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Strong energy condition inR1R2 gravity

J. H. Kung*
Department of Physics, Bates College, 44 Campus Avenue, Lewiston, Maine 04210

~Received 20 September 1995!

In this paper we study Raychaudhuri’s equation in the background ofR1bR2 gravity with phenomenologi-
cal matter@r}a(t)2n#. We conclude that even though the strong energy condition~SEC! for Einstein’s gravity
~which guarantees singularity! is n>2 for r}a(t)2n, a perturbative analysis of Raychaudhuri’s equation
reveals that the big bang singularity may not be guaranteed inR1bR2 gravity for n.4. We derive the
following strong energy conditions forR1bR2 gravity (bÞ0): ~1! For thek,0 FRW metric, the SEC is

0<n<4, i.e.,2rn<pn<
1
3 rn ; ~2! for thek50 FRWmetric, the SEC is 1<n<4, i.e.,2 2

3 rn<pn<
1
3 rn ; ~3!

for the k.0 FRW metric, the SEC is 2<n<4, i.e.,2 1
3 rn<pn<

1
3 rn .

PACS number~s!: 98.80.Hw, 04.20.Fy, 04.50.1h
d

I. INTRODUCTION

An essential mathematical criterion in the singular
theorem is the strong energy condition~SEC!. The theorem
predicts, modulo plausible assumptions, that classical ma
in the background of classical Einstein’s gravity will event
ally form black holes and a cosmological singularity@1,2#.

The singularity theorem is limited by its classical conte
The question of the validity of this theorem or how the the
rem should be altered when the quantum effects are inco
rated is a fascinating question.

A straightforward method of incorporating the quantu
effects is to start from the classical Einstein’s equations a
quantize both the gravity and the matter sectors via the c
respondence principle, i.e.,$x,p%Poisson→@x,p#QM , specifi-
cally, utilizing the Schro¨dinger representation for the canon
cal momenta result in the Wheeler-DeWitt equation@3,4#.
Recently, an additional method of incorporating the quant
effects has come into focus. Advances in the theory of qu
tum gravity have revealed that, even if one starts with E
stein’s gravity coupled to a matter, the quantum loop effe
of the gravity1 matter and the renormalization procedur
result in a quadratic gravity@5,6#. Therefore even a classica
analysis of the quadratic gravity is inherently a semiclass
analysis.~The two methods of incorporating the quantu
effects, which differ by the choice of the canonical or t
covariant quantization procedures, are not necessa
equivalent. This is because the formal equivalence of
canonical and the covariant quantization procedures is o
true for renormalizable theories.!

Several authors have studied classical solutions
R1bR2 gravity without matter and have concluded that t
big bang singularity may be avoided@7–9#. There are severa
problems with higher derivative theories@10,11#, e.g., the
need for additional initial conditions in the formulation of
cauchy problem, the existence of runaway solutions, and
question of whether solutions obtained from theR1bR2

gravity reduce to the solutions of Einstein’s gravity
b→0.

In order to resolve these issues, the author has rece
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proposed an alternate approach toR1bR2 gravity in which
thebR2 term is treated as a back reaction on Einstein’s grav-
ity @12#. In essence, in this approach the gravitational degrees
of freedom are not altered from those of Einstein’s gravity.
Using such an interpretation ofR1bR2 gravity, the author
investigated the classical and the Wheeler-DeWitt evolutions
of R1bR2 gravity for the particular sign ofb corresponding
to the nontachyon case. The matter sector was describe
by a phenomenologicalr}a(t)2n. It was concluded that
both the Friedmann potentialU(a) @ȧ212U(a)50#
and the Wheeler-DeWitt potentialW(a) $@2]2/]a2

12W(a)#c(a)50% develop repulsive barriers neara'0 for
n.4 (p. 1

3 r). The interpretations were clear. The repulsive
barrier inU(a) implies that a contracting Friedmann Robert-
son Walker~FRW! universe (k.0,k50,k,0) will bounce to
an expansion phase without a total gravitational collapse.
The repulsive barrier inW(a) means thata'0 is a classi-
cally forbidden region. Therefore the probability of finding a
universe with the big bang singularity (a50) is exponen-
tially suppressed.

Superficially, this prediction of no cosmological singular-
ity for n.4 (p. 1

3 r) seems to be in violation of the singu-
larity theorem for Einstein’s gravity, which predicts the even-
tual formation of a singularity for a matter satisfying the
SEC @p>2 1

3 r and p>2r or equivalentlyn>2 for r
}a(t)2n# @13#.

