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Nonlocal electroweak baryogenesis. II. The classical regime
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We investigate baryogenesis at a first-order electroweak phase transition in the presence of a
CP-violating condensate on the bubble walls, in the regime in which the bubble walls are "thick, "
in the sense that fermions interact with the plasma many times as the bubble wall passes. Such a
condensate is present in multi-Higgs-doublet extensions of the standard model and may be formed
via an instability in the minimal standard model. We concentrate on particles with typical thermal
energies in the plasma, whose interactions with the wall are accurately described by the WKB
approximation, in which a classical chiral force is evident. The deviations from thermal equilibrium
produced by the motion of the wall are then treated using a classical Boltzmann equation which
we solve in a Buid approximation. From the resulting equations we find two effects important
for baryogenesis: (i) a classical chiral force term due to the CP-violating background and (ii) a
term arising from hypercharge-violating interactions which are pushed out of equilibrium by the
background field. Provided the wall propagates slower than the speed of sound, both terms lead to
the difFusion of a chiral asymmetry in front of the wall. This can produce a baryon asymmetry of
the observed magnitude for typical wall velocities and thicknesses.

PACS number(s): 98.80.Cq, 11.15.Ex, 11.30.Er, 12.60.Fr

I. INTRODUCTION

In this paper we present a detailed discussion of elec-
troweak baryogenesis induced by a CP-violating conden-
sate field on "thick" bubblewalls during a first-order elec-
troweak phase transition. "Thick" in this context, and
as we will see more precisely, means that the mean free
time for a fermion propagating in the plasma is short
compared to the time taken for the wall to pass. In this
case one expects that the nonlocal quantum re8ection
effects, which such a CP-violating condensate has been
previously shown to produce [1—3], will be suppressed.
because of scattering. Instead, we look for local classical
effects, which can produce a driving force for baryoge-
nesis. A classical treatment has, as we shall see, many
advantages in that there is a systematic framework (a
Boltzmann transport equation) within which to compute
the nonequilibrium effects in which we are interested. A
shorter version of this work has already appeared [4].

There is still considerable uncertainty as to what the
relevant bubble wall thickness and speed are. Calcula-
tions are difficult [5] and strongly dependent upon the
still poorly determined effective potential. A recent de-
tailed study by one of us (T.P.) and Moore [5] using some
of the methods developed in this paper indicates, within
the minimal standard model, for Higgs-boson masses of
order 30—70 GeV, and ignoring possible nonperturbative
effects, a wall velocity 0.4 and a wall thickness of order

25 T, where T is the temperature. Thus, typically
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t(B~ —&gAZ~+ )4 —m4'4,

where

gAZ& —gAZ& —
2 [v2/(vi + v2)]g&g,

g~ = +4g) g= 2 + g2

[6]. The + sign is for up-type quarks and (left-handed)
neutrinos, and the —sign is for down-type quarks and
charged leptons. gi and g2 are the gauge couplings of
the SU(2) and U(1) gauge fields; vi and v2 the magni-
tudes of the vacuum expectation values (VEVs) of the
two-Higgs-doublets, the first of which is taken to couple
to the fermions through Yukawa terms. The two contri-
butions to Z„come from the CP-odd scalar field 0, which

is the relative phase of the two Higgs fields, p2pi ——Re',
and the Z+I condensate discussed in [7], which may be
present even in the minimal theory. All the vector cou-
plings to Z are removed by using the remaining unbroken

quarks interact very many times via gluon exchange pro-
cesses as they cross the wall. If this is indeed the rele-
vant regime, then for top quarks at least (the most obvi-
ous mediator of electroweak baryogenesis, since they cou-
ple most strongly to the bubble wall if one has standard
model-lyke Yukawa couplings), the particle-wall problem
cannot be treated without including the effects of strong
(QCD) scattering from the plasma.

In an accompanying paper [6] we have introduced the
essential ideas motivating the calculations that we un-
dertake here. We showed there that the Lagrangian for a
fermion propagating in the background of a bubble wall
in a two-Higgs-doublet extension of the standard model
can be written
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vector symmetries to remove the pure gauge Z (the Z+
condensate piece is also pure gauge if we treat the wall
as planar and assume it has reached a stationary state
in which the Higgs-boson and gauge fields are functions
of z —v t). When the Higgs VEVs vanish, the axial
Z can be gauged away (for both fermions and Higgs-
boson fields, with charges g~ ——0 and g~ ———zg for
the charged and neutral Higgs components, respectively,
since g~ = [2(Ts —Y) + 4(B —1)]g [6]).

However, on the bubble wall this pure gauge Geld has,
as we shall see, very tangible CP-violating effects, even
on particles with typical thermal energies. The axial
gauge field condensate Z formed on the bubble walls
at the first-order phase transition violates CP sponta-
neously. Z is odd under CP, and the spatial compo-
nents Z' are CP even so that a bubble on which the
spatial vector Z' points out everywhere is mapped under
CP to one on which it points in. (Thus, in the latter case
it is actually the gradient Z' that violates CP.)

The departure from thermal equilibrium, which this
brings about as the bubble wall moves through the
plasma, will source baryogenesis. In the comparison pa-
per [6] we discussed the case originally investigated by
Cohen, Kaplan, and Nelson (CKN) [1],when the fermion
is treated. as &ee on the bubble wall. The conditions for
the validity of this treatment are discussed in [6] and
roughly require that the wall thickness L be much less
than the mean &ee path of the fermion Ay. In this paper
we consider the perturbations in the plasma produced by
the CP-violating background in the possibly more realis-
tic regime of wall thickness for which the fermions inter-
act &equently on the bubble wall, a condition that will be
specified more precisely in the course of our treatment.

As we have discussed in [6], one might expect that
the inclusion of interactions would wipe out any inter-
esting CP violation if the effect is a nonlocal quantum-
mechanical one. This is precisely how the thin-wall limit
has been understood [1—3]. However, as we noted in

[6], the WKB limit is not as trivial as it appeared when
viewed simply in terms of reQection coefBcients for mono-
tonic wall Ansatze. The fact that the dynamics of WKB
particles are nontrivial and, in particular, that WEB par-
ticles propagate like particles in a classical CP-violating
potential, suggests that there may be interesting effects
that do survive when the scattering on the wall is in-
cluded.

Second, as noted originally by CKN [8], such a CP
violating background perturbs the energy levels of parti-
cles and can push processes out of equilibrium locally.
The original form of this "spontaneous" baryogenesis
took this perturbation to the energy to be modeled by
a fermionic hypercharge potential and calculated the re-
sultant chemical-potential-driving baryon number viola-
tion by imposing constraints on exactly conserved quan-
tum numbers. Both of these aspects of the calculation
have been criticized. Dine and Thomas [9] pointed out
that the fermionic hypercharge potential cannot be ap-
propriate, as the effect does not vanish as the Higgs VEV
vanishes. Subsequently, we pointed out [10] that the iin-
position of the constraints neglects transport processes,
which tend to restore the region to a local thermal equi-

II. WEB DYNAMICS

The WKB approximation to the dynamics of particles
in the background of the bubble wall is good provided
the length scale on which this background varies is long
in comparison to the de Broglie wavelength of the typical
thermal particles we wish to describe. This is simply the
requirement that the thickness of the bubble walls I be
greater than T . As we have indicated above, this is a
very reasonable expectation.

To describe the WKB "particles, " we turn to the Dirac
equation derived from (1). The dispersion relation is ob-
tained as follows. In the rest kame of the bubble wall
we assume that the field Z„= (0, 0, 0, Z(z)), and we can
boost to a kame in which the momentum perpendicular
to z is zero. In this frame the Dirac equation reads (after
multiplying through by p )

imp@ = p ( iy 8, + m)@ —g~Z&s—vp, (2)

where Z = p p is the spin operator. Setting g
e ' ~+'&, we see that the energy is given by the usual
expression for a massive fermion plus a spin-dependent
correction. The eigenspinors are just the usual free Dirac
spinors. Returning to the p~ g 0 frame amounts to re-
placing E with QE2 —pz&, from which we find the gen-
eral dispersion relation in the wall kame:

$2 + (Q z + Q ~ Z)2]ljz +3

librium in which there is no baryon number violation.
The treatment we will present here will take account of
both these criticisms and show that the essential effect
does survive and can also, when transport is taken into
account, source significant perturbations in &ont of the
bubble wall [11]. This has also been pointed out in a
recent paper by CKN [12]. One of the objectives of the
present work is to bring these previously unconnected
pieces into one coherent framework, which includes all
the important efFects and clarifies their relation to one
another.

This paper is organized as follows. Section II discusses
the &KB treatment of particle dynamics described. by
the Lagrangian (1). In Sec. III we introduce the Boltz-
mann equation and discuss the Huid approximation with
which we truncate it to an analytically tractable form. In
the following section we derive the resulting Quid equa-
tions. In Sec. V we analyze these equations in several
steps, illustrating how perturbations may be generated
in &ont of the wall and identifying the parameters that
determine the behavior of the solutions. We derive the re-
duced equations needed for the calculation of baryon pro-
duction in much of the favored parameter space of wall
thicknesses and velocities. In Sec. VI we analyze these
equations, treating the two source terms separately, and
calculate the resulting baryon asymmetry in each case. In
Sec. VII we compare the results we have found to those
obtained in the thin-wall case in [6]. In Sec. VIII we con-
clude with a summary of the paper and a discussion of
its shortcomings and directions for future work.
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where Z is proportional to the spin S as measured in
the kame where p~ vanishes. The same dispersion re-
lation holds for antiparticles. The particles we are most
interested in for baryogenesis are left-handed particles
(e.g. , tL, ) and right-handed antiparticles (tL, ), since these
couple to the chiral anomaly. Note that they couple op-
positely to the Z field.

In Fig. 1 these dispersion relations are plotted for
p~ = 0 for (i) m ) g~Z, (ii) m ( g~Z, and (iii) m = 0.
We see how the branches deform into one another as we
turn on the mass. In particular, we note how the left-
(I-) and right- (R-) handed branches break up into two
pieces and form the E = +1 branches, as the mass cou-
ples the two chiral components on the wall. Correspond-
ingly it is straightforward to see how the eigenspinors
(the usual Dirac massive eigenspinors) become chirality
(ps) eigenstates for p, )) m. The conservation of spin on
the wall gives a simple picture of how this happens an
in-going left-handed particle incident on the wall evolves
in an eigenstate of spin on the wall. If its momentum is
reversed it emerges as a right-handed particle, since its
spin is conserved.

For what comes below, we will find it useful to keep
this identification in mind. We label the states on the
wall by the states they deform into as the mass is turned
ofI' and write the dispersion relation as

E~ ~ = [p2~ + (Qp,'+ m' + sgn(p, )g~Z)']'~
~ [p2~ + (p, + g~Z) ]'~ as m, m 0,

where the + (—) singles out the states which become I
(B) in the unbroken phase. (We assume the wall prop-
agates &om left to right, so that incident particles from
the unbroken phase initially have p, ( 0.) The antipar-

ticle L of a left-handed particle L is right-handed, and so
we write the dispersion relation for antiparticles as

E'" = ". "=( '+[V !+ '+ (.)
In the WEB approximation we take each particle to be a
wave packet labeled by canonical energy and momentum
(E = po, p) and position x. To compute the trajectory of
such a wave packet, we first calculate the group velocity

v;=x; =Op, E,
and second, using conservation of energy E = x,B,E+
p;O„,E = 0, we find

p, = —B,E.
Together these constitute Hamilton equations for the par-
ticle. The momentum of the particle is not a gauge-
invariant quantity, but the particle workIline certainly
is, and we can, for example, calculate the acceleration
&om the Hamilton equations. We find

dv, 1 B.(m') 0, (g~Zm')
dt 2 E2

where of course E and p~ are constants of motion. The
first term describes the efl'ect of the force caused by the
particle mass turning on, and the second describes the
chiral force. In the massless limit the latter vanishes, as
it should because in this case the chiral gauge field. can
just be gauged away.

