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String theory abounds with light scalar fieldhe dilaton and various moduliwhich create a host of
observational problems, and notably some serious cosmological difficulties similar to the ones associated with
the Polonyi field in the earliest versions of spontaneously broken supergravity. We show that all these problems
are naturally avoided if a recently introduced mechanism for fixing the vacuum expectation values of the
dilaton and/or moduli is at work. We study both the classical evolution and the quantum fluctuations of such
scalar fields during a primordial inflationary era and find that the results are naturally compatible with obser-
vational facts. In this model, dilatons or moduli within a very wide range of ma&skih includes the
SUSY-breaking favored value 1 TeV and extends up to the Planck s¢ajealify to define a novel type of
essentially stable ultraweakly interacting massive particles able to provide enough mass density to close the
universe.

PACS numbgs): 98.80.Cq, 04.56:h, 11.25.Mj

[. INTRODUCTION nonperturbative potential is too shallow to confine the dila-
ton without fine-tuning the initial conditionsee, however,
Superstring unificatiod1] and the inflationary scenario [8]). On the other hand, any potentisl{®) for a weakly
[2] have been, arguably, the most influential ideas in particleoupled field resurrects the Polonyi probl¢@+-12): either
physics and cosmology over the last decade. Attempts dhe energy stored in the coherent oscillations of the vacuum
combining these ideas and constructing superstring-based iexpectation valu¢VEV) of ® does not dissipate before now
flationary models have introduced some interesting nevand exceeds the critical density needed to close the universe,
ideas[3], but have encountered serious difficultjds-7]. A or the field decays before now, and thereby generically pro-
specific source of difficulties is the existence of masslessluces an excessive amount of entropy. In the case of the
scalar fields(the modul) having only gravitational strength nonperturbative  potentials  suggested by current
couplings to ordinary matter. Among the moduli fields, thesupersymmetry{SUSY- breaking models in string theory,
dilaton ®, which invariably accompanies the graviton in all the slow decay rate of the moduli fields leaves the universe
superstring models, plays a special role. In the presence ofia a radiation-dominated era at a temperature which is ge-
(tree-level-coupled dilaton, the cosmological evolution is nerically (i.e., under naturalness assumptions for the cou-
drastically different from that in Einstein’s gravity. In par- plings) much too low to be consistent with primordial nu-
ticular, instead of driving an exponential inflationary expan-cleosynthesi$13—15.
sion, a constant vacuum energy drives the dilaton towards In the present paper, we show that all the above difficul-
large negative valuescorresponding to weak couplings ties associated with the dilatdand modulj fields are natu-
while the universe expands only as a small power of timerally avoided if the new mechanism introduced in Réf]
Even apart from inflation, a massless dilaton, or moduli, fieldfor fixing ® is at work[17]. The main idea of16] was to
(for simplicity, as these fields share many characteristics, wexploit the fact that string loop effects, associated with world
shall refer to any of them as “the dilaton” and denote it assheets of arbitrary genus in intermediate string states, natu-
®) can cause a host of other cosmological problems. Duringally generate some nonmonotonic dependence upouf
the most recent, matter-dominated epoch of the universehe various couplings ofb to the other fields. Under the
such a field is necessarily time dependent. The masses aSsumption that the different coupling functiddg(®) have
elementary particles and their couplings all dependdgn extrema at some common valuedf®,, it has been shown
and the cosmological time variation of the dilaton runs into athat interactions with massive particles in an expanding uni-
violent conflict with observations, not to mention unaccept-verse drive the dilaton towards the val®g at which it de-
ably large violations of the equivalence principle. couplesfrom matter. All deviations from general relativity in
These problems are usually addressed by assuming thetis model have been estimated to be extremely small at the
the dilaton develops a potential, so that one recovers thpresent cosmological epoch, thereby naturally reconciling a
standard Einstein gravity aftab settles at the minimum of massless dilaton with existing observational data. The as-
the potential. The potential could originate from nonpertur-sumption of coincident maxima can be satisfied in a techni-
bative effects, such as gaugino condensation. The existencally natural way if there exists a discrete symmetry, e.g.,
of a potential ford entails, however, new difficulties. On the ®——®. Such a symmetry would guarantee that all cou-
one hand, it has been argugd| that the minimum of the plings have extrema ab,=0 (the only additional necessary
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assumption being that these extrema lead to minima rathenultiplicative coupling of the dilaton to all other fields. With
than maxima of the masses as functionsbof We note that higher orders in the loop expansion taken into account, we
precisely the discrete symmetdy——® (or e®—1/e®) is  expect the common facta °® to be replaced by several
known to hold for some of the moduli field$ duality), and  coupling functionsB,(®) multiplying different terms in(2.1)
has been conjectured to hold for the dilaton prog8r and(2.2). In particular, the effective action for the graviton-
duality: gs—1/gs, whereg,=e? is the string coupliny dilaton-inflation sector is expected to be of the form