In this paper we study Raychaudhuri’s equation in the
background ofR1bR2 gravity coupled to a matter@r
}a(t)2n#. We conclude that the appropriate SEC for
R1bR2 gravity is different from that of Einstein’s gravity.
The SEC forR1bR2 gravity is derived and is shown to be
in agreement with the author’s previous work, which dem-
onstrated that both the classical and the Wheeler-DeWitt so-
lutions of R1bR2 gravity were free of the cosmological
singularity forn.4.

The sign conventions used in this paper are
g5(2,1,1,1), Rab2

1
2 gabR5(1)8pGTab ,

(1)R(U,V) 5¹U¹V2¹V¹U2¹@U,V# .

II. REVIEW OF THE STRONG ENERGY CONDITION
FOR EINSTEIN’S GRAVITY

Even though the goal of this paper is to study the strong
energy condition~SEC! for quadratic gravity, much of the
3017 © 1996 The American Physical Society
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technique will be borrowed from the derivation of the SE
for Einstein’s gravity. Therefore we shall briefly review th
derivation for Einstein’s gravity. For a pedagogical revie
please see@13#.

Let ja be a tangent vector to a congruence of timeli
geodesics. Raychaudhuri’s equation is

du

dt
52

1

3
u22sabs

ab1Rabj
ajb. ~2.1!

u and sab are the expansion and the sheer of two near
tangent vectors, respectively. In Einstein’s gravity the SE
and the ensuing singularity theorem follow from requirin
that

2Rabj
ajb58pG@Tab2

1
2Tgab#j

ajb>0 ~2.2!

for all timelike vectorsja. In such a casedu/dt,0 and the
pair of nearby timelike geodesic vectors converges and w
eventually intersect.

We will be interested in the cosmological singularity. In
FRW metric the matter sector is described by

Tb
a5S 2r

p

p

p

D 5rtatb1pxaxb1pyayb1pxazb .

~2.3!

$ta,xa,ya,za% are the eigenvectors ofTb
a . They are normal-

ized as2tata5xaxa5yaya5zaza51. Because of the isot-
ropy one can always rotate the coordinates such that the m
general forward timelike vector is

ja5Ata1~A221!1/2xa, @AP~1,̀ !, jaja521#.
~2.4!

Then

2Rabj
ajb58pG@Tab2

1
2Tgab#j

ajb

58pG@r~A22 1
2 !1p~A21 1

2 !#. ~2.5!

The SEC is the requirement on an equation of state (p,r) for
which (2Rabj

ajb>0) is true for all timelike vectorsja @A
P(1,̀ )#.

The expression~2.5! is a monotonic function ofA2.
Therefore if we can find an equation of state (p,r) for which
(2Rabj

ajb>0) is satisfied by two extreme timelike vector
(A51 andA→`), then this (p,r) is guaranteed to satisfy
(2Rabj

ajb>0) for all timelike vectorsAP(1,̀ ). Requir-
ing (2Rabj

ajb>0) for A51 gives r13p>0. Requiring
(2Rabj

ajb>0) for A→` givesr1p>0. These are the fa-
miliar SEC @13#.

III. DERIVATION OF THE STRONG ENERGY CONDITION
FOR R1R2 GRAVITY

Raychaudhuri’s equation describes how a congruence
timelike geodesics deviate from one another. Therefore R
chaudhuri’s equation~2.1! is valid even in a background of a
quadratic gravity. As in Einstein’s gravity one can be assu
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of the convergence of a congruence of timelike geodesics by
requiring 2Rabj

ajb>0. In order to proceed we need the
relevant ‘‘Einstein’s’’ equations for a quadratic gravity~a
pedagogical derivation is given in the Appendix!.

1
2Rgab2Rab116pGb~ 1

2R
2gab22RRab12R;n

;ngab22R;a;b!

58pGTab . ~3.1!

The trace of this equation is

6316pGbR;n
;n1R58pGT. ~3.2!