We shall later need a few more explicit expres-
sions: namely,

Vg = p~ lp. I
Vz Pz + gAZ

p2 + m2)

gp,'+ ' + g (p. )g z ( g,@~=0, p, = +sgn ps)g~O~Z +
2/p2+m')

'

As m ~ 0, we recover the equations of motion for the L
and B particle~ in the pure gauge field Z.

Before we move on let us remark on our neglect of
one effect in deriving these dispersion relations: thermal
corrections to the fermion self-energies. In Appendix C
we discuss how the dispersion relations and consequently
the force terms are modified when one includes this effect.
Depending on whether the Z field is "strong" or "weak"
in the sense defined in the appendix, one can show that;
the resulting dispersion relations are either those given
here plus small corrections or slightly modified ones that
lead to force terms with altered momentum dependence.
This is a complication we will ignore in the rest of this
paper.

P
r

P
I

-gz +gZ P
I

FIG. 1. Dispersion relation for particles in a background
axially coupled pure gauge Beld. The plots shove the energy
E as a function of canonical momentum p, for p~ ——0, for (i)
rn ) gqZ, (ii) m ( ggZ, and (iii) m = 0.
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III. THE BOLTZMANN EQUATION
IN THE FLUID LIMIT

Since most particles in the plasma are well described
by the WKB approximation with respect to their interac-
tions with the wall, we proceed to treat the Quid of such
excitations as consisting of classical particles with definite
canonical position and momenta and energy given by the
derived dispersion relations. The Boltzmann equation for
the phase space density f (p, x, t) is

d,f = 0,f + x . 8-f + p . 0„f=-C[f—] . (10)

1
eP(v(E — P)) —v + 1 'p, x, t) =

where P, p, and v are functions of x and t, and p
1/(1 —vz) ~ . Imposing this form on the left-hand side
of the Boltzmann equation and integrating to find the
moments, one arrives at a set of coupled equations for
the functions P(x, t), p(x, t), v(x, t), which parametrize
the phase-space density. Expressed in terms of the en-
ergy density p, number density perturbation n, , pressure
p, and velocity v", these become the familiar Quid equa-
tions in the case of a Bee Quid:

c)qn+. V' [pnv] = 0,
c),p+ V' [(p+ p)pv] = 0,

0, [(p+ p)pv]+ Vp = 0.

We are going to treat the approximately left-handed exci-
tations L and their antiparticles L as two Quids, making
an Ansatz of the form (11) for each.

This requires some justification because the dominant
interactions, which bring our fluids to the form (ll), are
the same ones that damp away the temperature and ve-
locity differences with respect to the background. This
is not true of the chemical potentials, which are only
attenuated by slower chirality changing processes. We
keep the temperature Quctuation bT in order to quantify
the rate at which the form (ll) is approached. We use
the velocity perturbation in the form (ll) to model the
anisotropic response to the force. We will, in fact, see
that the precise form of this perturbation does not enter

The collision integral C[f] describes how the phase-space
densities are changed by interactions. The dominant in-
teractions, which we will consider, are, because of Debye
screening, short ranged and to a first approximation may
be treated as pointlike. They are to be calculated at a
given spatial point x using the Dirac spinors appropri-
ate to the local value of the background fields m(x), and
Z(x), taken to be constant. The Boltzmann equation is,
in principle, solvable, but in order to make it analyti-
cally tractable we shall consider an approximation (trun-
cation) that we expect to be quantitatively reasonable
based on a perfect Quid form for the phase-space density.
If interaction rates are fast, the collision integral forces
the phase-space density towards a form that minimizes
it, namely, local thermal equilibrium. For the case of a
single Quid this means the form

the final result, and its only role is to allow the particles
to move in response to the force and set up a chemical
potential perturbation.

In the present case we wish to determine how differ-
ent species are perturbed by source terms, which will
enter these equations in a way we will calculate. In par-
ticular, we must distinguish between particles and an-
tiparticles, as it is the difference in the perturbations to
these that is needed to source baryon production through
sphaleron processes. To do this, we will treat each par-
ticle species as a fluid described by the fluid Ansatz (ll)
(in which the functions P, p, v are allowed to be different
for each species), which makes the self-interaction colli-
sion terms zero. We then superimpose on this the inter-
actions of these fluids, which will lead to terms in the
equations damping all these perturbations to the local
thermal equilibrium for the whole Quid.

Is this a good approxlmation7 There are three condi-
tions that must be satisfied.

(i) The interactions must be fast enough to ensure the
system is maintained in the approximate form (ll) as the
wall moves. This should be a good approximation if the
time the wall takes to pass is long in comparison to the
time scale ~ for the system to attenuate Quctuations away
Rom this form; i.e. , we want L/v ) ~. What should we
take this time scale to be~ We will see in due course
that this question receives an answer within our calcula-
tion: We should take the scale w to be approximately D,
the diffusion length.

(ii) The rate at which the system is brought to this
local equilibrium form should be faster than the rate at
which the perturbations we keep in our Ansa, tz are at-
tenuated. This is not the case because the same gluon
exchange processes, which force f to the form (ll), also
damp away the velocity and temperature perturbations.
Thus (ll) is unlikely to be a very accurate description
of the precise form of those perturbations. The chemical
potential Quctuation will be the crucial term in our an-
swer, which shall determine the final baryon asymmetry,
and this is attenuated only by processes that. change the
number of particles in our "Quids. " As we will discuss at
length, these are indeed typically much slower than the
gauge boson exchange processes, which damp bT and v.
The temperature perturbation shall actually play only a
small role—we keep it merely to see how thermalization
occurs and to estimate its rate.

(iii) The mean &ee time for particle interactions should
be long compared to their energies, in order that we can
describe the physics in terms of a set of "Bee particle"
eigenstates of mell-defined energy. This condition means
the width" of a state LE should be much smaller than
its energy E. The particles of central interest in this
paper have energies E & T, and AE ~ g T, so the con-
dition is reasonably well satisfied even when one includes
the strong interactions.

We should also mention a subtlety about the distribu-
tion (ll). The form is dictated by the quantities that
are conserved in the local interactions. That these are
E' = po and p is a nontrivial fact in this case in which
the gauge symmetry is broken. In the presence of a pure
gauge Geld, it is not immediately obvious whether one
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should take just the canonical momentum or perhaps
some linear combination with the gauge 6eld, as the cor-
rect conserved quantity.

For a conserved gauge charge, which one is chosen is
immaterial, since the difFerence can always be absorbed
in the chemical potential, which is determined by the con-
dition on the conserved charge. However, here the gauge
symmetry has been broken, and we thus need to deter-
mine what the correct conserved energy and momentum
are in all local interactions, including those that violate
the broken gauge charge, which we assume to take place
in approx:mately constant background fields. By a sim-
ple calculation one can show that the "canonical" stress
tensor

B„O" = (B"m)Qg + g~(B„Z )@p"p'@. (14)

The conserved energy and momentum are then easily
calculated &om the eigenstates we discussed in the pre-
ceding section and are indeed just the canonical energy
p = E and momentum p. This is as to be expected from
translation invariance.

We also need to specify precisely what the fluids are,
as this is ambiguous once we turn on the background in
which the dispersion relations and particle eigenstates be-

I

8""= Qp"iB"g

is, in fact, conserved in constant background fields, since
&om the Dirac equation derived from (1),

come different. In the unbroken phase we take the fluids
to be the chiral eigenstates. Which states described by
the dispersion relations in Fig. 1 do we take to make up
the fluids described by the phase-space density in (11)?
The answer is that foreshadowed by the way we wrote
the dispersion relations to (4). The motivation for this
choice is that most particles in these Quids are then to
a good approximation in a given chiral state. This, of
course, breaks down completely for low momentum states
p m, which are efFectively equal mixtures of the chi-
rality eigenstates. By dividing the fIuids in this way,
we also misdescribe the dynamics of these low momen-
tum states by connecting the wrong branches at p, = 0.
Most particles in the fIuid, will not change direction be-
tween scattering, and so this should be a small effect. We
will return to these points later. The essential point is
that the efFects we describe will be dominated by parti-
cles at thermal energies. The force is felt by all particles
in the plasma, not just those at low momentum.

IV. FLUID EQUATIONS

We now proceed to derive in detail the truncation of
the Boltzmann equations, which we have just described.
The substitution of the Ansatz (11) in the left hand side
of (10) gives, in the rest frame of the wall in which the
energy is time independent,

[PB,p + Pp Bgv——BgP(E —p —vp, )]f' —[PB p + Pp, B v —B,P(E —p —vp, )]f'Bp, E + Pv f'B,E,
where f' = (d/dx)[1/(e + 1)] and x = P(E —p —vp, ). We take v = vz and work to leading order in v. Making
the substitution p = p 6 vg~Z (with the sign chosen appropriately for the left-handed and right-handed particle and
antiparticle fluids) and writing p, + g~Z = k„ the physical momentum in the zero mass limit, we then have

[pBqp+—pk, Bqv, —Bqp(E —p —vk, )]f' —[pB,p+ pk, B,v —B,p(E —p —vk, )]f'B„,E + pv f'[B,E p g~B, Z B„,E] .
(16)

We make this change in variables so that our equations will be in the familiar form (12) as m ~ 0. The variable p is
really what one would usually call the chemical potential in the m = 0 limit, as fIuctuations in number density are
proportional to it The p i.n (ll) is, in fact, a gauge-dependent object, and P, is simply the appropriate gauge-invariant
chemical potential, which appears in real physical quantities calculated from the distribution function.

The crucial term here is the coefBcient of the velocity v. We are working in the rest kame of the wall and so write
v = —v + 8, since we are interested in the perturbations to the background, which is a plasma moving by the wall
at velocity —v in this frame. Then we see that there is a source term proportional to v with the coefBcient

Qp2 + m2 + sgn(p, )g~Z
+sgn(p, )g~B,Z 1— lp l

) mBmI+gp+m) gp+m
where + corresponds to the signs in the dispersion relations (4) and (5) for the particles and antiparticles in our
(approximately) chiral fluids. This source manifestly vanishes as m -+ 0 and, when integrated, will give us the force
on the plasma when the wall is pushed through it. Before doing this integration of these equations, we consider also
the right-hand side of the Boltzrnann equation.

The collision integral C[f] in (10) is equal to the rate of change of the phase-space density f(p, x) because of
collisions. Considering anly pracesses in which there are two incaming (labeled as 1 and 2) and two autgoing (labeled
as 1' and 2') particles, we can write it in the form

) l~l'(2 )'~'(~'p')&[f*] &[f;] = [fif.(1+ fi )(1+f2) —fi f'(1+ fi)(1+ f.)],„...:...2(E~ —v-p-) ., u. ,u..

