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The detection of gravitational waves from astrophysical sources is probably one of the most
keenly awaited events in the history of astrophysics. The paucity of gravitational wave sources and
the relative difficulty in detecting such waves, as compared to those in the electromagnetic domain,
necessitate the development of optimal data analysis techniques to detect the signal, as well as to
extract the maximum possible information from the detected signals. Coalescing binary systems are
one of the most promising sources of gravitational waves. This is due to the fact that such sources are
easier to model and thus one can design detection strategies particularly tuned to such signals. A lot
of attention has been devoted in the literature to studying such techniques and most of the work has
revolved around the Weiner filtering and the maximum likelihood estimators of the parameters of the
binary system. We investigate such techniques with the aid of differential geometry which provides
geometric insight into the problem. Such a formalism allows us to explore the merits and faults of a
detection scheme independent of the parameters chosen to represent the waveform. The formalism
also generalizes the problem of choosing an optimal set of templates to detect a known waveform
buried in noisy data. We stress the need for finding a set of convenient parameters for the waveform
and show that even after the inclusion of the second-order post-Newtonian corrections, the waveform
can essentially be detected by employing a one-dimensional lattice of templates. This would be very
useful both for the purpose of carrying out the simulations as well as for the actual detection process.
After setting up such a formalism we carry out a Monte Carlo simulation of the detection process
for the initial LIGO-VIRGO configuration for the first post-Newtonian corrected coalescing binary
waveform. We compare the results of our simulations with the currently available estimates of the
accuracies in the determination of the parameters and the probability distribution of the maximum
likelihood estimators. Our results suggest that the covariance matrix underestimates, by over a factor
of 2, the actual errors in the estimation of parameters even when the signal-to-noise ratio is as high as
10. As only a tiny fraction of the events is expected to be detected with a signal-to-noise higher than
this value, the covariance matrix is grossly inadequate to describe the errors in the measurement of
the parameters of the waveform. It is found from our Monte Carlo simulations that the deviations
from the covariance matrix are more in the case of the first post-Newtonian waveform than in the
case of the Newtonian one. Inclusion of higher-order post-Newtonian corrections introduces new
parameters that are correlated with those at the lower post-Newtonian waveform. Such correlations
are expected to further increase the discrepancy of the covariance matrix results with those inferred
from Monte Carlo simulations. Consequently, numerical simulations that take into account post-
Newtonian corrections beyond the first post-Newtonian order are needed in order to get a clearer
picture about the accuracy in the determination of parameters. We find that with the aid of the
instant of coalescence the direction to the source can be determined more accurately than with the
time of arrival.
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I. INTRODUCTION

Laser interferometric detectors of gravitational waves
such as the Laser Interferometric Gravitational Wave Ob-
servatory (LIGO) [1] and VIRGO [2] are expected to be
operational by the turn of the century. Gravitational
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waves from coalescing binary systems of black holes and
neutron stars are relatively “clean” waveforms in the
sense that they are easier to model and for this reason
they are among the most important candidate sources
for interferometric detectors. Binary systems are also
valuable sources of astrophysical information as one can
probe the universe up to cosmological distances. For in-
stance, statistical analysis of several binary coalescences
enables the estimation of the Hubble constant to an accu-
racy better than 10% [3,4]. Events that produce a high
signal-to-noise ratio (SNR) can be potentially used to
observe such nonlinear effects as gravitational wave tails
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and to put general relativity to the test in the strongly
nonlinear regime [5]. Because of the weak coupling of
gravitational radiation with matter, the signal waveform
has a very low amplitude and will not stand above the de-
tector noise. In addition to the ongoing efforts to reduce
the noise, and hence increase the sensitivity of the detec-
tor, a considerable amount of research activity has gone
into the development of efficient and robust data analysis
techniques to extract signals buried in very noisy data.
For a recent review on gravitational waves from compact
objects and their detection see Thorne [6,7].

Various data analysis schemes have been suggested for
the detection of the “chirp” waveform from such systems
[8-10]. Among them the technique of Weiner filtering is
the most promising [10-12]. Briefly, this technique in-
volves correlating the detector output with a set of tem-
plates, each of which is tuned to detect the signal with a
particular set of parameters. This requires the signal to
be known to a high level of accuracy. The fully general
relativistic waveform from a coalescing binary system of
stars is as yet unavailable. In the absence of such an
exact solution, there have been efforts to find solutions
perturbatively. Most of the work done in this area aims
at computing the waveform correct to a high degree of
accuracy so that theoretical templates computed based
on them will obtain close to the optimal value of the SNR
possible, when correlated with the detector output if the
corresponding signal is present. In general, the number
of parameters increases as we incorporate the higher or-
der corrections. It is clear that the number of templates
depends upon the number of signal parameters. As a
consequence, the computing power for an on-line analy-
sis will be greater for a larger number of parameters. In
view of this restriction in computing power it is neces-
sary to choose the templates in an optimal manner. This
paper in part deals with this question. Investigations
until now have been restricted to either choosing a finite
subset of the signal space as templates [13,14] or choos-
ing templates from the “Newtonian” or the “first post-
Newtonian” family of waveforms [15-18]. We generalize
this problem by using the language of differential geom-
etry. We show that it is unnecessary to restrict oneself
to templates that are matched exactly to any particular
signal.

Differential geometry has been used in statistics be-
fore (see [19] and references therein) and the standard
approach is to treat a set of parametrized probability dis-
tributions corresponding to a particular statistical model
as a manifold. The parameters of the distribution serve
as coordinates on this manifold. In statistical theory one
frequently comes across the Fisher information matrix
whose inverse gives a lower bound for the errors in the es-
timation of the parameters of a distribution. The Fisher
information matrix turns out to be a very natural met-
ric on the manifold of probability distributions and this
metric can be used profitably in understanding the prop-
erties of a particular statistical model. Though differen-
tial geometric language has been used in the literature
pertaining to gravitational wave data analysis [20] the
techniques of differential geometry have not been made
use of in the design of efficient search templates, esti-
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mation of parameters, etc. See however [21]. Here in
our paper we treat the set of coalescing binary signals
corresponding to various parameters of the binary as a
submanifold in the linear space of all detector outputs.
We show in this paper that both the above-mentioned
manifolds are equivalent as far as their metrical proper-
ties are concerned. The geometric approach turns out to
be useful not only in clarifying various aspects of signal
analysis but also helps us to pose the question of optimal
detection in a more general setting.

Once a signal has been detected we can estimate the
parameters of the binary. We assume that the parame-
ters of the signal are the same as those of the template
with which the maximum correlation is obtained. The
errors involved in such an estimation have been worked
out by several authors [5,18,20,22-28], for the case of a
“high” SNR and for the Newtonian and post-Newtonian
waveforms using a single and a network of detectors. For
the case of low SNR’s one has to resort to numerical
simulations. We have started a project to carry out ex-
haustive numerical simulations specifically designed to
compute the errors in the estimation of parameters and
covariances among them at various post-Newtonian or-
ders, for circular and eccentric orbits, with and without
spin effects, and for different optical configurations of the
interferometer. In this paper we report the results for
the case of the initial LIGO configuration, taking into
account only the first post-Newtonian corrections and
assuming circular orbits. Going beyond this requires a
tremendous amount of computing power which is just
becoming available.

The rest of the paper is organized as follows. In Sec.
II we describe the waveform from a coalescing binary
system at various post-Newtonian orders. We introduce,
following [29], a set of parameters called “chirp times.”
These parameters are found to be very convenient when
we carry out Monte Carlo simulations. It turns out that
the covariance matrix is independent of these parame-
ters and hence it is sufficient to carry out the simulations
only for a particular set of parameters. In Sec. III we
develop a geometric interpretation of the signal analysis.
We begin by introducing a metric on the manifold from
a scalar product, which comes naturally from the theory
of matched filtering, and then show that this metric is
the same as the one used by Amari [19]. Using the geo-
metric approach we address the question of optimal filter
placement and show that for the purpose of detection it is
optimal to choose templates outside the signal manifold.
The covariance matrix of errors and covariances is shown
to be the inverse of the metric on the manifold. In Sec.
IV we discuss the results of our simulations and compare
the numerically obtained values and those suggested by
the covariance matrix. We find substantial discrepancies
in the predictions of the two methods. It is believed that
the coalescing binary waveform shuts off abruptly at the
onset of the plunge orbit. This has a major effect on the
computations of the covariance matrix [20] as well as on
the Monte Carlo simulations. We discuss the effects of
higher post-Newtonian corrections to the waveform. We
also emphasisize the use of the instant of coalescence as
a parameter in order to determine the direction to the
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source rather than the time of arrival [30]. Finally in
Sec. V we summarize our results and indicate future di-
rections.

II. COALESCING BINARY WAVEFORMS

For the purpose of constructing templates for on-line
detection, it is sufficient to work with the so called re-
stricted post-Newtonian gravitational waveform. In this
approximation the post-Newtonian corrections are incor-
porated only in the phase of the waveform, while ignoring
corresponding corrections to the amplitude [31]. Conse-
quently, the restricted post-Newtonian waveforms only
contain the dominant frequency equal to twice the or-
bital frequency of the binary computed up to the relevant
order. In the restricted post-Newtonian approximation
the gravitational waves from a binary system of stars,
modeled as point masses orbiting about each other in a
circular orbit, induce a strain h(t) at the detector given
by

h(t) = Alrf(O]2/? cos [p(2)], (2.1)
where f(t) is the instantaneous gravitational wave fre-
quency, the constant A involves the distance to the bi-
nary, its reduced and total mass, and the antenna pat-
tern of the detector [10], and the phase of the wave-
form ¢(t) contains several pieces corresponding to differ-
ent post-Newtonian contributions which can be schemat-
ically written as

@(t) = @o(t) + @1(t) + prs(t) +--- . (2.2)

Here ¢q(t) is the dominant Newtonian part of the phase
and ¢,, represents the nth order post-Newtonian correc-
tion to it. In the quadrupole approximation we include
only the Newtonian part of the phase given by [10]

T faTo —5/3
o(t) = po(t) = 5T [1 -(£) ] re, (23

where f(t) is the instantaneous Newtonian gravitational
wave frequency given implicitly by

f —-8/3
t—te =10 |1— (—) , (2.4)
fa
To is a constant having dimensions of time given by
o= o M3 (mf,) %3, (2.5)
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and f, and ® are the instantaneous gravitational wave
frequency and the phase of the signal, respectively, at
t = tq. The time elapsed starting from an epoch when
the gravitational wave frequency is f, until the epoch
when it becomes infinite will be referred to as the chirp
time of the signal. In the quadrupole approximation 7y is
the chirp time. The Newtonian part of the phase is char-
acterized by three parameters: (i) the time of arrival t,
when the signal first becomes visible in the detector, (ii)
the phase ® of the signal at the time of arrival, and (iii)
the chirp mass M = (u*M?)'/5, where p and M are the
reduced and the total mass of the binary, respectively. At
this level of approximation two coalescing binary signals
of the same chirp mass but of different sets of individual
masses would be degenerate and thus exhibit exactly the
same time evolution. This degeneracy is removed when
post-Newtonian corrections are included.

