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Higher-order gravitational perturbations of the cosmic microwave background
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We study the behavior of light rays in perturbed Robertson-Walker cosmologies, calculating the redshift
between an observer and the surface of last scattering to second order in the metric perturbation. At first order
we recover the classic results of Sachs and Wolfe, and at second order we delineate the various new effects
which appear; there is noa priori guarantee that these effects are significantly smaller than those at first order,
since there are large length scales in the problem which could lead to sizable prefactors. We find that second-
order terms of potential observational interest may be interpreted as transverse and longitudinal lensing by
foreground density perturbations, and a correction to the integrated Sachs-Wolfe effect.
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I. INTRODUCTION

In the last several years, observations of temperat
anisotropies in the cosmic microwave background~CMB!
@1# have spurred increasingly sophisticated investigation
the anisotropy predicted by theoretical models@2–5#. Impor-
tant contributions to the anisotropy come from gravitation
perturbations, temperature and pressure fluctuations at
surface of last scattering, and ionization effects in the la
universe.

The earliest of these effects to be studied, and the m
important on large scales, are those due to gravitational p
turbations. These were systematically investigated by Sa
and Wolfe@6#, who derived the basic formulas relating pe
turbations in the metric to anisotropy in the temperature
the CMB. Their results revealed two basic sources of anis
ropy: potential fluctuations at the surface of last scatteri
and time variation of the potential along the path of the ph
ton. Later investigations focused on individual effects in sp
cific models@7–15#.

Even though perturbations in the energy densitydr/r
grow to be greater than unity on sufficiently small scales,
resulting metric perturbations may almost always be taken
be small@16#. It therefore makes sense to calculate the b
havior of photons to first order in this perturbation, as Sac
and Wolfe did. Nevertheless, there is no way of knowin
ahead of time that second-order terms in an expansion in
metric perturbation will be negligible compared to the firs
order terms, since there is ample opportunity for effects
accumulate as photons travel to the observer from the sur
of last scattering; in other words, the coefficients of t
second-order terms may be numerically large.~As an ex-
ample of a related effect, the time delay formula in standa
gravitational lens systems contains important contributio
from both the first-order Shapiro and the second-order g
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metric effects.! It is therefore worthwhile investigating the
redshift induced by effects which are formally second order
in the metric perturbation to see if they may nevertheless be
observationally important. In this paper we calculate these
second-order effects and interpret the results in terms of spe
cific physical processes.

It is necessary to be careful about what we mean by ‘‘sec-
ond order’’ in the context of gravitational perturbation
theory. We imagine that we are given a metric throughout
spacetime of the form

gmn5gmn
~0!1hmn , ~1.1!

wheregmn
~0! describes a background Robertson-Walker space

time andhmn is a small perturbation. We will not be comput-
ing this perturbation to second order in perturbations of the
energy-momentum tensor, but simply calculating photon tra-
jectories to second order inhmn and its derivatives. There-
fore, if hmn is computed from standard first-order metric per-
turbation theory and substituted into our expressions, the
results will not represent a complete calculation of effects
which are second order in the matter perturbations.~In Sec.
IV we will examine explicitly the case of first-order scalar
perturbations, but it is straightforward to generalize the re-
sults.! Nevertheless the expressions we obtain will constitute
a subset of all the possible contributions, and if any of them
turn out to be comparable in magnitude to terms which are
formally first order, it is appropriate to take them into ac-
count. Moreover, the substitutionhmn°g mn

(1)1g mn
(2)1••• into

our formulas below would immediately yield an expansion
for the full second-order anisotropy.

It is also important to note that we will only be dealing
with gravitational perturbations. We will imagine that there is
a hypersurface of last scattering fixed at some definite time
on which there can exist intrinsic perturbations which may
be calculated independently; we then compute the additiona
perturbations due to the metric fluctuations along the geode
sics followed by the photons. Nongravitational second-order
perturbations were treated by Vishniac@17#, Dodelson and
2920 © 1996 The American Physical Society
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Jubas@18#, and Hu, Scott, and Silk@19#. The latter authors
also examined higher-order gravitational effects by expa
ing the Boltzmann equation to second order, but did not c
struct explicit solutions. As a final caveat, we treat the ord
by-order expansion in powers of the metric perturbation a
its derivatives in a formal sense; thus, a phenomenon suc
the integrated Sachs-Wolfe~or Rees-Sciama! effect we con-
sider to be first order~since it involves terms linear in de
rivatives ofhmn!, even though it is sometimes thought of a
second order since it can be numerically small~and vanishes
to first order in some specific models!.