(18)
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where the precise spinors used as eigenstates will determine the various normalizations in the integral, I~I is the
matrix element for the process, and ~ is for fermions (bosons). Taking the ffuid Ansa~z (ll) for each particle species
and doing a perturbative expansion in p = 1/T (about po ——1/Tp), p/To, and v we get, to leading»der,

) ~~~'(2~)'~'(~, , ) [fif.(1+fi )(1 + f2 )12 Ei —&~pzprocesses

(bTi —ST2)
&&Po T (Ei —Ei )+ (~i —~2). (pi —pi )+).(u')

0
(19)

where fi, etc. , are now the unperturbed distribution functions at temperature To. We have performed this expansion
in the plasma f.arne variables for reasons we will explain below when we come to 1ntegrate this expression- The
normalization factor is just the energy in the wall frame. P (p,, ) means a sum over chemical potentials with a positive
(negative) sign for in-going (outgoing) states. In the temperature and velocity terms we have assumed that the in-
going and out-going ]. and &' are in the same Quid and the same of 2 and 2', since this is the case for the dominant
scattering processes. For each term in brackets we must take the fastest process, which forces these Huids to the
same thermal equilibrium. The ones that attenuate the temperature and velocity perturbations are gluon exchange
diagrams (for quarks) or weak boson exchange (for leptons), shown in Fig. 2. These processes do not contribute to
the chemical potential damping, however, since they do not change particle number. Examples of processes that do
contribute are the helicity ffipping gluon exchange process (as in Fig 2, but in the presence of a mass term), which
can occur on the wall, and the Higgs mediated decay as that in Fig. 3, as well as sphaleron processes (both strong
and weak).

We now integrate the Boltzmann equation over j yPp, J gasp E, and f gPpp, (malt frame variables) to get three
moments that give us three first-order difFerential equations for the three functions 6T/Te, 8, p, /To characterizing
the perturbations in each Quid. In Appendix A the terms obtained by integrating the collision integral are analyzed.
Considerable simplifications occur provided the integrations are done in the plasma frame variables in which fe has
the standard (unboosted) form. Thus, we take the linear combinations J g p(E+ v p, ) and j g p(p, +v E) of the
latter two integrations, which are integrations over the energy and momentum in the plasma frame (to leading order
in v ). The velocities that appear in (19) are those in the plasma frame, but the difference of velocities in this frame
is equal to the diff'erence of the velocities in the wall frame to leading order in v . We work perturbative. y in bT/Te,
8, p/Te keeping the leading terms in these quantities and their derivatives, dropping next-order corrections to these
coefficients in Z/T and m/T.

The equations which result are

fbT& (p l' 1, t'm'l—v
I /

—ov
]

—
I

+ —8'igv
&Te) & &To )

('6T)' t'p 5' 1, fm'l—v
i i

—bv
i

—
i

+ —8'+he
&To) &To) 3 &To')

. p, . fp Zb
To

" (To To j.ST, .p, rp Z)—r ) —r') ——r')
~

—+
To " To " &To To)

(2o)

—r„) 8,

L,R L,R L,R L,R

L,R L,R L,R L,R R

FIG. 2. Vector boson exchange diagrams that dominate in
damping temperature and velocity perturbations in the fluid
and play a leading role in determining the diffusion proper-
ties of different particle species. The gluon-exchange diagram
also, in the presence of a quark mass term, describes the key
hypercharge-violating process, namely, the helicity-ffip pro-
cess computed in Appendix B.

FIG. 3. Chirality ffipping Higgs-boson process, which con-
tributes to the damping of a chiral chemical potential in front
of the bubble wall.
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where a = 2(2/9gs, 6 = 3gs/14(4, c = in2/14/4, g
In2/9(s, g = (2/42(4, and ( are the Riemann ( func-
tions (g2 ——vr /6, (s = 1.202, g4

——vr /90). To derive
these equations in this form, we have expanded E, t9 E,
O„.E around m = 0. Except the force terms, all the
terms on the left-hand side (LHS) have just the f'ree-fluid
coefficients, precisely what Eqs. (12) give if one expresses
them in terms of hT, p, v (for m. = 0, i.e. , p = sp). The
positive sign in the force term applies to the I and B
fluids, the negative sign to the B and I fluids; the mass
is that of the appropriate fermion.

The terms on the right-hand side (RHS) require some
explanation. We have written

3np

1

4Pp

4Pp

g'&c[y] = I'„) T

+r„)
i, To

g'p&, C[y] =r ) +I'„

+I"„)

4'p&, c[f] =r.) e,

Z&
v a~TTo 9

P
Tp

Z)
&o j (21)

The fact that we refer to these processes as "hypercharge
violating" has no particular significance. They violate any lin-
ear combination of (nonzero) hypercharge and electric charge.
In particular they violate the axial charge g&, which gives the
coupling of the t P-violating condensate to the fermions and
Higgs-boson fields.

where np and pp are the unperturbed number and energy
densities, respectively at Tp. To arrive at these equations,
we have used symmetry arguments to show that various
terms are zero for the tree-level processes we are inter-
ested in. This is discussed in Appendixes A and B.

In the collision terms as written in (19), we see that
the substitution of the variable 8 gives the same expres-
sion with v replaced by 8 as it is only the relative velocity
that is damped by this term. However, the substitution of
p = p, ~e g~Z+Sg~Z is very nontrivial. The latter piece
gives only a higher-order correction to our equations, but
the term v g~Z only drops out to give the same expres-
sion with p replaced by p if the charges gA on the exter-
nal legs in the process sum to zero. In the limit that the
VEVs of the Higgs-boson vanish, Z is a pure gauge field
for the fermions and Higgs particles, and so this cancel-
lation occurs for all processes that conserve any linear
combination of electric charge and hypercharge. Thus
I'~ and I" are calculated from decay processes that con-
serve hypercharge and I'& and I' from processes that
explicitly violate it, the latter picking up a net contri-
bution proportional to v Z. These latter rates, being
hypercharge (and Ts) violating, are VEU squared sup-
pressed, and therefore any baryon asymmetry produced
by them will vanish as the VEVs do. When the VEVs are

nonzero, the Z field perturbs hypercharge-violating pro-
cesses out of equilibrium locally, while the hypercharge-
conserving processes remain in equilibrium, simply be-
cause they conserve the charge associated with the gauge
Geld. These latter "see" Z as a pure gauge mode, not a
real gauge-invariant Geld, which shifts the energies. This
is precisely the type of effect that CKN called sponta-
neous baryogenesis. We will discuss in Sec. VIB what
light this treatment throws on the question raised by Dine
and Thomas in [9] about how the background should be
modeled.

Before we move on to solve (20) for some specific cases,
we make a few general comments.

(i) We have dropped all the time derivatives because
we are interested in stationary solutions. If we wish to
understand, for example, how the stationary solutions
are set up at the time of nucleation, we include the terms
that are obtained &om the time derivatives in (16) after
integration.

(ii) We have dropped all long-range fields, which result
Rom the perturbations. This amounts to neglecting the
effect of screening of electric charge and hypercharge on
the solutions we will study.

These terms can easily be included (through an addi-
tion to pg and give a term proportional to the field E in
the third equation. Making use of Gauss' law, this can
be written in terms of the perturbations, thus coupling
the LHS of all the equations to one another (see Sec. VII
of [6]). We will comment further on this point in the
Conclusion.

(iii) As v —+ 0, the only solution unperturbed at in-
finity is the trivial solution P = Po and v = p = 0. Any
perturbation that may source a baryon number (or in-
deed push any process out of equilibrium) arises because
of the motion of the wall. This does not mean, however,
that this static equilibrium is the unperturbed one, which
pertains when the field is not present. This is because the
energy in the distribution function is the perturbed en-
ergy. For example, if we calculate the number densityj P pf~~ „o and subtract the true unperturbed num-
ber density, we do not get zero if we integrate, e.g. , over
states with p ) 0. This equilibrium has in it an excess of
right-moving spin-2 particles and an equal and opposite
underdensity of left-moving spin-( ——) particles. The way
to understand this is by analogy with an electromagnetic
potential, which is screened. The thermal equilibrium
reached in the presence of such a potential has an over-
density of particles in proportion to their charge. Here
the "screening" of the force induced by turning on this
Geld has the efFect of dragging in particles as described
by this distribution function with v = p = 0. This was
the essential point made in [10], except that the energy
perturbation was modeled (inappropriately) by a purely
fermionic hypercharge potential.

(iv) As the VEVs of the Higgs-boson fields vanish, the
only solution is again the trivial one (without time depen-
dence), since both the mass and the rates of hypercharge-
violating processes go to zero. In this case the distribu-
tion functions also describe the true unperturbed plasma,
since in this limit the dispersion relation approaches the
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b
i

—
i

= —3 I'„ i-
(To) (22)

which describes pure difFusion n = —DV' n. We can then
read ofF the relation D = (b/3a)I'„

pure gauge one in (4).
(v) We will explain below that in the case that we ne-

glect the temperature Huctuations the system is reduced
to the first and third equation in (20). Dropping all the
force terms and setting all the decay rates to zero, to
order v we obtain

V. SOLUTIONS OF FLUID EQUATIONS

We now turn to the analysis of the fluid equations
(20), with the goal of understanding the baryogenesis,
which results from the perturbations they describe. As
discussed in Sec. II of the accompanying paper [6], the
anomalous baryon number violating process is perturbed
from equilibrium by a difI'erence in the distribution func-
tions of left-handed fermions and their (right-handed)
antiparticles. As we wish to study baryon production,
we therefore take the difFerence of (20) for left-handed
particles and their antiparticles, and get

(ST&' (p )'—v
i i

—av
/

—
/

+ —8'
( To ) &To)
(bT) (pi 1—v

i i

—bv
i

—
i

+ —8'
&To)

(STD' (p i'
+ b

i

—
i

—v v'+ P(z)i To ) iTo)

(23)

We have compactified our notation: I'& now includes all
decay processes, and I'„denotes only the hypercharge vi-
olating ones. The force terms in the first two equations in
(20) cancel out because the gradient in the real mass af-
fects particles and antiparticles equally. The parameters
bT, 8, P, now represent the difference in these quantities
for particles and antiparticles, and the force

(Zm') (Zm')E=2cv g~ 3 =Av (24)

We have used the fact that particles and antiparticles
couple in exactly the same way in the gauge boson ex-
change diagrams to cancel out the temperature and ve-
locity perturbations of the other fl.uids. This removes the
sum in the I'2- and I'„ terms. The counting factor that
results, over particles and antiparticles of all flavors, has
been absorbed in the definition of I z and I'„. For quarks
we show in Appendix A that

1 TI'„=3I'z o.,ln —T
n, 20 (25)

We note that the relation D = b/(3aI'„) from (22) then
gives D 5/T, in very good agreement with the value
calculated by a difFerent method in [6]. The only cou-
pling to perturbations in other fiuids remains in the sums
for the decay processes. There are two distinct sources
in (23) for the perturbations: the force terms E(z);
the hypercharge-violating processes, which are perturbed
&om equilibrium as the wall passes when v Z g 0. As
the equations are linear we can separate these sources
and study them independently.

