2#2

mM

r
, ~5a!

Lz5mr 2sin2~u!ḟ2
2mS sin2u

r
, ~5b!
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Q1Lz
25m2r 4@ u̇21sin2~u!ḟ2#24m2Sr sin2~u!ḟ. ~5c!

The combinationQ1Lz
2 is a more natural constant to wor

with thanQ. If S were equal to zero, thenQ1Lz
2 would be

the square of the total angular momentum.
The constants of motioni, e, and a, when considered

only to leading order inS and in M /r , are related toE,
Lz , andQ by

cosi5
Lz

~Q1Lz
2!1/2

, ~6a!

12e2522
E~Q1Lz

2!

m3M2 S 114
SMm3Lz
~Q1Lz

2!2D , ~6b!

a52
Mm

2E S 112
SMm3Lz
~Q1Lz

2!2D . ~6c!

It is easy to verify these, by checking that theĒ and r̄ that
would make Eqs.~2! give Eqs.~6! satisfy~at leading order in
S and in M /a) the stable circular orbit constraints liste
immediately before Eq.~1!. Note that Eqs.~6! are valid for
arbitrary eccentricitye; they do not requiree!1.

It is possible to express the instantaneous time deriva
of each constant of motion,dE/dt, dLz /dt, or
d(Q1Lz

2)/dt, as a function ofr , x3 , ṙ , ẋ3 , and the con-
stants of motion; there is no occurrence off ~because of the
axisymmetry! or ḟ ~as this is determined withLz , r , and
u known! in any of the expressions. IfS were zero, then
there could be nox3 dependence, rather onlyr dependence,
since there is no physically preferred direction when spin
absent. Thus, anx3 or ẋ3 can only show up in a term tha
includes a factor ofS. Because of this, to compute the tim
derivative of each constant of motion to Newtonian ord
plus the spin correction,x3(t) only needs to be known to
Newtonian order, because the spin correction tox3 would be
anS2 term in the derivative of the constant of motion. On th
other hand, the radial motionr (t) of the particle has to be
known to Newtonian order plus the spin correction. T
f(t) motion does not have to be known at all for computi
the evolution of the constants of motion.

Let us, then, computer and x3 to the necessary orders
One of the Euler-Lagrange equations yields

r̈52
M

r 2
1
Q1Lz

2

m2r 3
16

SLz
mr 4

. ~7!

The solution of this, in terms of a parameterc, is

r5
~Q1Lz

2!/~m2M !

11e cosc S 11
SLzm

3M

~Q1Lz
2!2

~612e cosc! D , ~8!
k

d

tive

is
t
e
er

e

he
g

.

dt

dc
5

~Q1Lz
2!3/2/~m3M2!

~11e cosc!2 S 116
SLzm

3M

~Q1Lz
2!2D . ~9!

In the Newtonian limit ofS50, these are the equations for a
Keplerian ellipse, with the true anomalyc being the angle on
the orbital plane of the particle relative to periastron as seen
from the hole.

To Newtonian order,x35r cosu can be expressed as

x35r sini sin~c1c0!. ~10!

Here,c0 is some constant that describes the orientation of
the ellipse on the orbital plane. As seen from the hole,c0 is
the angle between the direction of the periastron and the
intersection of the equatorial and orbital planes.

The orbital period, from periastron to periastron, is

T5E
0

2p

dc
dt

dc
52pM S m

22ED 3/2. ~11!

It happens thatT, when written in this form, does not have
an explicitS dependence.

This motion we have just described is that in the absence
of gravitational radiation reaction; now we will compute the
effect of the radiation reaction acceleration. We can take the
equations for the rates of change ofE, Lz , andQ due to
radiation reaction for a particle going around a more massive
spinning body from Eqs.~10!, ~13!, and ~14! of Ref. @6#.
These equations give us formulas forĖ, L̇z , and
d(Q1Lz

2)/dt as functions of the displacement of the particle
relative to the hole in Cartesian coordinates,xk , and the
relative velocity,ẋk . There will also be higher order time
derivatives ofxk ~such asẍk , x̂k , etc.!, but these derivatives
can be eliminated from the expressions forĖ, L̇z , and
Q̇1Lz

2 with the aid of the Euler-Lagrange equations@derived
from ~4! when expressed in Cartesian coordinates—note that
repeated indices are summed over 1,2,3#:

ẍk52
M

r 3
xk1SS 2

4

r 3
e3k jẋ j16

ṙ

r 4
e3k jxj16

Lz
mr 5

xkD . ~12!

