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Nonlinear wave equations for relativity
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Gravitational wave motion is described by nonlinear wave equations using the tetrad and its connection as
field variables. The wave equations result from a Lorentz gauge on the connections. This description separates
the physics of wave motion from the causal structure, which is evolved in the tangent space. The initial data
constraints are derived in this approach using Yang-Mills scalar and vector potentials, resulting in Lie con-
straints associated with the additional Poinagaege invariance. The analogy of the constraint equations with
those in Ashtekar’s variables is emphasized.
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[. INTRODUCTION authors since, most notably Ashtekar and co-workéf.
The Riemann tensor then obeys a divergence equation with
The prediction of gravitational wave structure from the matter (if it is presenj appearing as a source term. In the
coalescence of astrophysical black holes or neutron stars tetrad approach, this equation is of Yang-Mills-type for the
presently being pursued in connection with the constructiorspacetime connection, with the gauge groupE0OR), the
of the Laser Interferometric Gravitational Wave Observatoryproper Lorentz group. The gauge group acts on the internal
(LIGO) and VIRGO[1]. The asymptotic wave structure at a degrees of freedom of the tetrad. To fix the gauge we impose
distant observer is in quantitative relation to the system paa Lorentz gauge condition, i.e., a four-divergence condition
rameters of compact binaries, which makes gravitational raen the connection. Thus, unique evolution equations are pro-
diation a new spectrum for astronomical observations. Th&ided for the internal gauge, resulting in nonlinear wave
prediction of gravitational wave forms is advanced throughequations for the connections. Complemented by the equa-
second-post-Newtonian order approximatip2$] and large  tions of structure for the evolution of the tetrad legs, a com-
scale numerical simulatio(e.qg.,[4]). The current numerical plete and manifestly hyperbolic system of evolution equa-
approaches are based on the13Hamiltonian formulation tions is obtained, which we propose as new evolution
by Arnowitt, Deser, and Misnef5], strategies employing equations for numerical relativity.
null coordinates(e.g.,[6]) or systems of conservation laws  The interwoveness of wave motion and causal structure
[7]. distinguishes gravity from the other field theories. In the
The significance of gravity waves in the process of coafresent description, this twofold nature of gravity is made
lescence of compact binaries suggests to focus on a descrigxplicit in the wave equations for the connections on the one
tion of relativity by nonlinear wave equations. In doing so,hand and the equations of structure for the tetfftte
new avenues towards numerical relativity are explored, irf'square root” of the metri¢ on the other hand. Essentially,
regard to the computational challenges with horizon boundgravitational waves are now propagated by wave equations
ary conditions[8] and the extraction of gravitational wave on the(curved manifold, while the metric is evolved in the
forms at finite boundarig®,10]. Wave equations ensure that (flat) tangent bundle by the equations of structure. Of course,
the physical quantities and their derived quantities propagatguch interpretation is only meaningful for wave motion with
along light coneghyperbolicity also after discretization, en- wave lengths above the Planck scale, below which the causal
abling rigorous implementation of the physical boundarystructure is not well defined and wave motion cannot be
conditions. Wave equations further provide a framework fordistinguished from quantum fluctuations.
the physics of nonlinear wave motion, by way of establishing The tetrad approach taken here has much in common with
close connection with electromagnetics and Yang-Millsthe Ashtekar program on nonperturbative quantum gravity
theory. In this paper, we take a first step in these directiond.13—17; however there are also important differences. The
We shall derive wave equations in the tetrad approachgriginal Ashtekar’s variables are the &,C) soldering form
taking the tetrad and their connections as field variables. Ouand an associated complex connection in which the con-
starting point is motivated by Pirani’s arguments concerningstraint equations become polynomial, while our basic vari-
the role of the Riemann tensor in gravitational wave motionable is the real S@,1R) connection(a comparison study
[11,12], and by formulations of general relativity as a Yang- can be found if17]). In Ashtekar’s variables, a real space-
Mills theory, going back to Utiyama and developed by manytime is recovered from the complex one by reality con-
straints. Still another approach is that of Barbgi®,19,
who recently carried through Ashtekar’s procedure in the
*Electronic address: vanputte@spacenet.tn.cornell.edu SOB,R) phase space with real connections.(&C) being
TElectronic address: doug@itp.ucsb.edu the universal covering grougsee[20] for a treatment of
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Ashtekar’'s program with S2,C) soldering form of the 1
Poincaregroup used as the gauge group in the tetrad ap- E:V®Rapca=167| VicTap— 590raVerT |- (6)
proach, it is therefore not surprising to find that the con-