We will not attempt to solve the full set of equations
in complete generality for each of these two source terms.
First, we will limit our scope by considering only the case
where the source terms directly afI'ect the top quark. Both
the classical force terin and (we will see below) the spon-

taneous baryogenesis terms are proportional to the mass
squared of the fermion for which (23) describe the parti-
cle minus antiparticle perturbations. We will thus work
in the approximation that only the top quark Yukawa
coupling is nonzero, which is good if the fermion Yukawa
couplings are (as in the minimal standard model) pro-
portional to their zero-temperature masses. We will not
consider the case emphasized in [6], where in a two-Higgs-
boson extension the w lepton can have a Yukawa coupling
as large as that of the top quark (and hence a comparable
finite-temperature tree-level mass) .

We now discuss (i) dropping the temperature fluctua-
tions, and thus reducing the equations to just two coupled
equations for p and 6, which can in turn be written as two
second-order uncoupled equations for these two variables,
(ii) the solution of the reduced equations for the classical
force source term with the simplification that we neglect
all decay processes, (iii) the problem with decay processes
included, for the classical force source term, and (iv) the
source terms from hypercharge-violating processes and
how they source baryogenesis.

A. Thermalization and validity of the Quid Aneats

In Sec. III we explained that we do not expect the tem-
perature fluctuations to accurately reflect the perturba-
tions in the plasma because the tree-level gauge boson
exchange processes, which damp them away, are exactly
the same processes that damp away the perturbations to
the distribution functions, which we neglected in taking
the Ansatz (11). We kept them in our Ansatz, however,
in order to have a quantitative measure of the validity of
our approximation. It is this point that we first consider
here.

Neglecting all decay processes, Eqs. (23) are

STI

TQ
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p' 1, bT—bv —+ —O' = —I'
Tp 3 TQ

ST'

Tp
bT' p'

+ b ——v 6'+ F(z) = —1„6.
TQ Tp

(26)

One can convert these to a pair of second-order uncou-
pled equations for hT and p, (by integrating the first equa-
tion directly to find 6), and then solve thein for various
sources P. We will not present here the details of this
calculation, as the results are of no importance except
for the following point. Two parameters, ADI and ATL,
enter in determining the behavior of the solutions, where

v b I'7
AD ——,AT ——D' b —av (27)

are the two roots of (26) and L is the thickness of the
wall. The diffusion root AD describes the diffusion tail
in &ont of the wall, while AT describes the decay of
perturbations behind the source. ADL is simply the
squared ratio of the wall thickness to the distance a par-
ticle with diffusion constant D diffuses as the wall passes

( y Dt gDL/v ); this is the parameter that, as we
discuss below, will characterize what we call "good trans-
port" or "poor transport. "

Az L is the ratio of the time
of passage of the wall (L/v ) to the mean Bee time for
temperature attenuating processes ( I'& ), and it is a
measure of how eFiciently the temperature perturbations
are damped on the wall. One Gnds that when ATL ) 1,
the temperature perturbations in the solutions to (26) are
damped by at least 1/AT L relative to the chemical po-
tential fluctuations. Examining (26), one can, in fact, see
this damping directly in the second equation. Taking all
the derivatives to go as L, we see immediately that the
suppression follows. When one incorporates the decay
processes a similar conclusion follows provided I'T )) I'„,
which applies (see rates given below).

Because this condition for the damping of temperature
Quctuations is the same as that of the validity of our
initial Ansatz, we always take it to apply and reduce our
equations to the first and third in (23) with bT set equal
to zero. Noting the relation between I'z and I'„ from (25)
and I'„=b/3aD i &om (22), the condition becomes

v' vD —+ v —= ——F(z) .
Tp Tp b

1
V~ ( Va

3
(31)

B. C1assical force sourced perturbations
without decay

We now solve (30) for a chosen Ansatz for the force
term in order to illustrate the behavior of the perturba-
tions they describe and to gain some simple intuition for
the more complex case where we include the decay terms.
We take the following "ramp" Ansatz for the source term:

As discussed in Sec. III, 8 is, like bT, not in itself to
be taken to accurately describe the perturbations in the
Quid. This is the case because we would expect there
to be other anisotropic (in momentum) components of
a general distribution function, which we have neglected
in our Ansatz, which will be damped away by the same
(tree-level gluon exchange) processes at approximately
the same rate as the perturbation parametrized by 8,
which we have taken. We cannot, however, consistently
set it to zero in (23); but, as we now see, 6 is indeed
damped by v relative to p, , so that it will not itself
contribute (at leading order in v ) to the biasing of the
baryon number violating processes, and neither does it
enter in (30), which determines P,. Its only role is to me-
diate the force to the chemical potential, and we assume
that any other anisotropic component would have led to
approximately the same result.

The fluid equations (26) are calculated to leading or-
der in v . A fuller analysis incorporating all orders in v

can be performed and shows that the velocity at which
the leading-order analysis breaks down is the speed of
sound v v, = 1/~3 in the plasma. If the wall moves
faster than this, there is no solution in &ont of the wall,
and perturbations cannot propagate into this region. We
are interested in the case when perturbations can propa-
gate in &ont of the wall where the anomalous electroweak
processes are unsuppressed. Thus, we assume

L
v ( thermalization .

3D (28)
LlZm Fo( z —[, ——&z& —,

Av s ——& I 2y' 2 2'
0, otherwise,

(32)

Still neglecting the decay processes, the equations sim-
plify further:

P 1-—av —+ —8 =0,
Tp 3

(29)

where Fp is the constant force on the wall, and, as above,
A = 2cg~. Equation (30) then has a particular solution,
which is nonzero only on the wall, and a homogeneous so-
lution, which is an exponential describing pure diffusion

exp[ —(v /D)zj. We impose the boundary conditions

0

where A = 2cg~. The solution to the first equation
gives 6 = 3av (p, /To) (using the boundary condition
that p, = 6 = 0 far in front of the wall) and substi-
tuting in the second equation, again using the relation
I'„= (b/3a)D &om (22), we get (to leading order in
v )

I /2+a

I /2—

—L/2+a(p)
(To)

~
—I/2 —e

DLFQ
b

(33)

obtained by integrating (30) taking p, to be at most step
discontinuous across the boundaries (so that its integral
is continuous). Solving, requiring p to be finite at —oo,
we get
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These solutions for@ /To are sketched in Fig. 4 for the two cases (i) v L/D « 1 and (ii) v L/D )) 1, when the
solutions on the wall can be written

F L 1 v~L
6' ~2D

D
, V L'

( L)

+ 2) 1/v Lt v L
2 D ) ' D

v~L )) 1.

(35)

In the first case we see that the solution mimics the be-
havior of the driving force. From (29) one can see that
this behavior is generic for v L/D « 1, for expanding in
v one finds at leading order the solution

8=0, p A Zm2

Tp b Tps
(36)

is nonzero only on the wall. What the parameter v L/D
tells us is how eKcient the diffusion is in bringing us to
(36). As discussed in Sec. VA it is simply a ratio of the
thickness of the wall to the distance a particle diKuses as
the wall passes. This is the parameter that defines good
transport. The corrections to (36) describe a diff'usion

tail in ft. ont of the wall which has amplitude

p, 1v LFpL
Tp 2 D 6

Lj2
(37)

T ='D"-t r "-D''-p, v L A (Zm2) v f L l

where angular brackets denote the average value on the

FIG. 4. Solutions for the chiral chemical potential p in the
background of a bubble wall, with a ramp Ansatz for the
CP-violating condensate field rn Z (solid lines). The solu-

tions for p, /Tp are sketched (dashed lines) for the two cases

(i) v L/D « 1 and (ii) v L/D )& 1.

The factor of 2 arises from the fact that the difFusion
in &ont of the wall is driven by the average amplitude
of the potential on the wall, since particles are in this
regime "seeing" the whole wall. This is confirmed (see
examples later) by calculating with other Ansatze. We
thus conclude that, more in general, we would find the
solution in &ont of the wall,

wall.
When v L/D )) 1, i.e. , when the transport is "poor"

over the relevant timescales, the solution looks like that in
Fig. 4(b). The amplitude on the wall rapidly approaches
that in &ont of the wall, which is

P
Tp

L/2

D Fp
v L b

~~

+oo
p(z)dz = 0. (40)

In fact, this can be shown directly by integrating (30)
once and taking the solutions to be zero at +oo. The
integral of the chemical potential is zero because there is
no net particle minus antiparticle creation in the absence
of the decay processes. Thus, the integrated contribution
in front of the wall exactly cancels that on the wall, the
excess of particles pulled onto the wall in response to the
force being exactly cancelled by a deficit in the difFusion

tail in &ont of the wall. In terms of baryon production,
it follows that, if the sphaleron rate were unsuppressed
on the wall, exact cancellation would occur between the
production in ft. ont of and on the wall so the source would
not bias net baryon production. The extent of the can-
cellation that can occur is a sensitive function of the wall

profile, but, unless Z condenses, only where the VEV is

very small this will not be significant. We will always
assume that the baryon number violating processes are
only turned on in &ont of the wall.

This property (40) allows us to read off simply f'rom

(36) the integrated amplitude in front of the wall when
v L/D « 1 (to leading order in this parameter) as

so that the integrated amplitude j&&2 p is suppressed rel-

ative to the good transport case by (D/v I) . It is this
integrated amplitude of p (recall that it is the difference
of particle and antiparticle chemical potentials) in front
of the wall that will be the efFective driving force for
the final baryon asymmetry, when we assume the baryon
number violating processes are immediately switched ofF

on the wall. We note that the solutions (34) have the
property that
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f p A Zm2= v
I /'2 Tp b wal) Tp

(41)

where again A = 2cg~ [c and b being the numbers defined
after (20)]. This, in fact, also proves (38), since we know
that the solution in &ont of the wall e ~" / ~ . We
note that the result is in this regime independent of D
and L, and we will see that the factor of v also drops
out when we calculate the baryon asymmetry. We will
defer doing so explicitly until after the next section, in
which we discuss incorporating the decay processes in
this analysis.

C. Decay processes and baryon production

Putting back the decay rates our equations are

P P — PD—+v„——I
Tp Tp Tp

fIJ)' 1, — . p . Z—av
~

—
~

+ —O'= —I' ) —+I' ) v g~ —,P ~ T v

(42)

6
i i

+ E(z) = —I' 8,
(pl'
&To)

where we follow again the conventions in (23). p, is
again the difference in particle and antiparticle chemi-
cal potentials, and the sums are over the external legs
of the processes, which change the number of parti-
cles minus antiparticles. We have a pair of such equa-
tions for each fermion of (approximate) chirality, where

+An [(Zm )'/To] (+ for the L —L perturba-
tions and —for the B —R perturbations) and m is the
mass of the fermion, which we have assumed only to be
nonzero for the top quark. The equations are coupled
only through the sums in the decay terms on the right-
hand side, and it is this coupling that we now consider.

As before, we can decouple the variables p, and 8 and
concentrate on a set of second order equations for the p:

only in the broken phase. We consider these in turn.
(i) In the unbroken phase our states are exact chirality

eigenstates. The only perturbative processes that change
chirality are those involving Higgs particles, such as that
shown in Fig. 3, in which a left-handed quark Hips chiral-
ity when it scatters oK a gluon and emits a Higgs particle.
Since we are taking only the Higgs-boson —top Yukawa
coupling to be nonzero, this induces a coupling only be-
tween left-handed top quarks, right-handed top quarks,
and Higgs particles. The gluon cancels out when we sub-
tract particles &om antiparticles because it is its own an-
tiparticle. The only other processes changing the number
of particles of a given chirality in the unbroken phase are
the strong anomalous processes, and the weak anomalous
processes, which are responsible for the baryon produc-
tion. The former couple left-handed quarks of all favors
to right-handed quarks of all favors directly; the latter
couple all the left-handed. quarks to all the left-hand. ed
leptons.

