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Nonlinear wave equations for relativity
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Gravitational wave motion is described by nonlinear wave equations using the tetrad and its connection as
field variables. The wave equations result from a Lorentz gauge on the connections. This description separates
the physics of wave motion from the causal structure, which is evolved in the tangent space. The initial data
constraints are derived in this approach using Yang-Mills scalar and vector potentials, resulting in Lie con-
straints associated with the additional Poincare´ gauge invariance. The analogy of the constraint equations with
those in Ashtekar’s variables is emphasized.

PACS number~s!: 04.20.Jb, 04.30.Nk, 04.60.Ds
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I. INTRODUCTION

The prediction of gravitational wave structure from th
coalescence of astrophysical black holes or neutron star
presently being pursued in connection with the constructi
of the Laser Interferometric Gravitational Wave Observato
~LIGO! and VIRGO@1#. The asymptotic wave structure at a
distant observer is in quantitative relation to the system p
rameters of compact binaries, which makes gravitational
diation a new spectrum for astronomical observations. T
prediction of gravitational wave forms is advanced throug
second-post-Newtonian order approximations@2,3# and large
scale numerical simulation~e.g.,@4#!. The current numerical
approaches are based on the 311 Hamiltonian formulation
by Arnowitt, Deser, and Misner@5#, strategies employing
null coordinates~e.g., @6#! or systems of conservation laws
@7#.

The significance of gravity waves in the process of co
lescence of compact binaries suggests to focus on a desc
tion of relativity by nonlinear wave equations. In doing so
new avenues towards numerical relativity are explored,
regard to the computational challenges with horizon boun
ary conditions@8# and the extraction of gravitational wave
forms at finite boundaries@9,10#. Wave equations ensure tha
the physical quantities and their derived quantities propag
along light cones~hyperbolicity! also after discretization, en-
abling rigorous implementation of the physical bounda
conditions. Wave equations further provide a framework f
the physics of nonlinear wave motion, by way of establishin
close connection with electromagnetics and Yang-Mil
theory. In this paper, we take a first step in these directio

We shall derive wave equations in the tetrad approac
taking the tetrad and their connections as field variables. O
starting point is motivated by Pirani’s arguments concerni
the role of the Riemann tensor in gravitational wave motio
@11,12#, and by formulations of general relativity as a Yang
Mills theory, going back to Utiyama and developed by man
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authors since, most notably Ashtekar and co-workers@13#.
The Riemann tensor then obeys a divergence equation wit
matter ~if it is present! appearing as a source term. In the
tetrad approach, this equation is of Yang-Mills-type for the
spacetime connection, with the gauge group SO~3,1,R), the
proper Lorentz group. The gauge group acts on the interna
degrees of freedom of the tetrad. To fix the gauge we impos
a Lorentz gauge condition, i.e., a four-divergence condition
on the connection. Thus, unique evolution equations are pro
vided for the internal gauge, resulting in nonlinear wave
equations for the connections. Complemented by the equa
tions of structure for the evolution of the tetrad legs, a com-
plete and manifestly hyperbolic system of evolution equa-
tions is obtained, which we propose as new evolution
equations for numerical relativity.

The interwoveness of wave motion and causal structur
distinguishes gravity from the other field theories. In the
present description, this twofold nature of gravity is made
explicit in the wave equations for the connections on the one
hand and the equations of structure for the tetrad~the
‘‘square root’’ of the metric! on the other hand. Essentially,
gravitational waves are now propagated by wave equation
on the~curved! manifold, while the metric is evolved in the
~flat! tangent bundle by the equations of structure. Of course
such interpretation is only meaningful for wave motion with
wave lengths above the Planck scale, below which the caus
structure is not well defined and wave motion cannot be
distinguished from quantum fluctuations.