straints associated with our wave equations contain the anghe guantity on the right-hand side shall be referred to as
logs of those in Ashtekar’s variables. The main innovation inygz - . In vacuo,E has been discussed by Klainerman

our work is the incorporation of the Lorentz gauge condition[as) who refers taE (with m,,.q=0) together with(2) as the
to obtain new evolution equations. It would also be of inter-gintwo equations. The tenseg.q is divergence-free:
est to explore ways of doing the same in the Ashtekar’s vari-
ables with forementioned soldering forms, something which VP7.a=0, (7
lies beyond the scope of this work.

After this work was submitted, Choquet-Bruhat and York in consequence of the conservation 1aW&T,,=0, and in
independently announced the results of some very interestgreement witlV°V2aR,,.4=0.
ing, related work, on the treatment of the Einstein equations Taken as evolution equations, it is of interest to note that
as nonlinear wave equatiofgl,22. Their work does not a cosmological constant does not eriferas the presence of
depend on a gauge-theory approach, but they do use deriva-term\g,,, drops out of the right-hand side ¢5). A cos-
tives of the metric as field variables, and their results are inmmological constant does enter initial data constraints, of

many respects similar to the present ours. course, and thus be a conserved scalaEby
Il. EQUATIONS FOR Rpcq A. Yang-Mills equations
We will work on a four-dimensional manifoldyl, with We proceed in the language of tetrads, using a tetrad and

hyperbo"c metricgab_ In discussions on the pr0b|em of ini- its connections as field variables. In doing so, additional in-
tial data and constraints) is considered to be the product of variances arise due to the liberty of choosing the tetrad po-
a smooth initial hypersurfacg,, and a timelike coordinate. Sition at each space-time point. This invariance is described

In a given coordinate systefix®! the line element oM is by the proper Poincargroup (at each point oM). Details
given by can be found, e.g., ilR6—28. We Iet{(eM)b} denote a tet-
rad, satisfying
ds?=g,,dxdx’. 1)
: (€,)°(8,)c= Nur
The natural volume element oM iS €,5c¢= V—9Aabcds

whereg denotes the determinant of the metric in the given 7*(e,)a(e,)’= 83,
coordinate system, andl,,.q denotes the completely anti- .
symmetric symbol. Coordinate differentiation will be de- 7.y~ diag —1,1,1,3. 8

noted byd, and covariant differentiation associated with b . )
gap Will be referred to byV,. Following Pirani[11], our  Here, &, denotes the Kronecker symbol. Neighboring tetrads

presentation starts from the view that all gravitational wavedre related by their connection one-formg,, :
motion inM is contained in the Riemann tensBy,,.4. The o c
Riemann tensor satisfies the Bianchi identity @auv:=(€,)"Va(€)c. ©)

3V (eRabjea= VeRavca™ VaRoaca™ VoReaci=0.  (2) The connection one-forms,,,, serve as Yang-Mills connec-
tions in the gauge covariant derivative

Using the volume elemerd,,.4, the dual*R is defined as N
(1/2)€,1; ®"Retcq- The Bianchi identity then takes the form Va=Vatlwa, ], (10

V2 Rypeq=0. ©) satisfying%a(e#)bzo. Here, the commutator is defined by
its action on tensorg,, . as

B T 2R 4
The interaction of matter, described by an energy-momentum o
tensorT,,, with gravity is described by Einstein’s equations, o
in which the Ricci tensoR,,=R,.,° and scalar curvature [‘*’a"i’al--ak]ar--m:Ei Daa, ""al---akal--ﬂj»--ar
R=R_® satisfy (11)
_ 1 _ In particular, we have
Gab=Rap— EgabR_ 87T ap- (4)
[waiwb];u/: wé;u,.awbav_ wé;)'awbay . (12)
The dynamics of the geometry dvi can be described in
terms of the Riemann tensor 9) (see, e.g.[23]) In what follows, Greek indices stand for contractions with
tetrad elements: it® is a vector field, ther ,=v"°(e,)y,