When post-Newtonian corrections are included the pa-
rameter space of waveforms acquires an extra dimension.
In this paper we show that even when post-Newtonian
corrections up to relative order c~*, where c is the ve-
locity of light, are included in the phase of the waveform
it is possible to make a judicious choice of the parame-
ters so that the parameter space essentially remains only
three dimensional as far as the detection problem is con-
cerned. It should, however, be noted that the evolution
of the waveform must be known to a reasonably high de-
gree of accuracy and that further off-line analysis would
be necessary to extract useful astrophysical information.

With the inclusion of corrections up to second post-
Newtonian order the phase of the waveform becomes [32]

@(t) = po(t) + p1(t) + p1.5(t) + p2(t), (2.6)

where @o(t) is given by (2.3) and the various post-
Newtonian contributions are given by

p1(t) = amfury [1 - (fi)_] , 2.7)
prs(t) = 5 faris [1 - (fi) _2/3] .28

and
0a(t) = 87 farz {1 - (%) —1/3] . (2.9)

Now f(t) is the instantaneous gravitational wave fre-
quency correct up to second post-Newtonian order given
implicitly by

(2.10)

In the above equations 7’s are constants having dimensions of time which depend only on the two masses of the stars
and the lower frequency cutoff of the detector f,. The total chirp time now consists of four pieces: The Newtonian
contribution 79 is given by (2.5) and the various post-Newtonian contributions are
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5 743 11
= (22,22, 2.11
T 192u(n f.)? (336 3 ") (2.11)

1 m \1/3
s (77)
and

5 m \*/® /3058673 N
To —
27 128u \ w2f2 1016 064

where n = p/M. The phase (2.6) contains the reduced
mass g in addition to the chirp mass M. Taking (M,
1) to be the post-Newtonian mass parameters the total
mass and the reduced mass are given by M = Mn—3/5,
g = Mn?/5. Note that in the total chirp time 7 of the
signal the 1.5 post-Newtonian contribution appears with
a negative sign thus shortening the epoch of coalescence.

With the inclusion of higher order post-Newtonian cor-
rections a chirp template is characterized by a set of
four parameters which we shall collectively denote by
Ao = 1,...,4. At the first post-Newtonian approx-
imation instead of working with the parameters A\* =
{ta, ®, M, n} we can equivalently employ the set
{ta, ®, 7o, T1} for the purpose of constructing templates.
This, as we shall see later, has some advantages. How-
ever, at post-Newtonian orders beyond the first we do
not have a unique set of chirp times to work with.

The parameters t, and ® are kinematical, which fix
the origin of the measurement of time and phase, re-
spectively, while the Newtonian and the post-Newtonian
chirp times are dynamical parameters in the sense that
they dictate the evolution of the phase and the ampli-
tude of the signal. It may be mentioned at this stage
that in most of the literature on this subject authors use
the set of parameters {tc, ®c, M, n} where tc is the
instant of coalescence and ®¢ is the phase of the signal
at the instant of coalescence. In terms of the chirp times
we have introduced, t¢ is the sum of the total chirp time
and the time of arrival and ®¢ is a combination of the
various chirp times and ®:

T1.5 = (212)

5420 617 ,
1008”7 " 142" )

(2.13)

tc =ta+To+ 71— T1.5 + T2, (2-14)
167 f,

S =®+ 5

To + 4nfoT1 — ST faT1.5 + 87 foTa.

(2.15)

In the stationary phase approximation the Fourier
transform of the restricted second-post-Newtonian chirp
waveform for positive frequencies is given by [10,13,23,20]

h(f) = Nf~"/Cexp [z > vu(H)N - zg} . (2.16)

p=1

where

_ 2/3 [ 270 1/243
N—Aﬂ'/ '—3— fa/
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is a normalization constant, A*¥, u = 1,...,6, represent
the various post-Newtonian parameters

A = {ta3§770,717T1.577-2} (217)
and
Y1 =2nf, (2.18)
—5/3
s = 2mf — @ + 6?" (é) , (2.20)
f -1
Yo =2nf —4nfo+ 2 fo (7) ) (2.21)
af -2/3
Y5 = —2nf + 5nf, — 37 S (f_) , (2.22)
f a~1/3
Yo =2nf — 8nfo + 67 fa (f—) . (2.23)

For f < 0 the Fourier transform is computed using the
identity h(—f) = h*(f) obeyed by real functions h(t).
In addition to the above-mentioned parameters we shall
introduce an amplitude parameter A in Sec. III.

III. A GEOMETRIC APPROACH
TO SIGNAL ANALYSIS

In this section we apply the techniques of differential
geometry to the problem of detecting weak signals em-
bedded in noise. In Sec. III A we elaborate on the con-
cept of the signal manifold and comment on the rela-
tionship of this approach with that of Amari [19]. Our
discussion of the vector space of all detector outputs is
modeled after the discussion given in [33]. (Also see [20]
for the geometrical concepts in signal analysis and [21]
for application to search algorithms.) In Sec. IIIB we
deal with the problem of choosing a set of filters for on-
line analysis which would optimize the task of detection
of the signal. In Sec. IIIC we deal with the dimension-
ality of the chirp manifold when we incorporate higher
order post-Newtonian corrections. It is found that due
to covariances between the parameters, it is possible to
introduce an effective dimension which is less than the
dimension of the manifold. This has very important im-
plications for the detection problem.

A. Signal manifold

The output of a gravitational wave detector such as the
LIGO will comprise of data segments, each of duration
T seconds, uniformly sampled with a sampling interval
of A, giving the number of samples in a single data train
to be N = T/A. Each data train can be considered
as an N-tuple (2% z%,...,2V 1), z* being the value of
the output of the detector at time kA. The set of all
such N-tuples constitutes an N-dimensional vector space
YV where the addition of two vectors is accomplished by
the addition of corresponding time samples. For later
convenience we allow each sample to take complex values.
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A natural basis for this vector space is the time basis

ek = §k where m and k are the vector and component

indices, respectively. Another basis which we shall use

extensively is the Fourier basis which is related to the
time basis by a unitary transformation U:

1 iy 2mimn
&, = Um"en E = e, exp [ :| s (3.1)
P> N
1 N2 2mimn
e, =U""¢g, = — &, exp |— ] 3.2
v D IL L B B CE)

All vectors in V are shown in boldface, and the Fourier
basis vectors and components of vectors in the Fourier
basis are highlighted with a “tilde.”

In the continuum case each data train can be expanded
in a Fourier series and will contain a finite number of
terms in the expansion, as the output will be band lim-
ited. The expansion is carried out over the exponential
functions exp (2wimt/T) which are precisely the Fourier
basis vectors defined above. Though the index m takes
both positive and negative values corresponding to posi-
tive and negative frequencies, it is both possible and con-
venient to allow m to take only positive values [34]. Thus
the vector space V can be considered as being spanned by
the IV Fourier basis vectors, implying immediately that
the number of independent vectors in the time basis to
be also N. This is the content of the Nyquist theorem
which states that it is sufficient to sample the data at
a frequency which is twice as large as the bandwidth of
a real-valued signal, where the bandwidth refers to the
range of positive frequencies over which the signal spec-
trum is nonzero. This factor of 2 does not appear in the
vector space picture as we allow in general for complex
values for the components in the time basis.

A gravitational wave signal from a coalescing binary
system can be characterized by a set of parameters
A = (A% AL,...,2P~1) belonging to some open set of the
p-dimensional real space RP. The set of such signals,
s(t; A), constitutes a p-dimensional manifold S which is
embedded in the vector space V. The parameters of the
binary act as coordinates on the manifold. The basic
problem of signal analysis is thus to determine whether
the detector output vector x is the sum of a signal vector
and a noise vector, Xx = s + n, or just the noise vector,
x = n, and furthermore to identify which particular sig-
nal vector, among all possible. One would also like to
estimate the errors in such a measurement.

In the absence of the signal the output will contain only
noise drawn from a stochastic process which can be de-
scribed by a probability distribution on the vector space
V. The covariance matrix of the noise C7* is defined as

C* = pin*k, (3.3)
where an asterisk denotes complex conjugation and an
overbar denotes an average over an ensemble. If the
noise is assumed to be stationary and ergodic, then
there exists a noise correlation function K(t) such that
Cjr = K(|j — k|A). In the Fourier basis it can be shown
that the components of the noise vector are statistically
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independent [11] and the covariance matrix in the Fourier
basis will contain only diagonal terms whose values will
be strictly positive: C;; = n7A*J. This implies that the
covariance matrix has strictly positive eigenvalues. The
diagonal elements of this matrix C;; constitute the dis-
crete representation of the power spectrum of the noise
Sn(f).

We now discuss how the concept of matched filtering
can be used to induce a metric on the signal manifold.
The technique of matched filtering involves correlating
the detector output with a bank of filters, each of which
is tuned to detect the gravitational wave from a binary
system with a particular set of parameters. The output
of the filter, with an impulse response q, is given in the
discrete case as

N-1

1 S ,
Cm) = —— Z"G@*" exp [-2nimn/N]. (3.4)
VN

The SNR (p) at the output is defined to be the mean of
¢(m) divided by the square root of its variance:

¢(m)

————— 1/2
[(qm) — Smy) ]

By maximizing p we can obtain the expression for the
optimal filter q(,,) matched to a particular signal s(¢; A\*)
as

P (3.5)

™ (AH) exp [27rimn/N]

~ AH) =

where p has been maximized at the mth data point at the
output and where u = 1,2,...,p, where p is the number
of parameters of the signal. We now introduce a scalar
product in V. For any two vectors x and y,

N-1 N—-1 -p~sn
—1 4 4 T AH
wy)= 3 5t = Y T (g
2,j=0 n=0 nn

In terms of this scalar product, the output of the optimal
filter q, matched to a signal s(A*), can be written as

Comy (A#) = \/—IN (x,5) . (3.8)

As Cpy is strictly positive the scalar product defined is
positive definite. The scalar product defined above on the
vector space V can be used to define a norm on ¥V which
in turn can be used to induce a metric on the manifold.
The norm of a vector x is defined as ||x|| = (x,x)"/2.
The norm for the optimal filter can be calculated to give
p = (s, s)l/ 2,
random variable (n, n)l/ ? with a mean value of VN as
can be seen by writing the expression for the norm of
the noise vector and subsequently taking an ensemble
average.

The distance between two points infinitesimally sepa-
rated on S can be expressed as a quadratic form in the
differences in the values of the parameters at the two

The norm of the noise vector will be a
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points:
AN X = [+ N — sV

H_a/\ud’\“ (3.9)
Os Os
= H v
<8M a/\y>d)\ dr”. (3.10)

The components of the metric in the coordinate basis
are seen to be the scalar products of the coordinate basis
]

(x,8(A 4+ dA)) — (x,5(A)) = (x,s(X +dA)

As is apparent the drop in the correlation can be related
to the metric distance on the manifold between the two
infinitesimally separated signal vectors.

