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String theory abounds with light scalar fields~the dilaton and various moduli! which create a host of
observational problems, and notably some serious cosmological difficulties similar to the ones associated w
the Polonyi field in the earliest versions of spontaneously broken supergravity. We show that all these problem
are naturally avoided if a recently introduced mechanism for fixing the vacuum expectation values of th
dilaton and/or moduli is at work. We study both the classical evolution and the quantum fluctuations of suc
scalar fields during a primordial inflationary era and find that the results are naturally compatible with obser
vational facts. In this model, dilatons or moduli within a very wide range of masses~which includes the
SUSY-breaking favored value;1 TeV and extends up to the Planck scale! qualify to define a novel type of
essentially stable ultraweakly interacting massive particles able to provide enough mass density to close t
universe.

PACS number~s!: 98.80.Cq, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

Superstring unification@1# and the inflationary scenario
@2# have been, arguably, the most influential ideas in parti
physics and cosmology over the last decade. Attempts
combining these ideas and constructing superstring-based
flationary models have introduced some interesting n
ideas@3#, but have encountered serious difficulties@4–7#. A
specific source of difficulties is the existence of massle
scalar fields~the moduli! having only gravitational strength
couplings to ordinary matter. Among the moduli fields, th
dilatonF, which invariably accompanies the graviton in a
superstring models, plays a special role. In the presence
~tree-level-coupled! dilaton, the cosmological evolution is
drastically different from that in Einstein’s gravity. In par
ticular, instead of driving an exponential inflationary expa
sion, a constant vacuum energy drives the dilaton towa
large negative values~corresponding to weak couplings!,
while the universe expands only as a small power of tim
Even apart from inflation, a massless dilaton, or moduli, fie
~for simplicity, as these fields share many characteristics,
shall refer to any of them as ‘‘the dilaton’’ and denote it a
F! can cause a host of other cosmological problems. Dur
the most recent, matter-dominated epoch of the unive
such a field is necessarily time dependent. The masse
elementary particles and their couplings all depend onF,
and the cosmological time variation of the dilaton runs into
violent conflict with observations, not to mention unaccep
ably large violations of the equivalence principle.

These problems are usually addressed by assuming
the dilaton develops a potential, so that one recovers
standard Einstein gravity afterF settles at the minimum of
the potential. The potential could originate from nonpertu
bative effects, such as gaugino condensation. The existe
of a potential forF entails, however, new difficulties. On th
one hand, it has been argued@7# that the minimum of the
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nonperturbative potential is too shallow to confine the dila-
ton without fine-tuning the initial conditions~see, however,
@8#!. On the other hand, any potentialV~F! for a weakly
coupled field resurrects the Polonyi problem@9–12#: either
the energy stored in the coherent oscillations of the vacuum
expectation value~VEV! of F does not dissipate before now
and exceeds the critical density needed to close the univers
or the field decays before now, and thereby generically pro-
duces an excessive amount of entropy. In the case of th
nonperturbative potentials suggested by current
supersymmetry-~SUSY-! breaking models in string theory,
the slow decay rate of the moduli fields leaves the universe
in a radiation-dominated era at a temperature which is ge
nerically ~i.e., under naturalness assumptions for the cou-
plings! much too low to be consistent with primordial nu-
cleosynthesis@13–15#.

In the present paper, we show that all the above difficul-
ties associated with the dilaton~and moduli! fields are natu-
rally avoided if the new mechanism introduced in Ref.@16#
for fixing F is at work @17#. The main idea of@16# was to
exploit the fact that string loop effects, associated with world
sheets of arbitrary genus in intermediate string states, natu
rally generate some nonmonotonic dependence uponF of
the various couplings ofF to the other fields. Under the
assumption that the different coupling functionsBa~F! have
extrema at some common value ofF5F0, it has been shown
that interactions with massive particles in an expanding uni-
verse drive the dilaton towards the valueF0 at which it de-
couplesfrom matter. All deviations from general relativity in
this model have been estimated to be extremely small at th
present cosmological epoch, thereby naturally reconciling a
massless dilaton with existing observational data. The as
sumption of coincident maxima can be satisfied in a techni-
cally natural way if there exists a discrete symmetry, e.g.,
F→2F. Such a symmetry would guarantee that all cou-
plings have extrema atF050 ~the only additional necessary
2981 © 1996 The American Physical Society
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assumption being that these extrema lead to minima ra
than maxima of the masses as functions ofF!. We note that
precisely the discrete symmetryF→2F ~or eF→1/eF! is
known to hold for some of the moduli fields~T duality!, and
has been conjectured to hold for the dilaton proper~S
duality: gs→1/gs , wheregs5eF is the string coupling!.