VRapca= 2V pRayc - (5) andvk=n*"v,.
The equations for the Riemann tensor can be stated in the
In the presence of Einsteins equation®), R, language of tetrads. The Bianchi identi) becomes
=87 Tap— (1/2)9,,T]1=87T,,. Therefore, we havée.g., ~
[24]) Vax Rab,u,V: Or (13)
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and the equivalent dE is legs. The termwy,,,N” on the right-hand side d22) shows
- that the tetrad lapse functions introduce different transforma-
E":V®Rapu,=1677,,, . (14 tions of each of the legs. In contrast, the tes,”(e,), on

the left-hand side introduces a transformation which applies
%o all four legs simultaneously. It follows that it is the infini-
tesimal Lorentz transformations,,” which provide the in-
ternal gauge transformations.

We will now turn to evolution equations for the connec-
(15) tion one-forms.

Throughout our presentation, the representation of the Ri
mann tensor as follows from the Bianchi ident{y3) plays

a central role. In terms of the connectiang, ,,, (13) implies
(cf. [23)):

Rab;LV: Vawb,uv_ waauv—‘r [wa !wb],uv .

The antisymmetries in the Riemann tensor introduce con- lll. EQUATIONS FOR @,
ditions on initial data on an initial hypersurfacg, If v°
denotes the normal t&, and Evolution equations for the connections follow frdai,
upon using the connection representati@d) for the Rie-
Va=—v,(v°V.)+D, onX, (16)  mann tensor. Clearly, this defines a partial evolution of the
connections, leaving the evolution of those connected with
we obtain the Gauss-Riemann relations the internal gauge freedona(,,,) undefined. In establishing

a complete system of evolution equations, we define a
Lorentzian cross section of the tangent bundle of the space-
time manifold by[12]

VbDaRabcd: 16mpcq,

VPD % Rabca=0, 17
.—ypd —
wherepq= 1°7,.4. Conditions(17) find their equivalents in Cuv =V @4y, =0. (24)
the tetrad formulation. To this end, we write, analogous to
(16), on > the derivative as In a different context(in the presence of a compact gauge
R R R group and metric with Euclidean signatur@4) has been
Va=—v,(v°V)+D,. (18 given a geometrical interpretation by Lewandowski
_ _ et al[29]. The Lorentz gaugé24) provides a complete, six-
The Gauss-Riemann relatiofs?) thus become fold connection between neighboring tetrads. The six con-
bAa straintsc,,,=0 are incorporated i’ by application of the
V' D Rapy,=167p,, divergence techniquig0,31:
bRa — ~
V"D Ran,=0. . E" V%Rt UacCy} = 1677, (25)
B. Equations for the tetrads To see the equivalence &’ andE, it suffices to show that

The relationships between the tetrad elements on neighe” preserves the Lorentz gau@®) in the future domain of
boring hypersurfaces iM as given by the connections dependenc® *(3) of an initial hypersurfac& . To this end,
wa,, Provide for evolution equations for the tetrad. Thesefirst note that the inhomogeneous Gauss-Riemann relation
equations are usually referred to as the equations of structufé?) is implied by antisymmetry of the Riemann tensor in its

[23] coordinate indices, giving
8[3( el‘)b] = (ey)[bwa] [ (20 0= Vb{%a( Rab,uv+ gabc,uv) - Tbuv}
In (20), d,(e,); is left undefined. Definingt®=(4,)°, the — (DR, — (e
four time corl%ponents g (A abjur ™ Tour) T (V7V)Cpy
=(1°Vy)c,, . 26
N, = (€,)aé (21) (Vb 29

become freely specifiable functions. The evolution equation;h‘? inhomogeneous Gaus;—R|emann re!auons_ areé gauge co-
for the tetrad legs thus become variant, so that we are at liberty to consider initial data sat-

