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In order to draw out the essential behavior of the universe, investigations of early universe cosmology often
reduce the complex system to a simple integrable system. Inflationary models are of this kind as they focus on
simple scalar field scenarios with correspondingly simple dynamics. However, we can be assured that the
universe is crowded with many interacting fields of which the inflaton is but one. As we describe, the nonlinear
nature of these interactions can result in a complex, chaotic evolution of the universe. Here we illustrate how
chaotic effects can arise even in basic models such as homogeneous, isotropic universes with two scalar fields.
We find inflating universes which act as attractors in the space of initial conditions. These universes display
chaotic transients in their early evolution. The chaotic character is reflected by the fractal border to the basin
of attraction. The broader implications are likely to be felt in the process of reheating as well as in the nature
of the cosmic background radiation.

PACS numbsg(s): 98.80.Hw, 05.40+j, 95.10.Fh, 98.80.Cq

I. INTRODUCTION fields. Multiply coupled fields are quite natural in any par-
ticle theory. The Higgs field, for instance, must couple to the
The inflationary paradigm strives to deliver a smooth uni-standard model fermions in order to induce fermion masses.
verse from random initial conditions. If inflation is a robust In supersymmetric theories, a glut of coupled particles is
attractor in the space of initial conditions, then it earns itsexpected. The fields behave effectively like nonlinearly
claim to naturalness and genericfty,2]. A universe which  coupled harmonic oscillators and so naturally bring on chaos.
hosts many different fields, including an inflaton candidateln future studies we intend to look at specific hybrid infla-
can develop an extreme sensitivity to initial values. This sentionary modelg3] and draw out implications for the spec-
sitivity marks the onset of chaos. Chaotic dynamics does narum of fluctuations or the end of a realistic model. The main
in itself destroy the robustness of an inflationary phaseaim of this paper is to illustrate the complex dynamics that
Rather, it can lead to some powerful and perhaps observabtean arise in relatively simple cosmologies.
implications for a realistic universe. For instance, a fractal In addition to highlighting the appearance of chaos in in-
pattern in the spectrum of density fluctuations could be genflationary cosmology, we aim to demonstrate the power of
erated. Also, the final phase of inflation marked by reheatindractals as a quantitative measure of chaos in relativity. In
would unavoidably be a setting for chaos. general relativity coordinate-independent measures of chaos
In simple cosmologies, the ultimate fate of the universeare of vital importance. One of the most valuable measures
can be predicted once a set of initial conditions is prescribedbf a chaotic system in flat space, the Lyapunov exponents,
In a closed cosmology, for instance, it can be determine¢an be removed by a simple coordinate transformation in
from the initial prescription if the universe inflates or col- curved space. Thus the usual coordinate-dependent measures
lapses. A plot in phase space will show regions or basin®f chaos become ambiguous in a relativistic context. Topo-
within which all of the initial conditions lead to the same logical signals such as fractal basins, cantori, or stochastic
outcome. There will be basins of inflation and basins of coldayers in phase space are needed for conclusive evidence of
lapse. If the dynamics isot chaotic, these basins of chaos. In order to search for cantori or stochastic layers it is
attractiort are distinctly separated by smooth, regular boundnecessary to construct slices through phase space known as
aries. If the dynamics becomes chaotic, then the smootRoincaresections. Since Poincasections rely on quasiperi-
boundaries begin to break up, ultimately becoming fractal. odic behavior, the system must complete many cycles for a
The models described in the following sections are chosenseful picture to emerge. Oftentimes relativistic systems are
on the grounds of simplicity, and do not necessarily conforrmot so obliging as the evolution may end at singularities,
to any standard inflationary scenario. In our current modelsuch as the big crunch or inside a black hole. In these cases
the primary inflaton is weakly coupled and essentially notthe dynamics is better suited to an outcomes-based approach
dynamical, leaving the chaotic dynamics to the other scalasuch as the study of fractal basin boundafigs
In a chaotic system the different possible outcomes will
each have a basin of attraction in the space of initial condi-
Throughout the paper we loosely refer to attractors in phaséions, with the basins separated by a fractal border. A specific
space. In more formal terminology, the word attractor is reservecexamination of phase space will require a coordinate system
for dissipative systems. Strictly speaking, our attractors are just ado be chosen. One might worry that in a different time slic-
ymptotic regions of phase space. ing, the fractal would disappear. This is not possible. A co-
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ordinate transformation must be smooth and differentiableinflation quickly redshifts away. This feature of the de Sitter

No smooth map can undo a truly fractal pattern as fractalattractor is often referred to as cosmic baldness. We shall see

are nondifferentiable. While the features of a fractal may behat while the de Sitter attractor might end up bald, it can

altered by a coordinate transformation, the existence of &ave very hairy beginnings.

fractal is unambiguous. We shall consider FRW universes described by the metric
The cosmological context we employ allows us to dem-

onstrate the technique of fractal basin boundaries. What 2 2 2 2 212

emerges is a definitive manifestation of chaos in cosmology. ds"=dt"-a 1—kr2 —redQ

