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Higher-order gravitational perturbations of the cosmic microwave background

Ted Pyné
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138

Sean M. Carroll
Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
(Received 12 October 1995

We study the behavior of light rays in perturbed Robertson-Walker cosmologies, calculating the redshift
between an observer and the surface of last scattering to second order in the metric perturbation. At first order
we recover the classic results of Sachs and Wolfe, and at second order we delineate the various new effects
which appear; there is n@ priori guarantee that these effects are significantly smaller than those at first order,
since there are large length scales in the problem which could lead to sizable prefactors. We find that second-
order terms of potential observational interest may be interpreted as transverse and longitudinal lensing by
foreground density perturbations, and a correction to the integrated Sachs-Wolfe effect.

PACS numbegs): 98.70.Vc, 04.25.Nx, 98.80.Bp

[. INTRODUCTION metric effects. It is therefore worthwhile investigating the
redshift induced by effects which are formally second order
In the last several years, observations of temperaturé the metric perturbation to see if they may nevertheless be
anisotropies in the cosmic microwave backgrou@MB) observationally important. In this paper we calculate these
[1] have spurred increasingly sophisticated investigation ofecond-order effects and interpret the results in terms of spe-
the anisotropy predicted by theoretical mod@s5]. Impor-  Cific physmal processes.
tant contributions to the anisotropy come from gravitational It is necessary to be careful about what we mean by “sec-
perturbations, temperature and pressure fluctuations at tfd order” in the context of gravitational perturbation
surface of last scattering, and ionization effects in the latefheory. We imagine that we are given a metric throughout

universe. spacetime of the form
The earliest of these effects to be studied, and the most o
important on large scales, are those due to gravitational per- gw=9§w)+ N, (1.9

turbations. These were systematically investigated by Sachs
and Wolfe[6], who derived the basic formulas relating per- wheregfy describes a background Robertson-Walker space-
turbations in the metric to anisotropy in the temperature otime andh ,, is a small perturbation. We will not be comput-
the CMB. Their results revealed two basic sources of anisoting this perturbation to second order in perturbations of the
ropy: potential fluctuations at the surface of last scatteringenergy-momentum tensor, but simply calculating photon tra-
and time variation of the potential along the path of the phojectories to second order in,, and its derivatives. There-
ton. Later investigations focused on individual effects in spefore, if h ,, is computed from standard first-order metric per-
cific models[7-15]. turbation theory and substituted into our expressions, the
Even though perturbations in the energy densipfp  results will not represent a complete calculation of effects
grow to be greater than unity on sufficiently small scales, thavhich are second order in the matter perturbatighs Sec.
resulting metric perturbations may almost always be taken tévV we will examine explicitly the case of first-order scalar
be small[16]. It therefore makes sense to calculate the beperturbations, but it is straightforward to generalize the re-
havior of photons to first order in this perturbation, as Sachsults) Nevertheless the expressions we obtain will constitute
and Wolfe did. Nevertheless, there is no way of knowinga subset of all the possible contributions, and if any of them
ahead of time that second-order terms in an expansion in th@rn out to be comparable in magnitude to terms which are
metric perturbation will be negligible compared to the first- formally first order, it is appropriate to take them into ac-
order terms, since there is ample opportunity for effects tacount. Moreover, the substitutidn),,—g (%) +g %)+ - into
accumulate as photons travel to the observer from the surfacaur formulas below would immediately yield an expansion
of last scattering; in other words, the coefficients of thefor the full second-order anisotropy.
second-order terms may be numerically largés an ex- It is also important to note that we will only be dealing
ample of a related effect, the time delay formula in standardvith gravitational perturbations. We will imagine that there is
gravitational lens systems contains important contributiong hypersurface of last scattering fixed at some definite time,
from both the first-order Shapiro and the second-order geomn which there can exist intrinsic perturbations which may
be calculated independently; we then compute the additional
perturbations due to the metric fluctuations along the geode-
*Electronic address: pyne@cfal60.harvard.edu sics followed by the photons. Nongravitational second-order
TElectronic address: carroll@ctp.mit.edu perturbations were treated by Vishnift?7], Dodelson and
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Jubas[18], and Hu, Scott, and Silk19]. The latter authors
also examined higher-order gravitational effects by expand-
ing the Boltzmann equation to second order, but did not con-
struct explicit solutions. As a final caveat, we treat the order-
by-order expansion in powers of the metric perturbation and
its derivatives in a formal sense; thus, a phenomenon such as
the integrated Sachs-Wolfer Rees-Sciameeffect we con-
sider to be first ordefsince it involves terms linear in de-
rivatives ofh,,), even though it is sometimes thought of as