Here we extend the analysis of Ref.@16# to inflationary
models. It will be shown that inflation is extremely efficie
in driving a homogeneous fieldF to F0 ~Sec. II!. At the
same time, inflation is known to generate significant qu
tum fluctuations in gravitational and other fields with a ve
wide range of wavelengths. Fluctuations of the dilaton
comoving scales smaller than the present horizon are po
tially dangerous because they are not damped by the me
nism of Ref. @16#. One might worry that quantum fluctua
tions could reintroduce the Polonyi-moduli problem in
different form. However, in Sec. III we shall calculate th
fluctuation spectrum and show that the predicted dila
fluctuations are well below the observational constraints.
next consider, in Sec. IV, the possibility that, in addition
nontrivial matter-coupling functions with extrema atF5F0,
the dilaton also has a potential with a minimum atF0. ~This
may be enforced by the same discrete symmetry.! In this case
the dilatons are massive, and can potentially run into con
with observations, e.g., by overclosing the universe or
generating an excessive flux ofg rays due to dilaton decays
We shall see, however, that in our model the constraints
the dilaton mass derived in@11–13,18# can be substantially
relaxed, due to the very weak couplings of the dilaton. W
find that dilatons with a very large range of masses~which
includes the suggested SUSY-breaking value;1 TeV and
extends up to the Planck scale! can qualify to define a new
type of ~essentially! stable weakly interacting massive pa
ticle ~WIMP! able to provide enough mass density to clo
the universe.

II. THE EFFECTIVE ACTION

Up till now, most of the analysis of superstring cosmolo
has been based on the tree-level effective action, corresp
ing to the lowest order in the string loop expansion:

Stree5E d4xAĝe22F$~a8!21R̂14¹̂2F24~¹̂F!2#

1Lmatter%. ~2.1!

Here,F is the dilaton, and the matter Lagrangian includ
fermions, gauge, and Higgs fields, and in particular the ‘‘
flaton’’ scalar fieldx̂ whose potentialV̂(x̂) drives the infla-
tion:

Lmatter52
k

4
F̂22 c̄̂D̂ĉ2 1

2 ~¹̂x̂ !22V̂~ x̂ !1••• . ~2.2!

Carets in Eqs.~2.1! and~2.2! indicate that the correspondin
fields are taken in the ‘‘string frame,’’ that is, in thes-model
formulation of string theory.

The string couplinggs , which plays the role of the expan
sion parameter in the string loop expansion, is determined
the expectation value of the dilaton,gs5eF. The tree-level
action ~2.1! is proportional tog s

22, resulting in a universal,
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multiplicative coupling of the dilaton to all other fields. With
higher orders in the loop expansion taken into account, we
expect the common factore22F to be replaced by several
coupling functionsBa~F! multiplying different terms in~2.1!
and~2.2!. In particular, the effective action for the graviton-
dilaton-inflation sector is expected to be of the form

S5E d4xAĝH Bg~F!

a8
R̂1

BF~F!

a8
@4¹̂2F24~¹̂F!2#

2
1

2
Bx~F!~¹̂x̂ !22V̂~ x̂,F!J , ~2.3!

where the functionsBa~F! admit a series expansion

Ba~F!5e22F1c0
~a!1c1

~a!e2F1••• , ~2.4!

and a similar expansion forV̂(x̂,F). In the case of the
moduli fields~by contrast with the four-dimensional dilaton
proper! the effective action has also the generic form~2.3!,
the only difference being that the nontrivialF dependence is
absent at tree level, and arises at one loop and beyond.

A more convenient form of the action can be obtained by
a conformal transformation from the ‘‘string-frame’’ metric
ĝmn to the ‘‘Einstein-frame’’ metric

gmn5CBg~F!ĝmn , ~2.5!

and by replacing the dilaton fieldF by the variable

w5E dFF34 SBg8

Bg
D 212

BF8

Bg
12

BF

Bg
G1/2. ~2.6!

This gives

S5E d4xAgF 14q R2
1

2q
~¹w!22

1

2
F~w!~¹x!2

2V~x,w!G , ~2.7!

where we have defined

x5C21/2x̂, ~2.8a!

F~w!5Bx~F!/Bg~F!, ~2.8b!

V~x,w!5C22Bg
22~F!V̂~ x̂,F!. ~2.8c!

The constantC in Eq. ~2.5! is chosen so that the string units
coincide with Einstein units at the present cosmological ep
och,CBg~F0!51, and the constantq in ~2.7! is related to the
bare gravitational constantḠ, q54pḠ5Ca8/4. As shown
in @16#, Ḡ is numerically nearly identical to the observed
Newtonian gravitational constant so thatq54p/mP

2 with
mP51.2231019 GeV.

The minimal condition required for the mechanism of
Ref. @16# to work is that allBa~F! should have an extremum
at the sameF5F0. When formulated within the context of
inflationary models and in terms of the rescaled fieldsw and
x, this leads to requiring that the potentialV~x,w! in Eq. ~2.7!
has a minimum~as a function ofw! at w5w0 for any fixed
value ofx. Here,w05w~F0!. A simple toy model which sat-
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isfies this condition is the case where higher loops are s
posed to respect the tree-level universality of the dilaton c
plings. In this case all functionsBa~F! in ~2.3! are identical:

Ba~F!5B~F!, ~2.9a!

and

V̂~ x̂,F!5B~F!V̂~ x̂ !. ~2.9b!

Then, in the Einstein-frame action~2.7!, F~w!51 and the
potential has a factorized form:

S5E d4xAg F 14q R2
1

2q
~¹w!22

1

2
~¹x!2

2B21~w!V~x!G . ~2.10!