The tetrad approach taken here has much in common wit
the Ashtekar program on nonperturbative quantum gravity
@13–17#; however there are also important differences. The
original Ashtekar’s variables are the SU~2,C) soldering form
and an associated complex connection in which the con
straint equations become polynomial, while our basic vari-
able is the real SO~3,1,R) connection~a comparison study
can be found in@17#!. In Ashtekar’s variables, a real space-
time is recovered from the complex one by reality con-
straints. Still another approach is that of Barbero@18,19#,
who recently carried through Ashtekar’s procedure in the
SO~3,R) phase space with real connections. SL~2,C) being
the universal covering group~see @20# for a treatment of
3056 © 1996 The American Physical Society
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53 3057NONLINEAR WAVE EQUATIONS FOR RELATIVITY
Ashtekar’s program with SL~2,C) soldering form! of the
Poincare´ group used as the gauge group in the tetrad
proach, it is therefore not surprising to find that the co
straints associated with our wave equations contain the a
logs of those in Ashtekar’s variables. The main innovation
our work is the incorporation of the Lorentz gauge conditio
to obtain new evolution equations. It would also be of inte
est to explore ways of doing the same in the Ashtekar’s va
ables with forementioned soldering forms, something wh
lies beyond the scope of this work.

After this work was submitted, Choquet-Bruhat and Yor
independently announced the results of some very inter
ing, related work, on the treatment of the Einstein equatio
as nonlinear wave equations@21,22#. Their work does not
depend on a gauge-theory approach, but they do use de
tives of the metric as field variables, and their results are
many respects similar to the present ours.

II. EQUATIONS FOR Rabcd

We will work on a four-dimensional manifold,M , with
hyperbolic metricgab . In discussions on the problem of ini
tial data and constraints,M is considered to be the product o
a smooth initial hypersurface,S, and a timelike coordinate.
In a given coordinate system$xb% the line element onM is
given by

ds25gabdx
adxb. ~1!

The natural volume element onM is eabcd5A2gDabcd,
whereg denotes the determinant of the metric in the giv
coordinate system, andDabcd denotes the completely anti
symmetric symbol. Coordinate differentiation will be de
noted by ]a and covariant differentiation associated wit
gab will be referred to by¹a . Following Pirani @11#, our
presentation starts from the view that all gravitational wa
motion inM is contained in the Riemann tensor,Rabcd. The
Riemann tensor satisfies the Bianchi identity

3¹@eRab#cd5¹eRabcd1¹aRbacd1¹bReacd50. ~2!

Using the volume elementeabcd, the dual*R is defined as
(1/2)eab

•••e fRe fcd. The Bianchi identity then takes the form

¹a*Rabcd50. ~3!

The interaction of matter, described by an energy-moment
tensorTab , with gravity is described by Einstein’s equation
in which the Ricci tensorRab5Racb

c and scalar curvature
R5Rc

•c satisfy

Gab[Rab2
1

2
gabR58pTab . ~4!

The dynamics of the geometry onM can be described in
terms of the Riemann tensor by~2! ~see, e.g.,@23#!

¹dRabcd52¹@bRa#c . ~5!

In the presence of Einsteins equations~4!, Rab

58p@Tab2(1/2)gabT#[8pT̃ab . Therefore, we have~e.g.,
@24#!
ap-
n-
na-
in
n
r-
ri-
ich

k
est-
ns

riva-
in

-
f

en
-
-
h

ve

um
s,

E:¹aRabcd516pS ¹@cTd#b2
1

2
gb@d¹c#TD . ~6!

The quantity on the right-hand side shall be referred to a
16ptbcd . In vacuo,E has been discussed by Klainerman
@25#, who refers toE ~with tbcd50) together with~2! as the
spin-two equations. The tensortbcd is divergence-free:

¹btbcd50, ~7!

in consequence of the conservation laws¹aTab50, and in
agreement with¹b¹aRabcd50.