We now discuss Amari’s [19] work in the context of
using differential geometry in statistics and elaborate on
the relationship with the approach we have taken. The
set of parametrized probability distributions correspond-
ing to a statistical model constitute a manifold. The
parametrized probability distributions in the context of
a signal analysis of gravitational waves from coalescing
binaries are the ones which specify the probability that
the output vector will lie in a certain region of the vector
space V given that a signal s(¢; A) exists in the output
which we denote as p(x|s(¢; X)) Since it is not our in-
tention to develop Amari’s approach any further, we will
be brief and will make all the mathematical assumptions
such as infinite differentiability of functions, interchange-
ability of the differentiation, expectation value operators,
etc.

The set of probability distributions p(x|s(\)), where
A € RP, constitutes a manifold P of dimension p. At
every point on this manifold we can construct a tangent
space T° on Which we can define the coordinate basis
vectors as 0, = a,\u Any vector A in this tangent space
can be written as a linear combination of these coordi-
nate basis vectors. We now define p random variables
oy = —%ln[p(xb()‘))]. It can easily be shown that

|
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vectors of the manifold.

Since the number of correlations we can perform on-
line is finite, we cannot have a filter corresponding to ev-
ery signal. A single filter though matched to a particular
signal will also “detect” signals in a small neighborhood
of that signal but with a slight loss in the SNR. The
metric on the manifold quantifies the drop in the correla-
tion in a neighborhood of the signal chosen. Taking the
output vector to be x and two signal vectors s(A) and
s(A + dA) and using Schwarz’s inequality we have

s(A)) < [Ix[[ls(A +dX) —s(A)||
= [|%|| g, AN A"

(3.11)
(3.12)

[
0, = 0. We assume that these p random variables are

linearly independent. By taking all possible linear com-
binations of these random variables we can construct an-
other linear space T''. Each vector B in T can be written
as B = B*g,,. The two vector spaces T° and T are iso-
morphic to each other, which can be shown explicitly by
making the correspondence o, <+ d,. The vector space
T has a natural inner product defined on it which is the
covariance matrix of the p random variables o,. This
scalar product can be carried over to T° using the corre-
spondence stated above. The metric on the manifold can
be defined by taking the scalar product of the coordinate
basis vectors

v = {8,,0,) =7,0,. (3.13)

In statistical theory the above matrix g,, is called the
Fisher information matrix. We will also denote the Fisher
matrix, as is conventional, by I',,,.. It is clearly seen that
orthogonality between vectors in the tangent space of the
manifold is related to statistical independence of random
variables in T'.

If we take the case of Gaussian noise, the metric de-
fined above is identical to the one obtained on the signal
manifold by matched filtering. Gaussian noise can be
described by the distribution

N-1 _ ) N-1 . ..
exp [_% Z C ank*] exp |:——% 3 Cj—klﬁJﬁk*] exp |:__% é’n-’ ]
J k=0 7,k=0 j=0 Ji
p(n) = = = (3.14)

{(2m)N det [Cji] }V/

where in the last step we have used the dlagonal property
of the matrix C7* which implies that C_ =1/Cj;.

As the noise is additive p(x|s(A)) can be written as
p(x — s(A)). Assuming Gaussian noise we can write the
expressions for the random variables o, as

7]
WS(*)> !

7= (3) a7 x =N x =50 = (n
(3.15)

{(27r)N det [éjk] }1/2

where in the last step we have used x = s(A) + n. The
covariance matrix for the random variables o, can be
calculated to give

77 = (s )

which is the same metric as defined over the signal mani-
fold. Thus, both the manifolds & and P are identical with

(3.16)
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respect to their metrical properties. We will henceforth
restrict our attention to the signal manifold S.

For the purpose of our analysis we will choose a
minimal set of parameters characterizing the gravita-
tional wave signal from a coalescing binary. We con-
sider only the first post-Newtonian corrections. In Sec.
IT we have already introduced the four parameters A\* =
{ta,®,70,71}. We now introduce an additional parame-
ter for the amplitude and call it A° = A. The signal can
now be written as 3(f;A) = Ah(f;tq, ®,70,71), Where
A = {A,t,,®,70,71}. Numerically the value of the pa-
rameter A will be the same as that of the SNR obtained
for the matched filter provided h has unit norm. We can
decompose the signal manifold into a manifold contain-
ing normalized chirp waveforms and a one-dimensional
manifold corresponding to the parameter A. The nor-
malized chirp manifold can therefore be parametrized by
{ta,®, 70,71 }. This parametrization is useful as the coor-
dinate basis vector 5%; will be orthogonal to all the other
basis vectors as will be seen below.

In order to compute the metric and equivalently the
Fisher information matrix, we use the continuum version
of the scalar product as given in [22], except that we
use the two-sided power spectral density. This has the
advantage of showing clearly the range of integration in
the frequency space though we get the same result us-
ing the discrete version of the scalar product. Using the
definition of the scalar product we get

[ df 03(f;A) 08" (f;A)
9“"“/a S.(f)  oxe N

+c.c. (3.17)

Recall that in the stationary phase approximation the
Fourier transform of the coalescing binary waveform
is given by B(f, A) = Nf~"/%exp [z Z“ ‘l’u(f)’\“] and
i(f) = Aﬁ(f), where ,(f) are given by Egs. (2.18)-
(2.23), p = 1,...,4, and M\* = {t,, ®, 70, 71} Note,
in particular, that in the phase of the waveform the pa-
rameters occur linearly, thus enabling a very concise ex-
pression for the components of g,,. The various partial
derivatives are given by

95(f; A . -
BN _ iy (135, (3.18)
where we have introduced o = —i/.A. On substituting

the above expressions for the partial derivatives in Eq.
(3.17) we get

Guv = (Yuh, P h) = 2/oo puliveld) lil(f’ A)‘ df.

fa Sn(f)
(3.19)

The above definition of the amplitude parameter A, as
in Culter and Flannagan [20], disjoins the amplitude of
the waveform from the rest of the parameters. Since g
is pure imaginary and v,’s are real, it is straightforward
to see from Eq. (3.19) that

goo=1and go, =0, p=1,...,4. (3.20)
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The rest of the components g,, are seen to be indepen-
dent of all the parameters except A, i.e., g,, o A2 As
A is unity for the normalized manifold the metric on the
normalized manifold is flat. This implies not only that
the manifold is intrinsically flat (in the stationary phase
approximation) but also that the coordinate system used
is Cartesian. If instead of the chirp times (719, 71) we use
the parameter (M, y), then the metric coefficients will
involve these parameters and the coordinate system will
no longer remain Cartesian.

B. Choice of filters

We now use the differential geometric formalism to
tackle the issue of optimal filter placément. Until now,
it has been thought necessary to use a finite subset of
the set of chirp signals as templates for detection. We
show that this is unduly restrictive. We suggest a proce-
dure by which the detection process can be made more
“efficient” by moving the filters out of the manifold. It
must be emphasized that the algorithm presented below
is both simplistic and quite ad hoc and is not necessarily
the best. Moreover, we have implemented the algorithm
only for the Newtonian case where the computational re-
quirements are not very heavy. However, the signal mani-
fold corresponding to post-Newtonian waveform will be a
larger dimensional manifold and there the computational
requirements will be substantial. The choice of optimal
filters which span the manifold will then be crucial.

Detection of the coalescing binary signal involves com-
puting the scalar product of the output of the detector
with the signal vectors. Subsequently one would have to
maximize the correlations over the parameters and the
number so obtained would serve as the statistic on the
basis of which we can decide whether a signal is present
in the given data train. Geometrically, this maximization
corresponds to minimizing the angle between the output
vector and the vectors corresponding to the normalized
signal manifold. Using the cosine formula

(s(A),x) _ s+ lIx]I” — [lx — s(A)|?

cos(f) = Ixiis0] — 2(|x||lIs(A)]|

(3.21)

and the fact that ||s(A)]| is unity for the vectors belonging
to the normalized signal manifold, maximizing the scalar
product is equivalent to minimizing ||x — s(A)|| which is
the distance between the tip of the output vector and the
manifold.

Given the constraints of computational power one
would be able to evaluate only a finite number of these
scalar products, say, np, in a certain amount of time de-
pending on the length of the data train. It is therefore
necessary to be able to choose the ng filters in such a
manner that the detection probability is maximal. We
will need efficient on-line data analysis for two reasons:
(i) to isolate those data trains which have a high prob-
ability of containing a signal and (ii) to determine the
parameters of the binary early on during the inspiral and
to use them for dynamical recycling techniques [35]. Be-
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cause of the finiteness of the filter spacing, the signal
parameters will in general not correspond to any of the
np filters chosen and this will lead to a drop in the max-
imum possible correlation. Until now attention has been
focused on identifying an optimal set of filters which are
a discrete subset of the manifold. If detection is the sole
purpose, then the differential geometric picture suggests
that confining the filter vectors to the signal manifold is
an unnecessary restriction and in fact nonoptimal. Thus
it is worthwhile to explore making a choice of filters out-
side the manifold. The filter vectors will thus belong to
V but will not, in general, correspond to any signal. It is,
of course, true that we are sacrificing on the maximum
possible correlation obtainable (when the signal’s param-
eters coincide with those of the filter). Thus the problem
essentially is to select np filter vectors which optimize
the detection the efficiency of which depends upon the
properties of the manifold.

In general a single filter vector would have to pick up
signals over a region of the manifold. The extent of this
region is determined by fixing a threshold on the correla-
tion between the filter and any signal in the region. We
will denote this threshold by x, where « takes a value
which is close to, but less than, unity. The typical value
suggested for k is ~ 0.8 [13]. For a given filter q and a

1

(s(A),40)py = W /sq(n) (s(A),qo) gdPA = </sq(n) s(A)dPA, q0>,

where g = det[g,,]. In the last step above the inte-
gration and the scalar product operations have been in-
terchanged. Moreover, for the normalized chirp mani-
fold the metric does not depend upon the parameters in
the coordinate system we have chosen, and therefore g,,,
is a constant and the factor ,/g cancels. We now use
Schwarz’s inequality to maximize the average correlation
to obtain

Q=N s(A)dP A,
sq(")

(3.23)

where N is a normalization constant.

We implemented the above algorithm for filter place-
ment for the case of Newtonian signals with certain mod-
ifications. The normalized chirp waveform consists of
three parameters (®,t,,70). If we keep t, and 7 fixed,
then the tip of the signal vector traces out a circle as we
vary ®. As any circle lies on a plane we can express a
signal vector as a linear sum of two vectors where the two
vectors differ only in the phase parameter and we take
this phase difference to be n/2. Thus, we need only two
mutually orthogonal filters to span the phase parameter.
The time of arrival parameter ¢, is also a “convenient
parameter” as by the use of fast Fourier transforms the
correlations for arbitrary time of arrival can be performed
at one go. It is therefore not profitable for us to maxi-
mize the average correlation over the phase parameter ¢
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threshold « the region on the manifold corresponding to
the filter will be denoted as Sq(k), where Sq(x) C S. Ge-
ometrically this region is the intersection of the manifold
and an open ball of radius 2'/2(1 — k)/2 with center q in
V. The np filters taken together would have to “span”
the manifold which means that the union of the regions
covered by each filter would be the manifold itself, i.e.,
Uq Sa(k) = S. If the filter q lies on the manifold, then
the correlation function cq(A) = (s(A),q) will reach its
maximum value of unity in Sq(k) when q = s(A) and
will fall off in all directions. This means that the signals
in the region which are farther away from the filter are
less likely to be picked up as compared to those in the
immediate neighborhood of the filter q.

