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Effect of gravitational radiation reaction on nonequatorial orbits around a Kerr black hole

Fintan D. Ryan
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The effect of gravitational radiation reaction on orbits around a spinning black hole is analyzed. Such orbits
possess three constants of motione, anda, which correspond, in the Newtonian limit of the orbit being an
ellipse, to the inclination angle of the orbital plane to the hole’s equatorial plane, the eccentricity, and the
semimajor axis length, respectively. First, it is argued that circular orbis0() remain circular under gravi-
tational radiation reaction. Second, for elliptical orhitsmoving the restriction oé=0), the evolution of
¢, e, anda is computed to leading order @ (the magnitude of the spin angular momentum of the hatel
in M/a, whereM is the mass of the black hole. Asdecreases, increases ané decreases.

PACS numbgs): 04.25.Nx, 04.30.Db

I. INTRODUCTION orbit remains circular under radiation reaction, in the limit of
the particle’s mass being small compared to the hole’s mass.

The Earth-based Laser Interferometer Gravitational Wave In the absence of gravitational radiation, the geodesic mo-
Observatory<LIGO-)VIRGO [1,2] network of gravitational tion of a particle in orbit around a Kerr black hole is well
wave detectorgwhich is now under constructiprand the  known and discussed, for example, in Sec. 33.6 of RHf.
European Space Agency’'s planned space-based Laser Intdihe location of the particle can be described in Boyer-
ferometer Space Antenr&ISA) [3] will be used to search Lindquist coordinates, 6, ¢, andt. The orbit can be de-
for and study the gravitational waves from “particles,” such scribed by three constants of motion: the enegythe an-
as neutron stars and small black holes, spiraling into massivgular momentum along the hole’s spin adis, and the
black holesimassM up to ~300M , for LIGO-VIRGO and  Carter constan®. The particle’s rest mags can be counted
up to ~10’M, for LISA). To search for the inspiral waves as another constant of the motion. The endfgy defined as
and extract the information they carry will require templatesthe relativistic energy of the particle minus its rest mass, so
based on theoretical calculations of the emitted waveformshat “E— " in the language of Ref[5] corresponds to
which in turn require a detailed understanding of how radia“ E” here. We will restrict to bound orbits, that E<0 and,
tion reaction influences the orbital evolution. as a consequendsee Ref[4]), Q=0.

When the orbital plane of the particle is inclined to the  An interesting feature of the Kerr metric in Boyer-
equatorial plane of a spinning hole, only one method hat.indquist coordinates is the existence of nonequatorial, cir-
been successfully implemented to deduce how radiation resular, geodesic orbits. These orbits are circular in the sense
action influences the evolution of the orbit's “Carter con- that the particle maintains a constant Boyer-Lindquist coor-
stant” [4,5], which governs the orbital shape and inclination dinater ; however, the plane of the circular orbit is not fixed
angle. This method, which uses a “post-Newtonian” gravi- but rather precesses around the hole’s spin axis. Such orbits
tational radiation reaction force, was described in a previougxist and are stable for values Bf L,, and Q that give
paper[6], but there only applied to “circular orbits{orbits ~ R=0, 9R/dr =0, andd’R/dr2<0, whereR [see Eq(33.339
of constant Boyer-Lindquist radial coordinatefor simplic-  of Ref. [5]] is defined by
ity. This follow-up paper has a twofold purpose: First, in Sec.

I, we will argue that circular orbits remain circular under p_r(g+ ;) (r2+ S2/M2)—L,S/M]2— (r2—2Mr + S2/M?2)

gravitational radiation reaction. Second, in Sec. lll, we will

compute the evolution of elliptical orbits under radiation re- X[ u?r2+(L,—Su/M—SE/M)?+Q]. (1)
action, but only to leading order i, the magnitude of the

spin angular momentum of the black hole, and leading order For an arbitrary orbit with constans, L,, andQ, there
in M/a, whereM is the black hole’s mass aralis the size might be some other enerdgy<E (E_depends orl, and

of the orbit, as de.flned more precisely beloiere and Q) such that, if the orbit had enerdy(L,,Q) rather than
throughout, units wittG=c=1 are used. E, the orbit would be circular and stable. In such a case, as
an alternative set of constantsig L,, andQ, the constants
Il. EVOLUTION OF CIRCULAR ORBITS ¢, e, anda can be defined as