xP0)

. . . . - i
second order since it can be numerically sntafid vanishes 1=Ne \ \)‘Z}i
to first order in some specific modgls - P

Our calculation proceeds as follows. In Sec. Il we set up P

the problem and express the redshift experienced by a photon

!n tgrms of its corresponding baCkgroé')?Ld pafo?“(()gMand FIG. 1. This figure shows the observer at locatidtin ), the

its first- and secpnd-order perturbatior . (A) andx*“#(x). . hypersurface of last scattering &t .-, and various paths connect-

In Sec. Il we discuss a general formalism for constructlnging the two. The true geodesic in the perturbed metrig€\),
these perturbations in terms of the metric variables; this is agnjje the background geodesic i€”#(\). Adding the deviation
extension of the methods of Pyne and Birkinshi@] to vectorsxP#(\) andx@#(\) to the background path yields increas-
arbitrary order. In Sec. IV we specialize to the case of scalajngly accurate approximations to the true path. The spacelike devia-
perturbations, and examine the resulting formula for the temtion vectorsp®' are to be distinguished from thé®#, since the
perature anisotropy. Although a quantitative understanding dhtter generally do not lie in hypersurfaces of constant conformal
the magnitude of each term would require detailed knowltime.

edge of the evolution of the metric perturbatigmehich we
do not attempt in this papkrit is possible to discuss infor-
mally which contributions might be observable in realistic
models of structure formation.

ground metricg'?) restricted to the hypersurfacéThis hy-
persurface need not be the actual time of last scattering, but
need only represent a hypersurface on which the radiation
field is understood.The photon path itself is specified by a

Il. PERTURBATION EXPANSION three-vectog in the hypersurface of constant conformal time

ni 5 i i iy (0) i
We are interested in the pattern of temperature fluctuaSontaining® normalized to unity ing,,,. We can think ofe

tions AT/T on the sky as seen by an observer in a perturbe@S the direction on the sky toward which a comoving ob-

Robertson-Walker spacetime. We write our background met=€Mver atﬁ‘.ls pointing an antenne,l; fqr ob'servers which are
fic in conformal coordinates®=(7,x,y,z) as not comovinge and the observer’s direction vector are re-

lated by a Lorentz transformation. The initial conditién

d?(o)zgi,,oy)dx”dxv determines the poinp and direction vectod at which the
ray intersects the hypersurface of emission.
=al(p)[—dn’+y 2(dxe+dy?+dZ2)]. (2.1 To an observer with four-velocityJ* (normalized to

U*g,,U"=-1), a photon with wave vectok”=dx"/d\,
Herey=1+ Kr2/4, wherex is the spatial curvature parameter with A an affine parameter in the conformal metgil(;w has
(+1, —1, and O for positively curved, negatively curved, anda relative frequency given by
flat cases, respectively a(n) is the scale factor, and
r2=x2+y2+7%_In this section we consider an arbitrary met-
ric perturbatiorh ,,. It will be convenient to separate out the w=—a" 2giwuf‘k”. (2.2
dependence on the scale factor by working in the conformal
background metricg ()=a~2g(?), with the conformally
transformed perturbatioh Wza*ZhW_, so that the actual, (We refer to this as the “relative” frequency, since we are
physical spacetime metric is given Igywzggfh h,,. The free to scale the affine parameterto set the normalization
wave vectok* of a light ray in the physical metric is related of w. The ratio of relative frequencies at two points along the
to the wave vectok* in the conformally transformed metric path is invariant under such a reparametrizajidfor a
by k“=ak*. (Our conventions are those [#0].) blackbody spectrum, the CMB temperature observed &