isfying both (26) and the gauge choid@8), whence
&t(e,u)b—i_wt,uy(ev)b:&bN/L_wa,uVNv' (22) N
) _ C.=(vV¢)c,,=0 on. (27
The tetrad lapse functiond),,, are algebraically related to

the familiar lapseN, and shift functionsN,,, in the Hamil- Secondgc,, satisfies a homogeneous wave equatiof2B)
tonian formalism through (cf. [30 3]‘j)”

gat:Na(ea)a:(Nqu_szNp)- (23 A A
vevc,,=0. (28

Note, therefore, that thdl,'s are not parameters related to

the internal gauge freedom in the tetrad legs. Internal gauge

freedom is associated with Lorentz transformations of the *Conceptually,c,,=f(w,,,.gay) Will also serve its purpose,

tetrad legs by a Lorentz transformation applied to all fourwheref(-,-) depends analytically on its arguments.
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Summarizing, we see that the scalarg, satisfy an initial

value problem for a homogeneous wave equat8) with

trivial Cauchy datg27), so that
¢,,=0 inD7(3). (29

This establishes that solutions B are solutions td='.

IONS FOR RELATIVITY 3059
AL = Aaus.
dL=D,,,

<i>££i=<i>w—aw 37

onZ. By choice ofo,, the constraint$24) are there-

Cuv

We now elaborate on the existence of the Lorentz gauge&ore transformed mto

Recall the transformation rule for the connecti@ee, e.g.,
[28]):

Oapr= AﬁaA;Bwaaﬁ-l—A;ao"aA;a (30
In the present tetrad language, this gauge transformation
readily established by consideration of two tetrafds,, )b}
and{(e; )P, The constructiom ;”: = (e;)(e")° prowdes a
finite transformanorv;—AM Vg of a fleld v,=(e,) vy in
the {(e, )PY-tetrad representatlon intovy in the
{(eﬂ)b} tetrad representatlon This applied @ produces
(30). By suitable choice of\ ;”, therefore(24) can be made
to satisfy. Reversing this argument, we see {2 intro-
duces specific evolution of the internal gauge.

A. Existence of Lorentz gauge

To proceed, we consider in an open neighborhood

A(2) of an initial hypersurface with Gaussian normal
coordinates{7,x"} (¥°V r=1) the infinitesimal Lorentz
transformation(dropping thew notation

v v 1 2 v Y
A,u:5 + 570, Ing

W5 ).

31)

It is convenient to employ scalar and vector potentials,

®,, andA,,,, respectively, as defined in the decomposition
[cf. Eq. (15ab in [20]]

D, Ay, NI (S). (32)

Wayuy= Va

Upon transformingv,,,, , and denoting the effect ¢81) via
(30) by a superscriptr(), we have

(r)
wa,uv

in (%), (33

=Wau,T 755 o,
so that

<1>§;gchw— 70, INJ(2). (34)

Using the geodesic extension of the normdloff 3, the
Lorentz condition(24) becomes

CWZVCwWCEwaﬂL D.w® onX. (35
Expressed iA,,,, , this obtains
Cuv=P,, +De(v°P,,+A°,)
=d,,+KD,,+DA°,, (36)

on X, whereK,,=D,v, is the extrinsic curvature & and
K=K¢. Consequently(31) effectuates the transformations

nv

cl)=c,,—0,,=0. (38)
Notice that bringing the tetrad in Lorentz gau@8) by (31)

is achieved by adjustment of the second time derivatives
iﬁ(eﬂ)ﬂ:O, which does not involve the tetrad position nor
the velocities of the legs at=0.

We now elaborate further o”.

B. Nonlinear wave equations

In Lorentz gaugd?24), the divergence equatidel’ obtains
wave equations for the connection 1-forms through the rep-
resentation of the Riemann tensd’). Indeed, by explicit
calculation, we have

0 Wauy™ ngc,u,v_ [wc!vawc]p,v: 167TTa/,LV : (39)
Here, we have used,,=0, so thatV.c,,=V,c,,. O is
used to denote the Yang-Mills wave operalfV.. The
Ricci tensorR,;, in (39) is understood in terms of ,;, using
Einstein’s equation&t). Similarly, we can obtain a system of
scalar equations for the Ricci rotation -coefficients,
4= (8,) %04, Dy multiplication of both sides i1139) by
(€)™

We interpret these wave equations as the following.