Several years ago, Ofi7] put forth the conjecture that

: N ; o L

circular orbits in the Kerr metric remain circular even under = z
L o ) . X COS= —— 75, (2a)

gravitational radiation reaction. Here, we will argue in favor (Q+LyY
of the conjecture. We will start by reviewing some properties
of elliptical and circular orbits in the Kerr metric. Then we

: ) . : ) E
will argue that a circular orbit and the reaction force acting 1-e?=—, (2b)
on it have a type of reflection symmetry that ensures that the E
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scale(which varies like 14 as u—0, because the radiation
(20 reaction acceleration scales lig) is this motion substan-

tially modified by gravitational radiation reaction.
o We now consider, for an orbit slowly inspiraling due to
Herer =r(L,,Q) is the radius of the circular orbit with con- radiation reaction, an orbital revolution that satisfies the fol-
stantsE, L,, and Q. Note thata should not be confused lowing condition, to which we give the nameflection sym-
with the conventional notation for the spin of the black hole,metry Consider the point on the orbit that is at the beginning
which is S here. of the orbital revolution. Denote by,, 6y, o, 65, and

The positive root in Eq(2a) or in any other square rootis ¢, the Boyer-Lindquist spatial coordinates of that point and

always chosen. We choose the angléo lie in the range their time derivatives(Here and throughout, an overdot rep-

Os<¢=, so that:<w/2 corresponds to an orbit corotating resentgi/dt.) Then there are two other locations later on the
relative to the spin and> 7/2 to counterrotating. Alscg is path with coordinates

chosen as non-negative.

i
m| m

This set of constants, e, anda has the conceptual ad- rh=ro+pnt+HO, (33
vantage that in the Newtonian limit of large the orbit of -
the particle is an ellipse of eccentriciéyand semimajor axis On— m/2=(—1)*"(6p— m/2+und)+ HO,  (3b)
lengtha, on a plane with inclination angle to the hole’s o )
equatorial plane. When not in the Newtonian limit, interpret- rhn=ro+unf+HO, (39
ing ¢, e, anda as the inclination angle, eccentricity, and . .
semimajor axis length must be done with the caveat that 0n= 0o+ uno+HO, (3d)
since the orbit is not an ellipse; then, words such as “eccen- . . .
tricity” are subject to a modified interpretation and can be $n= ¢ot ung+HO, (€]
misleading.

for n=13 (a half revolution aften=0) andn=1 (a full or-
bital revolution aftem=0). The functions with tildes are not
functions of u. The “HO” terms are any terms that go to
zero faster thanw as u—0 (higher orderin w than lineay.
Because of the initial conditions at the beginning of the

first and second half revolutioriat n=0 andn= 3, respec-

Even though the particle’s motion is complicated when
not in the Newtonian limit, some of the parameters that de
scribe the particle’s motion need not be specified. For ex
ample, we are not concerned with the valuedobr t, be-
cause making ap or t translation does not change the

physics in the axisymmetric, stationary Kerr metric. Another _ .
symmetry is that if the orbital motion is flipped over the tVely), the shape of the first half revolutiothe path con-

hole’s equatorial plane, i.ed(t) is replaced byr— 6(t), the necting then=0 andn= 3 locations deviates from the shape
motion can be considered the same. All syglandt trans-  of the second half revolutiofthe path connecting the= 3
lations and#@ reflections leave the shape of the orbit un-and n=1 location$ by a path deviation of ordep. Of
changed. course, these two paths also differ bygatranslation, at