Taken as evolution equations, it is of interest to note tha
a cosmological constant does not enterE, as the presence of
a termlgab drops out of the right-hand side of~5!. A cos-
mological constant does enter initial data constraints, o
course, and thus be a conserved scalar byE.

A. Yang-Mills equations

We proceed in the language of tetrads, using a tetrad an
its connections as field variables. In doing so, additional in
variances arise due to the liberty of choosing the tetrad po
sition at each space-time point. This invariance is describe
by the proper Poincare´ group ~at each point ofM ). Details
can be found, e.g., in@26–28#. We let $(em)

b% denote a tet-
rad, satisfying

~em!c~en!c5hmn ,

hmn~em!a~en!b5da
b ,

hmn5 diag~21,1,1,1!. ~8!

Here,da
b denotes the Kronecker symbol. Neighboring tetrads

are related by their connection one-formsvamn :

vamn :5~em!c¹a~en!c . ~9!

The connection one-formsvamn serve as Yang-Mills connec-
tions in the gauge covariant derivative

¹̂a5¹a1@va ,•#, ~10!

satisfying ¹̂a(em)
b50. Here, the commutator is defined by

its action on tensorsfa1•••aka1•••a l
as

@va ,fa1•••ak
#a1•••a l

5(
i

vaa i

•••a jva1•••aka1•••a j •••a l
.

~11!

In particular, we have

@va ,vb#mn5vam
•••avban2van

•••avbam . ~12!

In what follows, Greek indices stand for contractions with
tetrad elements: ifvb is a vector field, thenvm5vb(em)b ,
andvm5hmnvn .

The equations for the Riemann tensor can be stated in th
language of tetrads. The Bianchi identity~2! becomes

¹̂a*Rabmn50, ~13!
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and the equivalent ofE is

E8:¹̂aRabmn516ptbmn . ~14!

Throughout our presentation, the representation of the R
mann tensor as follows from the Bianchi identity~13! plays
a central role. In terms of the connectionsvamn , ~13! implies
~cf. @23#!:

Rabmn5¹avbmn2¹bvamn1@va ,vb#mn . ~15!

The antisymmetries in the Riemann tensor introduce c
ditions on initial data on an initial hypersurface,S. If nb

denotes the normal toS, and

¹a52na~nc¹c!1Da onS, ~16!

we obtain the Gauss-Riemann relations

nbDaRabcd516prcd ,

nbDa*Rabcd50, ~17!

wherercd5nbtbcd . Conditions~17! find their equivalents in
the tetrad formulation. To this end, we write, analogous
~16!, onS the derivative as

¹̂a52na~nc¹̂c!1D̂a . ~18!

The Gauss-Riemann relations~17! thus become

nbD̂aRabmn516prmn ,

nbD̂a*Rabmn50. ~19!

B. Equations for the tetrads

The relationships between the tetrad elements on ne
boring hypersurfaces inM as given by the connection
vamn provide for evolution equations for the tetrad. The
equations are usually referred to as the equations of struc
@23#

]@a~em!b#5~en!@bva#nm . ~20!

In ~20!, ] t(em) t is left undefined. Definingjb5(] t)
b, the

four time components

Nm :5~em!aj
a ~21!

become freely specifiable functions. The evolution equati
for the tetrad legs thus become

] t~em!b1v tm
n~en!b5]bNm1vbm

nNn . ~22!

The tetrad lapse functions,Nm , are algebraically related to
the familiar lapse,N, and shift functions,Nn , in the Hamil-
tonian formalism through

gat5Na~ea!a5~NqN
q2N2,Np!. ~23!

Note, therefore, that theNm’s are not parameters related t
the internal gauge freedom in the tetrad legs. Internal ga
freedom is associated with Lorentz transformations of
tetrad legs by a Lorentz transformation applied to all fo
ie-

on-

to

igh-

se
ture

ns

o
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he
ur

legs. The termvbmnN
n on the right-hand side of~22! shows

that the tetrad lapse functions introduce different transforma
tions of each of the legs. In contrast, the termv tm

n(en)b on
the left-hand side introduces a transformation which applie
to all four legs simultaneously. It follows that it is the infini-
tesimal Lorentz transformationsv tm

n which provide the in-
ternal gauge transformations.

