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Strong energy condition in R+ R? gravity
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In this paper we study Raychaudhuri’s equation in the backgrouli-gBR? gravity with phenomenologi-
cal mattef p<ca(t) ~"]. We conclude that even though the strong energy condi8&®© for Einstein’s gravity
(which guarantees singularjtys n=2 for pxa(t) ™", a perturbative analysis of Raychaudhuri’s equation
reveals that the big bang singularity may not be guarantee-+BR? gravity for n>4. We derive the
following strong energy conditions fdR+ BR? gravity (8+#0): (1) For thek<O FRW metric, the SEC is
0<n<4,ie,—p,=<pn< 5 pn; (2) for thek=0 FRW metric, the SEC is€n=<4,i.e.,— 5 p,<py=< 3 pn; 3
for thek>0 FRW metric, the SEC is2n<4, i.e.,— 3 py=<Pn= 3 pn-

PACS numbg(s): 98.80.Hw, 04.20.Fy, 04.5¢h

I. INTRODUCTION proposed an alternate approachRe BR? gravity in which

. . o . . the BR? term is treated as a back reaction on Einstein’s grav-
An es_sent|al mathematical Crlt_e_non in the singularity ity [12]. In essence, in this approach the gravitational degrees

theorem is the strong energy conditi®EQ. The theorem  f freedom are not altered from those of Einstein’s gravity.

predicts, modulo plausible assumptions, that classical matteysing such an interpretation &+ 8R? gravity, the author
in the background of classical Einstein’s gravity will eventu- investigated the classical and the Wheeler-DeWitt evolutions
ally form black holes and a cosmological singulafity2]. of R+ BR? gravity for the particular sign g8 corresponding

The singularity theorem is limited by its classical content.to the nontachyon case. The matter sector was described
The question of the validity of this theorem or how the theo-by a phenomenologicab>=a(t) ". It was concluded that
rem should be altered when the quantum effects are incorpdoth the Friedmann potentialU(a) [a*+2U(a)=0]
rated is a fascinating question. and the Wheeler-DeWitt potentiaW(a) {[—4%/da’

A straightforward method of incorporating the quantum *2W(a)]i(a)=0} develop repulsive barriers neas0 for
effects is to start from the classical Einstein’s equations ant>4 (p>3 p). The interpretations were clear. The repulsive
guantize both the gravity and the matter sectors via the comarrier inU(a) implies that a contracting Friedmann Robert-
respondence principle, i.e{X,p}poisson[X:Plom. Specifi-  son WalkeFRW) universe k>0k=0k<0) will bounce to
cally, utilizing the Schrdinger representation for the canoni- an expansion phase without a total gravitational collapse.
cal momenta result in the Wheeler-DeWitt equati{@4].  The repulsive barrier iiW(a) means thati~0 is a classi-
Recently, an additional method of incorporating the quantun¢ally forbidden region. Therefore the probability of finding a
effects has come into focus. Advances in the theory of quartniverse with the big bang singularita{0) is exponen-
tum gravity have revealed that, even if one starts with Einfially suppressed. o ) )
stein’s gravity coupled to a matter, the quantum loop effects Superficially, this prediction of no cosmological singular-
of the gravity + matter and the renormalization proceduresity for n>4 (p>3 p) seems to be in violation of the singu-
result in a quadratic gravit}s,6]. Therefore even a classical larity theorem for Einstein’s gravity, which predicts the even-
analysis of the quadratic gravity is inherently a semiclassicalual formation of a singularity for a matter satisfying the
analysis.(The two methods of incorporating the quantum SEC [p=— ;p and p=—p or equivalentlyn=2 for p
effects, which differ by the choice of the canonical or thesa(t) "] [13].
covariant quantization procedures, are not necessarily In this paper we study Raychaudhuri’s equation in the
equivalent. This is because the formal equivalence of théackground ofR+ BR? gravity coupled to a mattefp
canonical and the covariant quantization procedures is onlya(t)""]. We conclude that the appropriate SEC for
true for renormalizable theorigs. R+ BR? gravity is different from that of Einstein’s gravity.