We assume that a finite subset of the normalized signal
manifold has been chosen to act as filters by some suitable
algorithm [13], which taken together span the manifold.
The number of filters will be determined by the available
computing power. Consider one of these filters q, the
region corresponding to it for a threshold of k, Sq(k),
and an arbitrary normalized vector qo which belongs to
VY but not necessarily S. By correlating the vector qo
with vectors in Sq(k) we obtain the correlation function
Cqo (A) = (s(A), qo). The optimal filter qo is chosen such
that it maximizes the average of the correlation function:

(3.22)

and the time of arrival ¢,.

In view of the above restrictions we modified the filter
placement algorithm. We consider the correlation func-
tion for the case when the filter vector is on the manifold.
We define the “line of curvature” to be the curve on the
manifold along which the correlation function falls the
least. Figure 1 illustrates the correlation function plotted
as a function of 7y along the line of curvature. It is seen
from the contour diagram of the numerically computed
correlation function that the line of curvature lies nearly
on the submanifold ¢, + 79 = const, of the normalized
chirp manifold. We take two curves passing through the
point q in the region S4(n): (1) ¢4 + 70 = const, & =0,
and (2) tq + 70 = const, ® = w/2. We obtain one filter
for each of the two curves by evaluating Eq. (3.23) where
the domains of integration correspond to the segments of
the curves defined.

Having determined the two filters we again plot the
correlation function along the line of curvature as a func-
tion of 79 in Fig. 1. The region of the manifold selected
corresponds to a range of 5.8-6.0 s in the parameter 7q.
Similar curves will be obtained if we shift the range of
values taken in 7o by a constant amount as the correla-
tion function depends only on the difference in the values
of 79. It can be seen that the correlation has a minimum
at the center. In order to get a flatter correlation curve
we select a linear combination of the original filter and
the one obtained by averaging, with suitable weights at-
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FIG. 1. This figure illustrates the correlation function

along the line of curvature as a function of 7o, the Newto-
nian chirp time, for the following three cases: (i) when the
filter is placed on the manifold (dotted line), (ii) when the
filter is the “average” signal vector over the region (dashed
line), and (iii) when the filter is chosen to be an appropriate
linear combination of the previous two filters (solid line).

tached to each filter. This performs reasonably well as
shown by the thick curve in the figure. The importance of
having a flatter correlation function lies in the fact that
all the signals in a region can be picked up with equal
efficiency and the drop in the maximum possible correla-
tion can be compensated for by lowering the threshold.
The average correlation obtained for the optimal filter is
only marginally better than that obtained for the filter
placed on the manifold.

In the discussion above, we had started with a fixed
number of filters, nr, on the manifold and obtained an-
other set of ng filters which performs marginally better
than the former set. Equivalently, we can try to increase
the span of each filter, retaining the same threshold but
reducing the number of filters required. In Fig. 1 we ob-
serve that the optimal filter chosen spans the entire region
considered with a threshold greater than 0.9, whereas the
filter on the manifold spans about half the region at the
same threshold. This indicates that by moving the filters
out of the manifold it may be possible to reduce the num-
ber of filters by a factor of 2 or so. One must, however,
bear in mind that the bank of filters obtained in this way
is not optimal. There is scope to improve the scheme
further and our analysis is indicative of this feature.

C. Effective dimensionality of the parameter space
of a second order post-Newtonian waveform

It has already been shown that the first post-
Newtonian waveform is essentially one dimensional [29].
We argue in this subsection that even the second post-
Newtonian waveform is essentially one dimensional and
a one-dimensional lattice suffices to filter the waveform.

A Newtonian waveform is characterized by a set of

three parameters consisting of the time of arrival, the
phase of the signal at the time of arrival, and the chirp
mass (or, equivalently, the Newtonian chirp time). In this
case, for the purpose of detection, one essentially needs to
employ a one-dimensional lattice of filters corresponding
to the chirp mass, the time of arrival being taken care
by the fast Fourier transform algorithm and the phase
being determined using a two-dimensional basis of or-
thogonal templates. When post-Newtonian corrections
are included in the phase of the waveform the number of
parameters increases, apparently implying that one needs
to use a two-dimensional lattice of filters correspond-
ing to, say, the chirp and reduced masses (equivalently
the Newtonian and post-Newtonian chirp times) which
in turn means that the number of templates through
which the detector output needs to be filtered goes up
by several orders of magnitude. One of us (B.S.S.) has
recently shown that for the purpose of detection it is
sufficient to use a one-dimensional lattice of filters even
after first post-Newtonian corrections are included in the
phase of the waveform and the relevant parameter here
is the sum of the Newtonian and post-Newtonian chirp
times. What happens when corrections beyond the first
post-Newtonian order are incorporated in the phase of
the waveform?

The coalescing binary waveform is now available up
to second post-Newtonian order [32,36]. Blanchet et al.
argue that the phase correction due to the second order
post-Newtonian (2PN) term induces an accumulated dif-
ference of 10 cycles in a total of 16 000. Consequently, it
is important to incorporate the 2PN terms in the tem-
plates. When the 2PN terms are included it is useful
to consider that the full waveform is parametrized by
three additional parameters, corresponding to the chirp
times at the 1PN, 1.5PN, and 2PN order (cf. Sec. II).
Of course, as far as the detection problem is concerned
there is only one additional parameter since the chirp
times are all functions of the two masses of the binary.
However, for the purpose of testing general relativity one
can consider each of the chirp times to be independent
of the rest [5,24]. Our problem now is to find the di-
mensionality of the parameter space of a 2PN waveform.
To this end we consider the ambiguity function C(X', )
which is nothing but the correlation function of two nor-
malized waveforms one of whose parameters A are varied
by holding the parameters of the other fixed X’ :

C(N,A) = (g(X),a(N)),

(a(A"),q(A")) = (g(A'(N)) =1. (3.24)
It is useful to think of A’ as the parameters of a template
and A as that of a signal. With this interpretation the
ambiguity function simply gives the span of a filter in the
parameter space.

The ambiguity function for the full waveform is a
four-dimensional surface since there are four indepen-
dent parameters. To explore the effective dimension-
ality of the parameter we consider the set of parame-
ters to be {t,,®,m;,mz}, where m; and m; are the
two masses of the binary. We have shown the con-
tours of the ambiguity function maximized over ¢, and
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FIG. 2. Contour diagram of the ambiguity function for the
second post-Newtonian case.

® (since these two parameters do not explicitly need a
lattice of templates) in Fig. 2. The template at the cen-
ter of the plot corresponds to a binary waveform with
m; = mz = 1.4Mg and the signal parameters are var-
ied over the entire astrophysically interesting range of
masses: my,mz € [1.4,10)Mg. From this figure we find
that the ambiguity function is almost a constant along
a particular line in the m;-my plane. This means that
a template at the center of the grid spans a relatively
large area of the parameter space by obtaining a corre-
lation very close to unity for all signals whose masses lie
on the curve along which the ambiguity function roughly
remains a constant. It turns out that the equation of this
curve is given by

To + 71 — T1.5 + T2 = const. (3.25)

Let us suppose we begin with a two-dimensional lattice
of filters corresponding to a certain grid (albeit, nonuni-
form) laid in the m;-m, plane. Several templates of this
set will have their total chirp time the same. Now with
the aid of just one template, out of all those that have
the same chirp time, we can effectively span the region
that is collectively spanned by all such filters. More pre-
cisely, we will not have an appreciable loss in the SNR
in replacing all templates of a given total chirp time by
one of them. Consequently, the signal manifold can be
spanned by a one-dimensional lattice of templates.

IV. ESTIMATION OF PARAMETERS

In this section we discuss the accuracy at which the
various parameters of a coalescing binary system of stars
can be estimated. All our results are for a single in-
terferometer of the initial LIGO type which has a lower
frequency cutoff at 40 Hz. At present it is beyond the
computer resources available to us to carry out a simu-
lation for the advanced LIGO. In the first part of this
section we briefly review the well-known results obtained
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for the variances and covariances in the estimation of pa-
rameters using analytical methods. Analytical methods
assume that the SNR is sufficiently large (the so-called
strong signal approximation) and implicitly use a contin-
uum of the parameter space. In reality, however, these
assumptions. are not necessarily valid and hence it is es-
sential to substantiate the results obtained using ana-
lytical means by performing numerical simulations. In
the second part of this section we present an exhaustive
discussion of the Monte Carlo simulations we have per-
formed to compute the errors and covariances of different
parameters. As we shall discuss below the computation
of errors using the covariance matrix is erroneous even at
a SNR of 10-20. Our estimation of 1o uncertainty in the
various parameters, at low SNR'’s, is substantially larger
than those computed using the covariance matrix. How-
ever, for high values of the SNR (> 25-30) Monte Carlo
estimation agrees with the analytical results.

A. Covariance matrix

In recent years a number of authors has addressed is-
sues related to the variances expected in parameter esti-
mation [5,18,22,23,20,24-28,37]. In the standard method
of computing the variances in the estimation of parame-
ters one makes the assumption that the SNR is so large
that with the aid of such an approximation one can first
construct the Fisher information matrix I',, and then
take its inverse to obtain the covariance matrix Cp,. In
the strong signal approximation the Fisher information
matrix and the covariance matrix are given by

Os Os _
guu=rn»=<m’a—ru>’ Cpw =T 7' (42)

As we have seen before the Fisher information, and con-
sequently the covariance matrix, is block diagonal and
hence there is no cross talk, implying vanishing of the
covariances between the amplitude and the other param-
eters. Consequently, we need not construct, for the pur-
pose of Weiner filtering, templates corresponding to dif-
ferent amplitudes.