Here we extend the analysis of R¢L6] to inflationary B.(®) By (®)
models. It will be shown that inflation is extremely efficient _ 4, =] Pg - ) S2d g a2
in driving a homogeneous fiel® to ®, (Sec. I). At the S fd x\/§r a’ R+ a’ [4VE0—4(VD)7]
same time, inflation is known to generate significant quan- 1
tum fluctuations in gravitational and other fields with a very B APV VI 2—V(y D 23
wide range of wavelengths. Fluctuations of the dilaton on 2 (PIVX) (@)1, @3
comoving scales smaller than the present horizon are poten- ) ) ) )
tially dangerous because they are not damped by the mech@here the function®,(®) admit a series expansion
nism of Ref.[16]. One might worry that quantum fluctua- 20, (@), (220,
tions could reintroduce the Polonyi-moduli problem in a Ba(P)=e "+ co reymet 24
different form. However, in Sec. Il we shall calculate the 504 5 similar expansion fof/()“(,d)). In the case of the

fluctuation spectrum and show that the predicted dilatony,qq,j fields (by contrast with the four-dimensional dilaton
fluctuat|on_s are well below the obsgrygtlonal c_onstramts. W%ropeb the effective action has also the generic fof2d),
next consider, in Sec. 1V, the possibility that, in addition 10 the oniy difference being that the nontrivi&l dependence is
nontrivial matter-coupling functions with extrema®t=®,,  gpsentat tree level, and arises at one loop and beyond.
the dilaton also has a potential with a minimundaj. (This A more convenient form of the action can be obtained by

may be enforced by the same discrete symmelmhis case 5 ¢onformal transformation from the “string-frame” metric
the dilatons are massive, and can potentially run into confhc& to the “Einstein-frame” metric

with observations, e.g., by overclosing the universe or by "
generating an excessive flux gfrays due to dilaton decays. U,,= CBg(cI))@MV' (2.5
We shall see, however, that in our model the constraints on

the dilaton mass derived ii11-13,18 can be substantially and by replacing the dilaton field by the variable
relaxed, due to the very weak couplings of the dilaton. We

find that dilatons with a very large range of mas$éekich B § B_é 2+25_&>+2§ vz 26
includes the suggested SUSY-breaking valug TeV and = 4 | By By By (2.6
extends up to the Planck scakan qualify to define a new
type of (essentially stable weakly interacting massive par- This gives
ticle (WIMP) able to provide enough mass density to close 1 1 1
the universe. _ 4 s 2 = 2
s f a9 75 R~ 35 (V) ~ 5 F()(VY)
Il. THE EFFECTIVE ACTION
Up till now, most of the analysis of superstring cosmology —Vix.e) . 2.7
has been based on the tree-level effective action, correspond-
ing to the lowest order in the string loop expansion: where we have defined
A . - x=C~ 2%, (2.8a
Streezf d*x\ge 2%{(a’) T IR+4V2D - 4(VD)?]
, F(@)=B,(®)/By(®), (2.8
+ % matter - (2.1 e
V(x,¢)=C™ By 4(®)V(x,P). (2.89

Here, @ is the dilaton, and the matter Lagrangian includes
fermions, gauge, and Higgs fields, and in particular the “in-The constan€ in Eq. (2.5) is chosen so that the string units
flaton” scalar fieldy whose potentiaV() drives the infla-  coincide with Einstein units at the present cosmological ep-
tion: och,CBy(®g)=1, and the constant in (2.7) is related to the
bare gravitational constai@®, g=47G=Ca'/4. As shown
in [16], G is numerically nearly identical to the observed
Newtonian gravitational constant so that=4m/m3 with
mp=1.22x10"° GeV.
Carets in Egs(2.1) and(2.2) indicate that the corresponding The minimal condition required for the mechanism of
fields are taken in the “string frame,” that is, in themodel =~ Ref.[16] to work is that allB,($) should have an extremum
formulation of string theory. at the sameb=3®,. When formulated within the context of
The string couplingy, which plays the role of the expan- inflationary models and in terms of the rescaled fietdsnd
sion parameter in the string loop expansion, is determined by, this leads to requiring that the potentiély,¢) in Eq. (2.7)
the expectation value of the dilatog,=e®. The tree-level has a minimum(as a function ofy) at ¢=¢, for any fixed
action (2.1) is proportional tog ; 2, resulting in a universal, value of x. Here,po=¢(®,). A simple toy model which sat-

K., === - ~
L matter™ — Z F2— YD y— %(VX)Z_V(X)"' o (2.2
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isfies this condition is the case where higher loops are sup- 9
posed to respect the tree-level universality of the dilaton cou- V(F(e)VX)— ax V(x,¢)=0, 3.3
plings. In this case all functionB,(®P) in (2.3 are identical:

_ 1 JF(e) J
B.(P)=B(D), (2.99 2, _ = 2_o 2 _
a Vi3 d— — (V0= 7 Vix.e)=0. (34)
and
R . During the slow-roll phase of inflation, the universe can be
V(x,®)=B(®)V(Y). (2.9 locally described by a flat Robertson-Walker metric,
Then, in the Einstein-frame actiof2.7), F(¢)=1 and the ds?=—dt?+a?(t)dx?, (3.5
potential has a factorized form: ) . ) .
with the expansion ratel =a/a given by
1 1 1 ) :
S= f d*x\g 24" 2g (Ve)?=35 (Vx)? H?=3[2qV(x, @)+ ¢*+aF(¢)x*1=5aV(x,¢0)- a6
—B Y(o)V(x)|. (2.10  The spacetime is approximately de Sitter, with the curvature

R~12H?~8qV(x, ¢o). 3.

In this modelo is attracted during both inflation and the AV0x: #o) (3.7
subsequent matter-dominated (gfatoward the maxima of To study the approach af to ¢,, we expandV(y,e) in
B(¢). Although the strong universality conditiai2.9) may  powers of(¢—¢p). For notational consistency wifli 6], it is
be too restictive, it is useful to have in mind the acti@rl)  convenient to denote b, the (positive dimensionless pa-
which provides a very simple model containing most of therameter measuring the curvatuiwith respect tog) of the
essential physics of the more general ma@e¥). inflationary mass scale around the minimusg

lll. CLASSICAL EVOLUTION Aixe)=V¥(x,0)=Ai(x, o) [ 1+ 3 Bi( o~ ‘pO)Z]@ 9
We shall assume, as is usually done in inflationary mod- '
els, that the potentiaV/(y,¢) in Eq. (2.7) has a minimum Here, the index stands for inflation. In the simple model
with V(xo,¢0)~0 and that it has a “slow-roll” region where (2.9, inwhich the potential is factorized,

it is a slowly varying function ofy : V(x,¢)=B ' (¢)V(x), one hass = /4, wherex was intro-
duced in Eq(3.2) above. In the general case, the valug3pf
V)’f« 12qV?, (3.1a  depends on the physics determining the mass stpléds
discussed in Ref.16] [see Eq(4.6b) therg, if the hierarchy
(\/\7);X<3q W, (3.1b  Aj<m, (which seems necessary in inflationary mogéss

due to nonperturbative effects, one expects to have
where we recall thaj=4m/mj. At the same time, the cou- B ~In(AgyindAj)=1.
pling functionsB, and the potential/are not expected to be Substituting this in Eq(3.4) and using(3.6) and(3.7), we
slowly varying functions ofe. For example, in the strong obtain
universality model2.9) we expectB(¢y)~1 and

(V2= §R)89=0, 3.9
k=—B"(¢o)/B(¢pg)~1 3.2
where dp=¢— ¢y and
at the maximum oB(¢p). Note that, contrary toy which has
the usual dimension of masg,is a dimensionless variable =3B (3.10

whose expected range of variation is of order unity.

For the initial conditions of the universe, we shall assume/Ve note that Eq(3.9) has exactly the form of that for a
that the fieldse and y are displaced from the minimum of Massless, nonminimally coupled field. The curvatires a
V(x,¢) at{xo. o} but are in its basin of attraction, at least in Slowly varying function of time during inflation, and the ef-
some parts of the univer§&9]. Then it is easy to see, quali- fect of the curvature term if3.9) is similar to that of a
tatively, how the cosmological evolution will proceed. The POSitive mass squared tem?~H? for the fluctuations ofp.
field ¢, which corresponds to the steep directionvity,¢), Inflation is followed by ay-dominated expansion when the
will evolve on a much faster time scale thanit will start  inflaton field x oscillates about the minimum of its potential
oscillating aboutp= ¢, these oscillations will be damped by [say V~%m)2((<p)x2]. During this y-dominated period 5¢
the expansion of the universe, and the universe will quicklywill approximately satisfy, after taking an average over the
settle into a quasiexponential inflation driven by the potentiaPScillations, an equation of the same form(8s) but with a
energy of the fieldy, V(x)=V(x,¢o). The damping of,  different value of¢, =38, (here 8,=[5* In m(¢)/d¢?] =,
oscillations during inflation is very efficient, and we expectmeasures the curvature of the mass of thefield; see the
that by the end of inflation the dilaton will be very close to Appendix for a more exact equation satisfied da).