Several authors have studied classical solutions ofhe SEC forR+ BR? gravity is derived and is shown to be
R+ BR? gravity without matter and have concluded that thein agreement with the author’s previous work, which dem-
big bang singularity may be avoid¢@—9]. There are several onstrated that both the classical and the Wheeler-DeWitt so-
problems with higher derivative theori¢d0,11, e.g., the lutions of R+ BR? gravity were free of the cosmological
need for additional initial conditions in the formulation of a Singularity forn>4. _ _
cauchy problem, the existence of runaway solutions, and the The sign conventions used in this paper are
question of whether solutions obtained from tRe- BR? g=(—,+,+,%), Rap— 3 9.,R=(+)87GT,y,
gravity reduce to the solutions of Einstein’s gravity as(+)R(U,V) =V Vy=V\Vy=Viy .

B—0.

In order to resolve these issues, the author has recently !l REVIEW OF THE STRONG ENERGY CONDITION
FOR EINSTEIN'S GRAVITY

Even though the goal of this paper is to study the strong
* Electronic address: jkung@abacus.bates.edu energy condition(SEQ for quadratic gravity, much of the
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technique will be borrowed from the derivation of the SEC of the convergence of a congruence of timelike geodesics by
for Einstein’s gravity. Therefore we shall briefly review this requiring — R,p£2£°=0. In order to proceed we need the
derivation for Einstein’s gravity. For a pedagogical reviewrelevant “Einstein’s” equations for a quadratic gravita

please se€l3]. pedagogical derivation is given in the Appendix
Let &% be a tangent vector to a congruence of timelike
geodesics. Raychaudhuri’s equation is 3R0ap— RapT 167G B(3R?gap— 2RRayp+ 2R 1Gap— 2R 4:p)
de 1 =8m7GTyp. (3.2
§7= 307~ a0+ Rapt ", (2. :

The trace of this equation is

¢ and o2® are the expansion and the sheer of two nearby
tangent vectors, respectively. In Einstein’s gravity the SEC
and the ensuing singularity theorem follow from requiring
that

6X167GBR+R=87GT. (3.2

Some comments are in order. First, by dimensional con-
sideration,B is dimensionless. Second, as noted by various
authorq 14,15, (3.2 resembles the scalar field equation with
m?=—(6x167GB) 1. ThereforeB<0 is needed to elimi-
nate tachyons. Third, an order of magnitude estimate reveals

pair of nearby timelike geodesic vectors converges and wilfhat the contribution; from,the qua.dratic terms are gmaller
eventually intersect. than those of Einstein’s gravity byBGR~BG%p

We will be interested in the cosmological singularity. In a =8P/ Ppianck- Therefore if we make a reasonable assumption

—Rap®6°=8mG[ Tap— 3TGapl6%6°=0 (2.2

for all timelike vectors£®. In such a casd#/dr<0 and the

FRW metric the matter sector is described by that B~ 1, then we will be justified in treating the quadratic
terms as perturbations until the very early universe. For a
—p more elaborate discussion on the justification for treating
BR? as a perturbation, please sg€&2]. The subsequent
a_ P = ptat, + PXXy+ PYAY, + PXZ, . analysis shou_ld be viewed as a perturbative analysis _of_a
p possible nonlinear phenomenon. On the other hand, it is

worth noting that Mijicet al, [16] Starobinskyet al., [17]
(2.3  and Berkin[18] have studied the largg@ range and have

concluded that even the puRet+ BR? gravity (T,»,=0) can
{t3,x?,y?,z% are the eigenvectors dfy. They are normal- generate an inflationary phase.