Within such a spacetime we consider a photon pé4th),  related to the temperature at emission by

where\ is an affine paramete(See Fig. 1. This path con-
nects an observer at a point’ with coordinatesx¥
=(9,0,0,0) to the hypersurface of emission, which we de- P "
fine to be the spacelike hypersurface of constant conformal Telxe.®= wy Tp.0). 23
time »=7,. The “surface” of emission is then the intersec-
tion of the past light cone of the observer with this hypersur-
face. We assume that at conformal time every point with ~ We are therefore interested in computing, given the initial
spatial coordinate' emits thermal radiation with a tem- datax”,e ., the quantitiep, d, andw, . These depend on
perature T.(p,d), as measured by a comoving observer,the photon path and associated wave vector, which we may
which depends both on_position and on direction as charae@xpress as series expansions in the perturbdtjgrand its
terized by a three-vectat, normalized to unity in the back- derivatives:
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X#()\):X(O)M()\)+X(1)M()\)+X(2),U«()\)+... , A—\
r(\)=2tan, 5 ,
k#(N) =kOEON) +KDH) +K2EN )+ L (2.4 2.8
A=\ '
The situation is thus as portrayed in Fig. 1. Note ti&t(\) y(\) =se(f<( /2 )

has the interpretation of a path through spacetime, while the
x®#()) are thought of as deviation vectors at eactin this  \here )\, is the affine parameter at the observer. The sub-
section we will calculate the observed temperature in termgcript x on a trigonometric function denotes a set of three
of these quantitiegplus the intrinsic temperature fluctuations f,nctions: for k=1 the trigonometric function itself, for
on the surface of emissigpnwhile in the next section we will x=—1 the corresponding hyperbolic function, and for0

explicitly calculate the path and wave vector in terms of they,e first term in the series expansion of the functigFhus,

metric perturbation. o sinyd=6, cogf=1.) Finally, we can place boundary condi-
We have already specifiell, as the temperature mea- (ions on the higher-order quantitie€?, x@* k@&, and

sured by a comoving observer. It will also be convenient to,@x 4t the origin. For convenience we will set
take our observer at’ comoving. This requirement is physi-

cally acceptable, since any motion of the observer leads to a xWE(\ ) =xPH(\,)=0,
dipole anisotropy which may be easily subtracted. It is some- O o (2.9
times useful to imagine a family of comoving observers with KM\ ,)=k@(\,)=0.

four-velocity U# defined over all of spacetime. The normal-

ization conditionU*g,,,U”=—1 then leads to Then the condition that the wave vector be null at the ob-

server implies that
U@r=a=%1,0,0,0,

1 1 ) )
1 k(l)o()\/): E h00+ hOik(0)|+ E hijk(o)lk(O)J>
p
> h00,0,070>, (2.9 5 X (2.10
k®O(\ )= 8 (hoo) 2+ hoghoik @'+ 1 hochijk @'k ®)

U(l)M: a71

U(Z)/-L: ail

3

Py (hoo)2,o,0,0) .
° 1 (0)iy2 1 (0)i,(0)j\2
+5 (hak™) 7= (hi KK)

We can also explicitly construct the geodesics of the back-
ground metricx O#()\). We consider null rays which inter-

sect the observer at the spatial origin of co-ordinates, and we 11€ temperature at emission can be written as a uniform
choose the affine parameter such that background plus a small perturbation, expressed as

00— 1 TA(p.d)=[1+7(p,d)]T. (2.19)

(2.6)  The functionr will be treated as first ordei.e., of the same
order ash,,,), and will be unspecified in this paper since our
interest is in the gravitational effects on photons in the time