The time evolution of each constant of motion can thereby
be expressed in terms ofr , ṙ , x3 , ẋ3 , and the constants of
motion. The trajectory~8!–~11! can be inserted into these
expressions, and then time averaged using

^Ė&5
1

TE0
2p

dc
dt

dc
Ė, ~13!

and similarly forLz andQ1Lz
2 . The result is@8#
^Ė&52
32

5

m2

M2 SMa D 5S 1

12e2D
7/2F S 11

73

24
e21

37

96
e4D2

S

M2 S M

a~12e2! D
3/2

cosiS 73121
1211

24
e21

3143

96
e41

65

64
e6D G , ~14a!
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^L̇z&52
32

5

m2

M SMa D 7/2S 1

12e2D
2FcosiS 11

7

8
e2D1

S

M2 S M

a~12e2! D
3/2S F61241

63

8
e21

95

64
e4G2cos2iF618 1

109

4
e21

293

64
e4G

2cos~2c0!sin
2iF54 e21 13

16
e4G D G , ~14b!

^Q̇1Lz
2&52

64

5
m3SMa D 3S 1

12e2D
3/2F S 11

7

8
e2D2

S

M2 S M

a~12e2! D
3/2

cosiS 9712122e21
99

32
e4D G . ~14c!

The evolution of these constants can be converted, using Eqs.~6!, to the other set of constants:

^i̇&5
mS

M4 SMa D 11/2S 1

12e2D
4

siniF24415 1
252

5
e21

19

2
e42cos~2c0!S 8e21 26

5
e4D G , ~15a!

^ȧ&52
64

5

m

M SMa D 3S 1

12e2D
7/2F S 11

73

24
e21

37

96
e4D2

S

M2 S M

a~12e2! D
3/2

cosiS 13312 1
337

6
e21

2965

96
e41

65

64
e6D G , ~15b!

^ė&52
m

M2 SMa D 4S 1

12e2D
5/2

eF3041121e2

15
2

S

M2 S M

a~12e2! D
3/2

cosiS 13645
1
5032

15
e21

263

10
e4D G . ~15c!
-

Equations~14! agree~after trivial conversions of notation!
with previous results: Eqs.~15! of Ref. @6# and~the first line
of! Eq. ~3.14! of Ref. @10#, each of which is a special case o
Eqs.~14!.

In most cases, the terms with the cos(2c0) can be dropped
because they average to zero; to see when this can be d
consider the following: The Newtonian approximation to th
motion is that the particle travels in an ellipse. The first co
rection to this motion is, as Einstein computed for Mercu
that the periastron position of the ellipse shifts on a tim
scale of

Tprec;M ~M /a!25/2~12e2!. ~16!

The radiation reaction time scale for terms that involvec0 ,
as computed by evaluating (sini)/^i̇&c0 terms, is

T rad;M SMa D 211/2S S

M2D 21S m

M D 21 ~12e2!4

e2
. ~17!

~There are also factors of order unity that involvee which
were ignored. IfTrad were computed differently, for example
by evaluatingLz /^L̇z&c0 terms, it would contain factors ofi
as well.!

In the Newtonian limit,c0 is fixed, but with the periastron
precession,c0 changes slightly after each orbit, by a pos
Newtonian correction that was ignorable until now: Whe
T rad@Tprec, the cos(2c0) in Eqs.~14b! and~15a! averages to
zero, and the terms with that factor can be dropped. F
extremely eccentric orbits,Trad might not be much greater
than Tprec, and so thec0 terms must be kept. In all othe
respects, the periastron precession can be ignored becau
just gives terms higher order inM /a ~terms we have ne-
f

one,
e
r-
ry,
e
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n
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r
se it

glected!. The only effect of the precession, to which our
analysis is sensitive, is the averaging away ofc0 in the case
thatTrad@Tprec.

From Eq.~15a!, it is clear that the anglei changes such as
to become antialigned with the spin. In Ref.@6#, this conclu-
sion was reached for circular orbits; finite eccentricity does
not change, but only enhances, this result. However, the
statement that ‘‘the inclination angle antialigns with the
spin’’ is subject to the warning that we mentioned above
when introducingi: With the orbit not confined to a fixed
plane, the anglei is not the only way we could define ‘‘in-
clination angle’’@6#.

Equation~15c! has two important consequences: First, to
leading order, orbits tend to circularize, as is a well-known
fact. Second, if an orbit is circular, thene50 and ^ė&50,
and so the orbit remains circular. This is expected, since this
is the leading order limit of the general result in Sec. II.

The above analysis is just one step in a general program
for understanding the effects of radiation reaction on orbit-
ing, spinning bodies. Future steps in this program include
generalizing the analysis to an arbitrary mass ratiom/M and
to the case of both masses having spin, extending the analy
sis to higher order inM /r and inS, and achieving a similar
calculation of the orbital evolution in the fully relativistic
Kerr metric.
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