@p- Neglecting the spatial gradients gf (which are rapidly
To describe this guantitatively, let us consider the fieldsuppressed by the cosmological expangsisme can finally
equations fory and ¢: rewrite (3.9) in the form
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S5¢p+3H8p+126H?50=0. (3.11)  verse enters the radiation era wiift)<t"% Sincex=3 or
R=0 then, we see either froit8.15 or from (3.9 that S¢
During the slow-roll period, the field(t) changes at a essentially stops evolving during the radiation era indepen-
much faster rate thaH(t), and we can solv€3.11 using a  dently of the value ofB8. During the subsequent matter-
WKB-type ansatz, dominated erade will be further attracted towarg, by an
W) additional factore 3Pm* where p,,~9 is the number of
op=e"", (3.12 e-foldings separating us from the end of the radiation era.

L . I . Finally, th t value afop i ted to b
and assumingW|<W?. Substitution of(3.12 into (3.11) inally, the present value aig IS expected fo be

gives a quadratic equation fo¥ with the solution |6p|=1074°. (3.19
W(t)=(— 3= \3-126)H(1). (3.13  Note that the estimaté3.19 is independent of the precise

) values ofg, and B, as long as they are both2. A nonzero
Alternatively we can follow the method of Ref20] and  yalue of 5 causes a number of potentially observable devia-
write the equation describing the evolution @fin terms of  tions from general relativitf16]. However, all observable

the parametep measuring the number @foldings: non-Einsteinian effects are proportional to the squaréeof
. The present observational bounffsom equivalence prin-
p=In a(t) :j H dt (3.14 ciple test$ are, within the context of the modé&2.9),
a(ty) J ’ '
K| 8| ops=5x107°. (3.20

wheret; denotes the time at the onset of inflation. The latter

equation can be written in all eras of interest, inflatiqgn, Even if we were to assume thg, or equivalently& , is

dominated(in the approximation where one averages overanomalously smaller than unity, it would only be in the ex-

the x oscillations, radiation dominated, and matter domi- treme case wheré&=<10 2 that the attraction factor due to

nated. When neglectingg() with respect to 1, this equation  inflation ~e~*4Pi would not be much smaller than unity. We

reads see that inflation is extremely efficient in driving a homoge-
neous, classical fielg to ¢,. In the case considered below,

Soppt (1=N)ep=—(1-3\)B(¢—¢o), (3.19  where the fieldp has a potentialsharing the discrete sym-

) . ~metry of the coupling functionB,(¢)], we conclude that we
where \ is the ratio between pressure and energy densitygye here a natural, non-fine-tuned, solution to the Polonyi-
(ie., —1, 0, or 3 in vacuum-,x- or matter-, and radiation- moduli problem as the VEV of is left, at the end of infla-
dominated eras, respectivglyand whereg is the parameter tjon, very precisely at the place where it stores no potential
measuring the curvature of thedependent mass scale driv- energy. However, as the change in the equation of state at the
ing the evolution ok in the corresponding er@.g.,5 inthe  end of inflation can result in copious creation of dilatons we
inflationary era angB, in the y-oscillation-dominated eja  must consider whether this can regenerate a nontrivial qua-

The equatior(3.19 is that of a damped harmonic oscilla- sjclassical VEV fore. This will be discussed in the next
tor. The critical value of8 separating the overdamped-type section.

solution from the damped-oscillation-type oneAs=3 (in
both the vacuum-dominated and the matter-dominated

. . . . IV. QUANTUM CREATION OF DILATONS
cases During inflation, the approach af toward ¢, is 0s- Q

cillatory if B;>p., i.e., »<0, where we define Particle creation during and shortly after inflation can be
5 . studied using the standard methods of quantum field theory
ve=6(B.—Bi)=7—12;. (318 in curved spacetim§21]. For a massless scalar field with

coupling to the curvature, as in E@.9), this has been done
eoy Ford[22] in the limit where the coupling to the curvature
is nearly conformal&—3<1. He assumed also that the

So=Ae—3p2 +9), 31 X—domlnate_d pgrloq is very short, so that !nflatlon is followed

$mAe cod|v|p+9) .19 by thermalization in about one Hubble time. He found that

whereA and & are constants. The number efoldings dur-  the energy density of created particles at the end of inflation
ing inflation is p;=65, so that if initially|5¢|~1, i.e.,A~1, ({=t)Is
then, by the end of inflation,

From what we said above, we expect to be in this regim
(v=i|v]). Then

polty)~1072(6&—1)?H], (4.9
|6p|<e 3Pi”<10 %2 (3.18
whereH, is the expansion rate att, .

During y domination the average pressure of the oscillat- We have calculated the energy density and the spectrum
ing x field is nearly zero, the expansion lawaigt)<t?3 and  of dilatons without assumingt; —£) to be small and without
the approach ob toward ¢, is described by Eq(3.15 with assuming that the-dominated period is necessarily short.
A=0 and g=p,. This yields, wheng >p;, an additional We found that the matching to g-dominated expansion
factor of attraction ofp toward zero of ordee 3P¥*, where  brings several qualitatively new features but does not change
p, is the number ok-foldings duringx domination.[Note  drastically the overall quantitative results of a matching to a
that in the simple model2.10 one hasﬁ)(:%K:Z,Bi .] The radiation-dominated era. To keep things simple we discuss in
energy ofy oscillations eventually thermalizes, and the uni-the text only the latter case. The details of our calculation are
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12

, (4.7)

given in the AppendixXwhich contains also a brief discussion
of the matching to g--dominated expansionand here we er(t)~a(t)
shall only state the results.