ized as—t2,=x%x,=y?,=27%2,=1. Because of the isot- For use in Raychaudhuri's equation we need an expres-
ropy one can always rotate the coordinates such that the mosion for the Ricci tensorRyy,) in terms ofT,,. Combining
general forward timelike vector is (3.1 and(3.2) we get
E=AC+H(A=1)Y, [Ae(lx), &=-1]. —Rap+ 167G B(1R%gap— 2RRyp— RiNan— R.ab)
(2.9 ’
=87G(Tap— %Tgab)- (3.3
Then

) ) ) We are interested in the first-order contributions from the
—Rap€?¢"=8mG[ Tap— 3 TQanl§%¢ BR? term to Raychaudhuri’s equation. Therefore for the

terms already multiplied by in (3.1) we may substitutin
=8rGlp(A*=3)+p(A+ D). (29 y multplied b n (3.1 we may 0
Rap=—87G(Tap— 5 TQap) +O(B) andR=87GT+ O(B)
The SEC is the requirement on an equation of stpfp)for  to get
which (—R,p£2£°=0) is true for all timelike vectorg? [A

e(1=)]. (%Rzgab_ZRRab_ZRéﬂgab_ZR;a;b)
The expression(2.5) is a monotonic function ofA?. . . . _
Therefore if we can find an equation of stafe) for which =—G(3T?9apG— 2T TapG + TinGant 2T ;a:p)

(—Rap&2EP=0) is satisfied by two extreme timelike vectors
(A=1 andA—x), then this ¢,p) is guaranteed to satisfy
(— R,p£26°=0) for all timelike vectorsA e (1,). Requir-
ing (—R,p&2E°=0) for A=1 gives p+3p=0. Requiring
(— R p£26°=0) for A—x givesp+p=0. These are the fa-
miliar SEC[13].

+0(B). (3.9

We have introduced the notatid®=8=G. And, finally,
for the use in Raychaudhuri’'s equation, we get

- Rabgagb: [G(Tab_ % Tgab) + ZBGZ(% ngabG
I1l. DERIVATION OF THE STRONG ENERGY CONDITION — ZTTabé‘ + Tiggab+ 2T'a'b)]§a§b+ 0(132) .

FOR R+R? GRAVITY
_ _ _ (3.5
Raychaudhuri’'s equation describes how a congruence of
timelike geodesics deviate from one another. Therefore RayErom (3.5 it is clear thatR+ R? gravity with T, have been
chaudhuri’s equatiof2.1) is valid even in a background of a replaced by Einstein’s gravity with an effecti\T@“V. (For a
guadratic gravity. As in Einstein’s gravity one can be assureduller discussion, please s€&2].) The rest of the procedure
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more of less mimicks Einstein’s case. The expression for a A —— 06 gt [
general timelike vectog? is (2.4). The T, that is appropri- 0 1 2 3 4

ate for a FRW metric i$2.2).
We will assume that during any epoch in the evolution of B —6—fele—t———————— [

the universe, the universe is dominated by a matter with the Y 1 2 3 4

characteristic dependence on the scale fagier g,/a"). A

local conservation oT ,;, givesp=(n—3)/3py/a". C o — —* — ¢ ——tp N
A purist may argue that the proper way of including a 0 1 2 3 4

matter in the early universe is by incorporating a quantum

field (e.g., scalar fiel[d We feel that in the study of Ray- D t—— a o n

chaudhuri’s equation, describing the matter by a phenomeno- 0 1 2 3 4

logical p=py/a" is adequate. This is because Raychaudhu-

ri's equation studies the geometrical optics limit of a field in  FIG. 1. (8 The strong energy condition for Einstein’s gravity

a background of metric and matter. If we had used a scalaB=0). (b) —R.p£2£°=0 determined under the assumptionpgf

field, then we would have had a difficult task of splitting the domination.(c) —R,p£2¢°=0 determined under the assumption of

field ¢(x,t) = do(x,t) + 5p(x,t), where thepy(x,t) and the ka~2p, domination (<>O) (d) —Rap,E2¢P=0 determined under