(ii) In the broken phase all the processes in the unbro-
ken phase (except the baryon number violating processes)
are still present, but there are many additional processes
that couple particles on a given branch of our dispersion
relations to other particle states because of the mixing of
helicity and chirality states when the mass is nonzero.

When we calculate interactions between particles in
these states, we And that they can couple to one another
through a "helicity-flipping" gauge boson exchange. This
is also an example of what we called a "hypercharge-
violating" process: If we identify the in-going states by
the hypercharge of the state they deform into in the un-
broken phase, and hypercharge is not conserved. We
have evaluated. the rate for this process in Appendix
B. There are many other such processes, e.g. , involving
Higgs-boson fields. There are also many favor changing
processes mediated by R" bosons, but these are zero in
the approximation that only the top-quark Yukawa cou-
pling is nonzero.

We now make three further simplifications. First we
will assume that the baryon number violating processes
can be neglected, except in their role as the source of the
net baryon number. We will see below that the condition
that this be true is (see also [6])

D /
Z= ——P'( ) —I'„) g —. (43)

0
v2

I (44)
The decay rates here have absorbed a factor of 1/a rela-
tive to the rates defined in (21). There are a similar set
of equations for the 8. We will not consider these further,
since, as discussed in Sec. V A, 8 is attenuated relative to
p, and hence also its e6'ect on the baryon number violating
processes, which is what concerns us here.

What are the decay processes? Recall that our particle
and antiparticle states are those of our (approximately)
chiral Huids. They are the WKB eigenstates of the dis-
persion relations (4) and (5), which become pure chirality
states in the unbroken phase.

In the broken phase they are helicity states, which are
mixtures of the two chiralities.

It is thus natural that we divide the processes into (i)
those that occur in both phases and (ii) those that occur

where I', is the rate for electroweak anomalous processes.
v /D is just the rate of capture of a diffusing particle
by the advancing wall (the inverse of the time it spends
difFusing before capture).

The second. further simpli6cation we make is to neglect
completely the decay processes in the unbroken phase in-
volving Higgs particles on the external legs. The reason
we do this is found in the study of these processes in [6]—
in the unbroken phase Eqs. (43) are precisely the same
diffusion-decay equations obtained there. The change to
the results when these decay processes were incorporated
was found. to be a minor numerical one, and we assume
that the same will be true here. In short, the reason
is that these processes do not drive the quantity sourc-
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Pq —— ~(&g~ —&i„), V ~ = N, Z; (P'qr, Pqa) ~

@gal
= N~Z~(pqL, + PqR), (45)

where pqL means the difference in the chemical potential
of the left-handed top and its (right-handed) antiparti-
cle, etc. , the sum is over flavors, and N is the number
of colors, we can extract a simple set of three coupled
equations:

D -+v ——I'pg pg g~ r8a ga
Tp Tp Tp Ny Tp

D / zE'(z) —2N—I'tv g~
6

c to

D ZE'(z) —2N,—I'/v g
p

D~a ~a I ~~ +I »
Tp Tp Tp Tp

where E = 4cN, v g~[(Zm )'/To]. N/ is the number
of fermion flavors, and we see that the first two equa-
tions reduce to a single one in the case Ny ——1. I'y,
I'„, and I', are the rates for the helicity flipping, strong
anomalous processes and weak anomalous processes re-
spectively. With this new convention, Eqs. (46) take the
form of diffusion equations corresponding to those in the
companion paper [6], and the rates I' are identical to the
rates used there. I'„and I', can be read off from [6], and
the helicity flip rate is derived in Appendix B:

1 m~ 2 1 m]2 2

rg —— n, T =
100 T '

32' 4 T
40

K O.' K

4 TI', =9NJ~, a T = ~, 3x 104'

(47)

ing baryon number (i.e. , left-handed fermion perturba-
tions) to zero. In the limit where they are fast enough to
equilibrate locally they simply lead to a redistribution of
particles amongst the left-handed fermions, right-handed
fermions, and Higgs particles.

The final simplifying assumption we make is to take
the diffusion constant of left-handed and right-handed
quarks to be equal. Although this is a very good approx-
imation, since the diffusion properties are dominated by
the strong interactions, it is one that must be treated
with caution in certain limits of extreme suppression of
baryon production by the decay processes. This is dis-
cussed in Sec. VI of [6], and the treatment given there
can be applied to the present case. We will not discuss
this here.

With these assumptions, we can now greatly simplify
the full set of coupled equations (43) for all species in the
plasma. Defining the variables

VI. THE BARYON ASYMMETRY

The baryon number density B = (1/N, )(T /12)P, &,
and, calculating with the last equation in (46), we find
its value at the kont of the wall to be

1
Bp —— pii — '

p,~ (z) dz .
c 12 c 12 v~

(48)

This is the 6nal value of the baryon number in the broken
phase under the assumption that the baryon number vi-
olating processes are turned ofF everywhere in the broken
phase. The expression (48) is valid with the assumption
we made that I', satisfies v /I', D » 1.

To determine the final baryon asymmetry we must use
the 6rst two equations in (46) to extract p~ in front of
the wall, which is the effective source for the baryon pro-
duction. We will not solve exhaustively the two coupled
equations for p, i and p,~ in (46) but will limit ourselves
to the case that the dominant decay process is I'„so
that we can drop the term rypz in the second equation

where 3 v„a.,T and K,n, T are the number of strong
and weak (respectively) anomalous processes per unit
volume per unit time N~ is the number of fermion fami-
lies.

Before proceeding to analyze these equations and cal-
culate the baryon asymmetry, we stop and review the nu-
merous assumptions we have made in deriving the equa-
tions (46).

Assumption 1. L & 1/T, so that most particles in
the plasma are indeed accurately described by the WKB
approximation. Typical wall thicknesses are L 20/T.

Assumption 8. v ( L/3D, the "thermalization" con-
dition for the applicability of our fluid Ansotz. We cal-
culated D 5/T, so for a typical thick wall L 20/T
this is extremely good for any wall velocity.

Assumption 8. v ( 1/~3. We work to linear order
in the wall velocity assumed smaller than the speed of
sound in the plasma, so that perturbations can propagate
into the region in &ont of the wall and give "nonlocal"
baryogenesis. This restricts us to modest wall velocities.

Assumption g. I', ( v /D, so that the back reaction of
the baryon number violating processes on the perturbed
quantities can be neglected. Using (25) we see that this
corresponds to v & 10 ~K, . Numerical simulations
indicate v, 0.1 —1 so this is consistent with favored
wall velocities v 0.1 —1. If I', & v /D, the sphaleron
rate can equilibrate in front of the wall.

Assumption 5. All decay processes involving Higgs par-
ticles on the external legs can be neglected. This can be
revised along the lines discussed in [6] and should lead
only to minor numerical corrections.

Assumption 6. The diffusion constants of quarks of
opposite chirality can be taken to be equal. A very good
approximation, this needs only to be revised for the limit
of extreme suppression of an asymmetry by decay pro-
cesses.

Assumption 7. Only the top-quark Yukawa coupling is
nonzero, so we do not describe the case of a two doublet
model in which the lepton Yukawa coupling may be large.
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D + v —I' = — F—(z) —2X,r v g
P~ P~ — P& Z
To
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To
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C P, tD

To solve (49) we need to find particular solutions as well as solutions to the homogeneous equation. The latter are

e ', where

(49)

in (46). This is justified for all v„ in the range 0.1—1, since m~ & T /4 on the wall [cf. (47)]. We are then left with a
single equation for p~.

Dr ) r„( Dr & Dr„
AD= i1+,"+. .

i
d —A&

——— "i1—,+ .i,"«1,
D g v ) v~ ( v ) v

r„~ v
'

Dr„
+A~ ——+ + s ~ o + )) 1

D ) 2D ' v2

{50)

The behavior of the solutions is determined by the pa-
rameter DI'„/v2 (precisely as in the companion appear
[6]). It characterizes the competition between decay and
difFusion, D/v being the time a typical particle spends
diffusing in &ont of the wall before being caught. When
DI'„/v « 1, decay becomes irrelevant in &ont of the
wall, and the only efFect of the decay processes is to re-
store thermal equilibrium far behind the wall. This is
also the criterion we need to use to see if any process is
of relevance to the problem we are considering. In partic-
ular, we used it above in (44) and implicitly in assuming
that the Yukawa couplings, which we have set to zero,
mediate decay processes that are slow in precisely this
sense. We now consider the solution of (49) for each of
the two source terms on the right-hand side separately.

A. Classical force baryogenesis

derived by integrating (49) with the assumption that the
integral of p~ is continuous across the boundaries. Re-
quiring p~ to be Gnite at +oo, we take

r
Afe-~&, z ) —,

Ip~=( A e f'+B e ", ——(z( —,
Il

)Bbe" z( ——2'

(52)

where Ay, A, B, and Bs are constants, and from (50)
we have

DI'„
AD (( 1)

V

&y=&
Dr„

A+ )) 1)
V~

+L/2+a

o) ( o)
I /2+a

,
—L/2+~
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D&o
6

)

DI I'p

6

We return again to the "ramp" Ansatz (32), with
A = 4cN, and take only the force term as a source in
(49). The problem is now homogeneous with boundary
conditions

Dr„
Ag (( 1,

V

(
b

'
&(&, +~,)I

(&s+ &r~)L -i, L,I -i, (.-L,(2)
(As+ Ay)I, )

(54)

where A&
——v /D. In various limits this reduces to

DI'„
tO

Using the boundary conditions, we determine the solu-
tion in &ont of the wall to be

v I v ( I, i v I, Dr„exp —
D ~

z ——~, &&1 and "&&1,Dq 2&
' D V

2D
exp

V I
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2 ))1,
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where Zo ——Z (—I /2) and mo ——m (—L/2) .
The first two cases agree precisely with what we saw

when we analyzed the force neglecting decay processes in
Sec. V B.The prefactor in (55) corresponds to the average
of the solution approached on the wall for v L/D « 1,
but with the opposite sign so that the integrated contri-
bution in &ont of the wall cancels that on the wall. The
two limits for v L/D are the limits of good and poor
transport, which we discussed.

The two other cases given in (55) tell us how these so-
lutions are modified when DI'~/v & 1. The penetration
of the diffusion solutions into the unbroken phase is re-
duced, since JI'„/D & v /D. As we noted, this is just
the condition that the average diffusing particle's time in
the unbroken phase before capture be longer than its de-
cay lifetime. A second parameter enters in determining
how the amplitude of the solution in &ont of the wall is
changed. In the first case, QI'„/DL « 1, the amplitude,
in fact, compensates by increasing so that the integrated
result fii2 P~ is unchanged (up to a factor of 2). In

the second case, QI'„/DL &) 1, the amplitude is atten-
uated, and the integrated result differs from that in the
no-decay case by a factor of v /2DI'„« 1. The physical
meaning of the parameter QI'„/DL is also siinple. It is
(the square root of) the ratio of the time a particle takes
to difFuse across the wall to its decay lifetime. So what
the third and fourth cases in (55) tell us is that the net
density of particles in &ont of the wall in these stationary
solutions is not changed (up to a factor of 2) unless the
decay process is fast enough so that particles can decay
as they cross the wall. This is a surprising result, as one
might expect the only relevant parameter to be DI'„/v

Zm2
Av

0

EOL 6 4z2) L L
(

0, otherwise,

and using the same conventions as in (52), we find in
&ont of the wall

—jl + e
—Af Li —Ay(z —I /2)

where A&
——I'„/v and ADD ——v /D. In the same limits

as before this reduces to

which compares the decay time to the time a particle
actually spends in &ont of the wall.