B.1. Separation theoremGravity waves propagate
through the curved space-time manifold by wave equations
(39). In response to the wave motion, the causal structure of
the manifold evolves in the tangent bundle by the equations
of structure(22). The Arnowitt-Deser-MisnefADM) lapse
and shift functions find their counterparts in the tetrad lapse
functionsN,, (23).

IV. INITIAL VALUE PROBLEM

An initial value problem for the wave equations in the
field variables{(e,)® wa,,} contains the values ofe(,)®,
Wayy, aNd Zpo,,, On 2. These data must satisfy certain
constraints or®, commensurate with the initial distribution
of energy-momentum and the Gauss-Riemann equations
(19). We shall express these equations in terms of scalar and
vector potentialg32). The projection tensan,, onto >, is

Nab=0gabt Vavp - (40)
The covariant derivative associated whtfy, shall be denoted
by D,, i.e.,Dzh.q=0. The unit normal is extended geode-
sically [so thatrV 1°=0, (v°V ) hap=hap(¥°V.)]. We fur-
ther define

d':=b,,+KD,,,

Aél,uu L= (/’/ Aa,uv Aa,uv+ K CAC,uV . (41)
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The derivation of the initial data constraints involve a num-In deriving this equation, use has been made of the symmetry
ber of steps, which are streamlined by suitable reduction foref the extrinsic curvature tensor. Usirig7), the latter may

mulae for the Riemann tensét,,,. Of course, these are

be further reduced to

most conveniently derived using a tetrad which contains a . ) _ -
triad in the initial hypersurface. To this end, consider a nor- Rapu,=2vp{Day® .+ Aapust +2D1aAb a0t [Aa Abl sy

mal tetrad,{(Eﬂ)b}, in which one of the legs iginitially)
everywhere normal to the initial hypersurface:
(E,—n)P=7" on3. (42)

Then{(E,)°| ,+n} is a triad in%. We are now in the position

to obtain the reduction formulas in terms of quantities intrin-

sic to 3, and the extrinsic curvatuné,,=D v, of 3.

A. Expressions forA,,,

Helicity can be associated pairwise with the legs of a

+ 4D (2K [, 0%+ 2K oK b (49)

v]
where DK ,,=D.K ,p+A,,”K,p,. Notice that the three-
curvature tensor?R,;,.4, associated withh,, is given by
*Rabur=DaAbu— DA+ [Aa.Apl,,, SO that

hShERcd.s= 2D aAb1,n+ [Aa Abl T 2K o, K

alu

+ 4D[aKb][,u5?;]

= ®Rapuy 4D aKpy 8+ 2K Kypp . (50)

tetrad as the twist in a strip swept out by the integral curves
of a leg E,)° passing through an integral curve of leg This last equation slightly extends a similar expression ob-

(E)"
H,,:=v(E,)°V(E,)® onX. (43

For a normal tetradH ,,, therefore, describes twist i

when u# v and curvature oE whenu= . It follows that
H.ghoh? ons=-K,, (44)

in view of (42) [so thatv,(E,)®=— 5" on %]. The normal
(w=n) and tangent £ #n) helicities are, respectively,

_(I) -
Hyw= vo(E)H ey (ENP =15 " (45

unv:
Note that by (44), the symmetry of K,, and
Aunv=—Aun, Wwe have for u,v#n the symmetry

A[/“’]n:O' If M:ﬁn! (E,u)a: hab(E,u,)bl and SO
Aa,uV: hg(EM)ch(Ev)c
=(E,)[hghaV](E,)

=(E,)cDa(E))" (46)
If v#n, D, acts in(46) on tangent legs&,)°, which is
determined byh,, (p,q coordinatizing). In the normal
tetrad, therefored, ,, falls into two groupsf{i) the symmet-
ric, extrinsic partA,,,=K,,, and the(ii) intrinsic part
Ay, With u,v#n. We shall writeA, ,,= A,,ghsh? | so that
ony

A, +A, .00 +A

apv anv®y

= At 2K 1,80

apv

— n
Aa,u,l/_ a/}.nav

(47

ol

B. Expressions forR,,,,
Reductions oR,y,,, on 3 can be obtained by combining
the decomposition§l6), (18), and(32):
Rab/u/: V.’:lwb,uv_ waaﬂv+ [wa !wb],u,v
= ZV[bDa]q)ﬂV+ ZV[bAa],uV

+2D[aAbW+[Aa,Ab]W. (48)

tained in[32], where only the triad components v+ n are
considered.