A two-parameter family of such rays which satisfy these con-_. s X . o
ditions is given by[21] since emission. The point at which the geodesic intersects the

<

gi(jo)k(0>ik(0)i =1.

surface =17, can be written ap=p?+p?+--. (Note
xOu=(\ rel), the distinction between', the spacelike components of the
2.7 separation vector, ang', the separation of the intersection
kOr=(1—ye), ' points of the path at different orders with the constant-time
. hypersurface. Expandingw, and d as well, Eq.(2.3 to
where thee' are components &, and second order becomes
|
0y (D (2
W, tw, o, ~ ~
= 1+ 04 p) g0 4 g1y T 2.1
Ve w(go)-kw(zl)-kw(//z) [1+7(p P, )T (212

With the conventions chosen in the previous paragra;ﬁ??,z a(n,) *tand ng):a( n,) " L. The quantity of interest to us is
the fractional deviation in the observed temperature with respect to the expected temperature in the unperturbed spacetime, anc

we denote this deviation bgi\T. Expandingr in a Taylor series, we obtain

oot .ot
1+(af -+ 1)+ | o =o' +(0) - o ol + b r— &P r+p' — 7 +d —> :

(2.13

-~ w&o) T,
oT=| 17| 77 =

where thed' are the components d, = and its first partial derivatives are evaluated (af,d©), and we have put
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>@=0®/©. We note that our freedom to choo3é®) may be used to rendesT observable, e.g., by setting®®
=a(n,)a(n,) XT,) where the angular brackets denote an average over the observer’s sky.
Expanding the metric perturbation and photon wave vector around their values on the background path, we obtain

@ 0=1,
1 .
5)(1)= - E hoo_ k(O)Ih0i+k(l)0’ (214)
3 1 1 1 . 1 .. dhgo o dhg; dkbo dk©i
(,()(2): - g (hoo)z_ E hook(1>0_ E k(O)IhOihOO_ hOi k(l)l + k(Z)O_ E p(l)l W_ k(o)|p<l)J 5}1 +A)\ W_ hOiA)\ T

In this expressiom\ is the difference in affine parameter between the point where the zeroth- and first-order geodesics
intersect the hypersurfaog=const; to this ordeAr=—x°, It is also straightforward to show thpf?' =xM) — k(@x(1)0 angd
thatd™' is given by

KO 4 k(DI ()i

1)i —
de )I_|k(°)i+k(1)i| KO (2.15
where the norm is defined by the spacelike part of the background metric. Putting it all together we obtain
o=y,
—~ 1 S 1 .
5T(1)={— hi KOOI +| = hogt hoik @' =K+ 7|
2 .12 s
—~ 1 : 1 o 1 -l . 3 1
ST@ == (heik©@M2— = (h; kOTkO1H2| +] = h kKOKOT | = hygt heik@T—kM04 7| +| = (hgg)?— = hogkH°
2 g o2 A2 - |8 2
3 . . . . 1 : dko
+ > hoiNook @+ (hgi k@12 — 2h ik OTk DO+ ho kDT + (k(H)0)2 — (2004 > hoot hoik(@'— k10 | 74 x(1)0 “an
KO . . 1 dhgg Cohg  dT It
— h.x(1)0 (Vi _ k(@10 | Z 2994 p(0)j 29 i 2
hgix +(x k™% )(2 o +k o +(9x' +d ad) (2.19

Here, the notation” means that the quantities referred to Friedmann-Robertson-WalkéFRW) spacetimes in the lon-
should be evaluated at the poinj,,p'¥) and directiond®.  gitudinal gauge.