The factor of 2 has a simple explanation, which will
be familiar to the close reader of [6). If one considers a
diffusion/decay equation for a single species with a given
injected flux modeled by a 8 function, one finds two dis-
tinct regimes corresponding to the value of I'D/v~. In
the high-velocity difFusion regime (I'D/v2 « 1) the sta-
tionary solution puts most of the injected flux into the
amplitude in &ont of the wall; in the low-velocity case the
solution has equal and opposite amplitude in &ont and
behind, sharing the injected flux so that the amplitude
is exactly half that in the first case.

One might worry that some of these features are arti-
facts of our Ansatz (32) in which there is a discontinuity
in the profile of m Z at the back of the wall. To check
this, we take instead the "bell" An8atz:

v~L
exp

v ( Li v I DI„iz ——I, «1 and "«1,
2) V

6D
exp

v~L
v ( I i v L DI'

z ——, ))1 and «1,D ( 2) ' D v

66 1 I'„"Iexp
2 D

I p DI'„"L «1 and 2" ))1,
V

(58)

3 D
expI„

f„(
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I„ DI'„PL»1 and 2P «1D V

This again shows the same results in each case. The only difference is the numerical factor that comes &om averaging
the profile over the wall, which is precisely what we anticipated, since Io/6 = (Av (Zm /To)).

Using (48), we now finally calculate the baryon asymmetry in its standard form and find

n~ 4 4—K8 Ck

8 gg

'1 ifv )I'„D=
6

g&Zm I'„gK,„LT
dz] 2 if v ( and

gD . z Kss QKss LT
if v ( " and & 1,

(59)
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where s = (2' /45)g, T is the entropy density of the
universe, g, is the number of relativistic degrees of &ee-
dom, and L is the thickness of the wall. g is a geo-
metrical factor, which must be calculated for the par-
ticular wall profile (1 for ramp and 3 for bell). In all
cases we have assumed I', « v /D; in the case of a
wall moving suKciently slowly that this condition is vi-
olated, one would recover nI3 oc v, as expected. Recall
that these results are derived under the assumption that
the strong sphaleron is the dominant decay process ev-
erywhere. Other cases can be treated using the more
general form of (46).

This expression is remarkably simple. Most strikingly
L, v and D all cancel out in the answer in the most in-
teresting (and quite plausible) regimes. For typical "slow
thick wall" parameters values, e.g. , L 10/T, v 0.1,v„0.1 —1, and mq T, the conditions for our deriva-
tion hold. The result is = 2 x 10 r, n (m/T) 40
2 x 10 tc, A0, where Ao = m,

& Im, q(z) g~Zdz is a
measure of the CP-violating condensate on the wall.

The magnitude of 40 depends on the precise profile
of the wall, with the greatest effect occurring (in the two
doublet theory) if the phase 0 rolls fastest where the mass
is large. In two-doublet theories it will have the same sign
on every bubble in a way determined by the effective po-
tential, and can be O(1) consistently with measurements
of CP violation. In the case of the standard model Z
condensate this factor will contain a suppression (poten-
tially many orders of magnitude) depending on exactly
how one sign of the condensate comes to dominate over
the other. A full treatment of this case is required, which
goes beyond the scope of this paper [13].

B. Local spontaneous baryagenesis

In the preceding section we have concentrated pri-
marily on the chemical potential Buctuations in front
of the wall where the sphaleron rate is unsuppressed.
This clearly dominates baryon production in the case
of efficient transport v L/D & l. In the case of ineffi-
cient transport (when the wall is very thick and slow) so
that v L/D )) 1, the nonlocal baryogenesis will be sup-
pressed by D/v L, and local baryogenesis may domi-
nate. We analyze this case now to relate our treatment
to that in the literature (in particular, to CKN's work
[8]) prior to [10], in which the potential importance of
transport in the plasma was noted.

When we combine the first two equations in (46) and
ignore transport (D = 0), we obtain

r,r.. (
v p~ —(I y+ I )p~+

~

1 —
~ pav ( iVy&

2N I'y g Z'. (6—0)

The force term source drops out in this limit simply be-
cause, in order to induce perturbations, particles must
move in response to the force (and D = 0 "f'reezes" the
particles). The case of the perturbations induced by the

second source terms on the right-hand side of (46) is quite
different. The effect of the field Z is local —it creates a
perturbation at the point at which it is turned on by
changing the interaction rates of hypercharge violating
processes.

For comparison with the previous literature, it is in-
structive to consider the following cases in which the so-
lutions to this equation can be read off simply.

Case l. I
&

(& L/v « I', ,i for which

p~ ——2' v g~Z (61)

to leading order in I'„/I'y.
Case 2. I'.. .I'& « L/v for which

(62)

Here we ignore the homogeneous solutions, which simply
describe how the perturbations induced on the wall decay
away behind the wall.

The erst case gives us what would be obtained by
finding the local equilibrium subject to the constraints
imposed by the interactions locally, neglecting strong
sphalerons. This is precisely the limit calculated by CKN
in [8], albeit with a fermionic hypercharge in place of v Z
and correspondingly a fermionic hypercharge violating
process in place of I'y. The requirement I'& &( L/v
is just the condition that the interaction time for the
hypercharge-violating process be short in comparison to
the time of passage of the wall, a requirement imposed
by CKN on the fastest fermionic hypercharge-violating
process.

From the second case we see that if one takes I'„~ oo,
i.e. , puts the strong sphalerons into equilibrium, the re-
sult is zero. This is a simple way of seeing the result
obtained by Giudice and Shaposhnikov in [14]. The re-
sult (62) tells us how to calculate corrections to this con-
strained local equilibrium calculation, keeping the con-
straints but taking the rates to be Gnite, and gives what
one might guess: The result is approximately equal to the
equilibrium result of (61) with an additional suppression
v /I „L.

These formulas also show, as remarked upon earlier
and pointed out by Dine and Thomas in [9], that the per-
turbation is not well modeled by a fermionic hypercharge
potential, but is it a potential for total hypercharge? In
the rest kame of the plasma, with our assumption of
a stationary wall profile, the time component of Z~ is
v Z, but one must be careful about the conclusion that
one simply replaces v Z by whatever this time compo-
nent is. One evident problem is that one loses the ex-
plicit v dependence, as such a potential can, in prin-
ciple, be nonzero with the wall at rest, and the result
when v —+ 0 is then nonzero. The problem is exem-
plified in CKN's calculation of spontaneous baryogenesis
[12], which incorporates the effect of transport through
a diffusion equation, in which only the time component
of Z~ appears. However, if we consider the case in which
only the time component Z& is nonzero, their diffusion
equation does not approach the correct thermal equilib-
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rium as v ~ 0. To recover this must include the force
term, which results in a net overdensity in proportion to
Zo. In general, a correct treatment should include both
space and time components of the gauge field and the
corresponding force terms. In our case, where the field
configuration is assumed static in the wall kame, one can
work in this kame, and, in this case, the only nonzero
component is the spatial z component, while the time
component plays no role. We will not compute, in this
case, the baryon asymmetry, as it involves making spe-
cific assumptions about how the electroweak sphaleron
rate behaves on the wall. We concentrate instead on the
nonlocal variant of this mechanism.

This brings us to one final remark. When the transi-
tion proceeds, as we have assumed, by bubble nucleation,
Z„ is a spacelike vector if we take the wall profile to be
stationary. The one case in which it can be modeled con-
sistently as a timelike total hypercharge potential is when
the transition occurs by spinodal decomposition, where
the Higgs-boson fields all roll together in the same way
everywhere in space. Going back to our dispersion rela-
tion in Sec. II for this case, we would follow through our
deviations in the same way. We would need to redefine
the chemical potential by g~ZO and, because of the spa-
tial homogeneity, would Gnd no force term. For the same
reason, we would discard the spatial gradients and, with
a certain assumption about how the transition proceeds,
the time derivatives too. We would arrive at (61) above

with v Z replaced by Zo.

C. Nonlocal spontaneous baryogenesis

ryz
Tp

I.Z. (z--;&
Tp

0, otherwise.

I L——&z( —,
2 2' (63)

The VEV squared dependence in the rate is absorbed
in the Ansatz. With this Ansatz, p~ is then continuous
everywhere, but the equation is not homogeneous.

The particular solution for this Ansatz is

TO

/r„g z, ~'z ——,

0, otherwise,

v l L I——(z(—
I'„L) '

2 2

and the solution in &ont of the wall
(64)

We now turn to the case where this local efFect is
turned into a nonlocal one by the eÃects of transport.
Perturbations can then be generated in front of the wall
where the sphaleron rate is unsuppressed, in contrast to
the local e8'ect, which operates in the region where B
violation is VEV squared suppressed (see, e.g. , [12]).

We turn again to (49), again assuming I'„ to be the
dominant decay process, taking the second source term
and the ramp Ansatz:

I' g~Zo 1 Ag l ( Ag
1 +

~

+
[

] + $ L
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—Af —Aj( — / )I'„T, (A~+ A )L ( A„') q &„' ) (65)

using the same conventions again as in (52), and A& ——I'~/v
Again we simplify this in various limits to

lv L (DI'~) v ( L) v L dI'&
exp — z ——, (& 1 and (( 1,

2 D ( v2 j D l 2) ' D V

D (DI' '7 v ( Ll v L dI'„
exp — z ——, )) 1 and &( 1,vL(vjD(2)'D v

+2N.v„
rp To — L exp

4 D
I'„f L i

D ( 2)
rp, Dr„X&&1 and 2" »1,

v

(66)

1 D
2L r D q 2)

r„ DI'„"I,»1 and
D V~

These solutions are very similar to those in the case of the force, the amplitude being of the form of the amplitude
of a "static" solution (61) on the wall multiplied by a factor that depends on the relative importance of decay and
difFusion. The static solution in this case is attained in the limit that there is no transport and the decay processes
are turned on.

In contrast, the solution (36) for the force is reached when transport is perfect and the decay processes are turned
oK For the "spontaneous" effect, we see that as D -+ 0 the amplitude in front of the wall vanishes rapidly (~ D )

As D ~ oo the amplitude goes as 1/~D, but the tail integrates to give exactly half the solution (61), however, in
this case not with the opposite sign. The arguments that we use to explain the sign in the case of the force do not
apply as they rested on (40). In the spontaneous result the sign is, in all but the first case, the same as that of the
static solution. What is happening is that the overdensity, which the local process creates, difFuses out to the region
in front of the wall. Only in the first case, where the transport is much more eKcient than the decay, do particles
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diffuse in to "cancel" the density on the wall.
The baryon to entropy ratio can again be calculated. We find precisely the same expressions in (59) but with the

replacement

g~ZxD 6 I yg~Z
Gz dz g

Tp 2e I'„
DI' Dr 88 2 +88

'U 7v

1, v
(67)

Using I f and I„ from (47) so that I'&/I',
0.4(~i/T) /r„, this result is seen to be equal to the
force result multiplied by 1/(50m„a. , ) 1/r„. (This
is valid for v « ~„/7 and, as we assumed, I'„))1 y. )
The final result is that the two effects have quite different
parametric dependence but appear to be roughly of the
same order of magnitude.

