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Chaos, fractals, and inflation
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In order to draw out the essential behavior of the universe, investigations of early universe cosmology often
reduce the complex system to a simple integrable system. Inflationary models are of this kind as they focus on
simple scalar field scenarios with correspondingly simple dynamics. However, we can be assured that the
universe is crowded with many interacting fields of which the inflaton is but one. As we describe, the nonlinear
nature of these interactions can result in a complex, chaotic evolution of the universe. Here we illustrate how
chaotic effects can arise even in basic models such as homogeneous, isotropic universes with two scalar fields.
We find inflating universes which act as attractors in the space of initial conditions. These universes display
chaotic transients in their early evolution. The chaotic character is reflected by the fractal border to the basin
of attraction. The broader implications are likely to be felt in the process of reheating as well as in the nature
of the cosmic background radiation.

PACS number~s!: 98.80.Hw, 05.40.1j, 95.10.Fh, 98.80.Cq
s.
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I. INTRODUCTION

The inflationary paradigm strives to deliver a smooth un
verse from random initial conditions. If inflation is a robu
attractor in the space of initial conditions, then it earns
claim to naturalness and genericity@1,2#. A universe which
hosts many different fields, including an inflaton candida
can develop an extreme sensitivity to initial values. This se
sitivity marks the onset of chaos. Chaotic dynamics does
in itself destroy the robustness of an inflationary pha
Rather, it can lead to some powerful and perhaps observ
implications for a realistic universe. For instance, a frac
pattern in the spectrum of density fluctuations could be g
erated. Also, the final phase of inflation marked by reheat
would unavoidably be a setting for chaos.

In simple cosmologies, the ultimate fate of the univer
can be predicted once a set of initial conditions is prescrib
In a closed cosmology, for instance, it can be determin
from the initial prescription if the universe inflates or co
lapses. A plot in phase space will show regions or bas
within which all of the initial conditions lead to the sam
outcome. There will be basins of inflation and basins of c
lapse. If the dynamics isnot chaotic, these basins o
attraction1 are distinctly separated by smooth, regular boun
aries. If the dynamics becomes chaotic, then the smo
boundaries begin to break up, ultimately becoming fracta

The models described in the following sections are chos
on the grounds of simplicity, and do not necessarily confo
to any standard inflationary scenario. In our current mod
the primary inflaton is weakly coupled and essentially n
dynamical, leaving the chaotic dynamics to the other sca

1Throughout the paper we loosely refer to attractors in pha
space. In more formal terminology, the word attractor is reserv
for dissipative systems. Strictly speaking, our attractors are just
ymptotic regions of phase space.
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fields. Multiply coupled fields are quite natural in any par-
ticle theory. The Higgs field, for instance, must couple to the
standard model fermions in order to induce fermion masse
In supersymmetric theories, a glut of coupled particles is
expected. The fields behave effectively like nonlinearly
coupled harmonic oscillators and so naturally bring on chaos
In future studies we intend to look at specific hybrid infla-
tionary models@3# and draw out implications for the spec-
trum of fluctuations or the end of a realistic model. The main
aim of this paper is to illustrate the complex dynamics tha
can arise in relatively simple cosmologies.

In addition to highlighting the appearance of chaos in in-
flationary cosmology, we aim to demonstrate the power o
fractals as a quantitative measure of chaos in relativity. In
general relativity coordinate-independent measures of chao
are of vital importance. One of the most valuable measure
of a chaotic system in flat space, the Lyapunov exponent
can be removed by a simple coordinate transformation i
curved space. Thus the usual coordinate-dependent measu
of chaos become ambiguous in a relativistic context. Topo
logical signals such as fractal basins, cantori, or stochast
layers in phase space are needed for conclusive evidence
chaos. In order to search for cantori or stochastic layers it i
necessary to construct slices through phase space known
Poincare´ sections. Since Poincare´ sections rely on quasiperi-
odic behavior, the system must complete many cycles for
useful picture to emerge. Oftentimes relativistic systems ar
not so obliging as the evolution may end at singularities
such as the big crunch or inside a black hole. In these cas
the dynamics is better suited to an outcomes-based approa
such as the study of fractal basin boundaries@4#.

In a chaotic system the different possible outcomes wil
each have a basin of attraction in the space of initial condi
tions, with the basins separated by a fractal border. A specifi
examination of phase space will require a coordinate syste
to be chosen. One might worry that in a different time slic-
ing, the fractal would disappear. This is not possible. A co-
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53 3023CHAOS, FRACTALS, AND INFLATION
ordinate transformation must be smooth and differentiab
No smooth map can undo a truly fractal pattern as fract
are nondifferentiable. While the features of a fractal may
altered by a coordinate transformation, the existence o
fractal is unambiguous.

The cosmological context we employ allows us to dem
onstrate the technique of fractal basin boundaries. W
emerges is a definitive manifestation of chaos in cosmolo
We have already commented that we focus on multifield s
tems. If only one scalar field is present and the universe
closed, then there is still the possibility of chaotic regions
phase space@5–7#. However, in order to generate chaot
dynamics with just one matter field, the universe must os
late between expansion and contraction many times. The
quirement of many bounces makes these otherwise inter
ing solutions unlikely if not truly unphysical. We conside
single-field scenarios in Sec. III. Since these bouncing c
didates do not represent viable cosmologies, we turn our
tention to many-field systems and the demonstration of fr
tal basin boundaries in Secs. IV and V. Also note that wh
we study closed cosmologies, the chaotic transients can
seen in a universe which never collapses or bounces. W
fields interact, the chaotic nature is therefore not limited
closed cosmologies. It is thus possible that there was a t
sient chaotic epoch in the history of our own universe.