C. Constraint equations

The constraints as they arise in the initial value problem
for our wave equation$39) comprise the familiar vector
(momentum and scalar(energy equations from the ADM
Hamiltonian formalism, together with equations which are
specific to the tetrad approach. These constraints fall into two
gauge invariant groups, namely the scalar and vector con-
straints and Gauss-Riemann relations, supplemented with the
Lorentz gauge condition@4).

Vector and scalar constraint3he vector and scalar equa-
tions are readily recovered from the second reduction for-
mula (50), giving

hehhShERapas= *Rabeat KauKin—KaKup, (51
whereby the scalar Gauss-Codacci relation
2G4y P =h2hPIR = h3*hPPR, 4
= SR+ K?—K,, K
= 3R+ K?—K,,KaP (52

is obtained. The second reduction form@&0) with v=n

yields hgthcd#ﬁzD[aKb]#, thereby obtaining the vector

Gauss-Codacci relation
hiRan=2hgh*DaKay, =D?Kap—DpK. (53

By Einsteins equations, therefore, the usual ADM constraints
follow:

SR+K2— K, p,K3P=167T,,,

D2K ap— DpK=8mh{T,,. (54
However, the additional gauge freedom in working with
the field variableé,(e#)b,waw} results in an extended num-
ber of independent degrees of freedom in the Riemann tensor
(compared with the case when the Riemann tensor is gener-
ated by a metric For example, arbitrary connections do not



53 NONLINEAR WAVE EQUATIONS FOR RELATIVITY 3061

satisfy Rap,, = Ryan- Consequently, the Riemann tensor is DD, +A,, *= _87T-I—nw
constraint, in order to be consistent with an underlying met- g .
ric. This is reflected in the alternative derivation of the vector DD, ®,,+DA},,=—16mp,,,, (62)

constraints mentioned above:
and the Lorentz gauge

hvPRope, = —Da®@,,— AL, (55) A
. . o ,+D%A,,,=0. (62
using reduction formulg50). A second set of vector con-
straints is thus obtained: These constraints are given proviso the normai) of
- ~ the tetrad. The presence of a cosmological constant can also
D¥®,,+A,, " =—87T,,. (56)  be taken into account. The cosmological constant would ap-

pear in the initial data constraints, but clearly would be ab-

Note that these new constraints involve the Lie derivativesent from the wave equations, as alluded to before in Sec. 1.
“n, SO that they can be understood arising from working

with a second-order formulation; in going from a first-order
Hamiltonian description to a second-order description, the
ADM vector constraints must also be satisfied on a neighbor- The discussion on the existence on the Lorentz gauge
ing future hypersurface, thereby constraining,w,,, . shows thai(24) _is satisfied_ t_)y proper acce_lgration of_ the tet-
These constraints can also be viewed as arising from the fouiad legs. That is, the positions and velocities remain as free
symmetry condition®R;,,;=0 (and henceT;,,;=0). In the ~parameters in the initial data. As a result, we are at liberty to
language of constraint Hamiltonian systef88], symmetry ~ adjust the velocities in exploring ways to simplify some of
conditions are primary constraints, giving rise (6) as a  the constraint equations, at least Bn Thus, assume that
secondary constraint. (24) is satisfied,

Gauss-Riemann relation&auss-Riemann relationd.9)
expressed in terms @b ,, andA,,, obtain divergence con-
straints analogous to those in electromagnetics. To see thI:§1hd consider restricted gauge transformations by further in-

note that the antisymmetry of the Riemann tensor in its CO%lusion of the velocities using Lorentz transformations
ordinate indices implies g

D. Restricted Lorentz gauge

Cv=P),+DA,,°=0, (63)