We can think of the particle as undergoing oscillatory,translation, and a reflection across the equatorial plane. But
coupled motion in ther and ¢ directions. We define one as we discussed above, these are unimportant differences be-
orbital revolutionto be one oscillation cycle as measured bycause of the symmetries; the shapes of the paths are the
the & motion. Given any chosen starting point of an orbital same.
revolution with coordinated,, the revolution can be broken Now that we have written Eq€3), we temporarily(for
into two half revolutions, the first when the particle goesthe remainder of this paragragpgo back to the case of no
from 6, to w— 6, half a # cycle later, and the second when radiation reaction; i.e., we set to zero the¢erms and the HO
the particle goes fromr— 6, back tod, another halfg cycle  terms in Egs(3). Clearly, a circular orbital revolution satis-
later. [Because of the coupling of the motion with theg  fies Egs.(3) for any initial n=0 location chosen on the cir-
motion, the @ motion does not peak at the same extremacular orbit. But could there be an eccentric orbit which also
every cycle. Therefore|w/2— 6, has to be chosen small satisfies Eqs(3)? The answer is negative, as we shall now
enough that the orbit does indeed go through 6, and 6, show. A slightly eccentric orbi{fone with the value ofe
in the following cycle. However, this is a very minor restric- small enough thae® terms are negligiblewould have the
tion for the rest of Sec. I, where in proving that circular samed(t) and ¢(t) motion regardless of the value ef but
orbits stay circular, we only consider circular and almostr —r would oscillate with an amplitude proportional &
circular orbits(we do not have to consider generally eccen-This can be verified from the Kerr-metric geodesic equa-
tric orbits since we know that a circular orbit cannot imme-tions, Eqgs.(33.32 of Ref. [5]. In the Newtonian limit, the
diately become generally eccentric without first beingoscillation ofr —r would be periodic with the same period
slightly eccentrig. In such case, the peaks of tlemotion  that#(t) has, but when not in the Newtonian limit tideand
are almost the same every cydgle. r oscillations would have different periods. If an orbit were

Now we consider the effect of gravitational radiation re- to be reflection symmetric, then-r would have to have the
action on an orbit. We assume that the rest mass small same value when the orbital motion iség as it does when
enough for the adiabatic approximation to hold: The timeit is at 7— 6, at the next value ofi. This would require that
scale of the gravitational radiation reaction is much longeritherr —r oscillate at a frequency that is an even integer
than any other time scale in the problem. Then the particlenultiple of the # oscillation frequency or —r have zero
moves very nearly on a geodesic path characterized by themplitude(a circular orbil. The former is never the case, as
constants of motiom, e, anda, and only on a very long time can be verified by numericall}8] examining circular orbits
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in the Kerr metric over the space of possible physically achature of the reaction force: Even if the radiation reaction
ceptable values @8, L,, andQ. The fact that —r does not were to take the bizarre form of somebody with a hammer
resonate with an even multiple of thefrequency implies  hitting the particle every time the particle is at some value of
that a slightly eccentric orbit cannot be reflection symmetric.¢, there would have to be another person across the equato-
Now we shall return to the case of interest: that withfial plane atm— ¢ with a hammer hitting the particle in a
gravitational radiation reaction. What precisely do we refercorresponding way, as dictated by the orbital symmetries.
to when we discuss circular orbital revolutions, when theSince ther —r frequency is not an even multiple of thie
orbital revolution is not actually circular but is slowly in- fréquency, the hammer hits cannot constructively interfere
spiraling? A good, but not unique, definition is one thatWith €ach other and produce an eccentricity.
agrees with the result in the case of no radiation reaction: We !f @n orbit is circular, then just knowing the rates of
define that a circular orbital revolution is one that satisfiescnge of andL, (for example, by knowing the energy and
Egs. (3), while an eccentric orbital revolution is one that @ngular momentum carried off in the gravitational wavies
does nofat least for slight eccentricity, as mentioned above €nugh to determine the full orbital evolution since the evo-
we are not considering generally eccentric opbite orbital !utlon (_)f Q is constrained such _th_at the conditions listed
revolution with weak radiation reaction is defined as circularMmediately before Eq(1) are satisfied, for as long as the
if and only if it is reflection symmetric. orbit itself is stable.
We now consider starting with an initial orbital revolution
that is circular or, equivalently, that is reflection symmetric, lll. LEADING ORDER EFFECT OF SPIN
i.e., that satisfies condition8). For smallu, ignoring the ON ECCENTRIC ORBITS