II. COSMOLOGICAL MODEL

In the coming examples we consider closed Friedma
Robertson-Walker~FRW! universes. For potential-driven in
flation to be successful the inflationary potential needs to
fairly constant. For our purposes the inflaton can be mode
by a simple cosmological constant. If this were the compl
system, there would be of course no chaotic dynamics. Ho
ever, the universe is created bursting with matter fields.
model the matter content by a variety of conformally an
minimally coupled fields. These matter fields interact a
can incite chaos. For the inflationary cases at hand, then,
chaotic behavior is principally matter driven, i.e., chaos
Tmn causing chaotic evolution ofgmn .

The physical picture is that of a closed, preinflationa
universe just exiting the Planck era. The space of initial co
ditions is probed by assigning three possible outcomes.
ther the universe inflates forever, inflates for short spurts
then collapses, or collapses without any inflationary eve
The outcome depends on the relative sizes of the vari
kinetic and potential energies in the matter fields. As t
interaction between the matter fields is turned up the bou
ary which separates inflating from noninflating initial cond
tions blurs, eventually becoming fractal.

While we only consider closed models in our outcome
based approach, the appearance of chaotic transients wi
generic, regardless of curvature. This becomes clear s
chaos is also nested within a given outcome basin. For
stance, a universe will often go through rocky beginning
enduring many fits of inflation before taking off smoothly o
collapsing. Within a collapse basin, the sensitivity to the in
tial conditions shows up as a random scatter in the maxim
radius of the universe or in the final value of the fields. If th
universe has managed to inflate by severale-folds, there is
no turning back as the kinetic energy which might interru
le.
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inflation quickly redshifts away. This feature of the de Sitter
attractor is often referred to as cosmic baldness. We shall se
that while the de Sitter attractor might end up bald, it can
have very hairy beginnings.

We shall consider FRW universes described by the metric

ds25dt22a2S dr2

12kr2
2r 2dV2D

5a2S dt22
dr2

12kr2
2r 2dV2D , ~1!

wheret is cosmic time andt is conformal time. Throughout,
overdots will denote derivatives with respect to cosmic time
and primes will denote derivatives with respect to conformal
time. The matter Lagrangian will contain various combina-
tions of conformally,C, and minimally,F, coupled scalar
fields with a variety of interaction terms described by the
potentialV(C,F):

LM5V2
1

2
]mF]mF2

1

2
]mC]mC1

1

12
RC2. ~2!

For comparison with the conformally coupled term, i.e., the
last term in Eq. ~2!, the gravitational Lagrangian is

LG52 1
12R. We have chosen units where 4pG/35c51.

In terms of cosmic timet the field equations read

F̈13HḞ1]FV50 , ~3!

C̈13HĊ1]CV1
R

6
C50 , ~4!

ä1aS 2Ḟ21~Ċ1HC!21
k

a2
C21C]CV22VD50.

~5!

The Ricci scalar can be related to the scale factor through
R/65ä/a1H21k/a2. The Hubble expansion factor is
given byH5ȧ/a. The total energy of the system is

H5H21
k

a2
2Ḟ22~Ċ1HC!22

k

a2
C222V50. ~6!

The constraint, Eq.~6!, can be obtained directly from Ein-
stein’s field equations and represents the first integral of Eq.
~5!.

Since we are dealing with the entire universe, the system
is necessarily conservative. We use Eq.~6! to ensure that
energy is in fact conserved. It is amusing to notice that if we
isolate the matter sector, this subsystem looks dissipative
Energy is lost to the gravitational field through the friction
terms;3HḞ. We can see the effects of dissipation within
the larger context of the Hamiltonian system. For instance
we can watch the matter trajectories shrink down onto an
attractor as the volume in phase space is dissipated~cf. Sec.
V!.

In some cases it is profitable to recast the field equations
in terms of conformal timet, and the rescaled variables
c5aC, f5aF, andU5a4V:



e
a-

a

f
e

:

-
d

3024 53NEIL J. CORNISH AND JANNA J. LEVIN
f92
a9

a
f1]fU50, ~7!

c91kc1]cU50, ~8!

a91ka1
1

a S f82
a8

a
f D 22 1

a
~4U2c]cU !50. ~9!

The total energy of the system can be expressed as

a4H5~a8!21ka22S f82
a8

a
f D 22@~c8!21kc2#22U

50. ~10!

A universe is said to inflate if the scale factora accelerates in
terms of cosmic time, i.e.,ä.0. The cosmic time accelera-
tion is given by

ä5
aa92~a8!2

a3

5
1

a3 F2U2c]cU2~c8!22kc222S f82
a8

a
f D 2G .

~11!

Notice that conformally coupled fields tend not to contribu
to a positive acceleration. In other words, even with a pote
tial }Cn, conformally coupled fields do not drive inflation
~unlessn,2). The generalization of the above equations
describe two or more scalar fields of either type is direct.

The field equations are invariant under the combined re
caling

a→xa, t→xt, V→
V

x2
, ~12!

wherex is a constant. This freedom is removed when we s
our length scale by choosing dimensionful values for qua
tities such as masses and coupling constants.