To complete the above formulas, we have to solve for the We begin with the geodesic equation in the metric
perturbed geodesics at first and second order in terrhg of g,”=g§j)3+ N
In the next section we carry this out for arbitrary metric

perturbations, and in the following section we specialize to d2xm
scalar perturbations. nzt I'#,gk*kP=0, (3.1
Ill. SECOND-ORDER GEODESICS which holds along some pa#t(\). We seek to approximate

that path to any given order by solving for thE#(\) in

In order to calculate the approximate geodesics O(2.4). To this end we substitut€?.4) and the equation

9,,=9)+h,, order by order we employ the perturbative
geodesic expansion introduced in Pyne and BirkinsFzoj.
Because those authors worked only to first order it is neces-
sary slightly to extend the equations to address the higher-
order questions we are concerned with here. In this sectiomto (3.1) and simultaneously Taylor expand each of the
we describe the needed extension, which writes a gener&l®* , atx“(\) about their value at'#(\). In (3.2, T®* ,
solution for the approximate path at any order without re-is that part ofl'“,; which is of ath order in eitherh ,,,, its
striction on the perturbed spacetime under consideration. Ifirst partial derivatives, or their products. The resulting equa-
the following section we specialize this general solution totion, equivalent ta3.1) but holding along the patkR©“(\),
gain the null geodesics to second order of perturbeds written

r#aﬂzr(o)uaﬁ+I‘(l)uaﬁ+r(2)uaﬁ+... (3.2
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+

( S X(d)ab> ) (z k@a) ( ; ku )ﬁ> } “o.

o0 1 o
(a) _ (a) (0)o
POt 2y Oy 0T M“(?ﬁ‘ e
(3.3

At zeroth order we find thax?#(\) is an affinely parametrized geodesic in the megjﬁ. At every order above zeroth
equation(3.3) may be rearranged into the form of a forced Jacobi equation foattherder separation vectac®#(\):

d?x@e
d\?

+ 2F(0)“aﬁk(o)“k(a)'8+ 8UF(O)Maﬁk(o)“k(o)ﬁx(a)”= fl@n (3.9

Importantly, the highest orded®# or k(®# appearing irf ®* is of (a—1)th order. For instance, the forcing vectors at first and
second order are given by

Ay —— F(l)“aﬁk(o)“k(o)'g,

(3.5
f@u= Ok K(DagDE_ o1 Wa kOB 25 [On x(DokOagDb_ g P(Wu  y(Lok(0)ay(0)8

_ % 050,01 X (Vg (D700 _ (D (O)a (0B,

Pyne and Birkinsha20] showed how a general solution to E§.4) could be written down in terms of the parallel and
Jacobi propagators of the background megfﬁﬁ,i. These propagators are matrix-valued functions of a pair of points connected
by a geodesic, and are defined by path-ordered exponentials along the appropriate geodesic. The parallel progagator
is a 4x4 matrix given by

] 1 (»
P()\z,)\l)Z?/’EX[(—E f A()\)d)\), (3.6)
A

where denotes the path ordering symbol akis a 4<4 matrix defined byA* =2k©@? 1@~ The parallel propagator lives
up to its name, in thaP(\q,\5)*,v"(N\,) is the vector obtained by parallel propagatintyfrom A, to \; along the geodesic.
The Jacobi propagator is ark8 matrix given by

s A2 0 1
U(\y,N ) =7 €ex jM(P()\l,)\)J’??(?\)P()\,)\l) O)d)\ , 3.7

where.Z(\)*, denotes the %4 matrix RO*,  k(®"k(©* evaluated ak®(\), and 0 and 1 denote thex4t zero and identity
matrices, respectively. The Jacobi propagator serves as a Green'’s function for the Jacobi equation in the background spacetime
More information about these objects can be foun{in,22.