In this models is attracted@during both inflation and the
subsequent matter-dominated era~s!# toward the maxima of
B~w!. Although the strong universality condition~2.9! may
be too restictive, it is useful to have in mind the action~2.10!
which provides a very simple model containing most of t
essential physics of the more general model~2.7!.

III. CLASSICAL EVOLUTION

We shall assume, as is usually done in inflationary mo
els, that the potentialV~x,w! in Eq. ~2.7! has a minimum
with V~x0,w0!'0 and that it has a ‘‘slow-roll’’ region where
it is a slowly varying function ofx :

Vx8
2!12qV2, ~3.1a!

~AV!xx9 !3qAV, ~3.1b!

where we recall thatq54p/mP
2 . At the same time, the cou-

pling functionsBa and the potentialVare not expected to be
slowly varying functions ofw. For example, in the strong
universality model~2.9! we expectB~w0!;1 and

k[2B9~w0!/B~w0!;1 ~3.2!

at the maximum ofB~w!. Note that, contrary tox which has
the usual dimension of mass,w is a dimensionless variable
whose expected range of variation is of order unity.

For the initial conditions of the universe, we shall assum
that the fieldsw andx are displaced from the minimum o
V~x,w! at $x0,w0% but are in its basin of attraction, at least i
some parts of the universe@19#. Then it is easy to see, quali
tatively, how the cosmological evolution will proceed. Th
field w, which corresponds to the steep direction inV~x,w!,
will evolve on a much faster time scale thanx. It will start
oscillating aboutw5w0, these oscillations will be damped b
the expansion of the universe, and the universe will quic
settle into a quasiexponential inflation driven by the potent
energy of the fieldx, Ṽ(x)5V(x,w0). The damping ofw
oscillations during inflation is very efficient, and we expe
that by the end of inflation the dilaton will be very close t
w0.

To describe this quantitatively, let us consider the fie
equations forx andw:
up-
u-
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¹„F~w!¹x…2
]

]x
V~x,w!50, ~3.3!

¹2w2
1

2
q

]F~w!

]w
~¹x!22q

]

]w
V~x,w!50. ~3.4!

During the slow-roll phase of inflation, the universe can be
locally described by a flat Robertson-Walker metric,

ds252dt21a2~ t !dx2, ~3.5!

with the expansion rateH5ȧ/a given by

H25 1
3 @2qV~x,w!1ẇ21qF~w!ẋ2#' 2

3qV~x,w0!.
~3.6!

The spacetime is approximately de Sitter, with the curvature

R'12H2'8qV~x,w0!. ~3.7!

To study the approach ofw to w0, we expandV~x,w! in
powers of~w2w0!. For notational consistency with@16#, it is
convenient to denote bybi the ~positive! dimensionless pa-
rameter measuring the curvature~with respect tow! of the
inflationary mass scale around the minimumw0:

L i~x,w![V1/4~x,w!'L i~x,w0!@11 1
2b i~w2w0!

2#.
~3.8!

Here, the indexi stands for inflation. In the simple model
~2.9!, in which the potential is factorized,
V(x,w)5B21(w)V(x), one hasbi5k/4, wherek was intro-
duced in Eq.~3.2! above. In the general case, the value ofbi
depends on the physics determining the mass scaleLi . As
discussed in Ref.@16# @see Eq.~4.6b! there#, if the hierarchy
L i!mp ~which seems necessary in inflationary models! is
due to nonperturbative effects, one expects to hav
bi;ln~Lstring/Li!*1.

Substituting this in Eq.~3.4! and using~3.6! and~3.7!, we
obtain

~¹22j iR!dw50, ~3.9!

wheredw5w2w0 and

j i5
1
2b i . ~3.10!

We note that Eq.~3.9! has exactly the form of that for a
massless, nonminimally coupled field. The curvatureR is a
slowly varying function of time during inflation, and the ef-
fect of the curvature term in~3.9! is similar to that of a
positive mass squared termm2;H2 for the fluctuations ofw.
Inflation is followed by ax-dominated expansion when the
inflaton fieldx oscillates about the minimum of its potential
@say V' 1

2mx
2(w)x2#. During this x-dominated period,dw

will approximately satisfy, after taking an average over thex
oscillations, an equation of the same form as~3.9! but with a
different value ofjx[

1
2bx ~herebx[@]2 lnmx(w)/]w2#w5w0

measures thew curvature of the mass of thex field; see the
Appendix for a more exact equation satisfied bydw!.

Neglecting the spatial gradients ofw ~which are rapidly
suppressed by the cosmological expansion! we can finally
rewrite ~3.9! in the form



-

.

-

-

l
e

-

y

e

n

2984 53THIBAULT DAMOUR AND ALEXANDER VILENKIN
dẅ13Hdẇ112j iH
2dw50. ~3.11!

During the slow-roll period, the fieldw(t) changes at a
much faster rate thanH(t), and we can solve~3.11! using a
WKB-type ansatz,

dw5eW~ t !, ~3.12!

and assuminguẄu!Ẇ2. Substitution of~3.12! into ~3.11!
gives a quadratic equation forẆ with the solution

Ẇ~ t !5~2 3
26A 9

4212j!H~ t !. ~3.13!