Our calculation proceeds as follows. In Sec. II we set
the problem and express the redshift experienced by a ph
in terms of its corresponding background pathx~0!m~l! and
its first- and second-order perturbations,x~1!m~l! andx~2!m~l!.
In Sec. III we discuss a general formalism for constructi
these perturbations in terms of the metric variables; this is
extension of the methods of Pyne and Birkinshaw@20# to
arbitrary order. In Sec. IV we specialize to the case of sca
perturbations, and examine the resulting formula for the te
perature anisotropy. Although a quantitative understanding
the magnitude of each term would require detailed kno
edge of the evolution of the metric perturbations~which we
do not attempt in this paper!, it is possible to discuss infor-
mally which contributions might be observable in realis
models of structure formation.

II. PERTURBATION EXPANSION

We are interested in the pattern of temperature fluct
tionsDT/T on the sky as seen by an observer in a perturb
Robertson-Walker spacetime. We write our background m
ric in conformal coordinatesxm5(h,x,y,z) as

ds̄2~0!5ḡmn
~0!dxmdxn

5a2~h!@2dh21g22~dx21dy21dz2!#. ~2.1!

Hereg511kr 2/4, wherek is the spatial curvature paramete
~11,21, and 0 for positively curved, negatively curved, an
flat cases, respectively!, a~h! is the scale factor, and
r 25x21y21z2. In this section we consider an arbitrary me
ric perturbationh̄mn . It will be convenient to separate out th
dependence on the scale factor by working in the conform
background metricg mn

(0)5a22ḡ mn
(0), with the conformally

transformed perturbationhmn5a22h̄mn , so that the actual,
physical spacetime metric is given byḡmn5ḡ mn

(0)1h̄mn . The
wave vectork̄m of a light ray in the physical metric is relate
to the wave vectorkm in the conformally transformed metric
by km5a2k̄m. ~Our conventions are those of@20#.!

Within such a spacetime we consider a photon pathxm~l!,
wherel is an affine parameter.~See Fig. 1.! This path con-
nects an observer at a pointO with coordinates xO

m

5(hO ,0,0,0) to the hypersurface of emission, which we d
fine to be the spacelike hypersurface of constant confor
time h5hE . The ‘‘surface’’ of emission is then the intersec
tion of the past light cone of the observer with this hypers
face. We assume that at conformal timehE every point with
spatial coordinatespi emits thermal radiation with a tem
peratureTE~p,d̂!, as measured by a comoving observ
which depends both on position and on direction as cha
terized by a three-vectord̂, normalized to unity in the back-
nd-
on-
er-
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ground metricgmn
~0! restricted to the hypersurface.~This hy-

persurface need not be the actual time of last scattering, bu
need only represent a hypersurface on which the radiatio
field is understood.! The photon path itself is specified by a
three-vectorê in the hypersurface of constant conformal time
containingO normalized to unity ingmn

~0! . We can think ofê
as the direction on the sky toward which a comoving ob-
server atO is pointing an antenna; for observers which are
not comovingê and the observer’s direction vector are re-
lated by a Lorentz transformation. The initial conditionê
determines the pointp and direction vectord̂ at which the
ray intersects the hypersurface of emission.

To an observer with four-velocityUm ~normalized to
UmḡmnU

n521!, a photon with wave vectorkn5dxn/dl,
with l an affine parameter in the conformal metricgmn , has
a relative frequency given by

v52a22ḡmnU
mkn. ~2.2!

~We refer to this as the ‘‘relative’’ frequency, since we are
free to scale the affine parameterl to set the normalization
of v. The ratio of relative frequencies at two points along the
path is invariant under such a reparametrization.! For a
blackbody spectrum, the CMB temperature observed atO is
related to the temperature at emission by

TO~xO ,ê!5
vO

vE

TE~p,d̂!. ~2.3!