For the purpose of numerical simulations it is conve-
nient to choose the set A* = {A4,t,,®, 79,71} where A is
the amplitude parameter, t, and ® are the time of ar-
rival of the signal and its phase at the time of arrival,
respectively, and 79 and 7; are the Newtonian and the
post-Newtonian coalescence times. For noise in realistic
detectors, such as LIGO, the elements of the Fisher infor-
mation matrix cannot be expressed in a closed form and,
for the set of parameters employed, it is not useful to ex-
plicitly write down the covariance matrix in terms of the
various integrals since the errors and covariances do not
have any dependence on the parameters. We thus eval-
uate the information matrix numerically and then take
its inverse to obtain the covariance matrix. Instead of
dealing with the covariance matrix C' it more instruc-
tive to work with the matrix of standard deviations and
correlation coefficients D which is related to the former
by
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i if u=v,

Duw = { Couv/(040,) if p# v,

where o, = D,, is the 10 uncertainty in the parameter
Au. The off-diagonal elements of D take on values in the
range [—1, 1], indicating how two different parameters are
correlated: For p # v, Dy, = 1 indicates that the two are
perfectly correlated, D,, = —1 means that they are per-
fectly anticorrelated, and D, = 0 implies that they are
uncorrelated. Since the information matrix is block di-
agonal, the amplitude parameter is totally uncorrelated
with the rest and thus an error in the measurement of
A will not reflect itself as an error in the estimation of
the other parameters and vice versa. In contrast, as we
shall see below, Newtonian chirp time is strongly anticor-
related to post-Newtonian chirp time, which implies that
if in a given experiment 7o happens to be estimated larger
than its true value, then it is more likely that 7, will be
estimated to be lower than its actual value. Such corre-
lations are useful as far as detection is concerned since
they tend to reduce the number of templates needed in
filtering a given signal. On the other hand, strong cor-
relations between the parameters increase the volume in

|

(4.2)

a a
C. = 11 012 and T.. = Y11 V12
w ( me Y12 Y22

012 022
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the parameter space to which an event can be associated
at a given confidence level. It seems to be in general
true that a given set of parameters do not satisfy the
twin properties of having small covariances and reducing
the effective dimension of the manifold for the purpose
of filtering. We elaborate on this point below.

Given a region in a parameter space, it is useful to
know the proper volume (as defined by the metric) of
the manifold corresponding to the said region. In choos-
ing a discrete set of filters for the detection problem one
has to decide upon the maximum allowable drop in the
correlation due to the finite spacing. Once this is fixed,
the number of filters can be determined from the to-
tal volume of the manifold. For the detection problem
it is beneficial to have a small volume, whereas if the
waveform is parametrized in a way such that the mani-
fold corresponding to it covers a large volume, then one
can determine the parameters to a greater accuracy. As
a simple example let us consider a two-dimensional toy
model A = {\1,A\2}. We compare different signal mani-
folds each corresponding to a different parametrizations
of the waveform. We assume the covariance matrix and
its inverse, the Fisher information matrix, to be

The volume of the manifold corresponding to a region K of the parameter space is given as

2 t
Vk = / Y1122 [1 - L] dAid; = / Y1172z [1 — €] dA1dAa,
K Y11722 K

where € = v2,/(v11722) is the correlation coefficient. It
can be clearly seen that if for a given set of values of
the variances the correlation coefficient is small, then the
volume of the manifold is maximal. Since the parameters
7o and 7 are highly anticorrelated, the proper volume
corresponding to the region reduces to zero, showing that
the effective dimensionality of the manifold is less.

Though, in principle, the variances and covariances
are independent of the chirp time, in reality there arises
an indirect dependence since one terminates a template
at a frequency f = 1/(6%/27M) (where M is the total
mass of the binary) corresponding to the plunge radius at
a = 6M [20]. Therefore, larger mass binaries are tracked
over a smaller bandwidth so much so that there is less fre-
quency band to distinguish between two chirps of large,
but different, total mass. Consequently, at a given SNR
the error in the estimation of chirp times is larger for
greater mass binaries. This is reflected by the fact that
the integrals in Eq. (3.17) are somewhat sensitive to the
value of the upper cutoff. (This also explains why the
errors in the estimation of the chirp and reduced masses
are larger for greater mass binaries [23,20].) In the fol-
lowing we assume that the noise power spectral density
is that corresponding to the initial LIGO for which a fit
has been provided by Finn and Chernoff [23]. For a SNR
of 10 the matrix D is given by

1 022 —O012
= ) .3
) (0’110'22—0'%2) (_UIZ J11 (4 )
(4.4)
—
1.0 0 0 0
8.37 0.999 —0.999
Dy = 3.16 —0.998 |° (4.5)
8.4
for the Newtonian signal, and by
1.0 0 0 0 0
20.4 0.997 —0.972 0.911
D,, = 6.7 —0.954 0.881 |, (4.6)
45.1 —0.982
25.98

for the first post-Newtonian corrected signal. While com-
puting variances and covariances the integrals in Eq.
(3.19) are evaluated by choosing a finite upper limit
of 1 kHz. In the above matrices the entries are ar-
ranged in the order {A4,t,,®,70} in the Newtonian case,
{A,ta,®, 79,71} in the post-Newtonian case, off-diagonal
elements are dimensionless correlation coefficients, and,
where appropriate, diagonal elements are in ms. The
values quoted in the case of the Newtonian waveform are
consistent with those obtained using a different set of pa-
rameters by Finn and Chernoff [23]. In order to demon-
strate the effect of the plunge cutoff we have, in Fig. 3,
plotted o’s, at a SNR of 10, as a function of the upper
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FIG. 3. Dependence of the errors in the estimation of the
parameters of the post-Newtonian waveform on the upper cut-
off frequency. The SNR is kept fixed at a value of 10.

frequency cutoff f. for Newtonian and post-Newtonian
chirp times and the instant of coalescence, tc. We see
that o is larger for higher mass binaries, but this is be-
cause we have fixed the SNR. However, if we consider
binaries of different total masses, all located at the same
distance, then a more massive binary produces a stronger
SNR so that in reality it may be possible to determine its
parameters more accurately than that of a lighter binary.
In Fig. 4 we have plotted o’s for binaries, all located at
the same distance as a function of the total mass. We

T T L L N L
80 - % —_— Oy,
LY o
To
Ly . o,
60
v L
E -
=) \
~ F \
o} 40 +
20

5 10 15 20
M (in M)

FIG. 4. Dependence of the errors in the estimation of the
parameters of the post-Newtonian waveform on the total mass
of the binary keeping the distance to the binary fixed. The
waveforms are cutoff at frequencies corresponding to the onset
of the plunge orbit and the SNR is normalized at a value of
10 for a 1.4 Mp-10 My binary.
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fix one of the masses at a value of 1.4 Mg and vary the
other from 1.4 Mg to 10 M. In computing the o’s plot-
ted in this figure we have terminated the waveform at the
plunge orbit and normalized the SNR of a 10Mg-1.4M,
binary system to 10. As a function of M the uncertain-
ties in 79 and 7; initially fall off since the increase in the
SNR for larger mass binaries more than compensates for
the drop in the upper frequency cutoff. However, for M
larger than a certain My the increase in the SNR is not
good enough to compensate for the drop in f., so much
so that the uncertainties in 79 and 7; increase beyond
M,. The parameter t,, however, falls off monotonically.

B. Monte Carlo estimation of parameters

In this section we present the first in a series of ef-
forts to compute the covariance matrix of errors through
numerical simulations for a coalescing binary waveform
at various post-Newtonian orders. Analytical computa-
tion of the covariance matrix, as in the previous section,
gives us an idea of the covariances and variances but, as
we shall see in this section, at low SNR’s it grossly un-
derestimates the errors. Quite apart from the fact that
the assumptions made in deriving the covariance matrix
might be invalid at low SNR’s, in a realistic detection
and data analysis, other problems, such as discreteness
of the lattice of templates, finite sampling of the data,
etc., do occur. It therefore seems necessary to check
the analytical calculations using numerical simulations
to gain further insight into the accuracy at which physi-
cal parameters can be measured. This section is divided
into several parts: In the first part we highlight different
aspects of the simulation, in the second part we briefly
discuss the choice of templates for the simulation, in the
third we elaborate on the Monte Carlo method that we
have adopted to carry out our simulations, and in the
fourth we discuss problems that arise in a numerical sim-
ulation. The results of our study are discussed in the
next section.

1. Parameters of the simulation

Let s(t) be a signal of strength A characterized by a
set of parameters A:
s(t;A) = Ah(t;A), (h,h) = 1. (4.7)
In data analysis problems one considers a discrete version
{s*|k = 0,...,N — 1} of the waveform s(t) sampled at
uniform intervals in ¢:
s* =s(kA); k=0,...,N—1, (4.8)
where A denotes the constant interval between consecu-
tive samples and N is the total number of samples. The
sampled output z* of the detector consists of the samples
of the noise plus the signal:

z* = n* 4 sk, (4.9)
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The sampling rate f, = A~! (also referred to as the sam-
pling frequency) is the number of samples per unit time
interval. In a data analysis problem the sampling fre-
quency is determined by the signal bandwidth. If B is
the signal bandwidth, i.e., if the Fourier transform of the
signal is only nonzero over a certain interval B, then it is
sufficient to sample at a rate f, = 2B. In our case there
is a lower limit in the frequency response of the detector
since the detector noise gets very large below a seismic
cutoff at about 1040 Hz. As mentioned in the last sec-
tion there is also an upper limit in frequency up to which
a chirp signal is tracked since one does not accurately
know the waveform beyond the last stable circular or-
bit of the binary. This corresponds to gravitational wave
frequency f. = 1/(6%/27rM). For a neutron-star-neutron-
star (NS-NS) binary f. ~ 1525 Hz while for a NS-black-
hole (of 10 M) (NS-BH) binary f. ~ 375 Hz. Because of
constraints arising out of limited computational power,
we terminate waveforms at 750 Hz even when f. is larger
than 1000 Hz. Such a shutoff is not expected to cause
any spurious results since, even in the case of least mas-
sive binaries of NS-NS, which we consider in this study,
more than 99% of the “energy” is extracted by the time
the signal reaches 750 Hz. We have carried out simula-
tions with two types of upper cutoff: (1) one in which all
templates, irrespective of their total mass, are shut off be-
yond 750 Hz; (2) a second in which the upper frequency
cutoff is chosen to be 750 Hz or f., whichever is lower.
Consistent with these cutoffs the sampling rate is always
taken to be 2 kHz. (We have carried out simulations with
higher sampling rates and found no particular advantage
in doing so; nor did we find appreciable changes in our
results.)

In all our simulations, as in the previous section, we
take the detector noise power spectral density S to be
that corresponding to the initial LIGO [23]. For the pur-
pose of simulations we need to generate noise correspond-
ing to such a power spectrum. This is achieved by the
following three steps.

(1) Generate Gaussian white noise n’* with zero mean
and unit variance:

n'* =0, n'knl = 5kl,

where an overbar denotes average over an ensemble.
(2) Compute its Fourier transform

N-1
1
= —— Z n" exp(2mikl/N).
\/N =0

(3) Multiply the Fourier components by the square root
of the power spectral density:

Ak = V. Ski'k.

The resultant random process has the requisite power
spectrum. In the above, the second step can be elimi-
nated since the Fourier transform of a Gaussian random
process is again a Gaussian, but with a different vari-
ance. In other words we generate the noise directly in
the Fourier domain. The simulated detector output, in
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the presence of a signal s¥, in the Fourier domain is given
by
~k

#* =k 4+ 3*, (4.10)

where §* is the discrete Fourier transform of the signal.