We will now turn to evolution equations for the connec-
tion one-forms.

III. EQUATIONS FOR vaµn

Evolution equations for the connections follow fromE8,
upon using the connection representation~15! for the Rie-
mann tensor. Clearly, this defines a partial evolution of th
connections, leaving the evolution of those connected wit
the internal gauge freedom (v tmn) undefined. In establishing
a complete system of evolution equations, we define
Lorentzian cross section of the tangent bundle of the spac
time manifold by@12#

cmn :5¹dvdmn50. ~24!

In a different context~in the presence of a compact gauge
group and metric with Euclidean signature! ~24! has been
given a geometrical interpretation by Lewandowsk
et al.@29#. The Lorentz gauge~24! provides1 a complete, six-
fold connection between neighboring tetrads. The six con
straintscmn50 are incorporated inE8 by application of the
divergence technique@30,31#:

E9:¹̂a$Rabmn1gabcmn%516ptbmn . ~25!

To see the equivalence ofE9 andE, it suffices to show that
E9 preserves the Lorentz gauge~24! in the future domain of
dependenceD1(S) of an initial hypersurfaceS. To this end,
first note that the inhomogeneous Gauss-Riemann relatio
~17! is implied by antisymmetry of the Riemann tensor in its
coordinate indices, giving

05nb$¹̂a~Rabmn1gabcmn!2tbmn%

5nb~D̂aRabmn2tbmn!1~nb¹̂b!cmn

5~nb¹̂b!cmn . ~26!

The inhomogeneous Gauss-Riemann relations are gauge
variant, so that we are at liberty to consider initial data sa
isfying both ~26! and the gauge choice~38!, whence

cmn5~nc¹̂c!cmn50 onS. ~27!

Second,cmn satisfies a homogeneous wave equation in~25!
~cf. @30,31#!:

¹̂c¹̂ccmn50. ~28!

1Conceptually,cmn5 f (vamn ,gab) will also serve its purpose,
where f (•,•) depends analytically on its arguments.
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Summarizing, we see that the scalarscmn satisfy an initial
value problem for a homogeneous wave equation~28! with
trivial Cauchy data~27!, so that

cmn50 inD1~S!. ~29!

This establishes that solutions toE9 are solutions toE8.
We now elaborate on the existence of the Lorentz gau

Recall the transformation rule for the connection~see, e.g.,
@28#!:

vam̄n̄5Lm̄
aLn̄

bvaab1Lm̄
a]aLn̄a . ~30!

In the present tetrad language, this gauge transformatio
readily established by consideration of two tetrads,$(em)

b%
and$(ēm̄)

b%. The constructionLm̄
n :5(ēm̄)c(e

n)c provides a
finite transformationv m̄5Lm̄

ava of a field va5(ea)
bvb in

the $(em)
b%-tetrad representation into v ā in the

$(ēm̄)
b%-tetrad representation. This applied to~9! produces

~30!. By suitable choice ofLm̄
n , therefore,~24! can be made

to satisfy. Reversing this argument, we see that~24! intro-
duces specific evolution of the internal gauge.

A. Existence of Lorentz gauge

To proceed, we consider in an open neighborho
N (S) of an initial hypersurfaceS with Gaussian normal
coordinates$t,xp% (nc¹ct51) the infinitesimal Lorentz
transformation~dropping them̄ notation!

Lm
n5dm

n1
1

2
t2sm

n in N ~S!. ~31!

It is convenient to employ scalar and vector potentia
Fmn andAamn , respectively, as defined in the decompositi
@cf. Eq. ~15ab! in @20##

vamn5naFmn1Aamn in N ~S!. ~32!