Sé(x.t) are the background low frequency and the fluctuatthe assumption oka™?p, domination k<0).

ing high frequency components, respectively. The back-

ground componendg(x,t) would again result in an effective treme timelike vectorsA=1 andAHOC) then this p,p) is

p=(TJ do(X,1) ) spacsc@™ " for some ). The value of ()  guaranteed to satisfy(R,p¢%é £°=0) for all timelike vectors

would depend on the detail properties of the fig@dy., mass, Ae(1l).

self-coupling V(¢)], and Raychaudhuri's equation would  Requiring— R,,£2¢°=0 for A=1 gives

correspond to the geometrical optics limit of the(x,t).
Continuing, it is a laborious exercise to show tfat5)

becomes Tépn+,8é2[3n(n—1)(n—4)épﬁ
n—-2. ~ ~ 2 -2
_Rabgagb: 5 Gpn+IBG2[3n(n_l)(n_4)Gpﬁ —6n (n_4)ka pn]>0 (31])
—6n?(n—4)ka %p,] Requiring — R,,£2£°=0 for A—x gives

n-« ~ ~
+(A2=1){ =Gpn+ BGY 2n?(n— 2 n . ~ ~
(A 1){36”“ AGTL2n(n—4)Gpy ~Gpy+ BG2[2n%(n—4)Gp2—4n(n+2)(n—4)ka 2p,]

3
—4n(n+2)(n—4)ka_2pn]]. (3.6) =0. (3.12
A reader who may want to derivi8.6) from (3.5) will The problem of finding the SEC has been reduced to solving
find the following helpful. for (n) that will satisfy(3.11) and(3.12 asa—0.

As a partial check in the algebra, consider the case of

T=T.9%"=3p—p=(n—4)p,, (3.7 B=0. (3.11) gives n=2, which is equivalent to

Pr=— 3 pn. And (3.12 givesn=0, which is equivalent to
Tant2E°=A%(p+p)—p, (3.8  p,=-—p,. As expected, these are the SEC for Einstein's

gravity.

Now for the 8#0 case <0 for a tachyon free system
the argument is significantly more subtle. We shall first ex-
tract various collection of results fro3.11) and(3.12. We
T§§= —a-39,(a%9,T)=—(n—4)a 33,(a3dp,). note that as one goes furthezr baitzzk in time, c!epending on the
(3.10 value of (n), one of the p,,p;,a2" “p,) terms in(3.11) and
(3.12 will grow fastest and hence will dominate the expres-

Again, the strong energy conditigf8EQ is the require- sions. We already know the result if tipg term dominates.
ment on an equation of state for whiehR,,£2£°=0 for all Because this is equivalent to Einstein’s cage=(0), we can
forward timelike vectorst®. There is a subtlety to keep in conclude than=2 is hecessary to satisf.11) and(3.12
mind. From (2.1) we can conclude that even though [Fig. 1(@]. Now if the p3 term dominates, the(3.12) re-
(—Rapé2¢P=0) implies that a pair of timelike geodesics duces togn(n—1)(n—4)=0 (1<=n<4 since 3<0), and
converges, the opposite-R,,£2£°<0) does not imply that  (3.12 reduces ton?(n—4)=0 (0<n<4). The two are
a pair of timelike geodesics diverges. This is because of theimultaneously satisfied bysin=<4 [Fig. 1(b)]. And, finally,
other negative negative terms (@.1). if the curvature term Ka 2p,) dominates, ther(3.11) re-

The expressiof3.6) is a monotonic function of?. Simi-  duces to —kBn?(n—4)=0 and (3.12 reduces to
lar to Einstein’s case, if we can find an equation of state-kBn(n+2)(n—4)=0. The two reduced equations are si-
(p,p) for which (— R,,£2¢°=0) is satisfied by the two ex- multaneously satisfied for the>0 FRW metric byn=4

a

a
T.ap&2¢P= A2< 92T — 3 0T
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S.E.C. for k=0 FRW