2. Choice of templates

To filter a Newtonian signal we employ the set of pa-
rameters {t,, P, 70} and to filter a post-Newtonian signal
we employ the set {t,, ®,70,71}. Templates need not ex-
plicitly be constructed for the time of arrival since com-
putation of the scalar product in the Fourier domain
[and the availability of fast Fourier transform (FFT) al-
gorithms] takes care of the time of arrival in essentially
one computation (/N Inz N operations as opposed to N2
operations, where N is the number of data points). More-
over, there exists a two-dimensional basis for the phase
parameter which allows the computation of the best cor-
relation with the aid of just two filters. Consequently,
the parameter space is essentially one dimensional in the
case of Newtonian signals and two dimensional in the case
of post-Newtonian signals. (However, as shown in Sec.
ITIIC it is to be noted that for the purpose of detection
the effective dimensionality of the parameter space, even
with the inclusion of second post-Newtonian corrections,
is only one dimensional.) We adopt the method described
in Sathyaprakash and Dhurandhar [13] to determine the
templates needed for chirp times. As described in [13,29]
filters uniformly spaced in 79 and 7; cover the parameter
space efficiently.

3. Monte Carlo method

In order to compute variances and covariances numeri-
cally, we employ the Monte Carlo method. The basic idea
here is to mimic detection and estimation on a computer
by performing a very large number of simulations so as to
minimize the uncertainties induced by noise fluctuations.
In our simulations we generate a number of detector out-
puts {x*} each corresponding to a definite signal s(A)
of a certain strength, but corresponding to different re-
alizations of the random process {n*}. Computation of
the covariance matrix involves filtering each of these de-
tector outputs through an a priori chosen set (or lattice)
of templates {q(¢t;: Ax)|k = 1,...,n¢}, where ny denotes
the number of templates. The templates of the lattice
each have a distinct set of values of the test parameters
+ Ak and together they span a sufficiently large volume in
the parameter space. The simulated detector output is
correlated with each member of the lattice to obtain the
corresponding filtered output C(:A):

C(tAr) = (z,9(:Ar)) -

For a given realization of noise a particular template ob-
tains the largest correlation and its parameters are the
measured values ,, A of the signal parameters. Thus, the
measured values of the parameters are defined by

(4.11)
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max C(:Ar) = C(mA). (4.12)
The measured values, being specific to a particular re-
alization of noise, are random variables. Their average
provides an estimation (A of the true parameter values
and their variance is a measure of the error o, in the
estimation:
D LN L4

b

eA:;X, o'i: (mA_ﬁ)z, D* —

(n#v), (4.13)

where D,,, are the correlation coefficients between pa-
rameters A, and A, . In order to accurately determine o
a large number of simulations would be needed. If the
measured values ,, A obey Gaussian statistics, then after
N, trials the variance is determined to a relative accu-
racy 1/ VN : and estimated values can differ from their
true values by ox/vN;. We have performed in excess of
5000 trials, for each input signal, and thus our results are
accurate to better than 1 part in 70. Even more crucial
than the number of simulations is the number of tem-
plates used and their range in the parameter space. We
discuss these and other related issues next.

The actual templates chosen, say, for the parameter 7o,
in a given “experiment” depend on the true parameters
of the signal, the number of noise realizations employed,
and the expected value of the error. Let us suppose we
have a first guess of the error in g, say, o,,. Then, we
choose 51 uniformly spaced filters around 7o (where 75 is
the signal chirp time) such that

tTo € [7’;0 - 50'7-0, ’f'o + 50'.,-0] . (4.14)
This implies that we are covering a 50 width in 7o at a res-
olution of 0. /5. The probability that a template between
40 and 50 from the true signal “clicks” being ~ 6 x 1075,
we are on safe grounds since, in a given simulation, we
consider no more than 5000 trials. (In comparison, the
probability that a template between 30 and 40 clicks is
2.2 x 1073, corresponding to an expected 13 events in
5000 trials.) For a post-Newtonian signal, which in ef-
fect needs to be spanned by a two-dimensional lattice of
filters, the above choice of templates implies a require-
ment of 2601 x 2 filters in all. Here a factor of 2 arises
because for each filter in the 7o-7; space we will need two
templates corresponding to the two independent values
of the phase ®: 0 and /2. In the case of a Newtonian
signal, the lattice being one dimensional, one can afford
a much higher resolution and range. Even with the aid of
a mere 201 templates we can probe at a ¢/10 resolution
with a 100 range.

We start off a simulation with the pretension that there
is no knowledge of what the o)’s are. Thus, we choose
as our first trial a very large ox and lay the lattice of
templates. With this lattice we perform a test run of
400 trials and examine the distribution of the measured
values. If the distribution is not, as expected, a Gaussian,

|

CleA, e X)) = <Q(t§t/\“),4(t;t)\:,)> s (g(E5eA), q(t5 e X)) = (q(t;e "), q(t; e X)) = 1,
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then we alter o: We decrease it if the distribution is too
narrow and increase it if the distribution is too wide and
does not show the expected falloff. In particular, we make
sure that the templates at the boundary of the chosen
range do not click even once and the skewness of the
distribution is negligible. When for a certain oy a rough
Gaussian distribution is observed, then we carry out a
simulation with a larger number of trials (typically 5000).
We subject the measured values in this larger simulation
to the very same tests described above. We only consider
for further analysis such simulations which “pass” the
above tests and determine the estimates, variances, and
covariances of the parameters using the measured values,
with the aid of Eq. (4.13).

4. Numerical errors and remedies

There are several sources of numerical errors that tend
to bias the results of a simulation unless proper care is ex-
ercised to rectify them. In this section we point out the
most important ones and show how they can be taken
care of. Because of memory restrictions, the present ver-
sion of our codes works with single precision except the
FFT, which is implemented in double precision. In future
implementations we plan to carry out all computations
in double precision. This will possibly reduce some of the
numerical noise that occurs, especially at high SNR’s, in
the present simulations.

(1) Orthonormality of filters: For the sake of simplicity
it is essential that the filters are normalized in the sense
that their scalar product is equal to unity: (g,q) = 1.
A waveform is normalized numerically using the discrete
version of the scalar product; i.e., the normalization con-
stant is chosen to be [cf. Eq. (2.16)]

1
N = (4.15)
> Sitlak|
k=0

As mentioned earlier we use a two-dimensional basis
of filters for the phase parameter. Choosing the two
filters to be orthogonal to each other makes the max-
imization over the phase easier. However, here care
must be exercised. Two filters q(t;t,, 70,71, ® = 0) and
q(t; te, 70,71, ® = m/2) are apparently orthogonal to each
other. The numerically computed ‘angle’ between the
two filters, chosen in this manner, often turns out to be
greater than ~ 1072 rad. Consequently, one obtains erro-
neous correlations. In order to circumvent this problem
we first generate two filters that are roughly orthogonal
to each other, as above, and then use the Gram-Schmidt
method to orthogonalize the two vectors. If an explicit
numerical orthogonalization such as this is not imple-
mented, then the measured values of the various param-
eters show spurious oscillations in their distribution and
the estimated values of the parameters tend to get biased.

(2) Correlation function: The scalar product of two
normalized templates g(t;; A) and g(t;; A') is given by

(4.16)
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where we have indicated the dependence of the scalar
product on the various parameters by explicitly writing
down the parameter subscripts. Let us fix the parameters
of one of the templates, say, ;A\, and vary the parameters
of the other template. Of particular interest is the behav-
ior of C maximized over all but one of the parameters,
say, Ayg:

Crnax(tAurtAy,) = r?,\a’xC(t/\“,t/\f/). (4.17)

l/;ﬁl/o

Chax Is expected to drop monotonically as [A,, — A, |
increases. However, we have observed departures from
such a behavior possibly arising out of numerical noise.
Such a behavior causes bias in the estimation of param-
eters, and consequently in the determination of their co-
variances, especially at high SNR’s. We have found no
remedy to this problem and some of our results at high
SNR'’s may have biases introduced by this effect. (Sam-
pling the templates at a higher rate did not help in curing
this problem.)

(3) Grid effects: The parameters of a signal chosen for
the purpose of simulation and detection can in principle
be anything and in particular it need not correspond to
any of the templates of the lattice. However, in practice
we find that whenever the signal parameters do not corre-
spond to a member of the lattice the resultant simulation
has a bimodal distribution of the measured values. This
is, of course, expected since a signal not on the grid is
picked up by two nearest templates along each direction
in the parameter space. Sometimes we do find that the
peaks corresponding to the bimodal distribution do not
belong to the nearest neighbor filters but slightly away.
This is related to the fact that the correlation function
maximized over the time of arrival and the phase of the
signal fall off much too slowly along the 7o-7; direction
and a small deviation from a monotonic fall can cause
biases. (Such biases would be present in the case when
a signal corresponds to one of the grid points though the
magnitude of the effect would be lower.) In order to avoid
this problem, and the consequent shifts in the estimation
of parameters and errors in the determination of vari-
ances and covariances, we always choose the parameters
of the signal to be that corresponding to some template.

(4) Upper frequency cutoff and its effect on parame-
ter estimation: The Fisher information matrix computed
using the stationary phase approximation in Sec. III
does not include the effect of truncating the waveform
at a = 6M, the plunge cutoff. As mentioned before, we
have carried out simulations both with and without in-
corporating the upper cutoff. As the covariance matrix
incorporating the upper cutoff is not available we have
been able to compare the Monte Carlo results with the
covariance matrix only for the latter case, where the cut-
off is held fixed at 750 Hz. If we incorporate the upper
cutoff into the Monte Carlo simulations, the errors in the
parameters are reduced drastically. The effect of the up-
per cutoff is expected to be more important for the higher
mass binaries such as the ones we have considered. The
ambiguity function, in this case, no longer remains inde-
pendent of the point on the manifold. In other words, the
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correlation between two chirps depends not only on the
difference between the parameters of the signals, but also
on the absolute values of the parameters. The correlation
surface also ceases to be symmetric; i.e., the correlation
between two chirps also depends on the sign of § A, where
6] is the difference in the values of the parameters. As
the computational power required for carrying out sim-
ulations for lower mass binaries is not available to us
the simulations have been restricted to NS-BH binaries,
where the effect of the upper cutoff is important.

(5) Boundary effects: For the purpose of simulations
a grid of filters has to be set up “around” the signal.
The grid must be large enough so that the measured pa-
rameters do not overshoot the boundary of the grid. This
causes a problem as every value in the {79, 71} plane does
not lead to a meaningful value for the masses of the bi-
nary system. This does not, however, prevent us from
constructing a waveform with such a value for {7o,71}
even though the signal in general does not correspond to
any “real” binary system. This is valid, and even neces-
sary, if we are to compare the numerical results with the
covariance matrix.

(6) Incorporating the cutoff in the presence of bound-
ary effects: If we wish to incorporate the effects of the
upper cutoff in simulations, then we run into a serious
problem, as we would have to know the total mass of
the binary in order to compute the upper cutoff. For an
arbitrary {79, 71} we can end up with negative and even
complex values of the total mass and hence the upper
cutoff at @ = 6M is not meaningful. Thus, we cannot
even construct a waveform for an arbitrary combination
of {79, 71}. Therefore, in such cases, we restrict ourselves
to simulations where the grid lies entirely within valid
limits for {70,71}.