Upon transformingvamn , and denoting the effect of~31! via
~30! by a superscript (r ), we have

vamn
~r ! 5vamn1tda

tsmn in N ~S!, ~33!

so that

Fmn
~r !5Fmn2tsmn in N ~S!. ~34!

Using the geodesic extension of the normalnb off S, the
Lorentz condition~24! becomes

cmn5¹cvmn
c[Ḟmn1Dcv

c onS. ~35!

Expressed inAamn , this obtains

cmn5Ḟmn1Dc~ncFmn1A
•mn
c !

5Ḟmn1KFmn1DcA•mn
c ~36!

on S, whereKab5Danb is the extrinsic curvature ofS and
K5Kc

c . Consequently,~31! effectuates the transformations
ge.

n is

od

ls,
n

Aamn
~r ! 5Aamn ,

Fmn
~r !5Fmn ,

Ḟmn
~r !5Ḟmn2smn ~37!

onS. By choice ofsmn5cmn , the constraints~24! are there-
fore transformed into

cmn
~r !5cmn2smn50. ~38!

Notice that bringing the tetrad in Lorentz gauge~38! by ~31!
is achieved by adjustment of the second time derivative
]t
2(em) ut50

b , which does not involve the tetrad position nor
the velocities of the legs att50.

We now elaborate further onE9.

B. Nonlinear wave equations

In Lorentz gauge~24!, the divergence equationE9 obtains
wave equations for the connection 1-forms through the rep
resentation of the Riemann tensor~15!. Indeed, by explicit
calculation, we have

ĥvamn2Ra
cvcmn2@vc,¹avc#mn516ptamn . ~39!

Here, we have usedcmn50, so that¹̂acmn5¹acmn . ĥ is
used to denote the Yang-Mills wave operator¹̂c¹̂c . The
Ricci tensorRab in ~39! is understood in terms ofTab using
Einstein’s equations~4!. Similarly, we can obtain a system of
scalar equations for the Ricci rotation coefficients
vamn5(ea)

avamn by multiplication of both sides in~39! by
(ea)

a.
We interpret these wave equations as the following.
B.1. Separation theorem.Gravity waves propagate

through the curved space-time manifold by wave equation
~39!. In response to the wave motion, the causal structure
the manifold evolves in the tangent bundle by the equation
of structure~22!. The Arnowitt-Deser-Misner~ADM ! lapse
and shift functions find their counterparts in the tetrad laps
functionsNm ~23!.

IV. INITIAL VALUE PROBLEM

An initial value problem for the wave equations in the
field variables$(em)

b,vamn% contains the values of (em)
b,

vamn , andLnvamn on S. These data must satisfy certain
constraints onS, commensurate with the initial distribution
of energy-momentum and the Gauss-Riemann equatio
~19!. We shall express these equations in terms of scalar a
vector potentials~32!. The projection tensorhab ontoS is

hab5gab1nanb . ~40!

The covariant derivative associated withhab shall be denoted
by D̄a , i.e., D̄ahcd50. The unit normal is extended geode-
sically @so thatnc¹cn

b50, (nc¹c)hab5hab(n
c¹c)#. We fur-

ther define

F8:5Ḟmn1KFmn ,

Aamn8 :5LnAamn5Ȧamn1Ka
•cAcmn . ~41!
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The derivation of the initial data constraints involve a num
ber of steps, which are streamlined by suitable reduction f
mulae for the Riemann tensorRabmn . Of course, these are
most conveniently derived using a tetrad which contains
triad in the initial hypersurface. To this end, consider a no
mal tetrad,$(Em)

b%, in which one of the legs is~initially !
everywhere normal to the initial hypersurface:

~Em5n!
b5nb onS. ~42!

Then$(Em)
cumÞn% is a triad inS. We are now in the position

to obtain the reduction formulas in terms of quantities intrin
sic toS and the extrinsic curvatureKab5D̄anb of S.