1

°D?Rap,., = D*(# Rapy.,), (57) A'=8, aN 5 e, I (D), (64)
where use has been made I‘Q{bWKabEO. By the first re- . ) )
duction formula(49) we have where 7 is a Gaussian normal coordl_nate Bf such that _

v°Ver=1, andd,\ ,"=0, as before. Notice that these condi-
VbRab,uv: —Do®,,— AL, (58  tions respect the normaliti42). By (30), we have
irst. i i Pl =d,,—\

Therefore, the first, inhomogeneous Gauss-Riemann con- uv— Fpr Nuvs

straint in(19) reads

D)=, 7,
bRha _ _bpa a b wy m m
v’D Rab/,u/ v’D Rabﬂv+[A vV Rab]/.u/ o
:6a(va b ) Aa,uV:Aa;w (65)
abuv
_ _f)af)a‘pw_ f)aAéwzlﬁﬂpw- (59 on 2. Now choose\r ,, ando,, to satisfy
; : d!)=d,,—\,,=0
The Gauss-Riemann constraints can be regarded as second- pwy Fpy RupT
ary constra_ints, with thg a§sociated antisymmetries in (@) =0 4 K
Rabu» @S primary constraints in the nomenclature of con- ur— Fuv pv!
straint Hamiltonian systen|83]. Note that these constraints _ ('DW_ %v:q)/’,w (66)

involve again a Lie derivative of the vector element of the
connections. These are, therefore, again to be regarded aga S, With AQ =A o '=—K®  ensures that we
. . _ . _ ' ; auy auv M . Mmv .

result of working in a second-order formalism. These con-, .- in Lorentz gauge4), while \ ,.=® ,, gives
straints amount to six constraints associated with the six de- # #
grees of freedom in internal gauge. In Sec. Ill, we saw this ®M=0 on3. (67)
structure exploited to incorporate Lorentz gaugé) in E”.

To summarize, the constraints on the initial data3in  With this restricted Lorentz gauge, the Lie constraints reduce
terms of the potentials are the Gauss-Codacci constraints to

CR+K2—-K,,K2=167T,,, A, H=—87T,,,

DK a5~ DpK=87hf Ty, (60) D2A,,,= —16mp,,, .

auv

the Lie constraints onx,. (68)
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It appears not to be feasible to ensdrg, =0 throughout  gence form. The hyperbolicity of the equations ensures the

D" (2) by suitable choice of restricted Lorentz gauge. variables to be well behaved, and suitable for discretization.
A recent numerical implementatiof84] demonstrates the
V. DISCUSSION soundness of the approach, by obtaining proper second order

) o ) o . convergence through implementationtsf and(22) in a test

The physics of gravitational interaction in a compact bi-computation against an analytic solution of a nonlinear, po-
nary has been described in terms of wave equati88sby larized Gowdy wavé35,36].
using the field variableg(e,)” a,,} in Lorentz gauge. The constraint equations as implied B/ show addi-
These equations are proposed as new evolution equations f@hnal Lie constraints, including thixfold) analogue of the
numerical relativity. The wave equations and their accompatthreefolg Gauss law in Ashtekar’s variables. These Lie con-
nying equations of structure are strictly hyperbolic, therebystraints can be understood to be arising from working in a
facilitating the “grand challenges” in the present NSF grandsecond-order formulation, or as secondary constraints result-
challenge in gravitational radiation form the coalescence ofng from symmetries in the Riemann tensor as primary con-
compact binaries, namely those associated with rigorous instraints. The Lorentz gauge condition is specific to our for-
going horizon boundary conditions, extraction of wave formsmyjation: we expect this to have its equivalence in
at the outer boundary with outgoing boundary conditions ashtekar’'s variables through specific conditions on the

together with a clearcut separation between the physics afyy2) factor N8 of the Gauss law in the total Hamiltonian,
wave motion and the evolution of causal structiepara- byt have not sought to make this explicit.

tion theorem B.L This formulation applies both to the prob-

lem of coalescence of a binary black hole system, and that of

a binary neutron star system by inclusion of matter as source ACKNOWLEDGMENTS
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