We are therefore interested in computing, given the initial
dataxO

m ,ê,vO , the quantitiesp, d̂, andvE . These depend on
the photon path and associated wave vector, which we ma
express as series expansions in the perturbationhmn and its
derivatives:

FIG. 1. This figure shows the observer at locationxm~lO!, the
hypersurface of last scattering ath5hE , and various paths connect-
ing the two. The true geodesic in the perturbed metric isxm~l!,
while the background geodesic isx~0!m~l!. Adding the deviation
vectorsx~1!m~l! andx~2!m~l! to the background path yields increas-
ingly accurate approximations to the true path. The spacelike devia
tion vectorsp(a) i are to be distinguished from thex(a)m, since the
latter generally do not lie in hypersurfaces of constant conforma
time.
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xm~l!5x~0!m~l!1x~1!m~l!1x~2!m~l!1••• ,

km~l!5k~0!m~l!1k~1!m~l!1k~2!m~l!1••• . ~2.4!

The situation is thus as portrayed in Fig. 1. Note thatx~0!m~l!
has the interpretation of a path through spacetime, while
x(a)m~l! are thought of as deviation vectors at eachl. In this
section we will calculate the observed temperature in ter
of these quantities~plus the intrinsic temperature fluctuation
on the surface of emission!, while in the next section we will
explicitly calculate the path and wave vector in terms of t
metric perturbation.

We have already specifiedTE as the temperature mea
sured by a comoving observer. It will also be convenient
take our observer atO comoving. This requirement is physi
cally acceptable, since any motion of the observer leads
dipole anisotropy which may be easily subtracted. It is som
times useful to imagine a family of comoving observers wi
four-velocityUm defined over all of spacetime. The norma
ization conditionUmḡmnU

n521 then leads to

U ~0!m5a21~1,0,0,0!,

U ~1!m5a21S 12 h00,0,0,0D , ~2.5!

U ~2!m5a21S 38 ~h00!
2,0,0,0D .

We can also explicitly construct the geodesics of the ba
ground metric,x~0!m~l!. We consider null rays which inter-
sect the observer at the spatial origin of co-ordinates, and
choose the affine parameter such that

k~0!051,
~2.6!

gi j
~0!k~0!ik~0! j51.

A two-parameter family of such rays which satisfy these co
ditions is given by@21#

x~0!m5~l,rei !,
~2.7!

k~0!m5~1,2gei !,

where theei are components ofê, and
the

ms
s

he
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r ~l!52 tankS lO2l

2 D ,
~2.8!

g~l!5seck
2S lO2l

2 D ,
wherelO is the affine parameter at the observer. The sub
script k on a trigonometric function denotes a set of three
functions: for k51 the trigonometric function itself, for
k521 the corresponding hyperbolic function, and fork50
the first term in the series expansion of the function.~Thus,
sin0u5u, cos0u51.! Finally, we can place boundary condi-
tions on the higher-order quantitiesx~1!m, x~2!m, k~1!m, and
k~2!m at the origin. For convenience we will set

x~1!m~lO !5x~2!m~lO !50,
~2.9!

k~1!i~lO !5k~2!i~lO !50.

Then the condition that the wave vector be null at the ob
server implies that

k~1!0~lO !5S 12 h001h0ik
~0!i1

1

2
hi j k

~0!ik~0! j D
O

,

~2.10!

k~2!0~lO !5F38 ~h00!
21h00h0ik

~0!i1
1

4
h00hi j k

~0!ik~0! j

1
1

2
~h0ik

~0!i !22
1

8
~hi j k

~0!ik~0! j !2G
O

.

The temperature at emission can be written as a uniform
background plus a small perturbation, expressed as

TE~p,d̂!5@11t~p,d̂!#TE
~0! . ~2.11!

The functiont will be treated as first order~i.e., of the same
order ashmn!, and will be unspecified in this paper since our
interest is in the gravitational effects on photons in the time
since emission. The point at which the geodesic intersects th
surfaceh5hE can be written asp5p~0!1p~1!1••• . ~Note
the distinction betweenxi , the spacelike components of the
separation vector, andpi , the separation of the intersection
points of the path at different orders with the constant-time
hypersurface.! ExpandingvE and d̂ as well, Eq. ~2.3! to
second order becomes
e, and
TO5
vO

~0!1vO
~1!1vO

~2!

vE
~0!1vE

~1!1vE
~2! @11t~p~0!1p~1!,d̂~0!1d̂~1!!#TE

~0! . ~2.12!