—® & o | 9 n
0 1 2 3 4
B S.E.C. for k<O FRW
—& > o & * n
0 1 2 3 4
S.E.C. for k>0 FRW
C o o o o o n
(o] 1 2 3 4

FIG. 2. (a) The strong energy condition for the=0 FRW met-
ric (1=<n<4, i.e., — 5 py=<pa= 5 pn). The universe ends ip>
domination. (b) The strong energy condition for the<0 FRW
metric (0<n<4, i.e.,— p,<Pp=< 5 pn). For 0<n=<2 the universe
ends inka~2p,, domination. For Zn<4 the universe ends ipﬁ
domination. (c) The strong energy condition for the>0 FRW
metric (2<n<4, i.e., — % p,<p,=< % p,). The universe ends in
p2 domination.

[Fig. 1(c)], and for the k<<0) FRW metric by Gsn<4 [Fig.
1(d)]. We have tactfully assumed tha&0, i.e., energy den-
sity should not get less dense when squee@éate that only
when 0<n=<2 can the curvature tera ?p,, ever grow to
dominate over the;ﬁ term asa—0.)

We have obtained a various collection of results. A
slightly more useful conclusion would be whether a particu
lar set of (p,,k,B) has the big bang singularity. We will
proceed to address this question in two steps. The strate

will be as follows. First, for a givend, ,k,8) we will have
to determine which one of the ,pﬁ ,a"2p,)) terms will end
up dominating(3.11) and (3.12 asa—0. Then from Figs.

1(b)-1(d) we will be able to read off whether such a set of

(pn,k,B) has the big bang singularity.
Let us first consider thek=0 FRW metric, with p
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up dominating. And from Fig. (b), of this region, only
2<n<4 result in the convergence of a pair of timelike vec-
tors. Q.E.D.

These results, of the cosmological strong energy condition
for R+ R? gravity, are summarized in Figs(82—2(c).

IV. DISCUSSIONS AND CONCLUSION

We were primarily interested in how the big bang singu-
larity would be affected by the quantum effects. Granted that
even a classical analysis &+ 8R? gravity can be inter-
preted as a semiclassical analysis, there are several limita-
tions to our analysis, and we would like to briefly raise these
points.

(1) Near the Planck epoch, large quantum fluctuations will
undoubtedly result in an inhomogeneous universe, yet, to
make the problem analytically tractable, we have assumed a
homogeneous and isotropic metric ({2.3) and (2.4). A fu-
ture work will have to address how the present conclusion is
affected by an anisotropy and inhomogeneity.

(2) Raychaudhuri’s equation is only a classical geometric
optics limit which may become invalid near the Planck ep-
och.

(3) In Raychaudhuri’s equation we have taken the limit as
a—0. A more physical limit might be to cut off the limit at
Pn— Prianck k@ ?— (Planck length) 2. The various sets of
conclusions obtained by this limiting process turn out to be
sensitive to the fine-tuning of the parameters and will not be
discussed here. An interested reader is invited to explore the
various possibilities.

(4) In retrospect, in deriving the SEC f&-+ BR? gravity
we have pushed the analysis until th@a 2p,, term or the
Bpﬁ term dominated over the, term. Yet if these these
terms, which are linear i, ever grew larger than the terms

from Einstein’s gravity, then this would be beyond the valid-
ity of the perturbation analysis. This is a serious objection.

ut as it is common practice in perturbation theory, we are
inclined to interpret these results as a possible glimpse of a
nonperturbative effect. With this in mind we must settle for
the following weaker conclusion.

“The cosmological SEC for Einstein’s gravity is=2 .

But for R+ BR? gravity, the first-order perturbation analysis
indicates the deformation of this SEC from Einstein’s case

=a(t)". As a—0, thep{ term should dominate over the (3>2) syuch that(1) for the k<O FRW metric,n=4 may
pn term. Therefore from Fig. (2) we can deduce that the pave to be excluded andh<2 may have to be included,

appropriate SEC is (&n=<4).