We have already commented that we focus on multifield sys- )

tems. If only one scalar field is present and the universe is —a? 42— 12402 1)
closed, then there is still the possibility of chaotic regions in alar 1—kr? ' '

phase spac¢5—7]. However, in order to generate chaotic

dynamics with just one matter field, the universe must oscilwheret is cosmic time and is conformal time. Throughout,
late between expansion and contraction many times. The reverdots will denote derivatives with respect to cosmic time
quirement of many bounces makes these otherwise interesind primes will denote derivatives with respect to conformal
ing solutions unlikely if not truly unphysical. We consider time. The matter Lagrangian will contain various combina-
single-field scenarios in Sec. Ill. Since these bouncing cantions of conformally,¥, and minimally,®, coupled scalar
didates do not represent viable cosmologies, we turn our afields with a variety of interaction terms described by the
tention to many-field systems and the demonstration of fracpotential V(¥ ,®):

tal basin boundaries in Secs. IV and V. Also note that while

we study closed cosmologies, the chaotic transients can be o 1 1 1,

seen in a universe which never collapses or bounces. When ~ “m=V— 59,@*®— 59, VoV + 572V (2)
fields interact, the chaotic nature is therefore not limited to

closed cosmologies. It is thus possible that there was a trafegr comparison with the conformally coupled term, i.e., the

sient chaotic epoch in the history of our own universe. last term in Eq. (2), the gravitational Lagrangian is
Ys=— 15.72. We have chosen units wherer®/3=c=1.
Il. COSMOLOGICAL MODEL In terms of cosmic time the field equations read
In the coming examples we consider closed Friedmann- d+3HP+ V=0, ©)

Robertson-Walke(FRW) universes. For potential-driven in-

flation to be successful the inflationary potential needs to be . . P

fairly constant. For our purposes the inflaton can be modeled T+ 3HWV+dyV+ E\If=0 , (4)
by a simple cosmological constant. If this were the complete

system, there would be of course no chaotic dynamics. How- K

ever, the universe is created burstmg with matter fields. We 3, 5 202+ (W+HW)2+ —2\P2+\I’aq,v—2V -0.
model the matter content by a variety of conformally and a

minimally coupled fields. These matter fields interact and 5

can incite chaos. For the inflationary cases at hand, then, the o
chaotic behavior is principally matter driven, i.e., chaos inThe Ricci scalar can be related to the scale factor through

BIR—= A 2 2 ; ;
T, causing chaotic evolution a,,, . J2l6=ala+H-"+k/a“. The Hubble expansion factor is

The physical picture is that of a closed, preinflationary9iven byH=a/a. The total energy of the system is
universe just exiting the Planck era. The space of initial con-
ditions is p.robed _by assigning thr_ee possible outcomes. Ei- 5,2 Ez_c'pz_({l,Jqu,)z_ 52\1,2_2\/:0_ (6)
ther the universe inflates forever, inflates for short spurts but a a
then collapses, or collapses without any inflationary event.
The outcome depends on the relative sizes of the variou§he constraint, Eq(6), can be obtained directly from Ein-
kinetic and potential energies in the matter fields. As thestein’s field equations and represents the first integral of Eq.
interaction between the matter fields is turned up the bound®)-
ary which separates inflating from noninflating initial condi- ~ Since we are dealing with the entire universe, the system
tions blurs, eventually becoming fractal. is necessarily conservative. We use K6). to ensure that

While we only consider closed models in our outcomes-€nergy is in fact conserved. It is amusing to notice that if we
based approach, the appearance of chaotic transients will bgolate the matter sector, this subsystem looks dissipative.
generic, regardless of curvature. This becomes clear sindenergy is lost to the gravitational field through the friction
chaos is also nested within a given outcome basin. For interms~3H®. We can see the effects of dissipation within
stance, a universe will often go through rocky beginningsthe larger context of the Hamiltonian system. For instance
enduring many fits of inflation before taking off smoothly or we can watch the matter trajectories shrink down onto an
collapsing. Within a collapse basin, the sensitivity to the ini-attractor as the volume in phase space is dissip@atedec.
tial conditions shows up as a random scatter in the maximurv').
radius of the universe or in the final value of the fields. If the In some cases it is profitable to recast the field equations
universe has managed to inflate by severfblds, there is in terms of conformal timer, and the rescaled variables
no turning back as the kinetic energy which might interrupt¢y=a¥, ¢=ad, andU=a*Vv:
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a” arbitrary curvature. According to their portraits, the trajecto-
"= ¢+ U=0, (7)  ries drawn are untangled and therefore are not chaotic. As the
authors noted, there does exist a set of measure zero oscilla-
Ykt 9,0=0, ®) tory solutions which do show .chaotic behav[dﬂ. At the
close of Sec. Il we return to discuss this special set of per-
1 a \?2 1 petually bouncing solutions.
a’+ka+ a ' — ;q& - 5(4U —¢d,U)=0. (9 For now we demonstrate the nonchaotic phase space for a
universe full of noninteracting, garden variety fiel@®oth
The total energy of the system can be expressed as minimally and conformally coupled Since it is impossible

to tell one scalar field from another in the absence of inter-

!

2

4 V2 ) ,a Vo ) actions, the general case df minimally coupled andM
az=(@)+ka'—| ¢’ —¢| —[(¢)+kyT]-2U conformally coupled scalar fields reduces to a universe with
one field of each type. For a universe with a scalar field of
=0. (10 each type and cosmological constantthe equations sim-
plify to

A universe is said to inflate if the scale factaccelerates in
terms of cosmic time, i.ea>0. The cosmic time accelera- = A cosr, (13
tion is given by

!