Alternatively we can follow the method of Ref.@20# and
write the equation describing the evolution ofw in terms of
the parameterp measuring the number ofe-foldings:

p5 ln
a~ t !

a~ t i !
5E

t i

t

H dt, ~3.14!

wheret i denotes the time at the onset of inflation. The lat
equation can be written in all eras of interest, inflation,x
dominated~in the approximation where one averages ov
the x oscillations!, radiation dominated, and matter dom
nated. When neglecting (wp8)

2 with respect to 1, this equation
reads

2
3wpp9 1~12l!wp852~123l!b~w2w0!, ~3.15!

where l is the ratio between pressure and energy dens
~i.e., 21, 0, or 1

3 in vacuum-,x- or matter-, and radiation-
dominated eras, respectively!, and whereb is the parameter
measuring the curvature of thew-dependent mass scale driv
ing the evolution ofw in the corresponding era~e.g.,bi in the
inflationary era andbx in thex-oscillation-dominated era!.

The equation~3.15! is that of a damped harmonic oscilla
tor. The critical value ofb separating the overdamped-typ
solution from the damped-oscillation-type one isbc5

3
8 ~in

both the vacuum-dominated and the matter-domina
cases!. During inflation, the approach ofw towardw0 is os-
cillatory if b i.bc , i.e., n

2,0, where we define

n2[6~bc2b i !5 9
4212j i . ~3.16!

From what we said above, we expect to be in this regi
~n5i unu!. Then

dw5Ae23p/2 cos~ unup1d!, ~3.17!

whereA andd are constants. The number ofe-foldings dur-
ing inflation ispi*65, so that if initially udwu;1, i.e.,A;1,
then, by the end of inflation,

udwu&e23pi /2&10242. ~3.18!

During x domination the average pressure of the oscill
ing x field is nearly zero, the expansion law isa(t)}t2/3, and
the approach ofw towardw0 is described by Eq.~3.15! with
l50 andb5bx . This yields, whenbx.bc , an additional
factor of attraction ofdw toward zero of ordere23px/4, where
px is the number ofe-foldings duringx domination.@Note
that in the simple model~2.10! one hasbx51

2k52bi .# The
energy ofx oscillations eventually thermalizes, and the un
ter
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verse enters the radiation era witha(t)}t1/2. Sincel5 1
3 or

R50 then, we see either from~3.15! or from ~3.9! that dw
essentially stops evolving during the radiation era indepen
dently of the value ofb. During the subsequent matter-
dominated era,dw will be further attracted towardw0 by an
additional factore23pm/4, where pm;9 is the number of
e-foldings separating us from the end of the radiation era
Finally, the present value ofdw is expected to be

udwu&10249. ~3.19!

Note that the estimate~3.19! is independent of the precise
values ofbi andbx as long as they are both.3

8. A nonzero
value ofdw causes a number of potentially observable devia
tions from general relativity@16#. However, all observable
non-Einsteinian effects are proportional to the square ofdw.
The present observational bounds~from equivalence prin-
ciple tests! are, within the context of the model~2.9!,

kudwuobs&531026. ~3.20!

Even if we were to assume thatbi , or equivalentlyji , is
anomalously smaller than unity, it would only be in the ex-
treme case whereji&1022 that the attraction factor due to
inflation;e24j i pi would not be much smaller than unity. We
see that inflation is extremely efficient in driving a homoge-
neous, classical fieldw to w0. In the case considered below,
where the fieldw has a potential@sharing the discrete sym-
metry of the coupling functionsBa~w!#, we conclude that we
have here a natural, non-fine-tuned, solution to the Polonyi
moduli problem as the VEV ofw is left, at the end of infla-
tion, very precisely at the place where it stores no potentia
energy. However, as the change in the equation of state at th
end of inflation can result in copious creation of dilatons we
must consider whether this can regenerate a nontrivial qua
siclassical VEV forw. This will be discussed in the next
section.

IV. QUANTUM CREATION OF DILATONS

Particle creation during and shortly after inflation can be
studied using the standard methods of quantum field theor
in curved spacetime@21#. For a massless scalar field with
coupling to the curvature, as in Eq.~3.9!, this has been done
by Ford@22# in the limit where the coupling to the curvature
is nearly conformal,uji2

1
6u!1. He assumed also that the

x-dominated period is very short, so that inflation is followed
by thermalization in about one Hubble time. He found that
the energy density of created particles at the end of inflation
(t5t

*
) is

rw~ t* !;1022~6j i21!2H
*
4 , ~4.1!

whereH
*
is the expansion rate att5t

*
.

We have calculated the energy density and the spectrum
of dilatons without assuming~ji2

1
6! to be small and without

assuming that thex-dominated period is necessarily short.
We found that the matching to ax-dominated expansion
brings several qualitatively new features but does not chang
drastically the overall quantitative results of a matching to a
radiation-dominated era. To keep things simple we discuss i
the text only the latter case. The details of our calculation are
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given in the Appendix~which contains also a brief discussio
of the matching to ax-dominated expansion!, and here we
shall only state the results.