With the conventions chosen in the previous paragraph,vO
(0)5a(hO)

21 andvE
(0)5a(hE)

21. The quantity of interest to us is
the fractional deviation in the observed temperature with respect to the expected temperature in the unperturbed spacetim

we denote this deviation bydT̂. Expandingt in a Taylor series, we obtain

dT̂[S vE
~0!

vO
~0!D TO

TE
~0! 5F11~ṽO

~1!2ṽE
~1!1t!1S ṽO

~2!2ṽE
~2!1~ṽE

~1!!22ṽO
~1!ṽE

~1!1ṽO
~1!t2ṽE

~1!t1p~1!i
]t

]xi
1d~1!i

]t

]di D G ,
~2.13!

where thedi are the components ofd̂, t and its first partial derivatives are evaluated at~p~0!,d̂~0!!, and we have put
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ṽ (a)5v (a)/v~0!. We note that our freedom to chooseTE
(0) may be used to renderdT̂ observable, e.g., by settingTE

(0)

5a(hO)a(hE)
21^TO& where the angular brackets denote an average over the observer’s sky.

Expanding the metric perturbation and photon wave vector around their values on the background path, we obtain

ṽ~0!51,

ṽ~1!52
1

2
h002k~0!ih0i1k~1!0, ~2.14!

ṽ~2!52
1

8
~h00!

22
1

2
h00k

~1!02
1

2
k~0!ih0ih002h0ik

~1!i1k~2!02
1

2
p~1!i

]h00
]xi

2k~0!i p~1! j
]h0i
]xj

1Dl
dk~1!0

dl
2h0iDl

dk~0!i

dl
.

In this expressionDl is the difference in affine parameter between the point where the zeroth- and first-order geode
intersect the hypersurfaceh5const; to this orderDl52x~1!0. It is also straightforward to show thatp(1)i5x(1)i2k(0)ix(1)0, and
thatd(1)i is given by

d~1!i5
k~0!i1k~1!i

uk~0!i1k~1!i u
2

k~0!i

uk~0!i u
, ~2.15!

where the norm is defined by the spacelike part of the background metric. Putting it all together we obtain

dT̂~0!51,

dT̂~1!5F12 hi j k
~0!ik~0! j G

O

1F12 h001h0ik
~0!i2k~1!01tG

Ē

,

dT̂~2!5F12 ~h0ik
~0!i !22

1

8
~hi j k

~0!ik~0! j !2G
O

1F12 hi j k
~0!ik~0! j G

O

F12 h001h0ik
~0!i2k~1!01tG

Ē

1F38 ~h00!
22

1

2
h00k

~1!0

1
3

2
h0ih00k

~0!i1~h0ik
~0!i !222h0ik

~0!ik~1!01h0ik
~1!i1~k~1!0!22k~2!01S 12 h001h0ik

~0!i2k~1!0D t1x~1!0
dk~1!0

dl

2h0ix
~1!0

dk~0!i

dl
1~x~1!i2k~0!ix~1!0!S 12 ]h00

]xi
1k~0! j

]h0 j
]xi

1
]t

]xi D 1d~1!i
]t

]di G
Ē

. ~2.16!
o
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Here, the notationĒ means that the quantities referred t
should be evaluated at the point~hE ,p

~0!! and directiond̂~0!.
To complete the above formulas, we have to solve for t

perturbed geodesics at first and second order in terms ofhmn .
In the next section we carry this out for arbitrary metri
perturbations, and in the following section we specialize
scalar perturbations.

III. SECOND-ORDER GEODESICS

In order to calculate the approximate geodesics
gmn5g mn

(0)1hmn order by order we employ the perturbativ
geodesic expansion introduced in Pyne and Birkinshaw@20#.
Because those authors worked only to first order it is nec
sary slightly to extend the equations to address the high
order questions we are concerned with here. In this sect
we describe the needed extension, which writes a gene
solution for the approximate path at any order without r
striction on the perturbed spacetime under consideration.
the following section we specialize this general solution
gain the null geodesics to second order of perturb
e

to

of

s-
er-
on
ral
-
In
o
d

Friedmann-Robertson-Walker~FRW! spacetimes in the lon-
gitudinal gauge.