The solution forx®#(\) andk®*#()\) at some affine parametar can now be obtained from their values at some fixed
affine parametek, via

P(A 1, A)X@(Ny) | x@(Ny) . .
d%[P(M,M)x@(xz)] ~UGz2) a[mlﬂ\)x(a}(m} *JMU“Z’”(P(xl,x>f<a><x>)d”'

A=)y

(3.9

the integral being taken over the zeroth-order geodesic, The parallel and Jacobi propagators for the radial, null
x@%(\). The program for recursive calculation of the geodesics ogﬁfﬁ, the conformally transformed Robertson-
x@£(\) is now established: having? obtaingf® " V#(\) we  Walker metric, were obtained i23] and are written
can solve forf®* and thus obtai®®#(\) from (3.8). The 1 0

recursion starts by solving the geodesic equation of the back- “_

ground for some<?#(\) and then calculating its associated P(h2.M)",= o Y\2)

parallel and Jacobi propagators. Y\

(3.9

i
Jj
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and and a transverse parfL (\) perpendicular to the geodesia
the spacelike hypersurface of the backgroumchere

coS.(Ao—N\q)J sin (Ay,—N\1)J
Ulhz.h1)= —k Sin(A;—N1)J €OS.(Ay—Aq)J vj(N)=€e'gui(N),
(3.12
(1-3) (Ax—Ap(1-J) NV (S aie )]
*tlo (1-J) , (3.10 vi(N)=(5—€'g)v'(\).
respectively. In(3.10 J is a 4<4 matrix given by Thus, the matrix] serves to project a four-vector into the
plane transverse to the photon direction in the comoving spa-
0 0 tial hypersurfaces.

= o] 5}—e‘ej : 311 The relatively simple form of these propagators for the

case of a Robertson-Walker metric allows us to obtain the
Given a background geodesic specified by the direction coperturbed geodesic and wave vector fr{8B) immediately.
sinese', any three-vectoo'(\) may be decomposed into the Imposing the boundary conditiori2.9) at the observer, we
sum of a longitudinal part |(\) pointing along the geodesic obtain

x@ON)=(A =N )K@O(\ ) + fh (N=N)F@ON AN,
Ao
. A .
xﬁa>'<x>=y(x>ﬂ (A=N)y TP

xia“(x>=y<x>f: sin(A=1")y TV )dN

. (3.13
K@O(\) =K@\ ) + f f@ON")dN,
N

) A A )
00 =y00 | [1—%)@%')}7l<x')f<a)'<w>dw,

Kr(\)

cos(A—\")— 5

kf“‘(x):y(x)f: sim(x—x’)}y1<x’)f<f‘>‘<x’>dh’-

These expressions are valid for any metric perturbation; thare rendered gauge invariant becadseand ¥ are them-
specific perturbation is encoded in the vect6f3“. Note  selves gauge invariant only to first order.

that we have written the integrals as proceeding backwards To compute the perturbation vectd¥®* we need to cal-
along the path from the observer to the poindbn the back- culate the Christoffel symbols to various orders. These are

ground path. given by
roo -=o 4.2

IV. SCALAR PERTURBATIONS IN THE LONGITUDINAL gae

GAUGE F(O)ioa:()’

In this section we carry out the program described above
to second order for the metric perturbatibp, given by F(O)ijk: _ % (5ikX}O)+ 5inf<0)— 5iji(O))’
v _ 2_ -2 2 2
h,,dx“dx’= —2pdn?— 24y~ 2(dx*+dy*+dZ?) o
(4.2) 0, =00,

describing scalar perturbations in the longitudinal gauge rwo __ c?o_z/f

[24]. We note that in this gauge) and ¢ coincide with the
gauge-invariant metric variables [#4], ® and¥. This will
allow us to obtain gauge-invariant expressions for the ob- I Wioo=v20,
servables of interest by replaciggwith ® and ¢ with ¥ in

our final formulas. Of course, only the first-order expressions F(1>i0j: — doth6ij
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r<1)ijk: — S dj— 8+ S, According to(2.16), the only second-order quantitgs dis-
tinguished from products of first-order quantijieghich en-
r2%,=-2¢d,¢, ters the formula forsT( is the timelike component of the
wave vectork@°. We therefore do not need to calculate the
@0 _2¢d0¢ entire second-order force vector, but only the timelike com-
1 yo o ponent. In doing so we make use of the decomposition of the
_ directional derivative of a scalar along the path into partial
@ 00=290;, derivatives:
[ ®'oj=—2ydoisdy . d¢ (0)i
. — =9+ k9,0 (4.9
D@y == 20( S dj g+ 8 dip— Sjdih). di I