Some comments are in order. First, by dimensional con-
sideration,b is dimensionless. Second, as noted by various
authors@14,15#, ~3.2! resembles the scalar field equation with
m252(6316pGb)21. Thereforeb,0 is needed to elimi-
nate tachyons. Third, an order of magnitude estimate reveals
that the contributions from the quadratic terms are smaller
than those of Einstein’s gravity bybGR'bG2r
'br/rPlanck. Therefore if we make a reasonable assumption
thatb'1, then we will be justified in treating the quadratic
terms as perturbations until the very early universe. For a
more elaborate discussion on the justification for treating
bR2 as a perturbation, please see@12#. The subsequent
analysis should be viewed as a perturbative analysis of a
possible nonlinear phenomenon. On the other hand, it is
worth noting that Mijicet al., @16# Starobinskyet al., @17#
and Berkin @18# have studied the largeb range and have
concluded that even the pureR1bR2 gravity (Tmn50) can
generate an inflationary phase.

For use in Raychaudhuri’s equation we need an expres-
sion for the Ricci tensor (Rab) in terms ofTab . Combining
~3.1! and ~3.2! we get

2Rab116pGb~ 1
2R

2gab22RRab2R;n
;ngab2R;a;b!

58pG~Tab2
1
2Tgab!. ~3.3!

We are interested in the first-order contributions from the
bR2 term to Raychaudhuri’s equation. Therefore for the
terms already multiplied byb in ~3.1! we may substituting

Rab528pG(Tab2
1
2 Tgab)1O(b) andR58pGT1O(b)

to get

~ 1
2R

2gab22RRab22R;n
;ngab22R;a;b!

52G̃~ 1
2T

2gabG̃22TTabG̃1T;n
;ngab12T;a;b!

1O~b!. ~3.4!

We have introduced the notationG̃[8pG. And, finally,
for the use in Raychaudhuri’s equation, we get

2Rabj
ajb5@G̃~Tab2

1
2 Tgab!12bG̃2~ 1

2 T
2gabG̃

22TTabG̃1T;n
;ngab12T;a;b!#j

ajb1O~b2!.

~3.5!

From ~3.5! it is clear thatR1R2 gravity withTmn have been
replaced by Einstein’s gravity with an effectiveTmn

eff . ~For a
fuller discussion, please see@12#.! The rest of the procedure
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more of less mimicks Einstein’s case. The expression fo
general timelike vectorja is ~2.4!. TheTab that is appropri-
ate for a FRW metric is~2.2!.

We will assume that during any epoch in the evolution
the universe, the universe is dominated by a matter with
characteristic dependence on the scale factor (r5r0 /a

n). A
local conservation ofTab givesp5(n23)/3r0 /a

n.
A purist may argue that the proper way of including

matter in the early universe is by incorporating a quantu
field ~e.g., scalar field!. We feel that in the study of Ray-
chaudhuri’s equation, describing the matter by a phenome
logical r5r0 /a

n is adequate. This is because Raychaudh
ri’s equation studies the geometrical optics limit of a field
a background of metric and matter. If we had used a sca
field, then we would have had a difficult task of splitting th
field f(x,t)5f0(x,t)1df(x,t), where thef0(x,t) and the
df(x,t) are the background low frequency and the fluctu
ing high frequency components, respectively. The ba
ground componentf0(x,t) would again result in an effective
r5^T0

0@f0(x,t)#&space}a
2n for some (n). The value of (n)

would depend on the detail properties of the field@e.g., mass,
self-coupling V(f)#, and Raychaudhuri’s equation woul
correspond to the geometrical optics limit of thedf(x,t).

Continuing, it is a laborious exercise to show that~3.5!
becomes

2Rabj
ajb5

n22

2
G̃rn1bG̃2@3n~n21!~n24!G̃rn

2

26n2~n24!ka22rn#

1~A221!H n3 G̃rn1bG̃2@2n2~n24!G̃rn
2

24n~n12!~n24!ka22rn#J . ~3.6!

A reader who may want to derive~3.6! from ~3.5! will
find the following helpful.

T[Tabg
ab53p2r5~n24!rn , ~3.7!

Tabj
ajb5A2~p1r!2p, ~3.8!

T;a;bj
ajb5A2S ] t

2T2
ȧ

a
] tTD1

ȧ

a
] tT, ~3.9!

T;a
;a52a23] t~a

3] tT!52~n24!a23] t~a
3] trn!.

~3.10!