B
. aa'—(a)? ¢ =, (14)
T aj a
1 a’ 2 , 5 4 82 5
=3 2U—¢a U —(y')2—ky?—2 ¢'——¢| | a'=+\[A*+2a'A+ 5 —a%, (15)

(1)  The phase space is divided by a separatrix into two classes of
trajectories, those that terminate at the big crunch and those
I ) . that inflate. The form of the solutions can easily be found in
to a positive acceleration. In other words, even with a POteNze neighborhood of these two geometrically distinct attrac-

) . ) S )
tla||0<‘1’ < czonf_cI)_LmaIIy coulple(t:l_ f|eldfstr(]jo nk())t drive m{l_atlont tors. When the dynamics is dominated by potential terms,
(un essn ). The generalization of Iné above equations 10g,, . 55 g cosmological constakt the universe undergoes
describe two or more scalar fields of either type is direct.

: . ; . ; exponential expansion and matter fields are redshifted away:
The field equations are invariant under the combined res- P P y

caling

Notice that conformally coupled fields tend not to contribute

1
2A T

aNe\ﬁtN_( ) ¢~a 2, y~cosr. (16

Y,
a—xa, t—xt, VHX—Z, (12
Conversely, when the dynamics is dominated by the kinetic

wherex is a constant. This freedom is removed when we segnergy of the matter fields or spatial curvature, the universe
our length scale by choosing dimensionful values for quancollapses to the big crunch at time:
tities such as masses and coupling constants.

As we describe below, the asymptotic solutions are of two
kinds. The universe eventually approaches a smooth de Sitt?r

- . . : or

phase or it ultimately collapses into a big crunch. In highly
simplified models the division between these two outcomes
can be expressed as a simple partition in the space of initial
cqnd|t|on§. However, we shall see "[hat'even in simple model§he separatrix that partitions these possibilities is defined by
with two interacting fields the division is no longer clean, asthe trajectory with
the boundaries separating the different outcomes are no

longer smooth curves but fractals. A2+ 2. A%+ 3B2
 B6(A2+ AT+ 3B?)2

When the various scalar fields are massless and do nétor these simple, integrable cosmologies the basins of attrac-
interact the equations of motion can be integrated exactlyion for the big crunch and de Sitter attractors are separated
and there is no chaos. Before launching into the chaotic dyby a smooth curve. This smooth curve is a portion of the
namics, we take a look in this subsection at the two asympseparatrix. In Fig. 1 we display phase space portraits in the
totic possibilities, the big crunch and de Sitter expansion(a,a’) and (#,¢') planes for a universe witlBB=0 and
which will be the basis of our outcomes-based approach ilA=1/8. The crosshatched region is the basin of the big
the following sections. We also show the phase space poerunch attractor and the solid line is the separatrix.
traits for the noninteracting, closed system. In Réf], a When interactions are included the separatrix breaks up
detailed analysis was given of the phase space portraits forand is replaced by a fractal curve. The gaps in the broken
single, massive, minimally coupled field in a universe withseparatrix have the structure of a Cantor set. The broken

a~|r—7Y¥2 ¢~alna, ~cosr, 17
B+0, and forB=0,

a~|r—1¢, ¢~const, ¥~cosr. (18)

(19
A. From integrability to chaos
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IIl. COSMOLOGIES WITH A SINGLE SCALAR FIELD

Since we work with a closed FRW cosmology, there is
only one parameter describing the gravitational sector,
namely, the scale factor. The necessary elements for chaos
are present if the scale factor interacts even with just one
matter field. However, the dynamical time scale for the onset
of chaos is longer than the life of one universe. The chaotic
dynamics results as the two oscillators interact. Typically, at
least a few oscillations are needed for the effects to surface.
We discuss such an example in this section. On the other
hand, if there are many interacting matter fields in the uni-
verse, then their chaotic evolution will make an impact dur-
ing the lifetime of one universe. The examples of the follow-
ing section reveal chaos on such short time scales.

We begin with an example that is chaotic, but only on a
N time scale longer than the life of one universe. The model
k describes a single, conformally coupled scalar field in a
WP closed k= 1) universe. We choose the potential to have both
a mass term and a cosmological constant
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ot U=3 m2ay?+a’A. (20)

This example has previously been considered by Calzetta
FIG. 1. Phase space trajectories in thea() and (¥, ¢') planes  and El Hasi[6,7]. The Hamiltonian takes the form
for universes with noninteracting scalar fields. The solid line is the
separatrix and the crosshatched regions mark the big crunch basin g4 5, (a’)2+a2—[(¢’)2+ ¢2+ mzazwz]—Za“A:O,
of attraction. (21

separatrix no longer partitions phase space and trajectorieghich, aside from the wrong sign for the gravitational con-
may diffuse through it. For example, a universe that wadributions, is the Hamiltonian for two coupled harmonic os-
destined to collapse in the integrable case might diffuseillators.

through the broken barrier and inflate. The breaking of the For a metric with only one dynamical degree of freedom
separatrix is reflected in the fractal nature of the basin boundt is always possible to perform a combined field redefinition
aries for chaotic universes. The smooth basin boundarie@nd conformal transformation to a coordinate system in
shown in Fig. 1 should be compared to the fractal boundarie¥hich the dynamics appears to be nonsingular. By using con-

seen in Figs. 4 and 7, below. The break up of the separatrit?rmal rather than cosmic time to describe the evolution of
is further described in, Sec. IV. this system, the dynamical equations can be smoothly inte-