We begin with the geodesic equation in the metric
gmn5g mn

(0)1hmn ,

d2xm

dl2 1Gm
abk

akb50, ~3.1!

which holds along some pathxm~l!. We seek to approximate
that path to any given order by solving for thex(a)m~l! in
~2.4!. To this end we substitute~2.4! and the equation

Gm
ab5G~0!m

ab1G~1!m
ab1G~2!m

ab1••• ~3.2!

into ~3.1! and simultaneously Taylor expand each of the
G(a)m

ab atx
m~l! about their value atx~0!m~l!. In ~3.2!, G(a)m

ab
is that part ofGm

ab which is of ath order in eitherhmn , its
first partial derivatives, or their products. The resulting equa-
tion, equivalent to~3.1! but holding along the pathx~0!m~l!,
is written
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(
a50

` Fd2x~a!m

dl2 1S G~a!m
ab1 (

b51

`
1

b!
]s1

•••]sb
G~a!m

abS (
c51

`

x~c!s1D •••S (
d51

`

x~d!sbD D S (
e51

`

k~e!aD S (
f51

`

k~ f !bD G50.

~3.3!

At zeroth order we find thatx~0!m~l! is an affinely parametrized geodesic in the metricgmn
~0! . At every order above zeroth

equation~3.3! may be rearranged into the form of a forced Jacobi equation for theath order separation vector,x(a)m~l!:

d2x~a!m

dl2 12G~0!m
abk

~0!ak~a!b1]sG~0!m
abk

~0!ak~0!bx~a!s5 f ~a!m. ~3.4!

Importantly, the highest orderx(b)m or k(b)m appearing inf (a)m is of ~a21!th order. For instance, the forcing vectors at first and
second order are given by

f ~1!m52G~1!m
abk

~0!ak~0!b,
~3.5!

f ~2!m52G~0!m
abk

~1!ak~1!b22G~1!m
abk

~0!ak~1!b22]sG~0!m
abx

~1!sk~0!ak~1!b2]sG~1!m
abx

~1!sk~0!ak~0!b

2
1

2
]s]tG

~0!m
abx

~1!sx~1!tk~0!ak~0!b2G~2!m
abk

~0!ak~0!b.

Pyne and Birkinshaw@20# showed how a general solution to Eq.~3.4! could be written down in terms of the parallel and
Jacobi propagators of the background metricgmn

~0! . These propagators are matrix-valued functions of a pair of points connecte
by a geodesic, and are defined by path-ordered exponentials along the appropriate geodesic. The parallel propagatorP~l1,l2!

m
n

is a 434 matrix given by

P~l2 ,l1!5P expS 2
1

2 E
l1

l2
A~l!dl D , ~3.6!

whereP denotes the path ordering symbol andA is a 434 matrix defined byAm
n52k~0!s G~0!m

sn . The parallel propagator lives
up to its name, in thatP(l1 ,l2)

m
nv

n(l2) is the vector obtained by parallel propagatingv
m from l2 to l1 along the geodesic.

The Jacobi propagator is an 838 matrix given by

U~l2 ,l1!5P expF E
l1

l2S 0 1

P~l1 ,l!R~l!P~l,l1! 0D dlG , ~3.7!

whereR~l!m
s denotes the 434 matrixR(0)m

nrsk
(0)nk(0)r evaluated atx~0!~l!, and 0 and 1 denote the 434 zero and identity

matrices, respectively. The Jacobi propagator serves as a Green’s function for the Jacobi equation in the background spa
More information about these objects can be found in@20,22#.

The solution forx(a)m~l! andk(a)m~l! at some affine parameterl2 can now be obtained from their values at some fixed
affine parameterl1 via

S P~l1 ,l2!x
~a!~l2!

d

dl2
@P~l1 ,l2!x

~a!~l2!#D 5U~l2 ,l1!S x~a!~l1!

F ddl
@P~l1 ,l!x~a!~l!#G

l5l1

D 1E
l1

l2
U~l2 ,l!S 0

P~l1 ,l! f ~a!~l! Ddl,

~3.8!
i
the integral being taken over the zeroth-order geodes
x~0!m~l!. The program for recursive calculation of the
x(a)m~l! is now established: having obtainedx(a21)m~l! we
can solve forf (a)m and thus obtainx(a)m~l! from ~3.8!. The
recursion starts by solving the geodesic equation of the bac
ground for somex~0!m~l! and then calculating its associated
parallel and Jacobi propagators.
c,

k-

The parallel and Jacobi propagators for the radial, null
geodesics ofgmn

~0! , the conformally transformed Robertson-
Walker metric, were obtained in@23# and are written

P~l2,l1!
m

n5S 1 0j

0i
g~l2!

g~l1!
d j
iD ~3.9!
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and

U~l2 ,l1!5S cosk~l22l1!J sink~l22l1!J

2k sink~l22l1!J cosk~l22l1!J
D

1S ~12J!