A striking difFerence between the classical force effect
and the spontaneous baryogenesis effect is in the depen-
dence on the strong sphaleron rate. In the latter there
is an inverse dependence on the sphaleron rate for a suf-
6ciently large ~„. This dependence has been noted by
CKN in their numerical study [12]. In contrast, the force
sourced result is not suppressed by the strong sphalerons
if g+„LT/14 & 1.

VII. COMPARISON OF THIN- AND
THICK-WALL REGIMES

It is interesting to compare the results in this paper
with those in [6], where we considered the case of baryo-
genesis produced by reflection off a thin wall. The two
calculations are most easily compared by looking at the
version of the Ruid equations (46). Once we established
that the thermal fluctuations were unimportant, we were
able to reduce the system to a diffusion equation precisely
analogous to that in [6] but including a force term that
extends over a finite region of space, the wall, where we
before had the derivative of a b function, modeling the
injected Hux:

D
(Jph m E(z) . —

6 (68)

In the classical force case, integrating the right-hand
side gives zero because the force is derived from a poten-
tial. Unlike the injected case, the efFect of the classical
force vanishes as the wall thickness is taken to zero. This
is because the force simply speeds up and slows down par-
ticles that pass over it. We have not included the effect of
the force as a reHecting barrier on low momentum states,
since we neglected the efFect of the "How" of one branch
of the dispersion relation into the other at low momen-
tum. If we include this we should obtain in the thin-wall
limit what one would calculate for the reflected flux in
the WKB limit. The quantum-mechanical reflection we
cannot of course recover. To compare the magnitude of
the classical force efFect with the WKB reflection effect,
we take the ratio of the amplitudes of the difFusion tails
at the front of the wall. Doing this, we Gnd, neglecting
decay and assuming eKcient transport,

pg~„, D v~L (69)

The most striking result is the very different parametric
dependence.

The effect of introducing a decay term, in particular,
because of strong sphalerons, is quite difFerent in the two
cases. In our thin-wall calculations [6] the suppression
that resulted was v /QI'„D for v /I'„D « 1, and this
same suppression is seen in the nonlocal spontaneous ef-
fect. In the case of the classical force this suppression
(which comes from the shortening of the difFusion tail
in front of the wall) is compensated for by an increase
in amplitude until 1 „enters the regime JI'„/DL ) 1.
An explanation may be found from the equation for p~,
Eq. (46). Dropping both I'y terms and integrating once,
one finds that the integral of p,~ over all space must be
zero. What the condition QI'„/DL & 1 means is that
strong sphalerons have little effect on the wall, but, be-
cause f p~ = 0, the compensating tail in front of the
wall is also unaffected. No analogous conservation law
holds in the spontaneous baryogenesis effect because the
whole efFect is driven by a decay process (I'y) and strong
sphaleron suppression occurs.

VIII. CONCLUSION

In this paper we have developed a systematic proce-
dure to describe the perturbations produced by a CP-
violating bubble wall moving through the plasma. We
have shown how a Boltzmann equation can be used to
describe the dynamics of thermal particles in the plasma
when scattering processes are important. We now con-
clude with several remarks.

(i) The treatment relies on a WKB approximation
which is good for most, but not all modes in the plasma.
We have in particular ignored the efFect of the low mo-
mentum modes. A full treatment including these modes
remains an open problem for recent attempts see [15].

(ii) We have neglected the effect of screening. The ef-
fects of the long-range fields may be incorporated through
the appropriate terms in the Boltzmann and fluid equa-
tions. We have not done this, as it greatly complicates
our analysis by coupling all species. However, in Sec. VII
of [6] we discuss this issue in some detail. As illustrated
by a simple model calculation of screening by quarks and
leptons presented there, we do not expect that the efFects
of screening would alter our final result, s by a factor very
different from unity.

(iii) There are many improvements and refinements of
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our calculation possible. The Boltzmann equation is, in
principle, soluble without any truncation, and certainly
there are other approximations that can be used.

(iv) One caveat must be added to our justification of
the neglect of the Higgs particles in the determination of
the perturbations driving baryogenesis. By dropping the
Higgs particles we are assuming that they themselves are
not significantly perturbed by a force term. In the thin-
wall case we also assumed that there was no injected flux
in Higgs particles. This is not justified, as the dynamics
of the Higgs particles are likely to be nontrivial in the
background of a changing VEV. It is quite conceivable
that such an eKect could be important.

(v) The methods we have developed should be useful
in approaching the problem of the d.etermination of the
wall velocity and backreaction on the wall because of re-
flection. In particular, we derived a set of force terms
caused by the mass, which we did not make use of in the
calculation reported here.

(vi) An important outstanding problem is to relate the
techniques developed here to some formal field theoretic
methods such as those used in [16] and more recently in
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APPENDIX A: COLLISION INTEGRALS
FOR BOSON EXCHANGE~

We consider first the contribution to the collision in-
tegrals in the fluid equations, which come &om the t-
channel gauge boson exchange processes shown in Fig. 2.
We will treat not just the quarks but also the right- and
left-handed leptons, primarily because it is interesting to
compare our result for the difFusion constant with those
obtained with our previous method in [6].

When we integrate the Boltzmann equation as de-
scribed in the text over I yPp, jps yPp, and fp, gPp
there are six integrals we need to evaluate:

p, k,p', k'

'1
f„(1 f„)f„(1—f„)~M~'(2n) $ (p+ k —p' —k')(po —po) x & po,

'1
f„(1—f„)fs(1 —fg) ~M~ (2~) b (p+ k —p' —k')(p, —p', ) x & po,

(A1)

where we have ignored the higher-order terms in the perturbations bT, 6, and p so that fermion population densities
(in the plasma frame) are f„, = 1/[1 + exp(po/To)], p, = (p, k, p', k').

For the gluon exchange process the scattering amplitude is

(A2)

where A~ = 32g4, t = (p —p')2 —2p .p', s = (p + k)2 —2p k, u = (p —k') —2p k', g, is the strong-coupling
constant and m~ is the thermal gluon mass. Note that here and in the following we neglect masses of the particles at
legs of the diagram. Since typical scattering particles are thermal p k T, including them would introduce mass-
squared corrections to our collision integrals, which we can safely neglect. For the SU(2) and U(1) boson exchange
diagrams for leptons,

(A3)

where A~ ——36g~, A~ ——78g tan 0, g the weak-coupling constant, 0 the Weinberg angle, and mph' and m~ the
thermal masses of the SU(2) and U(1) gauge bosons, respectively. These amplitudes include the counting over all the

We thank Guy Moore for pointing out an error in an earlier version of this appendix.
In this paper we do not calculate all of the t channel tree-level diagrams that contribute to the diffusion constant. We refer

the reader to [5], where this has been done systematically.
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fermions and antifermions, which the given fermion can scatter off. Since the t-channel processes are dominated by
the infrared exchange momenta, we have used the same approximation to the boson propagator as in Appendix t of
[6]: We have assumed the exchange boson is Debye screened and hence the propagator is corrected by t ~ t —m,
where m(T) is the corresponding Debye mass. This approximation is reasonable for longitudinal bosons, but for
transverse bosons, since they are not Debye screened at the one-loop level, it underestimates the scattering rates.

To see that the erst and fourth integral are zero we simply use the symmetry of the matrix element under exchange
of initial and final momenta, i.e., p ~ p' and k ~ k'.

Using parity invariance of the amplitudes (p; —+ —p, ), one can show that the third and fifth integrals are also zero.
We are left with only two integrals, which we denote as I (the second integral) and I (the sixth integral), which can
be written in a Lorentz-invariant form as

L
3

4'p
2pp

/3k

Q

4 p
2pp

3 I

„,(1-f.)
PQ
3 1

2, (1 —f~)
PQ

g k
fr fl I , I

2kp
3k'

2ko,
( - f~)l~'(2-)'~'(p+k-p'-k')-[(p-p') -]',

2
k'

2ko
(1 —fk )~M~ (2vr) h (p+ k —p' —k') —

[ t+ (—(p —p') u)3],
6

(A4)

where u~ is the plasma vector, which is in the plasma
frame u" = (1,0), and f„= 1/[1 + exp(p; u/T)] are
the population densities. Dropping the Pauli blocking
factors for the out-going states we can evaluate the in-
tegrals over p' and k' in the center-of-mass frame. In
this frame u" = (p, pv), which can be written in terms
of the plasma f'rame quantities as p = (po + ks )/v s&',pl pl

pv = (P'~ + k"r)/y si'~, si' = 2p&' . k&'. For convenience
we choose the axes such that p is along the z axis, p =
p(0, 0, 1); v has zero azimuthal angle, v = v(sinP, O, cosP);
and p = p'(sino' cosP', sing' sing', cos0'). After some al-
gebra, and keeping only the leading logarithm, which oc-
curs for small 0', we get

(pvpsinP) lno A . , 4p
8m m

I'T —— I, I'„= I
4poTQ 4ppTQ

(As)

18(32 2 9 TPr„=3r = '~.'ln T, =
7(4~ ' 2vrn, 20

(A9)

Using the relation D = 6/3aI'„ from (22), this gives us
the quark diffusion constant

D 8(2
ln

2

9 Tp
Q

5
(A10)

For the leptons we calculate

where po
——(21/8vr )(4TO. For the quarks, this gives,

when we use m = 8vro;, To = 3.6TQ, as described in
Appendix A of [6] for n, =

&
at Trj 100 GeV,

31, = —[(pvpsinP) + 2p ]ln
A , , 4p'
8m m

(A5) 9(2 2 27 ToD~ — o. ln Tp ~2' 57ro. 100 '

(A11)

A p ~ k 2p ~ k
r,
o = —(u. p)(u k) — ln8' 2

A p. k 2p- k
( .„)(u.k)+ ln8' 2 m2

It is now possible to do the remaining integrations using
the approximation I f x lnx dx = ln(n + 1) f f x dx,
f = (1+expx); we find

A 2 36TIo =I = 9(3ln T
1024vr 5 m2

Now going back to the definitions of I'T and I'„ in (21)
and (19) we have

(A7)

where A = 2Aq for quarks and A = A~, A = A~ for
the leptons. In order to recast this in a Lorentz-invariant
form, note that the Lorentz scalars we can construct from
u", p~, and k~ are u . p, u k, and p . k (since p - p
0, k . k 0, and u u = 1). The unique solution is
(pvpsinP)2 = (u. p)(u k) —(p k)/2, so that we have

39(2 2 4 27 TQ
tan 0~ ln 2

Tp-
4vr 7t cI~ tan 0~ 290

where we used m& ——(47r/3)n tan oi4 To 0.04T& and
mi4,

——(20m/3)n tan T& 0.7T& and taking n
and sin 0~ ——0.23.

These values for the diffusion constants agree very well
with the values we obtained in Appendix A of [6]. The
methods employed differ in that the first allowed a more
general perturbation to the phase space density, but re-
quired an assumption about the near equality of the en-
ergy of ingoing and outgoing scattered particles. The
method presented here is based on a more restrictive form
for the distribution function but involves no additional
approximations.