(2) for thek=0 FRW metric,n=4 may have to be excluded

A careful combination of the previous results reveals thatyng 1<n<2 may have to be included, an@) for the

the SEC for thek<O FRW metric is B=n<4 [Fig. 2b)].
The reasoning is as follows. As—0, either theka ?p,
term or thep? term could end up dominating3.11) and
(3.12. For 0=n<2, theka 2p, term will dominate, and

k>0 FRW metric,n=4 may have to be excluded.”

Finally, let us address the interesting question of whether
the pureR+R? gravity (T,,=0) can avoid the big bang
singularity. From Figs. @—-2(c) we can conclude that

from Fig. 1d) we can deduce that all of this region , —p =0 satisfy the SEQone gets &0=0). Therefore
(0=n=2) result in the convergence of a pair of timelike there must be pur®+ R? gravity models with the big bang

vectors. On the other hand fae2, thep? term will end up
dominating. From Fig. (b), of this region, only 2n<4

singularity.
Superficially, this is in conflict with works df7—9]. The

result in the convergence of a pair of timelike vectors.difference originates from two different views of the qua-

Q.E.D.

Similarly, an analysis reveals that the SEC kor0 FRW
universe is 2n<4 [Fig. 2(b)]. Again for 0<n<2, the
ka 2p, term will dominate. But from Fig. () none of this

dratic gravity. We are interested in interpreting the quadratic

terms as semiclassical corrections induced by one-loop ef-
fects. But forT,,=0 the induced corrections vanigB.4).

On the other hand, these authors have interpreted quadratic

region results in the convergence of a pair of timelike vecgravity as a fundamental theory. Within such a context, they
tors. On the other hand far=2, thepﬁ term will again end  were then able to demonstrate that the classical evolutions of
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R-+R? gravity with T,,=0 may avoid the big bang singu- We have formally included a surface term to cancel any
larity. boundary term that would result in applying the variational

A direct support of our result can be found in the work of principle. We will be interested in applying the formalism to
[19]. 't Hooft and Veltman have shown, using the back-a homogeneous and isotropic metric, i.e., the Weyl tensor
ground field method, that the one-loop corrections to purevanishesC,,.q=0 [20]. By definition of the Weyl tensor,
Einstein’s gravity must vanish. The proof is as follows. TheCabchade: R.pcdR2P¢4- 2R, R?+ 1 R2. This gives one
one-loop corrections to the gravitational action for theg|ationship among the possible quadratic terms. The second
vacuum iSA L g~ 1/e[ 35 R?+ % R.,R*"]. In the back- relationship is from the four-dimensional generalization of
ground field method, one must impose the background fielthe Gauss-Bonnet formul(&]
equationsR,,=R=0. Q.E.D. 5 b bed. .

In closing, the derivation of the SEC f&®+R? gravity R®— 4R pR™+ Rype R = exact derivative. (A2)
complements the authors recent work, which demonstratege two relationships, combined with the fact that Euler
that bozth the_classmal and the Whee_ler-DeWnt_squtlons Oi_agrange equations are unchanged by addition of an exact
R+ BR® gravity were free of the big bang singular for gitferential, allow any two of3;, 85, andgs to be set equal
n>4. to zero in the actiorfA.1). We choose to sef;=8,=0.

The resulting Euler Lagrange equations are
APPENDIX

. : o 3 Ryt IR%g.,— + 2R
The action for the quadratic gravity is 2R0ap— Rap+167GB(3R°Gap— 2RRap+ 2R 7gap

1 —2R.5:p)=87GTyy. (A3)
I=- %I d4x\/—_gR—f d*X[B1R*+ B2RapR The trace of this equation is
+ B3RapcdR®Y + | matert SUrface term. (A1) 6X167GBR;+R=87GT. (Ad)
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