Calculation of the first-order vectorf* proceeds

straightforwardly using the normalization (SiNce k©°=1). Another relatively straightforward calcula-

g{PkOkOi= 5.e'el=1. We find that tion yields
(10— y (¢p+ )_zd_¢ (2)0 d (1)0 o (1)0
=do ¥ an’ f =—zﬁ(k d+x P9 _p)+ 2k P09 (p— i)
A . d +xD79 do(p+ ) +2(p+ ) doip. 4.
D= KOO g () + 2K d_lf 3 ol @+ i) +2(p+ i) doth 4.9
Wi 00 o Substituting (4.3) into (3.13, we obtain the first-order
f1V'= (kOO —g@) g, (+ ). perturbed geodesic:

A
x<1>°<x>=<x—x/><¢—w>/+fx [—2¢+(N=N")do(¢h+ @) ]dN,
. ) . A
xﬁ”'(x>=<x—m(¢—¢>/k<°)'(x>+k<°>'(x>ﬁ [(¢— )+ (N=N")do(h+ p)]dN’,

x(V'(n) = 'y()\)f: sin(A—=\")y(\")[e'el— 8119 (p+y)dN". .6

The explicit construction for the wave vector perturbatikf(\), may be obtained either by differentiation @ 6) above
or from (3.13 directly. In either case,

KON =(d— ) — 2\ —lisw(N),

k("' (N)=— Kr; ) Xﬁl)'()\)"’k(o)'()\)[((ﬁ_l!/)ﬂ_(éb_l/f)x_llsw(M].

' A Kkr(\) .
ki“'(x>=y(x>f c0S(A—\") = —— sin (A =\") [y(\")[e'e = 5]9;(¢+ p)dN ", 4.7
Ao
[
where the integral 1
KZO(N) = = 5 (¢+ )7 = 20X V49, + KO, +15(N),
N 4.9
||sw()\):_f)\ do( i+ ¢p)dN’ (4.9

where the integral, is defined as

represents the conventional integrated Sachs-Wolfe effect. [ (1)0
As noted above, to compute the second-order effect we l2(N) = M[ZK do(¢— ) +2(¢+ oy
need only the time component of the second-order wave vec-
tor; this is given by +xMEG do(p+ ¢ JdN . (4.10
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H§V|ng obtallned. the perturbfad geoglesms and wave. vec- STO=(d+ 77— b+ ,aw(N7), (4.11)
.tors in the Iongnu@ma_l gauge, it r(_amams only to SUbSmmewhere once again the notatigh means that quantities are
into (2.16 to obtain final expressions for the temperaturegya|yated at the position and direction of the intersection of
anisotropy. At first order we recover the conventional Sachsthe background geodesic with the surface of emission. The
Wolfe result: second-order anisotropy, the main result of this paper, is

given by

3 1
STO=2 ¢t b di—bori=5 ot diri—[2¢,~ = di= 77~ hswA D) Misw(A )~ 12\ 7)

i i - oT
+ (X + 1ok N Z0i(p+ 7) 74 X D000+ ) 7+ dL)

Erik (4.12
|
where the integral effect of the lenses, which alters the spacelike distance be-
tween the observer and the point where the photon path in-
_ , tersects the surface of emission. The qualitative effect of this
ITD()\)_L/(Q{)J”’Z/)d)\ (4.13 term is similar to that of the transverse lensing term, al-