Again, the strong energy condition~SEC! is the require-
ment on an equation of state for which2Rabj

ajb>0 for all
forward timelike vectorsja. There is a subtlety to keep in
mind. From ~2.1! we can conclude that even thoug
(2Rabj

ajb>0) implies that a pair of timelike geodesic
converges, the opposite (2Rabj

ajb<0) does not imply that
a pair of timelike geodesics diverges. This is because of
other negative negative terms in~2.1!.

The expression~3.6! is a monotonic function ofA2. Simi-
lar to Einstein’s case, if we can find an equation of sta
(p,r) for which (2Rabj

ajb>0) is satisfied by the two ex-
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treme timelike vectors (A51 andA→`), then this (p,r) is
guaranteed to satisfy (2Rabj

ajb>0) for all timelike vectors
AP(1,̀ ).

Requiring2Rabj
ajb>0 for A51 gives

n22

2
G̃rn1bG̃2@3n~n21!~n24!G̃rn

2

26n2~n24!ka22rn#>0. ~3.11!

Requiring2Rabj
ajb>0 for A→` gives

n

3
G̃rn1bG̃2@2n2~n24!G̃rn

224n~n12!~n24!ka22rn#

>0. ~3.12!

The problem of finding the SEC has been reduced to solvin
for (n) that will satisfy ~3.11! and ~3.12! asa→0.

As a partial check in the algebra, consider the case o
b50. ~3.11! gives n>2, which is equivalent to

pn>2 1
3 rn . And ~3.12! givesn>0, which is equivalent to

pn>2rn . As expected, these are the SEC for Einstein’s
gravity.

Now for thebÞ0 case (b,0 for a tachyon free system!
the argument is significantly more subtle. We shall first ex-
tract various collection of results from~3.11! and~3.12!. We
note that as one goes further back in time, depending on th
value of (n), one of the (rn ,rn

2 ,a22rn) terms in~3.11! and
~3.12! will grow fastest and hence will dominate the expres-
sions. We already know the result if thern term dominates.
Because this is equivalent to Einstein’s case (b50), we can
conclude thatn>2 is necessary to satisfy~3.11! and ~3.12!
@Fig. 1~a!#. Now if the rn

2 term dominates, then~3.12! re-
duces tobn(n21)(n24)>0 (1<n<4 sinceb,0), and
~3.12! reduces tobn2(n24)>0 (0<n<4). The two are
simultaneously satisfied by 1<n<4 @Fig. 1~b!#. And, finally,
if the curvature term (ka22rn) dominates, then~3.11! re-
duces to 2kbn2(n24)>0 and ~3.12! reduces to
2kbn(n12)(n24)>0. The two reduced equations are si-
multaneously satisfied for thek.0 FRW metric byn>4

FIG. 1. ~a! The strong energy condition for Einstein’s gravity
(b50). ~b! 2Rabj

ajb>0 determined under the assumption ofrn
2

domination.~c! 2Rabj
ajb>0 determined under the assumption of

ka22rn domination (k.0). ~d! 2Rabj
ajb>0 determined under

the assumption ofka22rn domination (k,0).
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@Fig. 1~c!#, and for the (k,0) FRW metric by 0<n<4 @Fig.
1~d!#. We have tactfully assumed thatn>0, i.e., energy den-
sity should not get less dense when squeezed.~Note that only
when 0<n<2 can the curvature termka22rn ever grow to
dominate over thern

2 term asa→0.)
We have obtained a various collection of results.

slightly more useful conclusion would be whether a partic
lar set of (rn ,k,b) has the big bang singularity. We will
proceed to address this question in two steps. The strat
will be as follows. First, for a given (rn ,k,b) we will have
to determine which one of the (rn ,rn

2 ,a22rn) terms will end
up dominating~3.11! and ~3.12! as a→0. Then from Figs.
1~b!–1~d! we will be able to read off whether such a set o
(rn ,k,b) has the big bang singularity.

Let us first consider thek50 FRW metric, with r
}a(t)2n. As a→0, the rn

2 term should dominate over the
rn term. Therefore from Fig. 2~a! we can deduce that the
appropriate SEC is (1<n<4).

A careful combination of the previous results reveals th
the SEC for thek,0 FRW metric is 0<n<4 @Fig. 2~b!#.
The reasoning is as follows. Asa→0, either theka22rn
term or thern

2 term could end up dominating~3.11! and
~3.12!. For 0<n<2, the ka22rn term will dominate, and
from Fig. 1~d! we can deduce that all of this region
(0<n<2) result in the convergence of a pair of timelik
vectors. On the other hand forn>2, thern

2 term will end up
dominating. From Fig. 1~b!, of this region, only 2<n<4
result in the convergence of a pair of timelike vector
Q.E.D.