C. Results and discussion

Our primary objective is to measure the variances and
covariances following the method described in Sec. IVB 3
and study their departure from that predicted by analyt-
ical means (cf. Sec. IV A). We have carried out simula-
tions for several values of the masses of the binary and in
each case the signal strength (which is a measure of the
SNR) is varied in the range 10-40. However, since the
variances and covariances are independent of the abso-
lute values of the parameters, for the parameter set that
we employ, results are only quoted corresponding to a
typical binary system. (See Sec. IV A for a discussion
of the covariance matrix.) Similar results are obtained
in other cases too. We use two sets of parameters to de-
scribe our results. Monte Carlo simulations allow us to
directly measure the amplitude, the time of arrival, the
phase at the time of arrival, and the chirp time(s). This
is the set {A,t,,®, 70,71}

As we shall see below, the instant of coalescence can be
measured much more accurately than the time of arrival.
As a consequence of this, the direction to the source can
be determined at a much greater accuracy by employing
tc as a parameter instead of ¢, [30]. Thus, we also quote
estimates and errors for the parameter ¢c. Since the error
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in the estimation of the phase is quite large, even at high
SNR’s, we ignore it in our discussions.

We first deal with the Newtonian signal and highlight
different aspects of the simulation and discuss the results
at length. We then consider the first post-Newtonian
corrected signal.

1. Newtonian signal

In the case of Newtonian signals the parameter space
is effectively one dimensional and, as mentioned earlier,
in this case the lattice of templates covers a 100 range of
the parameters at a resolution of /10 centered around
the true parameters of the signal.

In Fig. 5 we have shown the error oy in the estima-
tion of parameters t,, 79, and tc, as a function of the
SNR, deduced using the covariance matrix as solid lines
and computed using Monte Carlo simulations as dotted
lines. The curve corresponding to the covariance matrix
is obtained using an upper frequency cutoff f. = 750 Hz
consistent with that used in our simulations. The error
bars in the estimation of o) ’s are obtained using four sim-
ulations, each with 5000 trials. At low SNR'’s, o’s have
a larger uncertainty, as expected, and for p > 30 this un-
certainty is negligible, and sometimes smaller than the
thickness of the curves, except in the case of o, (see
below, for a possible explanation).

At low SNR’s (10-15) there is a large departure of
the various o’s from that inferred using the covariance
matrix. At a SNR ~ 17 the two curves merge (except in
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10 15

FIG. 5. Dependence of the errors in the estimation of pa-
rameters of the Newtonian waveform, i.e., {0+, 0t,, Oic}, as
a function of the SNR. The solid line represents the analyti-
cally computed errors whereas the dotted line represents the
errors obtained through Monte Carlo simulations.
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the case of 0:.), indicating the validity of the covariance
matrix results for this and higher SNR’s. Interestingly,
the agreement between Monte Carlo simulation results
and those obtained using the covariance matrix is reached
roughly at the same SNR irrespective of the parameter
in question.

We note that in spite of the fact that the time of ar-
rival and the chirp time having large errors, the instant
coalescence can be estimated very accurately, an order
of magnitude better than either. What is puzzling, how-
ever, is that, in the case of tc, the Monte Carlo curve
drops below the covariance matrix curve above a SNR of
15 and the two curves do not seem to converge to one
another even at very high SNR’s. Coincident with the
crossover of the two curves, the error in the estimation
of 0, increases, contrary to what happens for the other
parameters, signaling that there is a large fluctuation in
the estimation of o;,. This behavior, we guess, is an ar-
tifact of the low value of the sampling rate and template
spacing. Of course, our sampling rate is sufficiently high
to respect the sampling theorem. However, since t¢ is
determined to an accuracy an order of magnitude better
than either ¢, or 79, a much higher resolution in tem-
plate spacing would be needed for determining the error
in the instant of coalescence than that used for estimat-
ing the errors in the time of arrival or the chirp time(s).
Testing this claim, unfortunately, is beyond the computer
resources at our disposal since we would need a sampling
rate of about 10 kHz with a filter spacing 10~% s. We
hope to be able to resolve this issue in the course of time.
Nevertheless, the fact that the error in the estimation of
ot first decreases with the SNR and increases only after
the two curves crossover hints at the above possibility as
a cause for this anomalous behavior. This effect is also
observed in the case of a post-Newtonian signal.

In Table I we have given the actual signal parame-
ters X, estimated values of the parameters (A [cf. Eq.
(4.13)], and the corresponding errors in their estimation,
o), for several values of the SNR. Errors inferred from
the covariance matrix can be read off from Fig. 5. The
estimated values are different from the true values, some
of them being overestimated and some others underes-
timated. However, the deviations are often larger than
what we expect. In a simulation that uses N; trials the
estimated parameters (A, assuming a Gaussian distribu-
tion for the measured parameters ,,A, can be different
from the true values by ox/+/N;. (In contrast, the mea-
sured values ,, A can differ from their true values by oy
or more.) However, we often obtain a slightly larger de-
viation

<9 %A | a_ " <3 92

S, A e v A
and we are unable to resolve this discrepancy. A more
concrete test for the simulations is the histogram n(mA)
of the measured parameters, namely, the frequency at
which a given test parameter clicks in a simulation. This
is shown plotted in Fig. 6 for a SNR of 10. The skewness
of the distribution is less than 10~2. These results lend
further support to the Monte Carlo simulations. There
are visible asymmetries in the distributions of 79 and

(4.18)
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TABLE I. The estimated value of the parameters and their errors A (o) for the Newtonian
waveform. The actual values of the parameters taken were 7 = 5558.0 ms and £, = 200.0 ms.
Except for the parameter A all values are quoted in ms.

p="15 p=10.0 p=125 p=15.0 p =200
70 (Tr) 5557.4 (29.7)  5557.3 (15.6) 5557.6 (9.0) 5557.7 (6.2) 5558.5 (3.9)
eta (01,) 200.6 (29.4) 200.7 (15.5) 200.4 (8.9) 200.3 (6.2) 199.5 (3.9)
ctc (0+;)  5758.0 (0.30)  5758.0 (0.20)  5758.0 (0.10)  5758.0 (0.08) 5758 (0.02)
A (0.4) 7.696 (0.96) 10.12 (0.98) 12.582 (0.99)  15.067 (0.99)  20.05 (0.99)

t, and the asymmetries in the two cases are of oppo-
site sense. This can, of course, be understood from the
fact that ¢, and 79 have a negative correlation coefficient.
The histogram of ¢, even at a SNR of 10, has very few
nonzero bins. This reflects the fact that it is determined
very accurately. We are unable to resolve the central
peak in n(tc) since, as mentioned earlier, the sampling
rate and resolution in 7y are not good enough to do so.

2. Post-Newtonian signal

As opposed to the Newtonian case here we have essen-
tially a two-dimensional lattice of filters corresponding to
7o and 7;. For the purpose estimating variances and co-
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FIG. 6. Distributions of the measured values of the param-
eters for the case of Newtonian signal. The total number of
noise realizations is 5000.

variances we lay a mesh consisting of 2601 x 2 uniformly
spaced filters around the true parameters of the signal.
As pointed out in Sec. IIIB not all filters in the mesh,
unlike in the Newtonian case, would correspond to the
waveform from a realistic binary but that does not pre-
clude their use in the Monte Carlo simulations. We shall
see that the results of our simulations lend further sup-
port to the claim that for the purpose of detection, the
parameter space need only be one dimensional [29]. The
results obtained for the first post-Newtonian signal are
qualitatively similar to that of a Newtonian signal and
we refer the reader, where appropriate, to the Newtonian
case for a more complete discussion.

In Fig. 7 we have shown the error in the estimation
of parameters 79, 71, tc, and t,, clockwise from top left,
respectively, as a function of SNR. The solid and dotted
curves are as in Fig. 5. Here again the upper frequency
cutoff is taken to be 750 kHz. Just as in the case of
a Newtonian signal here too the results obtained from
Monte Carlo simulations are much higher than those ob-
tained by employing the covariance matrix. At a SNR of
10 the Monte Carlo values are more than thrice as much
as their corresponding covariance matrix values and at
a SNR of 15 the errors are roughly twice that expected

r — . e 5
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FIG. 7. Dependence of the errors in the estima-

tion of parameters of the post-Newtonian waveform, i.e.,
{0r5,071,0t,,0t:}, as a function of the SNR. The solid line
represents the analytically computed errors whereas the dot-
ted line represents the errors obtained through Monte Carlo
simulations.
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TABLE II. The estimated value of the parameters and the errors in their estimation A (o) for
the post-Newtonian waveform. The actual values of the parameters taken were 70 = 5558.0 ms,
71 = 684.0 ms, and ¢, = 300.0 ms. Except for the parameter A all values are quoted in ms.

p =10.0 p=15.0 p = 20.0 p=25.0 p = 30.0
eTo (0r) 5554.9 (136.1) 5555.9 (64.8) 5557.2 (30.1) 5556.7 (19.3) 5558.7 (13.6)
eT1 (0ry) 685.55 (65) 685.2 (32.6) 684.6 (16.4) 684.8 (10.5) 683.6 (7.2)
eta (0t,) 301.49 (73.26) 300.88 (33.4) 300.28 (14.5) 300.5 (9.4) 299.7 (6.8)
ete (0tc) 6.542 (0.54) 6.542 (0.30) 6.542 (0.17) 6.542 (0.10) 6.542 (0.06)
eA (04) 10.25 (0.97) 15.15 (0.98) 20.11 (.99) 20.1 (0.99) 30.1 (0.99)

from the covariance matrix. In absolute terms, however,
the errors are still quite small compared to the actual
parameter values: For a NS-NS binary, at a SNR of 10,

(4.19)

Oro

~2.4%, I~ 9.4%.
To T1

At a SNR of 10 the time of arrival can be measured to an
accuracy of 72 ms in contrast to a value of 20 ms expected
from the covariance matrix. As is well known, with the
inclusion of the post-Newtonian terms, the error in the
estimation of the time of arrival and Newtonian chirp
time increases by about a factor of 2 and 3, respectively
[23,20].

As in the Newtonian case here again we see that the
Monte Carlo curves approach the corresponding covari-
ance matrix curves at a high SNR, the only difference
being that the agreement is reached at a higher SNR
~ 25. For SNR’s larger than this the two curves are in
perfect agreement with each other. As mentioned earlier,
ot shows an anomalous behavior possibly arising out of
insufficient resolution in the time of arrival and the chirp
times.

In Table II we have listed the true parameters A, the
estimated values .A, and the Monte Carlo errors o) for
different SNR’s. As in the Newtonian case here too the
estimated values show a larger departure than expected,
from the true values. Histograms of the various measured
parameters including tc are shown in Fig. 8 for a signal
strength of 10. The skewness of the distribution is be-
low its standard deviation of 1/15/N; [34], indicating the
Gaussian nature of the various distributions. Even in the
case of a post-Newtonian signal o, is so small that we
only have three nonzero bins in n(t¢c).

We now turn attention to other, more general, issues
arising out of the simulations.