Even when interactions are included, the asymptotic begrated past the big bang and big crunch singularities at

havior of trajectories on either attractor is completely regulara: 0 This allows many cosmic cycl_es to be considered if we
continue the scale factor into negative values. When evolved

and nonchaotic. Examples of this fact are given in Sec. V. Ir}hrough a series of cosmic cycles the system is clearly cha-
the parlance of dynamical systems theory, the attractors arg.c [6,7], as we might expect for nonlinearly coupled oscil-

neither strange nor chao'Fic. The chaotic behavior is transieq tors. It should be noted that the cosmic cycles are physi-
[8],_and oceurs whgn irajectories approach the _broke_n sepgé"y meaningless as all memory of the previous cycle is
rat_rlx. Physically thls corr_esponds to an e_poch in Whlch thesrased at each big crunch singularity.
universe coasts vy|th a fal_rly co_nstant radius b_ut v_v|th wildly By introducing the fiction of cosmic cycles, the dynamics
varying acceleration. During this epoch the kinetic and po¢gn pe surveyed using the standard tools of Poinsactions
tential energies in the system fight for supremacy and thgreturn mapsand Lyapunov exponents. Lyapunov exponents
universe teeters between collapse and violent expansion. fheasure the rate of separation of trajectories in phase space.
the kinetic energy dominates, the universe collapses and tt@nly if trajectories separate exponentially fast do they have
asymptotic solution can be found by neglecting all potentialpositive exponents. Systems with positive Lyapunov expo-
terms in the equations of motion. Conversely, if the potentiahents are said to exhibit sensitive dependence on initial con-
energy dominates, the asymptotic solution can be found bditions, one of the two ingredients of chagike other being
neglecting kinetic energy terms. the mixing and folding of trajectorigsThe inverse of the
The transient nature of the chaos is similar to that foundpositive Lyapunov exponents is referred to as the Lyapunov
in the mixmaster universg9,10], where it has been shown time scale. This time scale sets the dynamical time scale over
that the underlying attractors are neither strange nor chaotiwhich chaotic effects make themselves felt. In general rela-
[11]. We remark that transient chaos appears to be the haltivity, Lyapunov exponents must be used with extreme care,
mark of relativistic systems. if at all, as they are coordinate dependent. Indeed, a simple
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was studied by Belinskigt al. [1], and with\ =0 by Hawk-

ing [12] and Pagd5]. Typical trajectories were not chaotic.
Rather, they see the universe smoothly evolve from the big
bang to the big crunch with various amounts of inflatigh
However, the inflationary potential allows some atypical tra-
jectories for which the universe undergoes a number of non-
singular bouncegl2]. Pagg 5] suggested that there exists an
= T 5 uncountably infinite but discrete set of perpetually bouncing

st (a)

Vi universes with vanishing Lebesgue measure but nonvanish-
G ® ing fractal dimension. If Page's suggestion is correct, it
i would prove that the dynamics is chaotic as his “fractal set
1 of perpetually bouncing universes” corresponds to what is
K} now known as a strange repelldr3]. In contrast to the fic-
- tional cosmic cycles used to describe a conformally coupled
4 scalar field, Page’s bouncing universes are true, nonsingular
1 " " " R solutions. However, these solutions have obvious drawbacks
¥ as plausible cosmologies. As remarked in R&f, the fine-

tuning required to arrive at these chaotic trajectories rules
FIG. 2. The correlation between initial and final values of thethem out as a robust physical model displaying chaotic be-
scalar field(a) is compared to the apparently chaotic behavior seerhavior. Perhaps in a model of the early universe that generi-
in (b) where the sampling rate is 10 times lower. cally displays nonsingular bounces we can hope to see inter-
esting chaotic effects caused by an oscillating scale factor
coordinate transformation can give a nonchaotic system posj44]. In the absence of such a model we have to look to
tive exponents and a chaotic system vanishing exponents. additional matter fields to provide the nonlinear resonances
Putting these reservations aside, we may compare thgeeded to incite chaos.
Lyapunov time to the time taken to complete a cosmic cycle,
and infer whether or not chaotic effects can make themselves V. COSMOLOGIES WITH TWO CONFORMALLY
felt in the _Iifetime of a single universe. Typically, the COUPLED FIELDS
Lyapunov time scale was found to be in the range
10— 1000 cosmic cycles. Even when the mass is taken to be If additional fields occupy the universe, then the scale
very large, the Lyapunov time scale is always found to befactor will not be the principle source of chaos. Two scalar
greater than half a cosmic cycle, or in other words, the timdields can oscillate many times in the lifetime of one uni-
scale for chaos to become important always exceeds the liféerse, leading to truly chaotic behavior. To demonstrate the
of one universe. This result is easily understood. The chaotiehaos we show the fractal basin boundaries for a universe
behavior is due to resonances between the two oscillating/hich contains two conformally coupled fields which inter-
fieldsa andy. In order for the resonance to take effect, bothact through the potential
fields typically need to oscillate several times. Howewer,

can only complete half an oscillation before the big crunch, _ 1 22221 E 22202 4 \202 U2+ a A 2
making it exceedingly difficult for a chaotic resonance to U= gmiatyn+ 5 matot MypdptaiA. (23
occur.