The spectrum is expressed in terms of the comoving wa
numberk, which is equal to the physical momentum of th
wave att5t

*
@we seta(t

*
)51#. At later times the momen-

tum is p(t)5k/a(t), and the wavelength isl(t)5(2p/
k)a(t). We find that the energy spectrum of dilatons
peaked at k;H

*
and is exponentially suppressed fo

k@H
*
. In the limit of long wavelengths,k!H

*
,

drw~ t !5
G2~n!

32p3a4~ t !
~n2 1

2 !2S 2H*k D 2n11

k3dk ~4.2!

for n real @i.e., ji,
3
16 in Eq. ~3.16!# and

drw~ t !5
H*

8p2unua4~ t !
~ unu21 1

4 !k2dk ~4.3!

for n5i unu, where in the latter case we assumed for simplic
that exp~2punu!!1. @Note thatji5

1
6 corresponds ton51

2, for
which Eq.~4.2! indeed predicts no particle production.#

When inflation is followed byx domination, the dilaton
spectrum contains a second peak atk;mx which contributes
roughly the same number density as the peak atk;H

*
and

an energy density differing by a factor;mx/H*
. By inte-

grating the spectra~4.2! or ~4.3! up to kmax;H
*
, we find

~roughly independently ofn as long asun21
2u*1! that the

total dilaton energy density is of order

rw~ t !;1022H
*
4 a24~ t !. ~4.4!

In other words, we find that when 6ji21 becomes*1, the
factor ~6ji21!2 present in the nearly conformal case~4.1!
saturates to something of order unity.

Using the approximate conservation of the comoving e
tropy }N T3a3 and Hubble’s law at thermalization (H*
;N

*
1/2T

*
2 /mP) we can write, for the present energy densi

in massless dilatons,

Vw[
rw

rc
;1022SH*mP

D 2S N
N *

D 1/3V r . ~4.5!

Here rc is the critical density,N is the number of spin
degrees of freedom in radiation and relativistic particles~at
present!, N

*
is its value at t

*
~i.e., at thermalization!,

V r5r r /rc5(431025)h22, r r is the radiation density,h;
1
2 is the Hubble parameter, andmP is the Planck mass. The
characteristic wavelength of dilatons for the peak atk;H

*
~whenji*

1
12 @23#! is

lc;2pH
*
21Z*;4~mP /H* !1/2 mm, ~4.6!

where Z*;N
*
1/12
N 21/3(H*mP)

1/2/T, with T52.74
K5~0.83 mm!21, is the redshift att5t

*
. The presence of a

x-oscillatory era would add a~possibly overlapping! second
peak with characteristic wavelength differing by a fact
;H

*
/mx .

Waves of wavelength smaller than the Hubble leng
l(t),t, can be treated classically, and their amplitude can
estimated from
ve
e

is
r

ty

n-

y

r

h,
be

wk~ t !;a~ t !Fqk drw~ t !

dk G1/2, ~4.7!

and at the present time we find, using Eqs.~4.2! and ~4.3!,

wk;0.1q1/2Z
*
21k~H* /k!n11/2, n.0, ~4.8!

wk;0.1Z
*
21~qH* k!1/2, n5 i unu. ~4.9!

For k;H
*
, corresponding to wavelengths;lc , both of

these equations give

wH
*
;~T/mP!~H* /mP!1/2;10232~H* /mP!1/2&10234,

~4.10!

where we have used the bound@2# H
*

&1025mP on the rate
of inflation. ~Larger values ofH

*
result in an excessive

amount of relic gravitational waves!. In the case ofn2,1
4

~ji.
1
6! ~including n2,0, i.e., ji.

3
16! the dilaton amplitude

wk}uk1/22nu decreases towards longer wavelengths. Thi
means that for the wavelengths and time scales of relevan
to laboratory experiments the quantum-regenerateddw is
many orders of magnitude below the observational bound
~3.20!.

A different behavior is obtained forn.1
2 ~ji,

1
6!, whenwk

grows towards longer wavelengths. The largest growth oc
curs for nearly minimal coupling,ji'0, n'3

2, when wk
}k2114j i, and on the present Hubble scalek;Ha;HZ

*with H21;1028 cm,

dwmax;V r
1/2~H/T!4j i~H* /mP!122j i

;1027102106j i~105H* /mP!122j i. ~4.11!

Even for anomalously small curvature couplingsji&1022,
and the maximal allowed value ofH

*
, the dilaton amplitude

is smaller thandw;1027, and therefore smaller than the ob-
servational limits~3.20!, which become less stringent when
k58ji is itself small, i.e., when the interaction of dilatons
with matter is suppressed due to a small value ofji .

It should be noted that Eqs.~4.7!–~4.9! cannot be used for
wavelengths longer than the Hubble length, where real pa
ticles cannot yet be distinguished from vacuum polarizatio
effects. In particular, we cannot conclude from~4.8! thatwk
can become arbitrarily large in the limit of long wavelengths
To estimate the dispersion of the dilaton field on superhor
zon scales, we calculated the quantum expectation val
^w2&. The calculation is outlined in the Appendix, and the
result is that forn.1

2 we have^w2&(t);wkH
2 , wherekH cor-

responds to the Hubble scale at timet. This indicates that
superhorizon wavelengths do not significantly contribute t
dw.