In Sec. III C we have argued, on the basis of the behav-
ior of the noise-free correlation function, that the effective
dimensionality of the parameter space for the purpose of
detection, even in the case of a post-Newtonian signal,
is only one dimensional. The results of our Monte Carlo
simulation unambiguously show that this is indeed true
even in the presence of noise. We investigated the two-
dimensional histogram, which gives the number of occur-
rences of different templates in the lattice, in a particu-
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lar simulation. The templates that “click” are all aligned
along the line 79 + 7, = const. In a total of 5000 realiza-
tions there is only one instance when a filter outside this
region clicks, giving a probability of less than 10~2 for a
template outside this region to give a maximum. Conse-
quently, it is only necessary to choose a single filter along
each of the 79 + 7, =const lines.

The distribution of the maximum correlation
Cmax(A,tA) obtained from different noise realizations
needs special mention since it has an inherent bias. In
Fig. 9 we have shown the distribution of the maximum
correlation taken from one of our simulations correspond-
ing to a SNR of 10. Notice a slight shift of the distribu-
tion towards a higher value and this cannot be accom-
modated within the expected fluctuation in the mean.
The measured value of the standard deviation o 4 is 0.95.
Since the number of simulations is 5000, we expect that
the signal strength should differ from the true value of
10 by no more than o4/+//5000 = 0.014. However, the
mean value is 10.26, giving a deviation of 0.26 which is
about 20 times larger than that expected. This occurs at
all SNR’s and for both Newtonian and post-Newtonian
signals. This of course does not mean there is a bug in
the way we are computing the maximum correlation. In
the process of maximization, values greater than the sig-
nal strength are favored and consequently the mean of
the maximum correlation shows a shift towards a higher
value. This suggests that the maximum of the correlation
is a biased estimator of the signal strength. Consequently
one tends to underestimate the distance to the source.

We find, consistent with the covariance matrix calcula-
tion, that the amplitude parameter is uncorrelated with

6.541 6.5415 6.542 6.5425 6.543

te

the rest of the parameters; cross-correlation coefficients
Dop, pp # 0 [cf. Eq. (4.2)] inferred from our Monte Carlo
simulations are less than ~ 107,

Finally, it is of interest to note how the phase parame-
ter @ is correlated with the time of arrival. A plot of ,,®
Versus ,,t, is shown in Fig. 10. We find that the measured
values of the time of arrival and the phase are such that
27 fo mta = m®P, where fo has a value of approximately

T : ; —— e ——rn
400 L I
300 4

F |
2200 -
= L i
- 1
100 E 4
0~ _
PRI B  EE S N U
16 18 20 22 24
o
FIG. 10. The correlation between t, and & is illustrated.

The phase parameter simply follows the time of arrival pa-
rameter.
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51 Hz. When the time of arrival shifts by more than a
cycle of the signal the phase jumps by a factor 2w, lead-
ing to the points seen in the top-left and bottom-right
corner of the figure. This makes the estimation of the
phase and the error in its estimation pretty involved.

3. Incorporating the effects of upper cutoff

As mentioned before, incorporating an upper cutoff at
the onset of the plunge has a drastic effect on the es-
timation of parameters. The incorporation of the upper
cutoff is implemented by terminating the waveform when
the instantaneous frequency reaches the frequency asso-
ciated with the onset of the plunge or 750 Hz, whichever
is lower. However, because of computational constraints,
we have carried out the simulations only for high mass
binaries and hence the upper cutoff plays an important
role in all our simulations. It is to be noted that the
discussion of the ambiguity function in Sec. IIIC is not
valid when the upper cutoff is imposed on the waveform,
though, for low mass binaries, such as NS-NS binaries,
the results there are still valid. The further dependence
of the signal waveform on the total mass of the system
through the upper cutoff means that we can estimate
the individual masses more exactly though the computa-
tional power is bound to increase.

In order to carry out the simulations for the present
case we selected a 10M-1.2M binary system as this
enables us to choose the filter grid well within valid limits

[

of 79 and ;. The simulations were carried out for various
values of the SNR starting from 10. The histograms of
the estimated parameters at a SNR of 10 are shown in
Fig. 11. At this SNR the errors obtained are o,, = 39.3
ms, oy, = 22.4 ms, ¢, = 23.1 ms, and oy, = 0.6 ms.
These can be compared with the values in Table IT and
we can see that except for the parameter tc the errors
are substantially lesser when the upper cutoff is incor-
porated into the waveform. It is necessary to recompute
the covariance matrix, as emphasized before, including
the effect of the upper cutoff in order to compare these
numerically obtained values with the covariance matrix.
In order to do this it is not enough to replace the upper
limit in the integral in Eq. (3.19) with the upper cutoff;
the waveform now depends on the total mass of the sys-
tem through the upper cutoff and this information has
to be incorporated into the waveform.

We carried out simulations for various SNR’s for the
same value of masses quoted above. In the absence of
the estimates of the covariance matrix when the upper
cutoff is incorporated, we assume that at a SNR of 40
the Monte Carlo estimates are consistent with those of
the covariance matrix. In Fig. 12 we illustrate the results
of our simulations. The dotted line is obtained through
Monte Carlo estimates and the solid line is obtained by
fitting a 1/p dependence of the errors on the SNR as-
suming consistency at a SNR of 40. It is seen, as in the
previous simulations, that except for the parameter to
the errors in the other parameters are fairly consistent
with a 1/p dependence when p > 20.
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V. CONCLUSIONS

In this paper we have explored the use of differential
geometry in studying signal analysis and have addressed
issues pertaining to optimal detection strategies of the
chirp waveform. We have also carried out Monte Carlo
simulations to check how well the covariance matrix esti-
mates the errors in the parameters of the chirp waveform.
We summarize below our main results.

(1) We have developed the concept of a signal manifold
as a subset of a finite dimensional vector space of detector
outputs. Using the correlation between two signal vectors
as a scalar product we have induced a metric on the sig-
nal manifold. With this geometric picture it is possible to
pose the question of optimal detection in a more general
setting. We suggest that the set of template waveforms
for the detection of the chirp signal need not correspond
to any point on the chirp manifold. We propose an al-
gorithm to choose templates off the signal manifold and
show that the drop in the correlation due to the discrete-
ness of the set of templates is reduced. This algorithm,
though certainly not the best, motivates the search for
more efficient templates. In addition, the chirp manifold
corresponding to the second post-Newtonian waveform is
shown to be effectively one dimensional. This has impor-
tant implications for the computational requirement for
the on-line detection of the chirp signal. The use of a con-
venient set of parameters of the chirp waveform for carry-
ing out numerical and analytical simulations is stressed.
These parameters are such that the metric components

are independent of the parameters which implies that the
manifold is flat and the corresponding “coordinate sys-
tem” is Cartesian. As the metric defined is nothing but
the Fisher information matrix, the covariance matrix, be-
ing the inverse of the Fisher information matrix, is also
independent of the parameters.

(2) Monte Carlo simulations have been carried out for
the case of the initial LIGO to find out whether the ac-
tual errors in the estimation of parameters is consistent
with the values predicted by the covariance matrix. Sim-
ulations have been carried out for both the Newtonian
as well as the post-Newtonian waveforms. We have re-
stricted ourselves to the case of high mass binary sys-
tems, such as BH-NS binaries, where the computational
requirement is not very heavy since the length of the data
train, in such cases, works out to be less than 8 s. Never-
theless, as has been shown in this paper, the covariance
matrix is independent of the parameters identified by us
when waveforms are terminated at a constant upper cut-
off irrespective of their masses. Consequently, our results
will hold good for binary systems of arbitrary masses.
We point out the major problems that arise while per-
forming a numerical simulation and, where appropriate,
we suggest how they may be taken care of. In partic-
ular, the effect of incorporating the upper cutoff in the
frequency of the gravitational wave at the onset of the
plunge, which essentially depends on the total mass of
the binary, is extremely important for high mass bina-
ries. Since the covariance matrix with the inclusion of
such a mass-dependent upper cutoff is not available, we
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have carried out most of our simulations using a constant
upper cutoff. This enables us to directly compare the re-
sults of our Monte Carlo simulations with those of the
analytically computed covariance matrix. Since for bina-
ries with total mass less than 5M¢ the plunge induced
upper cutoff is larger than that induced by the detector
noise, these effects can be ignored for such binaries.

The numerical experiments indicate that the covari-
ance matrix underestimates the errors in the determi-
nation of the parameters even at SNR’s as high as 20.
In the Newtonian case the correlation coefficient of the
time of arrival, ¢,, and the Newtonian chirp time 79 is
found to be very close to —1, so much so that even at
a SNR of 7.5, the instant of coalescence tc = t, + 79
remains practically a constant. The error in the estima-
tion of 79 for the post-Newtonian waveform is about 4
times the error obtained in the case of the Newtonian
waveform at the same SNR. This is expected as the first
post-Newtonian correction to the waveform introduces a
new parameter 71 (called the first post-Newtonian chirp
time) which is highly (anti)correlated with 7. For the
post-Newtonian waveform at a SNR of 10 the error in 7o
is about 3 times that predicted by the covariance matrix.
This corresponds to a factor of 2 in the chirp mass M.
The distributions for the parameters have been obtained
and are seen to be unimodal distributions and are slightly
more sharp than a Gaussian. When the plunge induced
upper cutoff is incorporated into the waveform the errors
in the estimation of parameters decrease by a factor of
about 2.5. The correlation coefficient between 79 and 7,
is also found to decrease, which is consistent with our
discussion in Sec. IV A.

The results obtained suggest that higher moments in
computing the covariance matrix may be important in
the determination of the errors in parameter estimation.
In the geometric picture this amounts to taking into ac-
count curvature effects, either intrinsic or extrinsic.

(3) The amplitude parameter is biased towards a
higher value, as a consequence of which the distance to
a coalescing binary system will be underestimated.

(4) We suggest that t¢ is a more suitable parameter to
estimate the direction to the source than the time of ar-
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rival. The latter is a kinematical parameter that fixes the
time at which the gravitational wave frequency reaches
the lower cutoff of the detector while the parameter t¢
has the physical significance of being the instant of coales-
cence. At a SNR of 10 the error in ¢, is too large (20 ms)
to deduce the direction to the source accurately, whereas
the error in the parameter t¢ is less than 0.5 ms. This
will further go down substantially for the advanced LIGO
and VIRGO. A detailed analysis of coincidence detection
and direction measurement is carried out in Bhawal and
Dhurandhar [38] (also see [30]).

We now suggest further work which needs to be done
along the lines of this paper. A full understanding of
the chirp signal manifold when higher post-Newtonian
corrections are incorporated into the waveform is in or-
der. This will help in the development of more efficient
algorithms for the choice of templates in the detection
problem and facilitate reduction in computational time.
The Monte Carlo simulations which we have carried out
are for the case of a binary waveform correct up to first
post-Newtonian order. Moreover, only circular orbits are
considered. The effect of eccentricity is currently being
investigated [39]. Performing simulations when higher
post-Newtonian corrections are taken into account calls
for an immense amount of computational time. Fortu-
nately, matched filtering algorithms being amenable to
parallelization [40], one could aim at using the massively
parallel computers, which are now becoming available the
world over, in performing such simulations.
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