In Ref. [6] it was argued that chaos had been viewedThe period of oscillation for each field is governed by its
within the span of one life cycle. Their conclusion was basecffective mass. We define the reduced effective mass for each
on what appeared to be a scatter between initial values of tHéeld as the derivative with respect to the field of the field,
matter fields and the final values. The correlation betweefEd. (9). In other wordsM? has the form of?W/ay* where
initial and final values of the scalar fiel was found to be W is anything which acts as a potential in the equations of
0.01. However, this low value for the correlation actually motion:
stems from a coarse sampling of a high frequency function. M,=(1—m2y2—m2y3—4Aa%)'?, (24)
By regenerating Fig. 6 of Reff6] with a sampling rate that is
10 times higher we see from Fig. 2 that the true correlation M= (1+mia®+2\2y5)"2, (25
coeffi(_:ient is 1.0Q. This co_nfirms _that the system shows no M2=(1+m§az+2)\2¢§)1’2. (26)
meaningful chaotic effects in the life of one universe.

Similar conclusions hold for universes inhabited by increasingn,, m,, A, and\ slows the recollapse @ and
single minimally coupled scalar field. Again, the equations ofgpaads the oscillation ofi; and i, thus increasing the
motion can lead to chaotic behavior as they are nonlinear anﬁir)obability of chaotic resonances. However,nif, or m,
have phase space dimension greater than 2. However, Megflu o4y exceeda, the resonances will be washed out and no
ingful chaotic effects can only occur if the universe itself chaos will be seen. Conversely,rif, andm, are both zero
oscillates. The dynamics of an inflationary model driven by &he oscillations tend to freeze’wheph and ¢, hit small,
minimally coupled scalar field with the potential values, again making chaotic resonances unlikely.

To gain some intuition we can find a simple analytic ap-
proximation which corresponds to a familiar chaotic system.
During the majority of the universe’s evolution, the scale

1 A
V=§m2<I>2+Z(<I)2—<I>§)2 (22
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factor varies much more slowly than the scalar fields so that
a'la<y/y; . The scalar fields behave like coupled nonlin-
ear oscillators, adiabatically pumped by the slowly varying
scale factor. To leading order we can ignore the adiabatic 0
pumping all together and study the scalar field dynamics in a
fixed background 4’ ~0). This approximation is particu-
larly good for describing universes that are vacillating be-
tween collapse and inflationary expansion. Importantly, this
is just the region where the chaotic transients occur that de-
stroy the smooth separatrix of the integrable model described
in Sec. Il A. Whena' ~0 the dynamics simplifies to that of
two coupled oscillators:

P+ o3+ 2N2 P54, =0, en e /

S+ w5+ 2N, =0, 28
Vot w2¥s Vv (28) FIG. 3. The three possible outcomes for the universe. In each

. . he solid line is the scale factorand the dashed line is the
wherew?=1+m?a? is the fixed fr ncy of the un led ¢3¢t e "
erew; & is the fixed frequency of the uncoupled scaled acceleratio@a®. The initial values fory; are —23.31,

A =0) oscillators. The above system of equations describes .
Si knoavn chaotic systerfi5], ano)llthe transi?ion to chaos as ~23.32, and-23.33, respectively.
\ is increased can be studied using the Chirikov resonance ) o )
overlap conditior{16]. Having established that the fast vari- are embedded in a six-dimensional phase space, we are
ables, and , behave chaotically, we can then considerforced to consider lower dimensional slices through the
how they back react on the slow varialsle When looked at boundary. In Fig. 4 we display a two-dimensional slice in the
on time scales long compared to the periods of the scalaf1-¢1 plane for universes with parameters and conditions
fields, the evolution of the scale factor is similar to Brownianidentical to those used in Fig. 3. The three basins of attrac-
motion, and can be described in terms of chaotic diffusiorfion (black, grey, whitg¢ are dramatically intermixedtrange
equations[8]. It is this buffeting of the scale factor by the basins as at least a portion of the boundaries is fractal. The
matter fields that breaks the separatrix in tlaga() plane boundaries near the origin are regular and smooth while the
and causes the universe to evolve in a chaotic manner. ~ outer boundaries appear fragmented. A detail of the outer

Returning to the full, unapproximated equations we nu-région is shown in Fig. 5, visually confirming the fractal
merically investigate the phase space of initial conditionshature of the boundary. Repeated magnification reveals simi-
For a given set of initial conditions we can identify three lar striated pictures on all scales.
main outcomes. The first possibility sees the universe expand Rather than rely on these qualitative features, we may
and collapse without any inflationary burst. The second posquantify the fractal nature of the boundary in terms of the
sibility sees the universe undergo one or many short bursts d¢factal dimension. There are many definitions of fractal di-
inflation, but failing to become a macroscopic universe. Thenension that we may choose from, but the one best suited to
third possibility sees the universe sustain a prolonged an@ur situation is the box counting dimension. On a two-
violent period of inflation, resulting in the formation of a dimensional slice through phase space we cover the fractal
macroscopic universe. The first and second possibilities
ored black and grey, respectivelgombine to form the big
crunch basin of attraction. This atrtificial division of the big
crunch basin is mostly for visual effect. There is a fourth 20
possible outcome that should be mentioned. There is a set of
trajectories with zero Lebesgue measure that oscillate eter-
nally, never entirely collapsing, nor reaching the de Sitter 10
attractor. These trajectories form the border between the big
crunch and de Sitter basins of attraction. We will see that
these trajectories belong to a fractal set of perpetually bounc- o
ing universes. In the parlance of dynamical systems theory,
this set forms the stable manifold of a strange repéBér

The three possibilities are displayed graphically in Fig. 3 -10
for the choice of parameters A=0.0001m;=0,m,=
0.05M=1) and initial conditions{a(0)=2,i;=0.4,4,=