V. MASSIVE DILATONS

Up till now we have been considering the case where th
dilaton remains exactly massless at low energy. However,
we remarked above, under the assumption of a discretew
symmetry@or some other universality feature such as the on
built into the model~2.9!# the existence of a mass term forw
does not create the usual Polonyi problem because, after
flation, the VEV of w is left very precisely pinned at the
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minimum of its potential. We must, however, investiga
what constraints on the dilaton massmw are obtained by
requiring that the present mass density of the quantu
generated dilatons does not exceed the critical densityrc . To
simplify the discussion, we shall consider only the case
n2,1

4, when long-wavelength modes withk!H
*
are unim-

portant, and the particle interpretation of the fielddw be-
comes valid shortly aftert

*
. The massmw and the dilaton

number densitynw should then satisfy the condition

Vw[
nwmw

rc
&1. ~5.1!

To estimatenw , we note that the ratio

r5nw /nr , ~5.2!

wherenr is the density of particles with masses smaller th
the temperature, remains approximately constant in
course of cosmological evolution~assuming that the dilaton
lifetime exceeds the age of the universe, see below!. At the
end of inflation, we find from integrating the number dens
spectrum~see the Appendix!

nw~ t* !;1022H
*
3 . ~5.3!

Using the other equations

nr~ t* !;N *T*
3 , ~5.4!

H*;N
*
1/2T

*
2 /mP , ~5.5!

whereT
*
is the thermalization temperature, we get

r;1022N
*
21/4~H* /mP!3/2. ~5.6!

Inserting this in~5.1! we obtain

Vw;1022N
*
21/4~H* /mP!3/2~mw /T!V r , ~5.7a!

where, as above,V r5r r /rc5(431025)h22. Numerically
this reads

Vw;S 105 H*mP
D 3/2 mw

10 GeV
. ~5.7b!

When the equalityVw51 is satisfied, dilatons dominate
the mass density of the universe. This can happen for
whole range of massesmw*10 GeV. Let us note in particular
that the valuemw;1 TeV suggested by many current SUSY
breaking models@13,14# is allowed and corresponds to
H
*

;1027mP , i.e., T*
;1015 GeV. We remark also that the

valuemw;mP @24# corresponds to a ‘‘weak scale inflation
H
*
;100 GeV@17# @i.e., to an intermediate scale reheatin

temperatureT
*
;331010 GeV;(mWmP)

1/2#. Other authors
have suggested the possibility that dilatons may provide
dark matter of the universe@18,25#. An important difference
of our model is that our allowed mass range ismw*10 GeV
~which contains, notably,mw;1 TeV! and still corresponds
to essentiallystabledilatons, with a decay time much large
than the age of the universe~as is discussed next!. @Usually
@18#, stable dilatons exist only formw&100 MeV because of
Eq. ~5.9! below.#
te

m-
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the
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-
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Let us finally examine whether additional constraints on
the dilaton mass follow from an eventual flux ofg rays re-
sulting from the dilaton decay,w→gg. This decay is de-
scribed by the term

L int}~w2w0!Fmn
2 ~5.8!

in the effective Lagrangian. When expressed in terms of a
canonically normalized scalar fieldwcan5w/Aq, Eq. ~5.8!
contains a coupling constant}1/mP . By dimensional analy-
sis, if the dimensionless coefficient in front of~5.8! is
of order unity, the corresponding lifetime is~see also@11,12,
18#!

tw;mP
2 /mw

3. ~5.9!

Under the same assumptions~dimensionless coefficients of
order unity! one gets a comparable lifetime for the decay of
the dilaton into two light bosons. On the other hand, the
decay into two light fermions is suppressed by a factor
(mc/mw)

2 because one can absorb any coupling function
B~w! multiplying the fermion kinetic termc̄Dc into a
w-dependent rescaling ofc, leaving only a coupling propor-
tional to the fermion mass:Bc(w)mcc̄c @26#. Let us also
note that the term~5.8!, when present with a coupling coef-
ficient of order unity, opens an energy exchange channel be
tween the dilaton and any electromagnetic or Yang-Mills
condensate@27#.

In our case, however, all coupling functions are expected
to have extrema atw5w0, and thus the dimensionless coef-
ficient in front of ~5.8!, as well as analogous coefficients
entering other~bosonic or fermionic! couplings, is}dw, i.e.,
is exceedingly small. Theng rays can only be produced in
binary collisions ww→gg. The corresponding interaction
term is

L int}~w2w0!
2Fmn

2 , ~5.10!

with a dimensionless coefficient of order unity. The corre-
sponding annihilation cross section is extremely small@28#:

s;mw
2/vmP

4 , ~5.11!

wherev is the average velocity of dilatons. The lifetimetw
can be found fromnwsvtw;1, which gives

tw;mP
4 /nwmw

2. ~5.12!

The annihilation rate per unit spacetime volume is

nw

tw
;
nw
2mw

2

mP
4 &

rc
2

mP
4 ;t0

24, ~5.13!

wheret0 is the present age of the universe. Hence there is no
more than one annihilation in the entire visible universe dur-
ing its whole lifetime.