HO (higher thanu) corrections, we would expect that the We now wish to consider general, not just circular, orbits

t_hlrd half revolution(the first half of_the next orbital revolu- around a black hole. But in doing so, we restrict ourselves to
tion) would have a shape that deviates from that of the sec-

ond half revolution by the same amount as the shape of thonly considering the leading order effect of spin. We will use

second half revolution deviates from that of the first. We e formalism of a radiation reaction force described in a
. e . revious papef6] and merely state how the method as de-
expect this, because from conditiof® above, the initial P papef6] y

conditions of the third half revolution differ from those of the SC/1P€d In that paper generalizes to orbits with eccentricity.

second by the same amot(ta linear order i) as those of When one is only interested in leading orderSdrand in

y the ' u . MI/r (or, equivalently,M/a, in terms of orbit parametexs
the second differ from those of the first, and the acceleratlotghe effect of the hole’s Kerr metric on the particle’s motion
on th? partu_:le should similarly be equgl(ﬁlso t.o linear can be substituted with a spin-orbit interaction in three-
order inw) different between corresponding locations on the

second and third half revolutions as between corres Ondindimensional flat space. Let spherical polar coordinates
. : ) respe 9, and¢, centered on the black hole, be used to describe the
locations on the first and second. The orbit remains circula,

for the additional half revolution. If there is any eccentricity location of the particldthese coordinates describe the rela-
added, it is in the HO terms, but in tt 0 limit, this is tive separation of the two bodigswith the hole’s spin along

. S ) ) the polar axis. The LagrangigrRef. [9], Eq. (4)] for the
!gno_rable compared to the_shrmklng of the orbit, which Var motion of the particle is given, to linear order &but oth-
ies like u (the terms involving tildes

We can repeat the above argument to get the shape of tr?eanse in solely Newtonian theory, by

fourth half revolution, as well as the fifth, sixth, etc. In fact, P ) )

the argument can be repeated to any chosen numggyrof L= =[r?+r20%+r?sirt(0) p?] +
orbital revolutions, as long as that chosen number does not 4)
go to infinity asu—0; for if it did, then we would not be

guaranteed that after an infinite numbrer., of orbits, the 14 |eading order irS and inM/r, the motion resulting from
HO corrections of the above paragraph would be ignorableys | agrangian is the same as in the Kerr metric. The use of
For example, we could choos#,,, to be 100, but we could  fi5t space coordinates, which ignofidgr corrections, is ad-

not choose it to be 108/. The orbit remains reflection equate to leading order. Using the same coordinate variable
symmetric(or, equivalently, it remains circulafor n up o namesr, ¢, and ¢ for these coordinates as for the Kerr

N max, Wheren increments by;. In other words, there is & metric's Boyer-Lindquist coordinates does not cause conflict
location, with coordinates,, 6, r,, 6,, and¢,, satisfying  and should not cause confusion. Alternatively, we can use

uM  2uSsirfg .
e f¢-

Egs.(3) for any n up to Ny Cartesian coordinates; =r sind cosp, X,=r siné sing, and
The constants of motiok, L,, andQ (or, equivalently, x,=r cos.
¢, &, anda) evolve in such a way that in going from=0 to The Lagrangian(4) admits three constants of motion,

N=Nmax a circular orbit remains circular. By assigning new calledE, L,, andQ because they are the same constants as
values ofrg, 6y, g, 6y, and ¢g as the oldrnmax, O we have in the Kerr metric, to leading order $and in