6,4,=20}. The initial values ofy; are {—23.31,-23.32, 20
—23.33, anda’(0) is fixed by the Hamiltonian constraint. o

The fact that minute changes in the initial conditions can 3 2 4 ° 1 2 3
lead to such dramatic changes in the outcome suggests that "

the fate of our model universe is indeed chaotic. This suspi-
cion can be confirmed by studying the boundary between the FIG. 4. The basins of attraction for universes similar to those
basins of attraction of the three outcomes. Since the basinshown in Fig. 3.
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In N

Ing

FIG. 6. Finding the fractal dimension for Fig. 5. The solid line is
a least-squares fit to the box counting data. The dimension was
found to bedg=1.58+0.02.

v

de Sitter attractors, i.e., counting grey and black as one basin.
Using an 84840 grid we found the dimension to be
1.58+0.02. The grid size of 84823x 3Xx5xX 7 was chosen

with a grid of squares with side length We then count the )
numberN(e) of squares needed to cover the fractal, i.e., theS it has the most factors of any number below 1000. The

number of squares containing more than one color. The pogurvature of the data points ?t small angl Ia!@g.es to b?
dimensionds is defined by expected. For large the covering is very inefficient, while

for small e the squares saturate the resolution used to gener-

FIG. 5. A detail of Fig. 4.

~InN ate the fractal. These effects causg to tilt toward 2 for
dg=— |Imﬂ. (29  large e and toward 1 for smalk. Despite these limitations,
&0 accurate fractal dimensions can be obtained very quickly and

F If-similar struct the f | limit— 0 dnot b easily. For different choices of parameters we found fractal
or sel=simrar structures the formal iimst—=1 need Not b€ - 4 ansions ranging from 1 to 1.96, essentially filling the

taken, and in all practical situations we are only interested ir?allowed rangedg=[1,2]
B™ 141

the existence of such scaling laws over a large, but not nec- The boundary was found to be fractal on all possible two-
_essarily infi_nite, range of scales. S"?CG the_ f_ractal dimenSioﬁimensional slices. For example, in Fig. 7, the boundary is
is not invariant under homeomorphisms, it is not a true ©shown in thea-a’ plane for a slice which intersects Fig. 4
pological invariant. However, it is invariant under diffeomor- along the liney;=1.0. The fractal dimension of this slice
phisms, and so it does provide a topological measure in gen: s found to béj :'1 '37+0 02
eral relativity. The existence of fractal structures in phaseW u B o T

: . . ; . While the previous chaotic pictures were typical of those
space provides a coordinate-independent signal of chaos 'Yound, the dynamics of the system is not always chaotic. For
relativity. ' '

The importance of the fractal dimension of the basinsmallvalues oh,m;,m; (at fixed scaling) the dynamics is

boundaries can be described in terms of final state sensitivity
[17]. Consider an initial configuration near the basin bound-
ary, where the uncertainty in the initial conditions describes
an N-dimensional ball of radiuss in the N-dimensional
phase space. The final state sensitiiityis the fraction of
phase space volume which has an uncertain outcome due to
the uncertainty in the initial conditions, and is given by

f(g: 541, a=N—dB. (30)

For a nonchaotic system=1 and the final state sensitivity
is directly proportional to the initial uncertainty. For chaotic
systems, however,©Qa<1, and the uncertainty in the out-
come is greater than the uncertainty in the initial conditions.
For example, ifa=0.47, a 50% reduction in the initial un-
certainty only reduces the final state uncertainty by 28%. In
this way, the dimension of the basin boundary is a direct
measure of the “sensitive dependence on initial conditions.” s 5 5 1= =5

In Fig. 6 we display the plot used to determine the fractal
dimension of Fig. 5. Because the three boundaries are
densely interwoven in this case, we chose only to calculate FIG. 7. A slice in thea-a’ plane which intersects the,-y;
the dimension of the boundary between the big crunch andlane of Fig. 4 along the ling;=1.0.

a
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6

o,

v FIG. 10. Basins of attraction in th@l-dbl plane for universes
FIG. 8. The road to chaos: As is incremented from 0.5 to containing two minimally coupled scalar fields.
2.0, the nonlinear distortion of the attractor basin boundaries
mounts. Once. exceeds 1.0 the mixing is so strong that the bound-these trajectories would reveal chaotic behavior across the
aries become fractured and, eventually, fractal. The graphs wereasin. However, we are not really interested in effects which
generated for the choice of parameters and initial conditiongake longer than one universe’s lifetime to make themselves
A =0.00002,a,=10, #,=5.0, 4,=10.0,m;=0.2, m,=0.1. felt. Instead we plot in Fig. 9 the correlation between the
initial value of ¢;; and the value at the point of maximum
near integrable and the basins are not strange, but regular. @&xpansion,,,,. The graphs are for &;=0 slice through
Fig. 8 we incremend while keeping all other parameters the big crunch basin of Fig. 8 with=2.0. The big crunch
and initial conditions fixed. The mixing of the basins is remi- basin stretches fromy;=0 to ;~2.9 (and similarly for
niscent of the blending of viscous fluids. The dimension ofnegativey,). A general increase in frequency with increas-
the basin boundary forA=0.5 was found to be ing y; requires that we use several plots, each covering half
dg=0.99+0.02, which is consistent with a dimension of 1. the region of the last, to cover the basin. Unlike the regular
So, within errors, this boundary is smooth and nonchaoticplot seen in Fig. 2, the relationship between initial and final
To compare, the dimensions of the boundariesNer2.0  values of ¢, is highly erratic, with apparently random
were dg=1.16+-0.05 (grey-white¢ and dg=1.26+-0.05 changes in frequency and amplitude.
(grey-black.
An important property of dynamical systems with strange V. COSMOLOGIES WITH MINIMALLY