The spectrum is expressed in terms of the comoving wavgng at the present time we find, using E@s2) and (4.3,
numberk, which is equal to the physical momentum of the

q dp,(t)

k dk

wave att=t, [we seta(t,)=1]. At later times the momen- e~0.19Y22 _tk(H, Ik)**Y2 »>0, (4.9

tum is p(t)=k/a(t), and the wavelength is(t)=(2n/

k)a(t). We find that the energy spectrum of dilatons is e~0.1Z, Y (qH, kY2 v=ily|. 4.9

peaked atk~H, and is exponentially suppressed for

k>H, . In the limit of long wavelengthk<H, , For k~H, , corresponding to wavelengths\., both of

these equations give
FZ(V) -~ . 2v+1 5
dp¢(t)=m(v—a) K ) k®dk (4.2 en, ~ (T/mp)(H, /mp)Y*~10"3(H,, /mp)1?<10"%,

(4.10

for v real[i.e., £<= in Eq. (3.16] and
lie. &< a.(3.16] where we have used the bouf] H, <10 °mj; on the rate

H, of inflation. (Larger values ofH, result in an excessive
dpg(t)= 8nZv]akn (|v|>+ 2)k?dk (4.3 amount of relic gravitational wavesin the case ofi’<}

my (£>%) (including 1#<0, i.e., £>2) the dilaton amplitude
o, *<|kY?7?| decreases towards longer wavelengths. This
means that for the wavelengths and time scales of relevance
to laboratory experiments the quantum-regeneratedis
many orders of magnitude below the observational bounds

for v=i|v|, where in the latter case we assumed for simplicity
that exg— m]v))<1. [Note that& =3 corresponds to=3, for
which Eq.(4.2) indeed predicts no particle productipn.
When inflation is followed byy domination, the dilaton
spectrum contains a second peakatm, which contributes (3'2@'_ L . 1 1
roughly the same number density as the peak-aH, and A different behavior is obtained far>3 (§<5), whengy
an energy density differing by a factorm,/H, . By inte- grows towards Ionggr wavelengths. The Iarsgest growth oc-
grating the spectr&4.2) or (4.3 up to Kya.—H, , we find Curfliag, nearly minimal coupling§~0, ¥~3, when g,
(roughly independently of as long asjv—3|=1) that the <k ' an% on the present Hubble scale-Ha~HZ,
total dilaton energy density is of order with H™'~10%° cm,

S@mac=Qr A(HIT)*(H, Imp)t 24
~10 710" 19%i(10°H, /mp)1 25, (4.1))

p,(1)~10"2Hja %(t). (4.9

In other words, we find that whené6-1 becomes=1, the

factor (6&—1)* present in the nearly conformal caéel)  Even for anomalously small curvature couplingss10 2,

saturates to something of order unity. and the maximal allowed value éf, , the dilaton amplitude
Using the approximate conservation of the comoving enis smaller thanse~10"7, and therefore smaller than the ob-

tropy =/ T%a® and Hubble’s law at thermalizationH(,  servational limits(3.20, which become less stringent when

~ Y212 Im.) we can write, for the present energy density k=8¢ is itself small, i.e., when the interaction of dilatons

in massless dilatons, with matter is suppressed due to a small valug; of
It should be noted that Eqét.7)—(4.9) cannot be used for
0 P 12 He\2( 1’39 wavelengths longer than the Hubble length, where real par-
o Ewl me/ 17, r (4.9 ficles cannot yet be distinguished from vacuum polarization

effects. In particular, we cannot conclude frg8) that ¢,

Here p, is the critical density, /" is the number of spin can become arbitrarily large in the limit of long wavelengths.
degrees of freedom in radiation and relativistic partidets  To estimate the dispersion of the dilaton field on superhori-
present, ./, is its value att, (i.e., at thermalization =~ zon scales, we calculated the quantum expectation value
Q,=p,lp.=(4x10"5h"2, p, is the radiation densith~  (¢°. The calculation is outlined in the Appendix, and the
1 is the Hubble parameter, amd, is the Planck mass. The result is that for>3 we have(¢?)(t)~ ¢, wherek cor-
characteristic wavelength of dilatons for the peakatH,  responds to the Hubble scale at tireThis indicates that
(when&=3 [23)) is superhorizon wavelengths do not significantly contribute to
8.
Ne~27H *Z, ~4(mp/H, )Y mm, (4.6 i
where Z,~ /Y2 =UH mu)Y¥T, with T=2.74 V- MASSIVE DILATONS
K=(0.83 mm 1, is the redshift at=t, . The presence of a Up till now we have been considering the case where the
x-oscillatory era would add éossibly overlappingsecond dilaton remains exactly massless at low energy. However, as
peak with characteristic wavelength differing by a factorwe remarked above, under the assumption of a disgpete
~H,/m,. symmetry[or some other universality feature such as the one