As we describe below, the asymptotic solutions are of tw
kinds. The universe eventually approaches a smooth de S
phase or it ultimately collapses into a big crunch. In high
simplified models the division between these two outcom
can be expressed as a simple partition in the space of ini
conditions. However, we shall see that even in simple mod
with two interacting fields the division is no longer clean, a
the boundaries separating the different outcomes are
longer smooth curves but fractals.

A. From integrability to chaos

When the various scalar fields are massless and do
interact the equations of motion can be integrated exac
and there is no chaos. Before launching into the chaotic d
namics, we take a look in this subsection at the two asym
totic possibilities, the big crunch and de Sitter expansio
which will be the basis of our outcomes-based approach
the following sections. We also show the phase space p
traits for the noninteracting, closed system. In Ref.@1#, a
detailed analysis was given of the phase space portraits fo
single, massive, minimally coupled field in a universe wit
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arbitrary curvature. According to their portraits, the trajecto-
ries drawn are untangled and therefore are not chaotic. As th
authors noted, there does exist a set of measure zero oscill
tory solutions which do show chaotic behavior@5#. At the
close of Sec. III we return to discuss this special set of per-
petually bouncing solutions.

For now we demonstrate the nonchaotic phase space for
universe full of noninteracting, garden variety fields~both
minimally and conformally coupled!. Since it is impossible
to tell one scalar field from another in the absence of inter-
actions, the general case ofN minimally coupled andM
conformally coupled scalar fields reduces to a universe with
one field of each type. For a universe with a scalar field of
each type and cosmological constantL the equations sim-
plify to

c5A cost, ~13!

S f

a D 8
5

B

a2
, ~14!

a856AA212a4L1
B2

a2
2a2. ~15!

The phase space is divided by a separatrix into two classes o
trajectories, those that terminate at the big crunch and thos
that inflate. The form of the solutions can easily be found in
the neighborhood of these two geometrically distinct attrac-
tors. When the dynamics is dominated by potential terms,
such as a cosmological constantL, the universe undergoes
exponential expansion and matter fields are redshifted away

a;eA2Lt;2S 1

A2Lt
D , f;a22, c;cost. ~16!

Conversely, when the dynamics is dominated by the kinetic
energy of the matter fields or spatial curvature, the universe
collapses to the big crunch at timetc :

a;ut2tcu1/2, f;a lna, c;cost, ~17!

for BÞ0, and forB50,

a;ut2tcu, f;const, c;cost. ~18!

The separatrix that partitions these possibilities is defined by
the trajectory with

L5
A212AA413B2

6~A21AA413B2!2
. ~19!

For these simple, integrable cosmologies the basins of attrac
tion for the big crunch and de Sitter attractors are separate
by a smooth curve. This smooth curve is a portion of the
separatrix. In Fig. 1 we display phase space portraits in the
(a,a8) and (c,c8) planes for a universe withB50 and
L51/8. The crosshatched region is the basin of the big
crunch attractor and the solid line is the separatrix.

When interactions are included the separatrix breaks up
and is replaced by a fractal curve. The gaps in the broken
separatrix have the structure of a Cantor set. The broken



s

.
r

-

-
t

-

-

e.

-

r

,
e

53 3025CHAOS, FRACTALS, AND INFLATION
separatrix no longer partitions phase space and trajecto
may diffuse through it. For example, a universe that w
destined to collapse in the integrable case might diffu
through the broken barrier and inflate. The breaking of t
separatrix is reflected in the fractal nature of the basin bou
aries for chaotic universes. The smooth basin bounda
shown in Fig. 1 should be compared to the fractal bounda
seen in Figs. 4 and 7, below. The break up of the separa
is further described in Sec. IV.

Even when interactions are included, the asymptotic
havior of trajectories on either attractor is completely regu
and nonchaotic. Examples of this fact are given in Sec. V.
the parlance of dynamical systems theory, the attractors
neither strange nor chaotic. The chaotic behavior is trans
@8#, and occurs when trajectories approach the broken se
ratrix. Physically this corresponds to an epoch in which t
universe coasts with a fairly constant radius but with wild
varying acceleration. During this epoch the kinetic and p
tential energies in the system fight for supremacy and
universe teeters between collapse and violent expansion
the kinetic energy dominates, the universe collapses and
asymptotic solution can be found by neglecting all potent
terms in the equations of motion. Conversely, if the potent
energy dominates, the asymptotic solution can be found
neglecting kinetic energy terms.

The transient nature of the chaos is similar to that fou
in the mixmaster universe@9,10#, where it has been shown
that the underlying attractors are neither strange nor cha
@11#. We remark that transient chaos appears to be the h
mark of relativistic systems.

FIG. 1. Phase space trajectories in the (a,a8) and (c,c8) planes
for universes with noninteracting scalar fields. The solid line is t
separatrix and the crosshatched regions mark the big crunch b
of attraction.
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III. COSMOLOGIES WITH A SINGLE SCALAR FIELD

Since we work with a closed FRW cosmology, there is
only one parameter describing the gravitational sector,
namely, the scale factor. The necessary elements for chao
are present if the scale factor interacts even with just one
matter field. However, the dynamical time scale for the onset
of chaos is longer than the life of one universe. The chaotic
dynamics results as the two oscillators interact. Typically, at
least a few oscillations are needed for the effects to surface
We discuss such an example in this section. On the othe
hand, if there are many interacting matter fields in the uni-
verse, then their chaotic evolution will make an impact dur-
ing the lifetime of one universe. The examples of the follow-
ing section reveal chaos on such short time scales.