0
~l22l1!~12J!

~12J! D , ~3.10!

respectively. In~3.10! J is a 434 matrix given by

Jm
s5S 0 0j

0i d j
i2eiej

D . ~3.11!

Given a background geodesic specified by the direction
sinesei , any three-vectorv i~l! may be decomposed into th
sum of a longitudinal partv i

i ~l! pointing along the geodesic
o-

and a transverse partv'
i ~l! perpendicular to the geodesic~in

the spacelike hypersurface of the background!, where

v i
i ~l!5eiejv

j~l!,
~3.12!

v'
i ~l!5~d j

i2eiej !v
j~l!.

Thus, the matrixJ serves to project a four-vector into the
plane transverse to the photon direction in the comoving spa
tial hypersurfaces.

The relatively simple form of these propagators for the
case of a Robertson-Walker metric allows us to obtain the
perturbed geodesic and wave vector from~3.8! immediately.
Imposing the boundary conditions~2.9! at the observer, we
obtain
x~a!0~l!5~l2lO !k~a!0~lO !1E
lO

l

~l2l8! f ~a!0~l8!dl8,

xi
~a!i~l!5g~l!E

lO

l

~l2l8!g21~l8! f i
~a!i~l8!dl8,

x'
~a!i~l!5g~l!E

lO

l

sink~l2l8!g21~l8! f'
~a!i~l8!dl8,

~3.13!

k~a!0~l!5k~a!0~lO !1E
lO

l

f ~a!0~l8!dl8,

ki
~a!i~l!5g~l!E

lO

l F12
kr ~l!

2
~l2l8!Gg21~l8! f i

~a!i~l8!dl8,

k'
~a!i~l!5g~l!E

lO

l Fcosk~l2l8!2
kr ~l!

2
sink~l2l8!Gg21~l8! f'

~a!i~l8!dl8.
These expressions are valid for any metric perturbation;
specific perturbation is encoded in the vectorsf (a)m. Note
that we have written the integrals as proceeding backwa
along the path from the observer to the pointl on the back-
ground path.

IV. SCALAR PERTURBATIONS IN THE LONGITUDINAL
GAUGE

In this section we carry out the program described abo
to second order for the metric perturbationhmn given by

hmndx
mdxn522fdh222cg22~dx21dy21dz2!

~4.1!

describing scalar perturbations in the longitudinal gau
@24#. We note that in this gauge,f andc coincide with the
gauge-invariant metric variables of@24#, F andC. This will
allow us to obtain gauge-invariant expressions for the o
servables of interest by replacingf with F andc with C in
our final formulas. Of course, only the first-order expressio
the

rds

ve

ge

b-

ns

are rendered gauge invariant becauseF and C are them-
selves gauge invariant only to first order.

To compute the perturbation vectorsf (a)m we need to cal-
culate the Christoffel symbols to various orders. These are
given by

G~0!0
sa50, ~4.2!

G~0!i
0a50,

G~0!i
jk52

k

2g
~d ikxj

~0!1d i j xk
~0!2d jkxi

~0!!,

G~1!0
0a5]af,

G~1!0
i j52

]0c

g2 d i j ,

G~1!i
005g2] if,

G~1!i
0 j52]0cd i j ,
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G~1!i
jk52d ik] jc2d i j ]kc1d jk] ic,

G~2!0
0a522f]af,

G~2!0
i j5

2f]0c

g2 d i j ,

G~2!i
0052g2c] if,

G~2!i
0 j522c]0cd i j ,

G~2!i
jk522c~d ik] jc1d i j ]kc2d jk] ic!.