attractor basins is that th.e chaotic dynamics is not rgstrlcted AND CONFORMALLY COUPLED FIELDS
to phase space trajectories near the fractal boundaries. One
way to see this might be to use the fiction of cosmic cyclesto The chaotic behavior seen in the previous system is not
follow the evolution of trajectories starting in the big crunch restricted to conformally coupled fields. Similar behavior is
basin. The Lyapunov exponents and Poincseetions for found for minimally coupled fields with the same choice of
potential. The main difference in this case comes from the
scalar fields themselves being a source of inflation, in addi-
tion to the cosmological constant. The acceleration in this

o z example is given by
-2 -2 n_ 122122 2852502 H2_ B2
a=2a|l A+ Emlq)1+ EmZCIDZJr)\ PIP5—PI— D5,

[ 5% T T.4 1% 18 2 Z.2 (31)

where we have reverted to the unscaled field variables. These
models are able to successfully inflate even when there is no
cosmological constant, in a manner similar to Linde’s “cha-
otic inflation” [18]. However, we did not see any strange
. basins whem\ =0 as successful inflation generally required
2.3 2.4 2.5 2.6 2.66 2.7 2.74 Z.78 . . R . R
the fields to become stuck high up in their potentials after
FIG. 9. The correlation betweett,; (vertical axis and ¢y, just a few oscillations. Otherwise, their ability to climb high

(horizontal axi$ on ay;=0 slice through the big crunch basin of enough was lost due to friction and redshifting of kinetic
attraction of Fig. 8 {=2.0). energy. It may be that chaotic behavior does occur when
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-0.35 a=acexp V2At), (32
0. 3V2A
oo <I)2=<I>2Cexp< 5 t) coswt, (33
036}
t
O =D | 1+ \2D3 exp —32At) | ——
b, oz e 2080 '\ 3vza
2w coSwt+32A coswt sinwt
-0.37 2 ’ (34)
2w(9A +2w")
0375 subject to the restriction
-0.38 : " 2=m2+2\2d?2 9A 35
0.1 0125 0.15 0175 0.2 0.225 0.25 w"=my+ A lc E ’ ( )

P
1 For reference, the trajectory in Fig. (& has
FIG. 11. A detail of Fig. 10 where the dimension is &,.=0.00573, ®,.=105.9, and w=0.037 96. The big
dg=1.54+0.02. crunch attractor is unchanged from the one-field case, and
takes the form
A =0, but it is difficult to search for as the inflationary bursts

must be followed for~60 e-folds in comparison to the a=ag(t;—t)", (36)
~5-10 e-folds required to ensure we have reached the de

Sitter attractor when\ #0. D1~DyeIn(te—t), (37
~ In Fig. 10 we display the basins of attraction in tig-

&, plane for wuniverses with ni;=0m,=0.04A= P~ PacIn(tc—1), (38)

0.00005A=1.0) and fixed initial conditions{a(0)= . . -

10.0,<I>2=O.4,<i>2=0.1a>. A detail of the outer boundary is with @3+ ®3,=1/9. The trajectory shown in Fig. {3 has
shown in Fig. 11, where the dimension was found to be.c_ 200.004, a,=13.68, ©,,=0.294, and ©5,=0.167.
1.54+0.02. Because the scalar fields themselves contributg" cc W€ are able to write down analytic solutions for trajec-

o he nfationary burss, tere 1S ycaly far more of the e o7 e lUaclors, s lar it e de Ster and big
grey basin than we saw for conformally coupled fields. :

e can compare an anayis of the chaotc jecoie "3 2 EVULED of e uerse s restited o e
with the nonchaotic trajectories of Sec. Il A. While the uni- > 9. 1o

verse is expandingH>0), we see from Eq(3) that the the attractor basin boundaries is due entirely to these brief

. A . chaotic transients.
scalar field dynamics is effectively that of a damped har- We close with a word on a mixed cosmology which con-

monic oscillator. Conversely, as the universe contracts th?ains one minimally counled and one conformally coupled
dynamics is that of a pumped harmonic oscillator. This be- y P y P

C P . .scalar field. The conformally coupled scalar fididis taken

havior is apparent in Fig. 12, where we have displayed typl—Sca , . o

cal trajectories leading to the de Sitter and big crunch attrac® be mgsslegs. Wheh s coupling .to the rmmmally cqupled
calar field®d is small it behaves like radiation. The interac-

tors. For the de Sitter attractor the scalar fields spiral into Y o
fixed point as cosmic baldness asserts itself, while for the biéIorl potential is taken to be

crunch attractor the scalar fields first spiral in and then spiral 1

out again as the universe collapses. The de Sitter attractor V= —m?®2+ \2P2P2+A. (39
has an interesting structure when two fields are present as 2

one scalar field gets locked at a constant value. The attract

is of the form %\rs before, the minimally coupled scalar field is able to con-

tribute a negative pressure to that of the inflaton, thereby
increasing the likelihood of inflationary bursts. Again, this

o7 (a) ol © increases the proportion of grey over what we saw for two
o1 conformally coupled fields.
’ By viewing the basins in tha-a plane we see some rather
& " o striking ink-blot and crystal boundaries. An example of this
0 2 is shown in Fig. 13 for the choice of parameters
o “ (m=0.05A=0.0001A=2) and fixed initial conditions
S 'M S {®=0.2,¥=0.1,¥=0.08. A detail of the grey-white crys-

tal boundary is shown in Fig. 14. The high degree of self-
similarity of this fractal allowed a particularly accurate de-