and over again. The rates of lossBf L,, andQ will then M
i intain ci i _ Mo 20 2 o M
continue at such a rate so as to maintain circularity. E=—=[r2+r20%+r2siré(0) p>]— —, (59
A more intuitive picture of why a circular orbit remains 2 r
circular was provided by Ofi7], who first pointed out that )
the incommensurability of the and # periods is the key L= ur2si?(8) b 2uS sin6 5b)
reason why the argument can be made without knowing the 2= H r '
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Q+L2= u2r* 62+ siré( 0) $2] — 4u2Sr Siré(6) . (50) dt  (Q+ L§)3’2/(,u3M2)( SLu*M ) ©
dy  (1+e cosp)? 1132}
The combinatiorQ+ L2 is a more natural constant to work v ( /) (Q+L2)
with thanQ. If S were equal to zero, theQ + Lf would be
the square of the total angular momentum.
The constants of motion, e, anda, when considered

only to leading order inS and in M/r, are related tcE,

In the Newtonian limit ofS=0, these are the equations for a
Keplerian ellipse, with the true anomapybeing the angle on
the orbital plane of the particle relative to periastron as seen
from the hole.

L., andQ by To Newtonian orderxg=r cosd can be expressed as
- (6a) ine sin(yr+ o) (10
COS= —5775, Xz=Tr sim sin( ¢+ ¢y).
(Q+ Lg) 1/2 3 lr// 17[]0
Here, i, is some constant that describes the orientation of
) E(Q+L? SMusL, the ellipse on the orbital plane. As seen from the hgigis
l1-e=-2 3V 2 L2)2] (6b) the angle between the direction of the periastron and the
Iz (Q+L3) : . : .
intersection of the equatorial and orbital planes.
The orbital period, from periastron to periastron, is
M ( SMulL, 69
a=——— — . C
2E (Q+L%?2 2r o |32
] ] ] — _ T=J d¢—:2wM(—> . 11
It is easy to verify these, by checking that tBeandr that 0 dy —2E

would make Eqs(2) give Eqgs.(6) satisfy(at leading order in
S and in M/a) the stable circular orbit constraints listed It happens tha®, when written in this form, does not have
immediately before Eq(1). Note that Eqs(6) are valid for  an explicitS dependence.
arbitrary eccentricitye; they do not requiree<<1. This motion we have just described is that in the absence
It is possible to express the instantaneous time derivativef gravitational radiation reaction; now we will compute the
of each constant of motion,dE/dt, dL,/dt, or effect of the radiation reaction acceleration. We can take the
d(Q+L2)/dt, as a function ofr, x5, I, X3, and the con- equations for the rates of change Bf L,, andQ due to
stants of motion; there is no occurrencedofbecause of the radiation reaction for a particle going around a more massive
axisymmetry or ¢ (as this is determined with,, r, and  Spinning body from Egs(10), (13), and (14) of Ref. [6].
6 known) in any of the expressions. B were zero, then These equations give us formulas fd€, L,, and
there could be n&; dependence, rather ontydependence, d(Q+L2)/dt as functions of the displacement of the particle
since there is no physically preferred direction when spin igelative to the hole in Cartesian coordinateg, and the
absent. Thus, am; or X3 can only show up in a term that relative velocity,x,. There will also be higher order time
includes a factor ofs. Because of this, to compute the time derivatives ofx (such as«, X, etc), but these derivatives
derivative of each constant of motion to Newtonian ordercan be eliminated from the expressions fr L,, and

plus the spin correctionxs(t) only needs to be known to Q-+ L2 with the aid of the Euler-Lagrange equatidagrived

Newtonian order, because the spin correctiorgevould be  from (4) when expressed in Cartesian coordinates—note that
anS? term in the derivative of the constant of motion. On therepeated indices are summed over 1;2,3

other hand, the radial motion(t) of the particle has to be
known to Newtonian order plus the spin correction. The

¢(t) motion does not have to be known at all for computing; :_M n _i St L ot i 12
the evolution of the constants of motion. X=Xt S|~ 13 fagX 6 €anX| 6,ur5x" - (12
Let us, then, compute and x5 to the necessary orders.
One of the Euler-Lagrange equations yields The time evolution of each constant of motion can thereby
be expressed in terms of r, X3, X3, and the constants of
M Q+L2 s motion. The trajectory(8)—(11) can be inserted into these
r=- r—2+ W - (7) expressions, and then time averaged using
The solution of this, in terms of a parametgr is . 1f2,,d dt = s
< >_ T 0 l/ld_w_ ’ ( )