A. Expressions forAaµn

Helicity can be associated pairwise with the legs of
tetrad as the twist in a strip swept out by the integral curv
of a leg (En)

b passing through an integral curve of le
(Em)

b:

Hmn :5nb~Em!c¹c~En!b onS. ~43!

For a normal tetrad,Hmn , therefore, describes twist inS
whenmÞn and curvature ofS whenm5n. It follows that

Habhm
ahn

b onS52Kmn ~44!

in view of ~42! @so thatna(Ea)
a52da

n on S#. The normal
(m5n) and tangent (mÞn) helicities are, respectively,

Hmn5nb~Em!c$vcgn~Eg!b%5 H 2Fnn ,
Amnn.

~45!

Note that by ~44!, the symmetry of Kab and
Amnn52Amnn , we have for m,nÞn the symmetry
A@mn#n50. If mÞn, (Em)a5hab(Em)

b, and so

Aamn5ha
b~Em!c¹b~En!c

5~Em!c@hd
cha

b¹b#~En!d

[~Em!cD̄a~En!c. ~46!

If nÞn, D̄a acts in ~46! on tangent legs (En)
b, which is

determined byhpq (p,q coordinatizingS). In the normal
tetrad, therefore,Aamn falls into two groups:~i! the symmet-
ric, extrinsic partAmnn5Kmn , and the ~ii ! intrinsic part
Aamn with m,nÞn. We shall writeĀamn5Aaabhm

ahn
b , so that

on S

Aamn5Āamn1Aanndm
n1Aamndn

n

5Āamn12Ka@mdn#
n . ~47!

B. Expressions forRabµn

Reductions ofRabmn on S can be obtained by combining
the decompositions~16!, ~18!, and~32!:

Rabmn5¹avbmn2¹bvamn1@va ,vb#mn

52n@bD̂a#Fmn12n@bȦa#mn

12D @aAb#mn1@Aa ,Ab#mn . ~48!
-
or-

a
r-

-

a
es
g

In deriving this equation, use has been made of the symmet
of the extrinsic curvature tensor. Using~47!, the latter may
be further reduced to

Rabmn52n@b$D̂a#Fmn1Ȧa#mn%12D @aĀb#mn1@Āa ,Āb#mn

14D̂ @aKb# @mdn#
n 12Ka@mKn#b , ~49!

where D̂aKmb5DaKmb1Aam
gKgb . Notice that the three-

curvature tensor,3Rabcd, associated withhpq is given by
3Rabmn5D̄aĀbmn2D̄bĀamn1@Āa ,Āb#mn , so that

ha
chb

dRcdmn52D̄ @aĀb#mn1@Āa ,Āb#mn12Ka@mKn#b

14D̄ @aKb#@mdn#
n

5 3Rabmn14D̂̄ @aKb#@mdn#
n 12Ka@mKn#b . ~50!

This last equation slightly extends a similar expression ob
tained in@32#, where only the triad componentsm,nÞn are
considered.

C. Constraint equations

The constraints as they arise in the initial value problem
for our wave equations~39! comprise the familiar vector
~momentum! and scalar~energy! equations from the ADM
Hamiltonian formalism, together with equations which are
specific to the tetrad approach. These constraints fall into tw
gauge invariant groups, namely the scalar and vector co
straints and Gauss-Riemann relations, supplemented with t
Lorentz gauge conditions~24!.

Vector and scalar constraints.The vector and scalar equa-
tions are readily recovered from the second reduction fo
mula ~50!, giving

hm
ahn

bha
chb

dRabab5 3Rabcd1KamKnb2KanKmb , ~51!

whereby the scalar Gauss-Codacci relation

2Gabn
anb5hachbdRabcd5hamhbbRabab

5 3R1K22KamK
am

5 3R1K22KabK
ab ~52!

is obtained. The second reduction formula~50! with n5n

yields ha
chb

dRcdmn52DC @aKb#m , thereby obtaining the vector
Gauss-Codacci relation

hb
dRdn52hb

dhamDC @aKd#m5D̄aKab2D̄bK. ~53!