FIG. 12. (a) A trajectory spiraling into the de Sitter attractds)  termination of the fractal dimension using a standard
A nearby trajectory which flows out to the big crunch attractor.  840x840 grid. The dimension was found to be

@,
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independent manner. Additionally, the method does not re-
quire one universe to pass through many cycles. We now
have to ask how prevalent chaotic behavior will be in par-
ticular models of inflation, and what implications it might
have for processes such as reheating or galaxy formation.

One model of inflation where chaotic dynamics is bound
to be important is hybrid inflation. Hybrid models employ
several interacting scalar fields, and arise naturally in various
supersymmetric theories where the breaking of large gauge
groups employs many Higgs particl€$9]. If in the early
stages the universe inflates in jolts, an exciting possibility
exists for the spectrum of primordial density fluctuations.
Chaotic resonances could lead to a fractal power distribution,
perhaps helping to explain the hierarchical clustering seen in
the current universe. Moreover, chaotic evolution of the scale
factor would leave a unique imprint on the gravitational
waves produced during inflatidi20]. Any chaotic behavior
) would have to occur within the last 60 e-folds of inflation

FIG. 13. The basins of attraction in tlaea plane for universes g pe observable today. This would require some artificial
containing a minimally_ coupled scalar field and a massless, Conforﬁne-tuning in a single-field model but may be more natural
mally coupled scalar field. in a hybrid model.

Even in inflationary models where chaotic evolution is
unimportant at early stages, chaos is sure to play an impor-
ant role at the end stages. To illustrate, consider again a
hybrid model. The fields to which the inflaton couples dictate
the occurrence of the true vacuum and so control the nature

mally and conformally coupled scalar fields, we also consid2f the exit from inflation. The setting is prime for chaotic
ered a variety of polynomial potentialg(®, ¥). The quali- interactions which would certainly impact on the exit style.

tative results were the same for all cases, showing thatlore generically, at the end of any inflation model, the uni-
chaotic evolution was a generic feature of all multifield mod-Verse reheats as the inflaton oscillates about the minimum of

its potential. Particles are thereby produced through the in-

flaton’s coupling to other matter fields. If the matter fields are

dynamical and chaos reigns, then the process of entropy pro-
VI DISCUSSION duction would deserve rethinking. The importance of para-

The early universe is likely to contain many interacting Metric resonances, which are closely related to chaotic be-
fields. We have shown that if these interactions are suffihavior, has already been stressed in this corfek22. _
ciently strong, the evolution of the universe will be chaotic. It seems appropriate to consider how chaotic dynamics

The fractal basin boundaries reveal the chaos in a coordinat&ight impact on “chaotic” inflation18]. In chaotic inflation
different patches of the universe are taken to have different

values of the inflaton and matter fields. In some patch, it is
argued, the inflaton is sufficiently high up in the potential
and the matter fields are sufficiently small so as to permit a
long-lived inflationary epocf2]. For initial field values deep
within a basin, away from the fractal borders, the usual ar-
guments hold and the chaotic inflation paradigm is largely
unaffected. However, if in a given patch the field values are
near a fractal basin boundary, it can become difficult to find
a patch of any size across which the conditions are regular
enough to allow this thinking. Even the slightest variation in
the initial conditions across the patch will lead to an entirely
different outcome. Because of the self-similar nature of the
fractal, no matter how small you try to make the patch, there
will still be slight variations in the conditions and hence the
outcome. For cosmological conditions in the vicinity of the
fractal basin boundary, then, the simple FRW thinking must
be abandoned.

For similar reasons, caution would be needed for slow-
roll initial conditions as well. In fact the slow-roll scenario

FIG. 14. A detail of Fig. 13 where the dimension is Will likely be more fragile as the inflaton is more easily
dg=1.484+0.005. kicked around. For chaotic initial conditions by contrast the

dg=1.484+0.005. The visually less fractal grey-black ink-
blot boundary was found to have a smaller fractal dimensio
of dg=1.11+0.05, with the larger error due to a lower de-
gree of self-similarity.

In addition to studying different combinations of mini-

els.
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inflaton is high up in its potential and thus resiliant againstPoincaré study of the solar system, and with its develop-

the influence of kicks and bumps. ment came insights into the intricate structures of our neigh-
Aside from direct observational effects there are alsdborhood such as the asteroid belt and Saturn’s rings. It seems

some important theoretical implications raised by chaotiditting for chaos to have an impact not only on the evolution

evolution. For example, chaotic systems are characterized byf the solar system but also on the birth of the universe. We

an entropy, the Kolmogorov-Sinai entropy, which is relatedare left to ask if chaotic fingerprints have been left on the

to the spectrum of Lyapunov exponents. This introduces #arge-scale landscape as they were on the landscape of our

chaotic arrow of time in addition to the cosmological andown solar system.

thermodynamic arrows of time. As well, it raises the question

of a possible connection bet'ween the Kolmogorov-Sinai en- ACKNOWLEDGMENTS

tropy and the thermodynamic entropy released at the end of
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