Note that as all coupling functions have extrema atw5w0,
the type of dark matter our mechanism leads to has only
exceedingly weak interactions with ordinary matter. Basi-
cally, its presence can be felt only through the gravitational
effect of its mass. This leaves little hope of detecting it in
laboratory experiments. For instance, for a macroscopically
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sizable massmw;mP;231025 g, the average present cos
mological density of dilatons would be at mostnw;10224

cm23.
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APPENDIX

In this Appendix we study the spectrum of created dil
tons in simple models in which de Sitter inflation is followe
either by a radiation-dominated expansion or by
x-dominated one. We consider first the transition to
radiation-dominated era. Using the conformal time coord
natedh5dt/a(t), the corresponding metric can be writte
as

ds25a2~h!~2dh21dx2!, ~A1!

a~h!5H 2~H*h!21, h,h* , ~A2a!

H* ~h2h̄ !, h.h* . ~A2b!

Here,H
*

5const is the expansion rate during inflation,h
*

,0
is the thermalization time when inflation ends, andh̄5h*
1(H

*
2 h* )

21. It will be convenient to seth*52H
*
21, so

that a~h
*
!51. The calculation in this Appendix follows the

standard techniques reviewed in@14#.
The field operatordŵ(x)5ŵ(x)2w0 satisfies a massless

nonminimally coupled field equation~3.9!,

~¹22j iR!dŵ~x!50, ~A3!

and can be expanded in terms of creation and annihilat
operators:

dŵ~x!5
q1/2

a~h!
E d3k

~2p!3/2
@ âkck~h!eik–x1H.c.#.

~A4!

Here, carets indicate operator quantities and should not
confused with the notation of Sec. II, where they indica
quantities in the ‘‘string frame.’’ The mode functionsck~h!
satisfy the normalization condition

ck8ck*2ckck* 852 i , ~A5!

corresponding to@ âk ,âk8
†

#5d(k2k8). We shall assume that
the quantum state of the dilaton field during the inflationa
periodh,h

*
is the de Sitter–invariant Bunch-Davis vacuum

@i.e., that ck(h);e2 ikh/A2k when h→2`#. The corre-
sponding mode functions are

ck~h!5A~2h!1/2Hn
~1!~2kh!, ~A6!

where

A5~p/4!1/2eip/4eipn/2, ~A7!
-

o

he
ng
al

a-
d
a
a
i-
n

,

ion

be
te

ry

H n
(1)(z) are Hankel functions, andn is given by Eq.~3.16!.
The mode functions for the radiation-dominated period

h.h
*
are

ck~h!5
1

~2k!1/2
@ake

2 ik~h2h̄ !1bke
ik~h2h̄ !#, ~A8!

and Eq.~A5! gives a normalization condition forak andbk :

uaku22ubku251. ~A9!

The coefficientsak andbk can be determined by matching
the mode functions~A6! and ~A8! and their derivatives at
h5h

*
. The dilaton spectrum~in number density and energy

density! can then be found from

dnw5
1

2p2a3~ t !
ubku2k2dk, ~A10a!

drw5
1

2p2a4~ t !
ubku2k3dk. ~A10b!

The instantaneous thermalization model~A2! is not ad-
equate for modes with wavelengths shorter than the de Sitte
horizon ath

*
, k*H

*
. In a more realistic model, the transi-

tion from the vacuum to the radiation equation of state take
at least a Hubble time, and particle creation in such modes
exponentially suppressed,b~k@H

*
!'0. In the opposite

limit, k!H
*
, we can findak andbk using the asymptotic

form of the Hankel functions for small values of the argu-
ment:

Hn
~1!~z!'

i

sin~np! F e2 inp

G~11n! S z2D
n

2
1

G~12n! S z2D
2nG .
~A11!

For n.0, the first term in~A11! is negligible, and we find
ak'2bk and

ubku25
1

16p S n2
1

2D
2

G2~n!S 2H*k D 2n11

. ~A12!

In deriving ~A12! we have used the identity

G~z!G~12z!5
p

sin~pz!
. ~A13!

In the case of imaginaryn, n5i unu, we shall assume for
simplicity that exp~2punu!!1. Then again the first term in
~A11! can be neglected, and we obtainak'2bk with

ubku2'
H*
4kunu ~ unu21 1

4 !. ~A14!

Combining ~A12! and ~A14! with ~A10!, we obtain Eqs.
~4.2! and ~4.3!. Let us note in passing that the spectrum
~A14! is formally of the Rayleigh-Jeans formubkuRJ

2 5TRJ/k,
that is, the limit of (ek/TRJ21)21 when k!TRJ. ~Similar
spectra also come out of the superinflationary scenario o
Refs. @3#, @18#.! By contrast, we shall see below that when
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inflation is followed byx domination one does not get
Rayleigh-Jeans-type spectrum.

The dispersion of the dilaton field on superhorizon sca
k!h21, can be estimated by calculating the expectat
value

^~dŵ !2&5~2p!23a22qE uck~h!u2d3k. ~A15!

The contribution of long wavelengths~k!H
*
! to this inte-

gral can be found using Eqs.~A8!, ~A12!, and ~A14! with
ak'2bk . This gives

^~dŵ !2&'
q

4p3H
*
2 ~h2h̄ !2

E d3k k21ubku2

3sin2@k~h2h̄ !#, ~A16!

and forn.0 we find

^~dŵ !2&;q
~n21/2!2G2~n!