We begin with an example that is chaotic, but only on a
time scale longer than the life of one universe. The model
describes a single, conformally coupled scalar field in a
closed (k51) universe. We choose the potential to have both
a mass term and a cosmological constantL:

U5
1

2
m2a2c21a4L. ~20!

This example has previously been considered by Calzetta
and El Hasi@6,7#. The Hamiltonian takes the form

a4H5~a8!21a22@~c8!21c21m2a2c2#22a4L50,
~21!

which, aside from the wrong sign for the gravitational con-
tributions, is the Hamiltonian for two coupled harmonic os-
cillators.

For a metric with only one dynamical degree of freedom
it is always possible to perform a combined field redefinition
and conformal transformation to a coordinate system in
which the dynamics appears to be nonsingular. By using con
formal rather than cosmic time to describe the evolution of
this system, the dynamical equations can be smoothly inte
grated past the big bang and big crunch singularities a
a50. This allows many cosmic cycles to be considered if we
continue the scale factor into negative values. When evolved
through a series of cosmic cycles the system is clearly cha
otic @6,7#, as we might expect for nonlinearly coupled oscil-
lators. It should be noted that the cosmic cycles are physi
cally meaningless as all memory of the previous cycle is
erased at each big crunch singularity.

By introducing the fiction of cosmic cycles, the dynamics
can be surveyed using the standard tools of Poincare´ sections
~return maps! and Lyapunov exponents. Lyapunov exponents
measure the rate of separation of trajectories in phase spac
Only if trajectories separate exponentially fast do they have
positive exponents. Systems with positive Lyapunov expo-
nents are said to exhibit sensitive dependence on initial con
ditions, one of the two ingredients of chaos~the other being
the mixing and folding of trajectories!. The inverse of the
positive Lyapunov exponents is referred to as the Lyapunov
time scale. This time scale sets the dynamical time scale ove
which chaotic effects make themselves felt. In general rela-
tivity, Lyapunov exponents must be used with extreme care
if at all, as they are coordinate dependent. Indeed, a simpl

he
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coordinate transformation can give a nonchaotic system p
tive exponents and a chaotic system vanishing exponent

Putting these reservations aside, we may compare
Lyapunov time to the time taken to complete a cosmic cyc
and infer whether or not chaotic effects can make themsel
felt in the lifetime of a single universe. Typically, the
Lyapunov time scale was found to be in the ran
10→1000 cosmic cycles. Even when the mass is taken to
very large, the Lyapunov time scale is always found to
greater than half a cosmic cycle, or in other words, the tim
scale for chaos to become important always exceeds the
of one universe. This result is easily understood. The cha
behavior is due to resonances between the two oscilla
fieldsa andc. In order for the resonance to take effect, bo
fields typically need to oscillate several times. However,a
can only complete half an oscillation before the big crunc
making it exceedingly difficult for a chaotic resonance
occur.

In Ref. @6# it was argued that chaos had been view
within the span of one life cycle. Their conclusion was bas
on what appeared to be a scatter between initial values of
matter fields and the final values. The correlation betwe
initial and final values of the scalar fieldc was found to be
0.01. However, this low value for the correlation actual
stems from a coarse sampling of a high frequency functi
By regenerating Fig. 6 of Ref.@6# with a sampling rate that is
10 times higher we see from Fig. 2 that the true correlat
coefficient is 1.00. This confirms that the system shows
meaningful chaotic effects in the life of one universe.

Similar conclusions hold for universes inhabited by
single minimally coupled scalar field. Again, the equations
motion can lead to chaotic behavior as they are nonlinear
have phase space dimension greater than 2. However, m
ingful chaotic effects can only occur if the universe itse
oscillates. The dynamics of an inflationary model driven by
minimally coupled scalar field with the potential

V5
1

2
m2F21

l

4
~F22F0

2!2 ~22!

FIG. 2. The correlation between initial and final values of th
scalar field~a! is compared to the apparently chaotic behavior se
in ~b! where the sampling rate is 10 times lower.
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was studied by Belinskiiet al. @1#, and withl50 by Hawk-
ing @12# and Page@5#. Typical trajectories were not chaotic.
Rather, they see the universe smoothly evolve from the big
bang to the big crunch with various amounts of inflation@1#.
However, the inflationary potential allows some atypical tra-
jectories for which the universe undergoes a number of non-
singular bounces@12#. Page@5# suggested that there exists an
uncountably infinite but discrete set of perpetually bouncing
universes with vanishing Lebesgue measure but nonvanish-
ing fractal dimension. If Page’s suggestion is correct, it
would prove that the dynamics is chaotic as his ‘‘fractal set
of perpetually bouncing universes’’ corresponds to what is
now known as a strange repeller@13#. In contrast to the fic-
tional cosmic cycles used to describe a conformally coupled
scalar field, Page’s bouncing universes are true, nonsingular
solutions. However, these solutions have obvious drawbacks
as plausible cosmologies. As remarked in Ref.@1#, the fine-
tuning required to arrive at these chaotic trajectories rules
them out as a robust physical model displaying chaotic be-
havior. Perhaps in a model of the early universe that generi-
cally displays nonsingular bounces we can hope to see inter-
esting chaotic effects caused by an oscillating scale factor
@14#. In the absence of such a model we have to look to
additional matter fields to provide the nonlinear resonances
needed to incite chaos.