Waves of wavelength smaller than the Hubble lengthpuilt into the model2.9)] the existence of a mass term fpr
N (t)<t, can be treated classically, and their amplitude can beloes not create the usual Polonyi problem because, after in-
estimated from flation, the VEV of ¢ is left very precisely pinned at the
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minimum of its potential. We must, however, investigate Let us finally examine whether additional constraints on
what constraints on the dilaton mass, are obtained by the dilaton mass follow from an eventual flux gfrays re-
requiring that the present mass density of the quantumsulting from the dilaton decayy—vyy. This decay is de-
generated dilatons does not exceed the critical depgitfo  scribed by the term
simplify the discussion, we shall consider only the case of
1#<%, when long-wavelength modes with<H, are unim- L (@~ @0)FZ, (5.9
portant, and the particle interpretation of the fielgd be- . . )
comes valid shortly aftet, . The massn, and the dilaton in the effective Lagrangian. When expressed in terms of a
number density1,, should then satisfy the condition canonically normalized scalar fielg,=¢/\q, Eq. (5.8
contains a coupling constamtl/mp . By dimensional analy-
Q =n¢m‘p<1 5.1) sis, if the dimensionless coefficient in front 6.9 is
¢ pe ' of]c))rder unity, the corresponding lifetime (see alsq11,12,
18
To estimaten,,, we note that the ratio S
T~ Mp/my. (5.9
r=n,/ng, (5.2
Under the same assumptiofdimensionless coefficients of
wheren, is the density of particles with masses smaller thargrder unity one gets a comparable lifetime for the decay of
the temperature, remains approximately constant in thehe dilaton into two light bosons. On the other hand, the
course of cosmological evolutio@ssuming that the dilaton decay |nto two light fermions is suppressed by a factor
lifetime exceeds the age of the universe, see bklﬂ\l\lthe (m‘/}/m ) because one can absorb any Coup“ng function
end of inflation, we find from integrating the number densityB(y) multiplying the fermion kinetic termyDy into a

spectrum(see the Appendix ¢-dependent rescaling af, leaving only a coupling propor-
o3 tional to the fermion mass:B,(@)m, [26]. Let us also
Ny(t,)~10"7H;. (5.3 note that the terng5.8), when present with a coupling coef-

ficient of order unity, opens an energy exchange channel be-

Using the other equations tween the dilaton and any electromagnetic or Yang-Mills

t )~ 5.4 condensatg27].
n ( ) ’ * *1 ( . ) . .
In our case, however, all coupling functions are expected
H, ”Jf”i/ZTi/mP, (5.5) tp .have. extrema ab=¢g, and thus the dlmen3|onles§ g:oef—
ficient in front of (5.8), as well as analogous coefficients
whereT, is the thermalization temperature, we get entering othefbosonic or fermionigcouplings, isxde, ie.,
is exceedingly small. Ther rays can only be produced in
r~10‘2,/1/;1’4(H* /mp) %2, (5.6 binary collisions ¢o—vyy. The corresponding interaction
term is

Inserting this in(5.1) we obtain 7 -
ffiint‘x(ﬁo_@o) FMV’ (51@

with a dimensionless coefficient of order unity. The corre-
where, as above(),=p,/p.=(4x10 °)h~2. Numerically  sponding annihilation cross section is extremely sif28]:
this reads

Q,~10 27 "MH, Imp)¥ (m, /T)Q,, (5.73

o~ mi/v mé,, (5.11

3/2 m
(105 mp> 10 (;eV' (5.7D wherey is the average velocity of dilatons. The lifetimg
can be found from ov 7,~1, which gives
When the equalitf) =1 is satisfied, dilatons dominate 4 5

the mass density of the universe. This can happen for the T~ Mp/N M. (5.12
whole range of masses,=10 GeV. Let us note in particular
that the valuem,~1 TeV suggested by many current SUSY- The annihilation rate per unit spacetime volume is
breaking models[l3 14 is allowed and corresponds to

2.2
H,~10 'mp, i.e.,, T,~10" GeV. We remark also that the Ny MMy _ Pe © o (5.13
valuem,~mp [24] corresponds to a “weak scale inflation” T, mp  mp 0" '