Similarly, an analysis reveals that the SEC fork.0 FRW
universe is 2<n<4 @Fig. 2~b!#. Again for 0<n<2, the
ka22rn term will dominate. But from Fig. 1~d! none of this
region results in the convergence of a pair of timelike ve
tors. On the other hand forn>2, thern

2 term will again end

FIG. 2. ~a! The strong energy condition for thek50 FRW met-

ric (1<n<4, i.e., 2
2
3 rn<pn<

1
3 rn). The universe ends inrn

2

domination. ~b! The strong energy condition for thek,0 FRW

metric (0<n<4, i.e.,2rn<pn<
1
3 rn). For 0<n<2 the universe

ends inka22rn domination. For 2<n<4 the universe ends inrn
2

domination. ~c! The strong energy condition for thek.0 FRW

metric (2<n<4, i.e., 2
1
3 rn<pn<

1
3 rn). The universe ends in

rn
2 domination.
A
u-
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up dominating. And from Fig. 1~b!, of this region, only
2<n<4 result in the convergence of a pair of timelike vec-
tors. Q.E.D.

These results, of the cosmological strong energy condition
for R1R2 gravity, are summarized in Figs. 2~a!–2~c!.

IV. DISCUSSIONS AND CONCLUSION

We were primarily interested in how the big bang singu-
larity would be affected by the quantum effects. Granted that
even a classical analysis ofR1bR2 gravity can be inter-
preted as a semiclassical analysis, there are several limita-
tions to our analysis, and we would like to briefly raise these
points.

~1! Near the Planck epoch, large quantum fluctuations will
undoubtedly result in an inhomogeneous universe, yet, to
make the problem analytically tractable, we have assumed a
homogeneous and isotropic metric in~2.3! and ~2.4!. A fu-
ture work will have to address how the present conclusion is
affected by an anisotropy and inhomogeneity.

~2! Raychaudhuri’s equation is only a classical geometric
optics limit which may become invalid near the Planck ep-
och.

~3! In Raychaudhuri’s equation we have taken the limit as
a→0. A more physical limit might be to cut off the limit at
rn→rPlanck,ka

22→(Planck length)22. The various sets of
conclusions obtained by this limiting process turn out to be
sensitive to the fine-tuning of the parameters and will not be
discussed here. An interested reader is invited to explore the
various possibilities.

~4! In retrospect, in deriving the SEC forR1bR2 gravity
we have pushed the analysis until thekba22rn term or the
brn

2 term dominated over thern term. Yet if these these
terms, which are linear inb, ever grew larger than the terms
from Einstein’s gravity, then this would be beyond the valid-
ity of the perturbation analysis. This is a serious objection.
But as it is common practice in perturbation theory, we are
inclined to interpret these results as a possible glimpse of a
nonperturbative effect. With this in mind we must settle for
the following weaker conclusion.

‘‘The cosmological SEC for Einstein’s gravity isn>2 .
But for R1bR2 gravity, the first-order perturbation analysis
indicates the deformation of this SEC from Einstein’s case
(n>2) such that~1! for the k,0 FRW metric,n>4 may
have to be excluded and 0<n<2 may have to be included,
~2! for thek50 FRW metric,n>4 may have to be excluded
and 1<n<2 may have to be included, and~3! for the
k.0 FRW metric,n>4 may have to be excluded.’’

Finally, let us address the interesting question of whether
the pureR1R2 gravity (Tmn50) can avoid the big bang
singularity. From Figs. 2~a!–2~c! we can conclude that
rn5pn50 satisfy the SEC~one gets 0>0>0). Therefore
there must be pureR1R2 gravity models with the big bang
singularity.

Superficially, this is in conflict with works of@7–9#. The
difference originates from two different views of the qua-
dratic gravity. We are interested in interpreting the quadratic
terms as semiclassical corrections induced by one-loop ef-
fects. But forTmn50 the induced corrections vanish~3.4!.
On the other hand, these authors have interpreted quadratic
gravity as a fundamental theory. Within such a context, they
were then able to demonstrate that the classical evolutions of
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R1R2 gravity with Tmn50 may avoid the big bang singu-
larity.