IV. COSMOLOGIES WITH TWO CONFORMALLY
COUPLED FIELDS

If additional fields occupy the universe, then the scale
factor will not be the principle source of chaos. Two scalar
fields can oscillate many times in the lifetime of one uni-
verse, leading to truly chaotic behavior. To demonstrate the
chaos we show the fractal basin boundaries for a universe
which contains two conformally coupled fields which inter-
act through the potential

U5
1

2
m1
2a2c1

21
1

2
m2
2a2c2

21l2c1
2c2

21a4L. ~23!

The period of oscillation for each field is governed by its
effective mass. We define the reduced effective mass for each
field as the derivative with respect to the field of the field,
Eq. ~9!. In other words,Mc

2 has the form of]2W/]c2 where
W is anything which acts as a potential in the equations of
motion:

Ma5~12m1
2c1

22m2
2c2

224La2!1/2, ~24!

M15~11m1
2a212l2c2

2!1/2, ~25!

M25~11m2
2a212l2c1

2!1/2. ~26!

Increasingm1 , m2 , L, andl slows the recollapse ofa and
speeds the oscillation ofc1 and c2 , thus increasing the
probability of chaotic resonances. However, ifm1 or m2
greatly exceedsl, the resonances will be washed out and no
chaos will be seen. Conversely, ifm1 andm2 are both zero,
the oscillations tend to freeze whenc1 and c2 hit small
values, again making chaotic resonances unlikely.

To gain some intuition we can find a simple analytic ap-
proximation which corresponds to a familiar chaotic system.
During the majority of the universe’s evolution, the scale

e
en
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factor varies much more slowly than the scalar fields so t
a8/a!c i8/c i . The scalar fields behave like coupled nonli
ear oscillators, adiabatically pumped by the slowly varyi
scale factor. To leading order we can ignore the adiab
pumping all together and study the scalar field dynamics i
fixed background (a8'0). This approximation is particu-
larly good for describing universes that are vacillating b
tween collapse and inflationary expansion. Importantly, t
is just the region where the chaotic transients occur that
stroy the smooth separatrix of the integrable model descri
in Sec. II A. Whena8'0 the dynamics simplifies to that o
two coupled oscillators:

c191v1
2c112l2c2

2c150, ~27!

c291v2
2c212l2c1

2c250, ~28!

wherev i
2511mi

2a2 is the fixed frequency of the uncouple
(l50) oscillators. The above system of equations descri
a known chaotic system@15#, and the transition to chaos a
l is increased can be studied using the Chirikov resona
overlap condition@16#. Having established that the fast var
ablesc1 and c2 behave chaotically, we can then consid
how they back react on the slow variablea. When looked at
on time scales long compared to the periods of the sc
fields, the evolution of the scale factor is similar to Brownia
motion, and can be described in terms of chaotic diffus
equations@8#. It is this buffeting of the scale factor by th
matter fields that breaks the separatrix in the (a,a8) plane
and causes the universe to evolve in a chaotic manner.

Returning to the full, unapproximated equations we n
merically investigate the phase space of initial conditio
For a given set of initial conditions we can identify thre
main outcomes. The first possibility sees the universe exp
and collapse without any inflationary burst. The second p
sibility sees the universe undergo one or many short burst
inflation, but failing to become a macroscopic universe. T
third possibility sees the universe sustain a prolonged
violent period of inflation, resulting in the formation of
macroscopic universe. The first and second possibilities~col-
ored black and grey, respectively! combine to form the big
crunch basin of attraction. This artificial division of the b
crunch basin is mostly for visual effect. There is a four
possible outcome that should be mentioned. There is a se
trajectories with zero Lebesgue measure that oscillate e
nally, never entirely collapsing, nor reaching the de Sit
attractor. These trajectories form the border between the
crunch and de Sitter basins of attraction. We will see t
these trajectories belong to a fractal set of perpetually bou
ing universes. In the parlance of dynamical systems the
this set forms the stable manifold of a strange repeller@8#.

The three possibilities are displayed graphically in Fig
for the choice of parameters (L50.0001,m150,m25
0.05,l51) and initial conditions$a(0)52,c150.4,c25
6,c28520%. The initial values ofc18 are $223.31,223.32,
223.33%, anda8(0) is fixed by the Hamiltonian constraint

The fact that minute changes in the initial conditions c
lead to such dramatic changes in the outcome suggests
the fate of our model universe is indeed chaotic. This sus
cion can be confirmed by studying the boundary between
basins of attraction of the three outcomes. Since the ba
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are embedded in a six-dimensional phase space, we are
forced to consider lower dimensional slices through the
boundary. In Fig. 4 we display a two-dimensional slice in the
c1-c18 plane for universes with parameters and conditions
identical to those used in Fig. 3. The three basins of attrac-
tion ~black, grey, white! are dramatically intermixedstrange
basins, as at least a portion of the boundaries is fractal. The
boundaries near the origin are regular and smooth while the
outer boundaries appear fragmented. A detail of the outer
region is shown in Fig. 5, visually confirming the fractal
nature of the boundary. Repeated magnification reveals simi-
lar striated pictures on all scales.