By Einsteins equations, therefore, the usual ADM constrain
follow:

3R1K22KabK
ab516pTnn ,

D̄aKab2D̄bK58phb
aTan . ~54!

However, the additional gauge freedom in working with
the field variables$(em)

b,vamn% results in an extended num-
ber of independent degrees of freedom in the Riemann tens
~compared with the case when the Riemann tensor is gen
ated by a metric!. For example, arbitrary connections do not
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satisfyRabmn5Rmnab . Consequently, the Riemann tensor
constraint, in order to be consistent with an underlying m
ric. This is reflected in the alternative derivation of the vec
constraints mentioned above:

ha
cnbRcbmn52D̂aFmn2Aamn8 , ~55!

using reduction formula~50!. A second set of vector con
straints is thus obtained:

D̂mFmn1Amn8
m528pT̃nn . ~56!

Note that these new constraints involve the Lie derivat
Ln , so that they can be understood arising from worki
with a second-order formulation; in going from a first-ord
Hamiltonian description to a second-order description,
ADM vector constraints must also be satisfied on a neighb
ing future hypersurface, thereby constrainingLnvamn .
These constraints can also be viewed as arising from the
symmetry conditionsR@nn#50 ~and henceT@nn#50). In the
language of constraint Hamiltonian systems@33#, symmetry
conditions are primary constraints, giving rise to~56! as a
secondary constraint.

Gauss-Riemann relations.Gauss-Riemann relations~19!
expressed in terms ofFmn andAamn obtain divergence con-
straints analogous to those in electromagnetics. To see
note that the antisymmetry of the Riemann tensor in its
ordinate indices implies

nbDaRabmn5Da~nbRabmn!, ~57!

where use has been made ofRabmnK
ab[0. By the first re-

duction formula~49! we have

nbRabmn52D̂aFmn2Aamn8 . ~58!

Therefore, the first, inhomogeneous Gauss-Riemann c
straint in ~19! reads

nbD̂aRabmn5nbDaRabmn1@Aa,nbRab#mn

5D̂a~nbRabmn!

52D̂aD̂aFmn2D̂aAamn8 516prmn . ~59!

The Gauss-Riemann constraints can be regarded as sec
ary constraints, with the associated antisymmetries
Rabmn as primary constraints in the nomenclature of co
straint Hamiltonian systems@33#. Note that these constraint
involve again a Lie derivative of the vector element of t
connections. These are, therefore, again to be regarded
result of working in a second-order formalism. These co
straints amount to six constraints associated with the six
grees of freedom in internal gauge. In Sec. III, we saw t
structure exploited to incorporate Lorentz gauge~24! in E9.

To summarize, the constraints on the initial data onS in
terms of the potentials are the Gauss-Codacci constraint

~3!R1K22KabK
ab516pTnn ,

D̄aKab2D̄bK58phb
aTan , ~60!

the Lie constraints
is
et-
tor

-

ive
ng
er
the
or-

four

this,
co-

on-

ond-
in
n-
s
he
as a
n-
de-
his

s

DmFmn1Amn8
m528pT̃nn ,

D̂aD̂aFmn1D̂aAamn8 5216prmn , ~61!

and the Lorentz gauge

Fmn8 1D̂aAamn50. ~62!

These constraints are given proviso the normality~42! of
the tetrad. The presence of a cosmological constant can also
be taken into account. The cosmological constant would ap-
pear in the initial data constraints, but clearly would be ab-
sent from the wave equations, as alluded to before in Sec. II.