A direct support of our result can be found in the work o
@19#. ’t Hooft and Veltman have shown, using the back
ground field method, that the one-loop corrections to pu
Einstein’s gravity must vanish. The proof is as follows. Th
one-loop corrections to the gravitational action for th

vacuum isnLgrav5 1/e @ 1
120 R

21 7
20 RmnR

m,n#. In the back-
ground field method, one must impose the background fie
equations,Rmn5R50. Q.E.D.

In closing, the derivation of the SEC forR1R2 gravity
complements the authors recent work, which demonstra
that both the classical and the Wheeler-DeWitt solutions
R1bR2 gravity were free of the big bang singular fo
n.4.

APPENDIX

The action for the quadratic gravity is

I52
1

16pGE d4xA2gR2E d4x@b1R
21b2RabR

ab

1b3RabcdR
abcd#1Imatter1surface term. ~A1!
f
-
re
e
e

ld

ted
of
r

We have formally included a surface term to cancel any
boundary term that would result in applying the variational
principle. We will be interested in applying the formalism to
a homogeneous and isotropic metric, i.e., the Weyl tenso
vanishesCabcd50 @20#. By definition of the Weyl tensor,

CabcdC
abcd5RabcdR

abcd22RabR
ab1 1

3 R
2. This gives one

relationship among the possible quadratic terms. The secon
relationship is from the four-dimensional generalization of
the Gauss-Bonnet formula@5#

R224RabR
ab1RabcdR

abcd5exact derivative. ~A2!

The two relationships, combined with the fact that Euler
Lagrange equations are unchanged by addition of an exac
differential, allow any two ofb1 , b2 , andb3 to be set equal
to zero in the action~A.1!. We choose to setb35b250.

The resulting Euler Lagrange equations are

1
2Rgab2Rab116pGb~ 1

2R
2gab22RRab12R;s

;sgab

22R;a;b!58pGTab . ~A3!

The trace of this equation is

6316pGbR;s
;s1R58pGT. ~A4!
5,
r

@1# S. W. Hawking, Proc. R. Soc. LondonA300, 187 ~1967!.
@2# S. W. Hawking, Proc. R. Soc. LondonA314, 529 ~1970!.
@3# B. S. DeWitt, Phys. Rev.160, 1113~1967!.
@4# J. A. Wheeler, inBattelle Rencontres, edited by C. DeWitt and

J. A. Wheeler~Benjamin, New York, 1968!.
@5# S. Deser, inQuantum Gravity, edited by C. J. Isham, R. Pen-

rose, and D. W. Sciama~Oxford University Press, Oxford, En-
gland, 1975!.

@6# R. Utiyama and B. S. DeWitt, J. Math. Phys.3, 608 ~1962!.
@7# V. Muller and H. J. Schmidt, Gen. Relativ. Gravit.17, 769

~1985!.
@8# D. Page, Phys. Rev. D36, 1607~1987!.
@9# J. D. Barrow and A. Ottewill, J. Phys. A16, 2757~1983!.

@10# X. Jaenet al., Phys. Rev. D34, 2302~1986!.
@11# A. Strominger, inQuantum Theory of Gravity, edited by S.

Christensen~Hilger, Bristol, 1984!.
@12# J. H. Kung, Phys. Rev. D52, 6922~1995!.
@13# S. W. Hawking and G. F. R. Ellis,The Large Scale Structure of
Space-Time~Cambridge University Press, Cambridge, En-
gland, 1973!.

@14# B. Whitt, Phys. Lett.145B, 176 ~1984!.
@15# J. C. Alonso, F. Barbero, J. Julve, and A. Tiemblo, Class.

Quantum Grav.11, 865 ~1994!.
@16# M. Mijic et al., Phys. Rev. D34, 2934~1986!.
@17# A. A. Starobinsky and H. J. Schmidt, Class. Quantum Grav.4,

695 ~1987!.
@18# A. L. Berkin, Phys. Rev. D42, 1016~1990!.
@19# M. J. G. Veltman, inMethods in Field Theory, Proceedings of

the Les Houches Summer School, Les Houches, France, 197
edited by R. Balian and J. Zinn-Justin, Les Houches Summe
School Proceedings XXVII ~North-Holland, Amsterdam,
1976!.

@20# R. M. Wald,General Relativity~University of Chicago Press,
Chicago, 1984!.