Rather than rely on these qualitative features, we may
quantify the fractal nature of the boundary in terms of the
fractal dimension. There are many definitions of fractal di-
mension that we may choose from, but the one best suited to
our situation is the box counting dimension. On a two-
dimensional slice through phase space we cover the fractal

FIG. 3. The three possible outcomes for the universe. In each
case the solid line is the scale factora and the dashed line is the
scaled accelerationäa3. The initial values forc18 are 223.31,
223.32, and223.33, respectively.

FIG. 4. The basins of attraction for universes similar to those
shown in Fig. 3.
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with a grid of squares with side length«. We then count the
numberN(«) of squares needed to cover the fractal, i.e., t
number of squares containing more than one color. The
dimensiondB is defined by

dB52 lim
«→0

lnN

ln«
. ~29!

For self-similar structures the formal limit«→0 need not be
taken, and in all practical situations we are only interested
the existence of such scaling laws over a large, but not n
essarily infinite, range of scales. Since the fractal dimens
is not invariant under homeomorphisms, it is not a true
pological invariant. However, it is invariant under diffeomo
phisms, and so it does provide a topological measure in g
eral relativity. The existence of fractal structures in phas
space provides a coordinate-independent signal of chaos
relativity.

The importance of the fractal dimension of the bas
boundaries can be described in terms of final state sensiti
@17#. Consider an initial configuration near the basin boun
ary, where the uncertainty in the initial conditions describ
an N-dimensional ball of radiusd in the N-dimensional
phase space. The final state sensitivityf d is the fraction of
phase space volume which has an uncertain outcome du
the uncertainty in the initial conditions, and is given by

f d5da, a5N2dB . ~30!

For a nonchaotic systema51 and the final state sensitivity
is directly proportional to the initial uncertainty. For chaot
systems, however, 0,a,1, and the uncertainty in the out
come is greater than the uncertainty in the initial condition
For example, ifa50.47, a 50% reduction in the initial un
certainty only reduces the final state uncertainty by 28%.
this way, the dimension of the basin boundary is a dire
measure of the ‘‘sensitive dependence on initial condition

In Fig. 6 we display the plot used to determine the frac
dimension of Fig. 5. Because the three boundaries
densely interwoven in this case, we chose only to calcul
the dimension of the boundary between the big crunch a

FIG. 5. A detail of Fig. 4.
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de Sitter attractors, i.e., counting grey and black as one basin.
Using an 8403840 grid we found the dimension to be
1.5860.02. The grid size of 840523333537 was chosen
as it has the most factors of any number below 1000. The
curvature of the data points at small and large« is to be
expected. For large« the covering is very inefficient, while
for small« the squares saturate the resolution used to gener-
ate the fractal. These effects causedB to tilt toward 2 for
largee and toward 1 for smalle. Despite these limitations,
accurate fractal dimensions can be obtained very quickly and
easily. For different choices of parameters we found fractal
dimensions ranging from 1 to 1.96, essentially filling the
allowed rangedB5@1,2#.

The boundary was found to be fractal on all possible two-
dimensional slices. For example, in Fig. 7, the boundary is
shown in thea-a8 plane for a slice which intersects Fig. 4
along the linec151.0. The fractal dimension of this slice
was found to bedB51.3760.02.

While the previous chaotic pictures were typical of those
found, the dynamics of the system is not always chaotic. For
small values ofl,m1 ,m2 ~at fixed scalingx) the dynamics is

FIG. 6. Finding the fractal dimension for Fig. 5. The solid line is
a least-squares fit to the box counting data. The dimension was
found to bedB51.5860.02.

FIG. 7. A slice in thea-a8 plane which intersects thec1-c18
plane of Fig. 4 along the linec151.0.
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near integrable and the basins are not strange, but regula
Fig. 8 we incrementl while keeping all other parameters
and initial conditions fixed. The mixing of the basins is rem
niscent of the blending of viscous fluids. The dimension
the basin boundary forl50.5 was found to be
dB50.9960.02, which is consistent with a dimension of 1
So, within errors, this boundary is smooth and nonchaot
To compare, the dimensions of the boundaries forl52.0
were dB51.1660.05 ~grey-white! and dB51.2660.05
~grey-black!.

An important property of dynamical systems with strang
attractor basins is that the chaotic dynamics is not restric
to phase space trajectories near the fractal boundaries.
way to see this might be to use the fiction of cosmic cycles
follow the evolution of trajectories starting in the big crunc
basin. The Lyapunov exponents and Poincare´ sections for

FIG. 8. The road to chaos: Asl is incremented from 0.5 to
2.0, the nonlinear distortion of the attractor basin boundari
mounts. Oncel exceeds 1.0 the mixing is so strong that the boun
aries become fractured and, eventually, fractal. The graphs w
generated for the choice of parameters and initial conditio
L50.000 02,a0510, c255.0, c28510.0,m150.2,m250.1.