H,~100 GeV[17] [i.e., to an intermediate scale reheating

temperatureT, ~3x10'° GeV~(m,ymp)Y?]. Other authors wheret, is the present age of the universe. Hence there is no
have suggested the possibility that dilatons may provide thenore than one annihilation in the entire visible universe dur-
dark matter of the univerde 8,25. An important difference ing its whole lifetime.

of our model is that our allowed mass rangeris=10 GeV Note that as all coupling functions have extremaatp,,
(which contains, notablyn,~1 TeV) and still corresponds the type of dark matter our mechanism leads to has only
to essentiallystabledilatons, with a decay time much larger exceedingly weak interactions with ordinary matter. Basi-
than the age of the univergas is discussed nex{Usually  cally, its presence can be felt only through the gravitational
[18], stable dilatons exist only fan,<100 MeV because of effect of its mass. This leaves little hope of detecting it in
Eq. (5.9 below] laboratory experiments. For instance, for a macroscopically
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sizable massn,~mp~2X 10° g, the average present cos- H ()(z) are Hankel functions, andis given by Eq.(3.16.
mologlcal densny of dilatons would be at masf~ 10" The mode functions for the radiation-dominated period
cm 3, 7>, are

1 _ _ _ _
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and Eq.(A5) gives a normalization condition fag, and 8, :

In this Appendix we study the spectrum of created dila-
tons in simple models in which de Sitter inflation is followed

either by a radiation-dominated expansion or by a dn,==——5— | B ?k?dKk, (A103)
x-dominated one. We consider first the transition to a 2ma(t)
radiation-dominated era. Using the conformal time coordi-
natedn=dt/a(t), the corresponding metric can be written _ 1 203
— a2 2 2
ds?=a*(n)(—dn’+dx?), (A1) The instantaneous thermalization modaPR) is not ad-
1 equate for modes with wavelengths shorter than the de Sitter
a(n)= —(Hy 77)_ AT (A28 horizon aty, , k=H, . In a more realistic model, the transi-
K H,(n—7n), 7>7,. (A2b)  tion from the vacuum to the radiation equation of state takes

at least a Hubble time, and particle creation in such modes is
Here,H, =const is the expansion rate during inflation,<0  exponentially suppressedd(k>H,)~0. In the opposite
is the thermalization time when inflation ends, ane 7, limit, k<H, , we can finda, and B, using the asymptotic
+(H* 7,) L. It will be convenient to sety, = —H;l, so  form of the Hankel functions for small values of the argu-
thata(z,)=1. The calculation in this Appendix follows the ment:
standard techniques reviewed[it4].

The field operatobe(x) = ¢(X) — ¢, satisfies a massless, @ i e ' [z\¥ 1 z\ 7Y
nonminimally coupled field equatiof8.9), v (2)~ sin(vm) [T(1+v) \2] T(1-v) \2 :
(V2= £R)53() =0, (A3) (AL
and can be expanded in terms of creation and annihilanoﬁOr V_>0 thed first term in(A11) is negligible, and we find
operators: P an
R 1/2 k . ” | |2_ 1 1 FZ . 2v+1 (Alz
o= 307 | G et Al =ter V2 TR (A1

A4 In deriving (A12) we have used the identity
Here, carets indicate operator quantities and should not be
confused with the notation of Sec. I, where they indicate
quantities in the “string frame.” The mode function(7) I'or(1-2)= sm( 77) (A13)
satisfy the normalization condition

o o AS In the case of imaginary, v=i|y|, we shall assume for
b~ e =1, (AS) simplicity that exg—m|+|)<1. Then again the first term in

corresponding tda, ,él,]z 6(k—k'). We shall assume that (AL1) can be neglected, and we obtaigy~— By with

the quantum state of the dilaton field during the inflationary
period n<7, is the de Sitter—invariant Bunch-Davis vacuum | Bl 2~
[i.e., that ¢ (7)~e 72k when p——o]. The corre-
sponding mode functions are

H* 2,1
4k|V| (|V| +37). (A14)
Combining (A12) and (A14) with (A10), we obtain Egs.
A 1/2H K A (4.2 and (4.3). Let us note in passing that the spectrum
ol =A(=7) (k). (A8) (A14) is formally of the Rayleigh-Jeans foriB,|2;=Tr/k,
where that is, the limit of €“TrRi—1)"1 when k<Tg;. (Similar
o spectra also come out of the superinflationary scenario of
A= (m/4)Yoeim4gimyi2 (A7)  Refs.[3], [18].) By contrast, we shall see below that when
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inflation is followed by y domination one does not get a VZe—qV" (X,<Po)5€0=V290—2BXqV(X,¢o) S5¢=0.
Rayleigh-Jeans-type spectrum. e (A22)
The dispersion of the dilaton field on superhorizon scales,

k<!, can be estimated by calculating the expectationrhen the Fourier modes) () of Eq. (Ad) satisfy the