APPENDIX 8: COLLISION INTEGRALS
FOR DECAY PROCESSES

In this appendix we evaluate the gluon exchange
helicity-flip rate, which dominates the hypercharge-
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violating interactions. The relevant Feynman diagram is
shown in Fig. 2. The top —Higgs-boson helicity-flip pro-
cesses (hypercharge-violating Higgs exchange and Higgs
absorption or emission) are slower because there are fewer
particles to scatter oK

The rate for a top quark of helicity A to scatter into
one of helicity A' is

12 4'» ask
fo(po/T)

k
fo(k&/T)&/

2p0 2 0

$3pI $3I I

P'4(p+ k —p' —k') ~Mg2p' 2k0

(B1)

2A t»71'1s" = —
/ /pg, pp —f,m q

'
/pgy' 2' (B2)

on the wall where particles acquire a mass. The factor
12/T = 1/3noa is in accord with the rate definition I'/
in the difFusion equations (46). Even though the masses
are spatially dependent, for our purposes it is sufFicient
to evaluate the rate assuming a constant mass. The cor-
rections to this approximation are of order lcm, where
I 1/Ms is the Debye screening length of the gluon
so that l~V'm~/m 1/g, TL (( 1. In (Bl) we consider
an in-going fermion with mass m~ momentum and helic-
ity {p,A), which scatters off a fermion mz, k (with arbi-
trary helicity) into {p', A'), k' with the appropriate spin-
dependent scattering amplitude Mp~p . The notation
we use in (Bl) is familiar to the reader: no ——3(sT /47r,
(3 —1.202, fo (x) = 1/ (expx + 1), /t k—:d k/(27r) . We
ignore Pauli blocking factors.

In order to evaluate ~Mp~g
~

we deflne, following,
e.g. , [18], the spin-four vector as

where A is the helicity, so that 8.p = 0 and 8.8 = —1. The
helicity projection operators for a massive spin-2 particle
eigenspinor u(p, A) are

u(p, A)u(p, A) = ~(1+ ps g)(yf+ m) (B3)

and similarly for antiparticles.
The scattering amplitude squared reads

2A, 1

[(p —p') ' —M,'1' 16

Ti" = Tr[(g+ m)p" (g'+ m)p"], (B4)

T.-.= ~{(u+ )~--,'[I+~. X(p', ~')]

x (gf' + m) p„-', [1 + ps p'(p, A)]),

where A, = 32gs ——512vr~n~ (n, = gz~/4~ = 1/7) in-
cludes the 12 quarks and antiquarks that a quark can
scatter o8' via the gluon exchange. Rather than evalu-
ating ~M~~q

~

for each pair {A,A'), we can define the
helicity-flip amplitude

(B5)

and the no-flip amplitude

(B6)

which simpli6es the problem considerably. We still have
to plough through rather lengthy algebra to arrive at an
expression for Tq T2+:

1 1 4 1 I I I 2 I 2 I 2 2Tl'T2+ — ) —Ti Tz =(p kp . k +p. kp . k —m k. k —m p p +2m m )16 2 16 1 2 1 2
A'=+A

k —) [
—s. s'(p kp'. k'+ p. k'p' k —p p'k. k')

2 A'=A

—p p'(k sk'. s'+ k s'k' s) + p kp' sk' s'

+p. kp Sk. s +p kp 8k . s+p kk. sp 8 —k kp ~ Sp . 8/ I I I / I / / / I / I

+mi(k sk' s'+ k s'k'. s —mzs s')],

(B7)

We can now integrate both X (in the leading loga-
rithm approximation as explained in Appendix B of [6])
and X+ according to (Bl) to obtain the helicity-flip rate
r and the no-flip rate r+.'

24ln 2
f r-

~ T.n. LT
(B9)As m2y 2p k'ln 1+

8m p. k M2 54(sz
r+ —— n, T,~4

(B8) where

where s„=s„(p, A) and s'„= s~(p', A').
Since this form is I.orentz invariant, the integration

over the out-going momenta p' and k' is rather straight-
forward in the center-of-mass frame: p+ k = 0 = p + k'.
To leading order in mz we obtain

A, p k

2' M2

with the gluon thermal mass squared M = 8vrn, T .

2

(dz/z)ln(1 i x,z/2mn, )
0

= (z + (1/2)ln (x, /urn, ) —em, /x, = 2.5
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is the angular integral (z = p . k/pk), which is approx-
imately unity; xi 1.3 is the value of the moxnentum

p/T at which the momentum integrals in (Bl) peak.
We use this estimate of Fy in Sec. VI. Using the

same method one could evaluate the helicity-flip W- and
B-exchange processes relevant for the leptons. How-
ever, since our main focus in this work is on top-quark-
mediated baryogenesis, we shall not do so here.

APPENDIX C: FINITE- TEMPERATURE
DISPERSION RELATION

In this appendix we follow Appendix B of [6] to ar-
rive at a finite-temperature Dirac equation in momen-

turn space. In the presence of a Z Geld condensate it is
convenient to write the equation in terms of 2 x 2 chiral
spinors in the plasma kame

[(E —g~zp + cR) —cr (P —g~z)]4'R + mR@1, = 0,
mL, CR + [(E+g~zp + cL, ) + o ~ (P p g~z)]%L, = 0,

(Cl)

where the notation is that of [6]. We will consider a pla-
nar wall moving in the positive z direction with velocity
v with a pure gauge condensate Z" = (Zp, 0, 0, Z, )(z)
so that Zo ———v Z . The dispersion relation we require
is obtained by setting the determinant of (90) to zero:

[(E+c) —P —mr —(g~zp + 26c) + g~z, ] = 4P (g~zp+ 26c) + 4g~z, [(E+c) —P~]
8P,g~—z, (E + c)(g~zp + 2Ac),

where we have defined

(C2)

cR+ cL,

2
2 c = cl. —c~, mT = m2

(1+ aL, )(l + aR)

The dispersion relation for antiparticles is obtained by the replacement P, ~ P, an—d Zp M —Zp (recall that Z, is
even under CP). In the limit when both Zp, Z, ~ 0 we find, for particles,

(E+c) =
(
]P(k —bc

f
+mT, ,) (C4)

which reduces in the high-momentum limit to E = P + mT + 2ML &.
A second case, which is easy to solve, is when Z, = 0 and Zp f 0. This is relevant to the case of spinodal

decomposition (second-order phase transition):

(E+ c)2 = [~P~ g (g~zp + -'Ac)]'+ mT, (C5)

which in the high-momentum limit simplifies to

E' = [~P] ~ g„Zp]'+ 2~,'R+ m'.

Therefore, as long as P » ML, R, the motion of a thermal excitation is not affected (to leading order) by the dispersive
plasma eQ'ects. In a Grst-order phase transition this is not the relevant case, since Z" is spacelike; in the plasma kame,
for example, ~zp/Z,

~

= v, so for slow walls it makes sense to neglect Zp.
To make a detailed comparison with the free-particle case, we now proceed to a more systematic study of (C2) and

rewrite it as

A =E+c,
0 = A —2[P + mT + g~Z, + (g~Zp + 26c) ]A + 8P,g~Z, (gzZp + 26c)A

+[P + mT —g~Z, + (g~zp+ zoic) ] + 4mT [(g/Zp+ 2b, c) —g~Z, )
—4P, g~Z, .

(C7)

We now consider a weak Z Geld expansion of this equation and write the solution in the form

A = Ap(1+ e),

where Ap is the solution of (C7) with linear term in A neglected:

(C8)

Ap = ep + Qbp,
ep = P' + m~2 + g~2Z,' + (g~zp + -', Ac)',

4p —4(P +g~z, )(g~zp+ 2b, c) +4g~z, (mT +P, ).
(C9)

The leading-order correction e reads
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2g~Z~P~(g~ZO + 2 Ac)

AOQAO
(c10)

where the signs coincide with (C9). In order to make more transparent what the dispersion relation (C8)—(C10) mean,
we look at its high-momentum limit.

We now restrict ourselves to the case Zo ——0, Z, g 0, which describes the case of a wall at rest in the plasma. Since
for a stationary wall profile Zo ———v Z„we anticipate that this will be a good approximation for a sufFiciently slow
wall. There are two cases to consider depending on which term in the determinant Ao in (98) dominates,

2g~Z, Pz + mT for (Ac) P && 4ggZ, (P, + m ),

g&o —~&c~P (MI. —M~) —for (b,c) P )) 4g~Z, (P, + m ) .R

(C11)

In the high-momentum limit these two cases reduce to a comparison between ML —M& and 2g~ZP, . Since MI-
M& n T (see [6]), and we can write 2g~Z = 8cI /L, the two cases become approximately 0&J ) o.~LT and
Oc~ & o. LT, which we, therefore, refer to as cases of strong and weak condensates, respectively. (Note that for a
realistic wall thickness to be in the strong regime 8c~ must be of order unity. )

In the first case the dispersion relations are

2 P P2
(E ' ~ c) = P~+

~

sgnP, P2+ m~2 +g~Z,
~

+ (Ac/2) ~ (Ac/2)
' 2(E ' + c) + (Ac/2)

P.'+ m2~ P.2+ mT

(c12)
P2

(E ' + c) = P~+ (sgnP, P2+ mT ~g~Z, ) + (Ac/2) y (Ac/2)
' 2(E ' + c) + (Ac/2)

P; +mT2 P2+ mT

We have adopted here the notation used in the main
text —labeling the WKB states by the chiral states they
deform into in the symmetric phase. A careful inspec-
tion of these relationships in the high-momentum limit
P » ML, R, reveals that they reduce, to leading order in
coupling constants, to the zero-temperature dispersion
relations p/u8 the finite-temperature mass ~2ML, for the
left-handed particles and their antiparticles and ~2M~
for the right-handed particles and their antiparticles.

First we note that in the &ee case (when we set T = 0)
Eq. (C12) precisely reproduces the dispersion relations
we had in (4) and (5). Second, when Z, = 0 we see that
the efFect of the thermal corrections is to split the left-
handed and right-handed states (by an amount oc Ac)
but to leave the degeneracy of particles and antiparticles
intact. Finally, and most important, we see that the
corrections to the free dispersion relation are small, in
this case O~~ ) n IT, so that the analysis in the main
text applies.

The second case of a weak condensate in (Cll) gives
dispersion relations

(E ' +c) = (P~Ac/2) +m~

+2g~Z, —' (P ~ b, c/2)2 + rnT2,

(c13)
(E + c)' = (P 6 Ac/2)'+ m~2

g2g~Z, —' (P + Ac/2)'+ mT2 .

It is instructive to rewrite the first relation in the limit
when P » ML, R,

P(E '
) =P +m +2ML~+2g~Z, 'QP2+m2.

(c14)

When m = 0, there should be no physical effect because
of the Z field, since it is then just pure gauge. We see
that this is the case, since the dispersion relation can then
be written (E ' + c) = (P' g Ac/2), where P' = ~P'~

and P' = (P~, P, kg~Z, ) [compare this form with (C5)].
When m g 0, however, just as in the zero-temperature
case, the dispersion relations (C13) lead to a nonzero
acceleration: v, = pO, (g~Z, m )(P, E ) —O, m /2E,
where we have assumed that E and P~ are conserved
in the plasma frame, an approximation correct to lead-
ing order in v . Comparing this result with (8), we see
that, in this second case of a weak condensate, the force
term has the same form [oc 0, (g~Z, m2)] but a some-
what different momentum dependence. Corresponding
corrections to the analysis presented in the text would
be required to describe this case, which we anticipate
would lead to minor numerical changes in the coefficients
of the terms in the fluid equations if the analysis is carried
through in the same way.
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