FIG. 9. The correlation betweenc1i ~vertical axis! and c1m

~horizontal axis! on ac1850 slice through the big crunch basin o
attraction of Fig. 8 (l52.0).
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these trajectories would reveal chaotic behavior across the
basin. However, we are not really interested in effects which
take longer than one universe’s lifetime to make themselves
felt. Instead we plot in Fig. 9 the correlation between the
initial value of c1i and the value at the point of maximum
expansion,c1m . The graphs are for ac1850 slice through
the big crunch basin of Fig. 8 withl52.0. The big crunch
basin stretches fromc150 to c1;2.9 ~and similarly for
negativec1). A general increase in frequency with increas-
ing c1i requires that we use several plots, each covering half
the region of the last, to cover the basin. Unlike the regular
plot seen in Fig. 2, the relationship between initial and final
values of c1 is highly erratic, with apparently random
changes in frequency and amplitude.

V. COSMOLOGIES WITH MINIMALLY
AND CONFORMALLY COUPLED FIELDS

The chaotic behavior seen in the previous system is not
restricted to conformally coupled fields. Similar behavior is
found for minimally coupled fields with the same choice of
potential. The main difference in this case comes from the
scalar fields themselves being a source of inflation, in addi-
tion to the cosmological constant. The acceleration in this
example is given by

ä52aS L1
1

2
m1
2F1

21
1

2
m2
2F2

21l2F1
2F2

22Ḟ1
22Ḟ2

2D ,
~31!

where we have reverted to the unscaled field variables. These
models are able to successfully inflate even when there is no
cosmological constant, in a manner similar to Linde’s ‘‘cha-
otic inflation’’ @18#. However, we did not see any strange
basins whenL50 as successful inflation generally required
the fields to become stuck high up in their potentials after
just a few oscillations. Otherwise, their ability to climb high
enough was lost due to friction and redshifting of kinetic
energy. It may be that chaotic behavior does occur when
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FIG. 10. Basins of attraction in theF1-Ḟ1 plane for universes
containing two minimally coupled scalar fields.
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L50, but it is difficult to search for as the inflationary burs
must be followed for;60 e-folds in comparison to the
;5–10 e-folds required to ensure we have reached the
Sitter attractor whenLÞ0.

In Fig. 10 we display the basins of attraction in theF1-
Ḟ1 plane for universes with (m150,m250.04,L5
0.00005,l51.0) and fixed initial conditions $a(0)5
10.0,F250.4,Ḟ250.16%. A detail of the outer boundary is
shown in Fig. 11, where the dimension was found to
1.5460.02. Because the scalar fields themselves contrib
to the inflationary bursts, there is typically far more of th
grey basin than we saw for conformally coupled fields.

We can compare an analysis of the chaotic trajector
with the nonchaotic trajectories of Sec. II A. While the un
verse is expanding (H.0), we see from Eq.~3! that the
scalar field dynamics is effectively that of a damped h
monic oscillator. Conversely, as the universe contracts
dynamics is that of a pumped harmonic oscillator. This b
havior is apparent in Fig. 12, where we have displayed ty
cal trajectories leading to the de Sitter and big crunch attr
tors. For the de Sitter attractor the scalar fields spiral into
fixed point as cosmic baldness asserts itself, while for the
crunch attractor the scalar fields first spiral in and then sp
out again as the universe collapses. The de Sitter attra
has an interesting structure when two fields are presen
one scalar field gets locked at a constant value. The attra
is of the form

FIG. 11. A detail of Fig. 10 where the dimension i
dB51.5460.02.

FIG. 12. ~a! A trajectory spiraling into the de Sitter attractor.~b!
A nearby trajectory which flows out to the big crunch attractor.
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a5acexp~A2Lt !, ~32!

F25F2cexpS 2
3A2L

2
t D cosvt, ~33!

F15F1cF11l2F2c
2 exp~23A2Lt !S t

3A2L

1
2v cos2vt13A2L cosvt sinvt

2v~9L12v2! D G , ~34!

subject to the restriction

v25m2
212l2F1c

2 2
9

2
L. ~35!

For reference, the trajectory in Fig. 12~a! has
F1c50.005 73, F2c5105.9, andv50.037 96. The big
crunch attractor is unchanged from the one-field case, an
takes the form

a5ac~ tc2t !1/3, ~36!

F1;F1cln~ tc2t !, ~37!

F2;F2cln~ tc2t !, ~38!

with F1c
2 1F2c

2 51/9. The trajectory shown in Fig. 12~b! has
tc5200.004, ac513.68, F1c50.294, and F2c50.167.
Since we are able to write down analytic solutions for trajec-
tories on the attractors, it is clear that the de Sitter and big
crunch attractors are nonchaotic. The chaotic behavior see
during the evolution of the universe is restricted to the
5→10 transient orbits seen in Fig. 12. The fractal nature o
the attractor basin boundaries is due entirely to these brie
chaotic transients.

We close with a word on a mixed cosmology which con-
tains one minimally coupled and one conformally coupled
scalar field. The conformally coupled scalar fieldC is taken
to be massless. WhenC ’s coupling to the minimally coupled
scalar fieldF is small it behaves like radiation. The interac-
tion potential is taken to be

V5
1

2
m2F21l2C2F21L. ~39!

As before, the minimally coupled scalar field is able to con-
tribute a negative pressure to that of the inflaton, thereby
increasing the likelihood of inflationary bursts. Again, this
increases the proportion of grey over what we saw for two
conformally coupled fields.