Calculation of the first-order vectorf ~1!m proceeds
straightforwardly, using the normalization
g i j
(0)k(0)ik(0) j5d i j e

iej51. We find that

f ~1!05]0~f1c!22
df

dl
,

f i
~1!i52k~0!ik~0! j] j~f1c!12k~0!i

dc

dl
, ~4.3!

f'
~1!i5~k~0!ik~0! j2g~0!i j !] j~f1c!.
According to~2.16!, the only second-order quantity~as dis-
tinguished from products of first-order quantities! which en-

ters the formula fordT̂(2) is the timelike component of the
wave vector,k~2!0. We therefore do not need to calculate the
entire second-order force vector, but only the timelike com
ponent. In doing so we make use of the decomposition of th
directional derivative of a scalar along the path into partia
derivatives:

df

dl
5]0f1k~0!i] if ~4.4!

~since k~0!051!. Another relatively straightforward calcula-
tion yields

f ~2!0522
d

dl
~k~1!0f1x~1!s]sf!12k~1!0]0~f2c!

1x~1!s]s]0~f1c!12~f1c!]0c. ~4.5!

Substituting ~4.3! into ~3.13!, we obtain the first-order
perturbed geodesic:
x~1!0~l!5~l2lO !~f2c!O1E
lO

l

@22f1~l2l8!]0~c1f!#dl8,

xi
~1!i~l!5~l2lO !~f2c!Ok

~0!i~l!1k~0!i~l!E
lO

l

@~c2f!1~l2l8!]0~c1f!#dl8,

x'
~1!i~l!5g~l!E

lO

l

sink~l2l8!g~l8!@eiej2d i j #] j~f1c!dl8. ~4.6!

The explicit construction for the wave vector perturbation,k~1!~l!, may be obtained either by differentiation of~4.6! above
or from ~3.13! directly. In either case,

k~1!0~l!5~f2c!O22fl2I ISW~l!,

ki
~1!i~l!52

kr ~l!

2
xi

~1!i~l!1k~0!i~l!@~f2c!O2~f2c!l2I ISW~l!#,

k'
~1!i~l!5g~l!E

lO

l Fcosk~l2l8!2
kr ~l!

2
sink~l2l8!Gg~l8!@eiej2d i j #] j~f1c!dl8, ~4.7!

where the integral

I ISW~l!52E
lO

l

]0~c1f!dl8 ~4.8!

represents the conventional integrated Sachs-Wolfe effect.
As noted above, to compute the second-order effect we

need only the time component of the second-order wave vec-
tor; this is given by

k~2!0~l!52
1

2
~f1c!O

2 22~x~1!m]mf1k~1!0f!l1I 2~l!,

~4.9!

where the integralI 2 is defined as

I 2~l!5E
lO

l

@2k~1!0]0~f2c!12~f1c!]0c

1x~1!m]m]0~f1c!#dl8. ~4.10!
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Having obtained the perturbed geodesics and wave ve

tors in the longitudinal gauge, it remains only to substitut

into ~2.16! to obtain final expressions for the temperatur

anisotropy. At first order we recover the conventional Sach

Wolfe result:
c-

e

e

s-

dT̂~1!5~f1t!Ē2fO1I ISW~l Ē!, ~4.11!

where once again the notationĒ means that quantities are
evaluated at the position and direction of the intersection
the background geodesic with the surface of emission. T
second-order anisotropy, the main result of this paper,
given by
dT̂~2!5
3

2
fO
2 2fOf Ē2fOt Ē2

1

2
f
Ē

2
1f Ēt Ē2@2fO2cO2f Ē2t Ē2I ISW~l Ē!#I ISW~l Ē!2I 2~l Ē!

1~x'
~1!i1I TDk

~0!i !Ē] i~f1t!Ē1x~1!0]0~f1c!Ē1d~1!i
]t

]di
, ~4.12!
where the integral

I TD~l!5E
lO

l

~f1c!dl8 ~4.13!

is the Shapiro time delay along the path.
An accurate appraisal of the magnitudes of the vario

terms contained in~4.12! would require knowledge of the
initial conditions and evolution of the perturbationsf andc,
including nonlinear effects. This information is model depe
dent, and we will not attempt such a task here. It is neve
theless possible to remark on the possible importance of
different effects to observations, based simply on the form
which they appear.