D. Restricted Lorentz gauge

The discussion on the existence on the Lorentz gauge
shows that~24! is satisfied by proper acceleration of the tet-
rad legs. That is, the positions and velocities remain as free
parameters in the initial data. As a result, we are at liberty to
adjust the velocities in exploring ways to simplify some of
the constraint equations, at least onS. Thus, assume that
~24! is satisfied,

cmn5Ḟmn8 1DcAmn
c50, ~63!

and consider restricted gauge transformations by further in-
clusion of the velocities using Lorentz transformations

Lm
n5dm

n1tlm
n1

1

2
t2sm

n in N ~S!, ~64!

where t is a Gaussian normal coordinate ofS such that
nc¹ct51, and]tlm

n50, as before. Notice that these condi-
tions respect the normality~42!. By ~30!, we have

Fmn
~r !5Fmn2lmn ,

Ḟmn
~r !5Ḟmn2smn ,

Aamn
~r ! 5Aamn ~65!

on S. Now chooselmn andsmn to satisfy

Fmn
~r !5Fmn2lmn50,

~F~r !!mn8 [Ḟmn
~r !1KFmn

~r ! ,

5Ḟmn2smn5Fmn8 ~66!

on S. With Aamn
(r ) 5Aamn , sm

n52KFmn ensures that we
remain in Lorentz gauge~24!, while lmn5Fmn gives

F~r !50 onS. ~67!

With this restricted Lorentz gauge, the Lie constraints reduce
to

Amn8
m528pT̃nn ,

D̂aAamn8 5216prmn .

onS. ~68!
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It appears not to be feasible to ensureFmn50 throughout
D1(S) by suitable choice of restricted Lorentz gauge.

V. DISCUSSION

The physics of gravitational interaction in a compact b
nary has been described in terms of wave equations~39! by
using the field variables$(em)

b,vamn% in Lorentz gauge.
These equations are proposed as new evolution equation
numerical relativity. The wave equations and their accom
nying equations of structure are strictly hyperbolic, there
facilitating the ‘‘grand challenges’’ in the present NSF gra
challenge in gravitational radiation form the coalescence
compact binaries, namely those associated with rigorous
going horizon boundary conditions, extraction of wave form
at the outer boundary with outgoing boundary conditio
together with a clearcut separation between the physics
wave motion and the evolution of causal structure~Separa-
tion theorem B.1!. This formulation applies both to the prob
lem of coalescence of a binary black hole system, and tha
a binary neutron star system by inclusion of matter as sou
terms.

Avenues for numerical implementation of the wave equ
tions are given by~39!, their scalar form in the Ricci rotation
coefficients, orE9. In either case, the choice of gauge~slic-
ing and shift in ADM language! is completely free to be
adapted to specifics of the problem, while enabling exist
numerical techniques to be exploited for accurate and sta
numerical implementation. In the case of implementati
throughE9 the computational techniques can draw direc
from computational fluid dynamics, where in the case
compressible fluids the equations are usually cast in div
i-

s for
pa-
by
nd
of
in-
s

ns,
of

-
t of
rce

a-

ing
ble
on
tly
of
er-

gence form. The hyperbolicity of the equations ensures th
variables to be well behaved, and suitable for discretization
A recent numerical implementation@34# demonstrates the
soundness of the approach, by obtaining proper second ord
convergence through implementation ofE9 and~22! in a test
computation against an analytic solution of a nonlinear, po
larized Gowdy wave@35,36#.

The constraint equations as implied byE9 show addi-
tional Lie constraints, including the~sixfold! analogue of the
~threefold! Gauss law in Ashtekar’s variables. These Lie con-
straints can be understood to be arising from working in a
second-order formulation, or as secondary constraints resu
ing from symmetries in the Riemann tensor as primary con
straints. The Lorentz gauge condition is specific to our for-
mulation; we expect this to have its equivalence in
Ashtekar’s variables through specific conditions on the
SU~2! factorNA

B of the Gauss law in the total Hamiltonian,
but have not sought to make this explicit.
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