By viewing the basins in thea-ȧ plane we see some rather
striking ink-blot and crystal boundaries. An example of this
is shown in Fig. 13 for the choice of parameters
(m50.05,L50.0001,l52) and fixed initial conditions
$F50.2,C50.1,Ċ50.08%. A detail of the grey-white crys-
tal boundary is shown in Fig. 14. The high degree of self-
similarity of this fractal allowed a particularly accurate de-
termination of the fractal dimension using a standard
8403840 grid. The dimension was found to be
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53 3031CHAOS, FRACTALS, AND INFLATION
dB51.48460.005. The visually less fractal grey-black ink
blot boundary was found to have a smaller fractal dimensi
of dB51.1160.05, with the larger error due to a lower de
gree of self-similarity.

In addition to studying different combinations of mini
mally and conformally coupled scalar fields, we also consi
ered a variety of polynomial potentialsV(F,C). The quali-
tative results were the same for all cases, showing th
chaotic evolution was a generic feature of all multifield mod
els.

VI. DISCUSSION

The early universe is likely to contain many interactin
fields. We have shown that if these interactions are su
ciently strong, the evolution of the universe will be chaoti
The fractal basin boundaries reveal the chaos in a coordina

FIG. 13. The basins of attraction in thea-ȧ plane for universes
containing a minimally coupled scalar field and a massless, conf
mally coupled scalar field.

FIG. 14. A detail of Fig. 13 where the dimension is
dB51.48460.005.
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independent manner. Additionally, the method does not re
quire one universe to pass through many cycles. We no
have to ask how prevalent chaotic behavior will be in par
ticular models of inflation, and what implications it might
have for processes such as reheating or galaxy formation.

One model of inflation where chaotic dynamics is bound
to be important is hybrid inflation. Hybrid models employ
several interacting scalar fields, and arise naturally in variou
supersymmetric theories where the breaking of large gaug
groups employs many Higgs particles@19#. If in the early
stages the universe inflates in jolts, an exciting possibilit
exists for the spectrum of primordial density fluctuations
Chaotic resonances could lead to a fractal power distributio
perhaps helping to explain the hierarchical clustering seen
the current universe. Moreover, chaotic evolution of the sca
factor would leave a unique imprint on the gravitationa
waves produced during inflation@20#. Any chaotic behavior
would have to occur within the last;60 e-folds of inflation
to be observable today. This would require some artificia
fine-tuning in a single-field model but may be more natura
in a hybrid model.

Even in inflationary models where chaotic evolution is
unimportant at early stages, chaos is sure to play an impo
tant role at the end stages. To illustrate, consider again
hybrid model. The fields to which the inflaton couples dictate
the occurrence of the true vacuum and so control the natu
of the exit from inflation. The setting is prime for chaotic
interactions which would certainly impact on the exit style
More generically, at the end of any inflation model, the uni
verse reheats as the inflaton oscillates about the minimum
its potential. Particles are thereby produced through the in
flaton’s coupling to other matter fields. If the matter fields are
dynamical and chaos reigns, then the process of entropy pr
duction would deserve rethinking. The importance of para
metric resonances, which are closely related to chaotic b
havior, has already been stressed in this context@21,22#.

It seems appropriate to consider how chaotic dynamic
might impact on ‘‘chaotic’’ inflation@18#. In chaotic inflation
different patches of the universe are taken to have differe
values of the inflaton and matter fields. In some patch, it i
argued, the inflaton is sufficiently high up in the potentia
and the matter fields are sufficiently small so as to permit
long-lived inflationary epoch@2#. For initial field values deep
within a basin, away from the fractal borders, the usual a
guments hold and the chaotic inflation paradigm is largel
unaffected. However, if in a given patch the field values ar
near a fractal basin boundary, it can become difficult to fin
a patch of any size across which the conditions are regul
enough to allow this thinking. Even the slightest variation in
the initial conditions across the patch will lead to an entirely
different outcome. Because of the self-similar nature of th
fractal, no matter how small you try to make the patch, ther
will still be slight variations in the conditions and hence the
outcome. For cosmological conditions in the vicinity of the
fractal basin boundary, then, the simple FRW thinking mus
be abandoned.

For similar reasons, caution would be needed for slow
roll initial conditions as well. In fact the slow-roll scenario
will likely be more fragile as the inflaton is more easily
kicked around. For chaotic initial conditions by contrast the
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inflaton is high up in its potential and thus resiliant again
the influence of kicks and bumps.

Aside from direct observational effects there are a
some important theoretical implications raised by chao
evolution. For example, chaotic systems are characterize
an entropy, the Kolmogorov-Sinai entropy, which is relat
to the spectrum of Lyapunov exponents. This introduce
chaotic arrow of time in addition to the cosmological an
thermodynamic arrows of time. As well, it raises the quest
of a possible connection between the Kolmogorov-Sinai
tropy and the thermodynamic entropy released at the en
inflation. Another issue raised by chaotic dynamics conce
the recovery of a semiclassical limit in quantum cosmolo
due to the breakdown of the WKB approximation in chao
systems@23#.

We have suggested a few implications for chaotic dyna
ics in largely unexplored terrain. Chaos theory grew out
st
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Poincare´’s study of the solar system, and with its develop
ment came insights into the intricate structures of our neig
borhood such as the asteroid belt and Saturn’s rings. It see
fitting for chaos to have an impact not only on the evolutio
of the solar system but also on the birth of the universe. W
are left to ask if chaotic fingerprints have been left on th
large-scale landscape as they were on the landscape of
own solar system.
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