value conformal-time evolution equation
<(5§D)2>:(2W)_sa_ZQJ l(m)[?dk. (A15) P2 () +[K*=U(7) ¢ 7) =0, (A23)
The contribution of long wavelength&<H, ) to this inte- W om . )
gral can be found using Eq$A8), (A12), and (A14) with U(U)E?_qa VeelX,@o)= "~ 206, V(X o)-
a~—By. This gives (A24)
<(5¢)2>~ g _ J a3k k1|82 The first forms of Eqs(A22) and(A24) are valid in both the
4mHL (9—7)? inflationary period[where V/,_(x,90) =48V (x.¢o)] and

the y-dominated one. During inflation the effective potential

xsirf[k(n— 7)1, (A16) readsU (7)=2(1—38,)% 2, while duringy domination

and for v>0 we find

2
- (V_1/2)2F2(V) U(n)_m{l_SﬂX+3(l_ﬂX)
((6))~q 16°R2 (7= )2
AT xco§2m(t—t,)1} (7>n,). (A25)
~Hy, _
X(ZH*)ZVHL dk k™2 sir?[k(7—7)]. The effective potentialA25) contains two distinct spectral
features: a monotonic piece(7—37,) 2 varying on the(av-
(A17)  eraged Hubble time scale, and an oscillatory piece involving
cos[2m, (t—t,)]. Correspondingly, the spectrum of quan-
tum fluctuations generated by solving the Schinger-like
equation(A23) will have two peaks: one &~H, and one

It is easily seen that for<3 the integral is dominated by the
upper limit (k~H, ), while for 3<v<3 the dominant contri-
bution is given byk~x»"", that is, by the modes of wave- ¢y | (Depending upon the inflationary scenario consid-
length pomparable to'the Hubble length. In th.e I.at'ter case th@red, thXese peaks might be separated or might ovyeiGipe
upper limit of integration can be exten_ded to infinity, and we 5, compute the Bogolyubov coefficieft of the first peak
obtain a somewhat unwieldy expression by matching aty=17, the exact solutions of E§A23) when
- . dropping the cosine term in EGA25). As above, these are
((69)%)~—2m™3 siymT'(1-2»)T*(») Har?lfel ?unctions withy= v, =i \/gp(\ﬁi )— 3/8) in the inflation-
X (v—13)2qH2[4a(7)]?" "3, (A18) ary period and v=v,=i\6(B,—3/8) during the
x-dominated one(We assume here for definiteness that both
wherea(n) is given by(A2b). Disregarding numerical fac- are imaginary. This yields, for the “Hubble time scale” peak

tors, this gives in the long wavelength limik<<H, ,
((60)?)~qH[a(n]?" 2 (A19) , Llvl[(1 ml\2 [ 32
1Bdi=5 T |15 17| + . (A26)
. : : : 2 vl [\2 v 4|v,|
This is to be compared with the dilaton amplitugdeg
hich fi f Eqs4. 4.2): . _ .
which can be found from Eqg4.7) and (4.2 Note that this|8,| & is independent ok, and therefore dif-
qk? (H, |2+t ferent from the Rayleigh-Jeans-type spectr@ii4). Inte-
@2(t)~ 20 (T* (A20)  grating(A26) up to some effective cutoi,,=«H, leads to
N _ 3
It is easily seen th'(:([(5$o)2.>~go§ for k~7 1.' . AH 1 S i H_; (A273)
Let us finally briefly indicate the peculiarities of the more ¢ 48w a
general case where the inflationary evolutig®a) is fol-
lowed by ay-dominated expansion with an averaged scale 1 H4
4 *

factor [we assumd“XéH_(n)<mX away from »=7, and
average over the oscillations at frequemoy]:

P~ ean2 K o (A27b)

(a(n))=[1+3H,(p—7n)]1®> (n>mn,). (A21) The value ofx depends upon the details of the transition
between inflation andy domination. We expect that<1.
During this period,é¢ couples to they matter through the  Assumingk~1, we get the total energy densi#.4) roughly
dependence of the potential energ}y()(,go)%%mf((go))(2 independently of whether inflation is followed by a
~3m3(eo) X1+ 38,59, which yields radiation-dominated era or yoscillatory one.



53

Finally, the “oscillatory” peakk~m, can be estimated by
applying Born perturbation theory to E@A23): namely,

2% (2ik) "1fU%S{ n)e 2k7dy. This yields (# denoting

the Heaviside step function

3 .,3/2
*

|Bulsse= (9)°m(B,—1)° — g 6(k—m,), (A28)

and, for instance,
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3

0SC__ _1)2 H_*
=—— (B, ~E

= gan (B (A29)

[These estimates are accurate whefh) | 1)Hi<m)2( and
should give the right order of magnitude whgp—1~1.] In
order of magnitude the number dens{§29) is comparable
to (A27a). The corresponding energy density would differ
from (A27b) by a factor~m,/H, .
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