16p3H
*
2 ~h2h̄ !2

3~2H* !2n11E
0

;H
* dk k22n sin2@k~h2h̄ !#.

~A17!

It is easily seen that forn,1
2 the integral is dominated by the

upper limit ~k;H
*
!, while for 1

2,n,3
2 the dominant contri-

bution is given byk;h21, that is, by the modes of wave
length comparable to the Hubble length. In the latter case
upper limit of integration can be extended to infinity, and w
obtain a somewhat unwieldy expression

^~dŵ !2&;22p23 sin~np!G~122n!G2~n!

3~n2 1
2 !2qH

*
2 @4a~h!#2n23, ~A18!

wherea~h! is given by~A2b!. Disregarding numerical fac-
tors, this gives

^~dŵ !2&;qH
*
2 @a~h!#2n23. ~A19!

This is to be compared with the dilaton amplitudewk
which can be found from Eqs.~4.7! and ~4.2!:

wk
2~ t !;

qk2

a2~ t ! SH*k D 2n11

. ~A20!

It is easily seen that̂(dŵ)2&;w k
2 for k;h21.

Let us finally briefly indicate the peculiarities of the mo
general case where the inflationary evolution~A2a! is fol-
lowed by ax-dominated expansion with an averaged sc
factor @we assumeGx!H(h)!mx away fromh5h

*
and

average over the oscillations at frequencymx#:

^a~h!&5@11 1
2H* ~h2h* !#2 ~h.h* !. ~A21!

During this period,dw couples to thex matter through thew
dependence of the potential energyV~x,w!'1

2mx
2~w!x2

'1
2mx

2~w0!x
2@111

2bxdw2#2, which yields
a

es,
on

-
the
e

e

le

¹2w2qVww9 ~x,w0!dw5¹2w22bxqV~x,w0!dw50.
~A22!

Then the Fourier modesck~h! of Eq. ~A4! satisfy the
conformal-time evolution equation

]h
2ck~h!1@k22U~h!#ck~h!50, ~A23!

U~h![
ahh9

a
2qa2Vww9 ~x,w0!5

ahh9

a
22qbxa

2V~x,w0!.

~A24!

The first forms of Eqs.~A22! and~A24! are valid in both the
inflationary period @where Vww9 (x,w0)54b iV(x,w0)# and
thex-dominated one. During inflation the effective potential
readsU~h!52~123bi!h

22, while duringx domination

U~h!5
2

~h23h* !2
$123bx13~12bx!

3cos@2mx~ t2t* !#% ~h.h* !. ~A25!

The effective potential~A25! contains two distinct spectral
features: a monotonic piece}~h23h

*
!22 varying on the~av-

eraged! Hubble time scale, and an oscillatory piece involving
cos[2mx(t2t

*
)]. Correspondingly, the spectrum of quan-

tum fluctuations generated by solving the Schro¨dinger-like
equation~A23! will have two peaks: one atk;H

*
and one

at k;mx . ~Depending upon the inflationary scenario consid-
ered, these peaks might be separated or might overlap!. One
can compute the Bogolyubov coefficientbk of the first peak
by matching ath5h

*
the exact solutions of Eq.~A23! when

dropping the cosine term in Eq.~A25!. As above, these are
Hankel functions withn5n i[ iA6(b i23/8) in the inflation-
ary period and n5nx[ iA6(bx23/8) during the
x-dominated one.~We assume here for definiteness that both
are imaginary.! This yields, for the ‘‘Hubble time scale’’ peak
in the long wavelength limitk!H

*
,

ubkuH
2 5

1

2

unxu
un i u

F S 122
un i u
unxu D

2

1S 3

4unxu D
2G . ~A26!

Note that thisubku H
2 is independent ofk, and therefore dif-

ferent from the Rayleigh-Jeans-type spectrum~A14!. Inte-
grating~A26! up to some effective cutoffkmax5kH

*
leads to

nw
H;

1

48p2 k3
H
*
3

a3
, ~A27a!

rw
H;

1

64p2 k4
H
*
4

a4
. ~A27b!

The value ofk depends upon the details of the transition
between inflation andx domination. We expect thatk&1.
Assumingk;1, we get the total energy density~4.4! roughly
independently of whether inflation is followed by a
radiation-dominated era or ax-oscillatory one.
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Finally, the ‘‘oscillatory’’ peakk;mx can be estimated by
applying Born perturbation theory to Eq.~A23!: namely,
bk
osc'(2ik)21*Uosc(h)e22ikhdh. This yields ~u denoting

the Heaviside step function!

ubkuosc
2 5~ 3

8 !2p~bx21!2
H
*
3mx

3/2

k9/2
u~k2mx!, ~A28!

and, for instance,
nw
osc5

3

64p
~bx21!2

H
*
3

a3
. ~A29!

@These estimates are accurate when (bx21)H
*
2 !mx

2 and
should give the right order of magnitude whenbx21;1.# In
order of magnitude the number density~A29! is comparable
to ~A27a!. The corresponding energy density would differ
from ~A27b! by a factor;mx/H*

.
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