The quantitiesfO , fO , f Ē , t Ē , and I ISW(l Ē) are all
small ~<1025! in conventional models of structure forma
tion. Therefore the terms in~4.12! which are written as prod-
ucts of these numbers are even smaller, and should not c
tribute to the anisotropy at an observable level. Similarly th
termd(1)i(]t/]di) will typically be the product of two small
quantities, and may be neglected. Therefore the potentia
interesting terms are those involving the separation vec
x(1)m(l Ē) ~which is not necessarily small! and the integrals
I TD(l Ē) and I 2(l Ē).

The termx'
(1)i] i(f1t) Ē is due to the transverse deflec

tion of the photons by sources between us and the surfac
emission; this effect has been studied previously in inves
gation of the impact of gravitational lenses on CMB aniso
ropy @25–36#. ~The processing of CMB anisotropy by lens
ing is second order since both the lens angle and the ini
fluctuations being processed are themselves first order in
accounting scheme.! While the effect of lensing on the CMB
perturbation spectrum has been somewhat controversia
can play an observable role on small angular scales. The
that this second-order effect may be significant can
thought of as a consequence of the fact, noted in the Int
duction, that the existence of large distance scales in
problem can enhance higher-order effects; in this case
transverse deflection, given approximately by the product
the distance traveled times the lens angle, builds up as
photon travels along its trajectory.

The termI TDk
(0)i] i(f1t) Ē is the longitudinal equivalent

of the transverse lensing term. It arises from the time del
us
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effect of the lenses, which alters the spacelike distance be-
tween the observer and the point where the photon path in-
tersects the surface of emission. The qualitative effect of this
term is similar to that of the transverse lensing term, al-
though its magnitude is expected to be smaller; for typical
lens systems, the longitudinal deflection is smaller than the
transverse deflection by a factor proportional to the lens
angle~i.e., by several orders of magnitude!.

The termx(1)0]0(f1c) Ē arises because the difference in
affine parameter between observer and surface of last scat-
tering differs along the true and background paths. It is simi-
lar in structure to the effects discussed in the previous two
paragraphs, but is presumably smaller since the time deriva-
tives of the potentials are typically smaller than the spatial
derivatives.

Finally, the integralI 2(l Ē) contains three terms. The first
two terms appear small; they are integrals of products of two
small quantities, and furthermore contain time derivatives
which are typically suppressed with respect to spatial deriva-
tives. The third term represents a correction to the ISW ef-
fect, taking into account that the perturbations along the first-
order path differ from those along the background path. In
cold dark matter models withV51 and adiabatic density
perturbations, the ISW effect itself is smaller than the con-
ventional Sachs-Wolfe term@8,37–48#, and the correction
described here is presumably smaller still; nevertheless, it is
possible that observations of the CMB will reach a level of
precision at which this term should be taken into account.
Moreover, time derivatives and the ISW effect can be impor-
tant in models of structure formation based on topological
defects@12–15#, open universe models@49–54#, and models
with an appreciable cosmological constant@55,56#. In these
types of universes the new terms represented byI 2(l Ē)
could play a role analogous to that of gravitational lensing in
adiabatic CDM models.

V. CONCLUSIONS

We have computed the anisotropy induced in the cosmic
microwave background, due to gravitational effects, to sec-
ond order in a given metric perturbation. For an arbitrary
perturbation, our results are given by the basic equation
~2.16! plus the solutions~3.13! for the perturbed geodesic
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and wave vector, where the forcing vectors to first and s
ond order are given by~3.5!. In the case of scalar perturba
tions in the longitudinal gauge, these results may be co
bined into the single compact formula~4.12!.

Our results are reassuring for studies to date of CM
anisotropy, in that they do not reveal any new effects wh
are likely to dominate the anisotropy spectrum on any sca
An informal examination of our final expressions indicat
that the effect most likely to be observable is that due
~transverse! gravitational lensing, which has already been t
subject of some attention in the literature. As both theoreti
and observational studies of the CMB increase in accur
and sophistication, however, we feel it is important to kno
the precise form of the effects we have explored.

With the basic framework in hand, there is clearly roo
for future work along these lines. One direction would be
investigate a wider class of perturbations~i.e., vector and
ec-
-
m-

B
ich
le.
es
to
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acy
w

m
to

tensor modes!, as well as to study carefully the second-orde
metric perturbation itself. An equally important task is t
examine the effects we have described more quantitative
in the context of a specific and detailed model of structu
formation; only then could we be completely confident in ou
understanding of the role played by second-order perturb
tions in CMB anisotropy.
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