though its magnitude is expected to be smaller; for typical
is the Shapiro time delay along the path. lens systems, the longitudinal deflection is smaller than the
An accurate appraisal of the magnitudes of the variousransverse deflection by a factor proportional to the lens
terms contained if4.12 would require knowledge of the angle(i.e., by several orders of magnitude
initial conditions and evolution of the perturbatiogisand ¢, The termxM%),( ¢+ 1) 7 arises because the difference in
including nonlinear effects. This information is model depen-affine parameter between observer and surface of last scat-
dent, and we will not attempt such a task here. It is nevertering differs along the true and background paths. It is simi-
theless possible to remark on the possible importance of thiar in structure to the effects discussed in the previous two
different effects to observations, based simply on the form irparagraphs, but is presumably smaller since the time deriva-
which they appear. tives of the potentials are typically smaller than the spatial
The quantities¢,, ¢, ¢z, 72, andlgw(\y) are all  derivatives.
small (<107°) in conventional models of structure forma-  Finally, the integral ,(\ ;) contains three terms. The first
tion. Therefore the terms .12 which are written as prod- two terms appear small; they are integrals of products of two
ucts of these numbers are even smaller, and should not cosmall quantities, and furthermore contain time derivatives
tribute to the anisotropy at an observable level. Similarly thewhich are typically suppressed with respect to spatial deriva-
termd™® (a7/ad') will typically be the product of two small tives. The third term represents a correction to the ISW ef-
quantities, and may be neglected. Therefore the potentiallfect, taking into account that the perturbations along the first-
interesting terms are those involving the separation vectoorder path differ from those along the background path. In
xME(\7) (which is not necessarily smaland the integrals cold dark matter models wit)=1 and adiabatic density
Itp(N2) andl,(\2). perturbations, the ISW effect itself is smaller than the con-
The termx{Vg,(¢+ 7) 7 is due to the transverse deflec- ventional Sachs-Wolfe terrf8,37-48, and the correction
tion of the photons by sources between us and the surface @fscribed here is presumably smaller still; nevertheless, it is
emission; this effect has been studied previously in investipossible that observations of the CMB will reach a level of
gation of the impact of gravitational lenses on CMB anisot-precision at which this term should be taken into account.
ropy [25—36. (The processing of CMB anisotropy by lens- Moreover, time derivatives and the ISW effect can be impor-
ing is second order since both the lens angle and the initint in models of structure formation based on topological
fluctuations being processed are themselves first order in ogefects[12—185, open universe mode[¢9—-54, and models
accounting schemeWhile the effect of lensing on the CMB  With an appreciable cosmological const§s,56. In these
perturbation spectrum has been somewhat controversial, iypes of universes the new terms representedl ify /)
can play an observable role on small angular scales. The fagpuld play a role analogous to that of gravitational lensing in
that this second-order effect may be significant can bediabatic CDM models.
thought of as a consequence of the fact, noted in the Intro-
duction, that the existence of large distance scales in the
problem can enhance higher-order effects; in this case the
transverse deflection, given approximately by the product of We have computed the anisotropy induced in the cosmic
the distance traveled times the lens angle, builds up as thmicrowave background, due to gravitational effects, to sec-
photon travels along its trajectory. ond order in a given metric perturbation. For an arbitrary
The termlpk(@'9,(¢+ 7) 7 is the longitudinal equivalent perturbation, our results are given by the basic equation
of the transverse lensing term. It arises from the time delay2.16 plus the solutiong3.13 for the perturbed geodesic
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and wave vector, where the forcing vectors to first and sectensor modes as well as to study carefully the second-order
ond order are given by3.5). In the case of scalar perturba- metric perturbation itself. An equally important task is to
tions in the longitudinal gauge, these results may be comexamine the effects we have described more quantitatively,
bined into the single compact formuld.12. in the context of a specific and detailed model of structure
Our results are reassuring for studies to date of CMBformation; only then could we be completely confident in our
anisotropy, in that they do not reveal any new effects whichunderstanding of the role played by second-order perturba-
are likely to dominate the anisotropy spectrum on any scaldions in CMB anisotropy.
An informal examination of our final expressions indicates
that the effect most likely to be opservable is that due to ACKNOWLEDGMENTS
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