C(QELDI(pPM) [ SLuM
"= "1+ecos +(Q+L§)2

(6+2e co )), (8)
¥ and similarly forL, andQ+LZ2. The result i8]

) 321“’ 712
—____ = T a4y
B=-3w 127224 " 96 © T 6a®

M 3/2
—a( 1— ez) ) cos

B 3 S
24° T 96% | M2

73 1211 , 3143 65 6)

. (14a
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712

[y 32 u? (M 12 1)y Mo\%2 61 63, 95.,] 2 6L, 109, 293,
(L2=-5 w7 (1= |01 5 | T wzlaa=er) ||2a" 8¢ 6| osygt 7
5 13
—cog 2¢)Sirte Ze2+ l—ee4 ) , (14b)
L2y B4 o[MV? 1 )3/ 1ol S M 32 7 ooz P 14
(QrL)=—Fwl 7] = 8% m2lai-ed) Mt R (149
The evolution of these constants can be converted, using(Bqgo the other set of constants:
. pS(M\PZ 1 A4 1244 252 19 , 26,
(a)zw ’ 1—e2) Sin E+?e +7e —cog2yg)| 8e +€e , (153
o 64pu (M1 10 B2, 34 S (M 32 133 337 ,, 2965, 65 155
@=-5wvlal liI=e 24 T 96 | T M2la(1—e)] 1276 € 06 € "6t (15b)
L (M1 \¥?[304+1217 S M |32 1364 5032 , 263, 15
@=-m2\3) =) ¢ 15 M2lai—ed] %5 TT15 €T 10% )] (150

Equationg14) agree(after trivial conversions of notation glected. The only effect of the precession, to which our
with previous results: Eq$15) of Ref.[6] and(the first line  analysis is sensitive, is the averaging away/gfin the case
of) Eq. (3.14) of Ref.[10], each of which is a special case of that Tyad> Tprec:
Egs.(14). _ From Eq.(154a), it is clear that the anglechanges such as

In most cases, the terms with the caggPcan be dropped  to become antialigned with the spin. In RE], this conclu-
because they average to zero; to see when this can be doRgon was reached for circular orbits; finite eccentricity does
consider the following: The Newtonian approximation to the ot change, but only enhances, this result. However, the
motion is that the particle travels in an ellipse. The first cor-giaiement that “the inclination angle antialigns with the

rection to this motion is, as Einstein computed for Mercury,spin” is subject to the warning that we mentioned above

tsr;tl;r:; periastron position of the ellipse shifts on a UM&yhen introducing:: With the orbit not confined to a fixed

plane, the angle is not the only way we could define “in-
clination angle”[6].

Equation(150 has two important consequences: First, to
leading order, orbits tend to circularize, as is a well-known
fact. Second, if an orbit is circular, thee=0 and(e)=0,
and so the orbit remains circular. This is expected, since this

Torec=M(M/a) 34 1-€?). (16)

The radiation reaction time scale for terms that involg
as computed by evaluating (s)t(%o terms» 1S

_112 1 1 2\ 4 is the leading order limit of the general result in Sec. Il.
T ja—M M (_Sz) (ﬁ) (1__29_)‘ (17) The above analysis is just one step in a general program
a M M e for understanding the effects of radiation reaction on orbit-

ing, spinning bodies. Future steps in this program include
(There are also factors of order unity that involeevhich generalizing the analysis to an arbitrary mass raiid! and
were ignored. IfT 5y were computed differently, for example 5 the case of both masses having spin, extending the analy-
by evaluatingL, /(L) ; terms; it Would contain factors of s to higher order iM/r and inS, and achieving a similar
as well) calculation of the orbital evolution in the fully relativistic

In the Newtonian limit, is fixed, but with the periastron Kerr metric.

precessionyy, changes slightly after each orbit, by a post-
Newtonian correction that was ignorable until now: When
T ra¢® Tprec: the cos(2yp) in Egs.(14b) and(159 averages to ACKNOWLEDGMENTS
zero, and the terms with that factor can be dropped. For
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