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Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged
according to signal-to-noise ratior and chirp massM. The distribution of events in a catalog composed of
observations withr greater than a thresholdr0 depends on the Hubble expansion, deceleration parameter, and
cosmological constant, as well as the distribution of component masses in binary systems and evolutionary
effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model,
for the distribution withr andM of cataloged events; I also evaluate these distributions explicitly for relevant
matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribu-
tion. In matter-dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will
observe binary neutron star inspiral events withr.8 from distances not exceeding approximately 2 Gpc,
corresponding to redshifts of 0.48~0.26! for h50.8 (0.5), at an estimated rate of 1 per week. As the binary
system mass increases so does the distance it can be seen, up to a limit: in a matter-dominated Einstein–de
Sitter cosmological model withh50.8 (0.5) that limit is approximatelyz52.7 ~1.7! for binaries consisting of
two 10M( black holes. Cosmological tests based on catalogs of the kind discussed here depend on the
distribution of cataloged events withr andM. The distributions found here will play a pivotal role in testing
cosmological models against our own universe and in constructing templates for the detection of cosmological
inspiraling binary neutron stars and black holes.

PACS number~s!: 04.80.Nn, 04.30.Db, 97.80.2d, 98.80.Es
-

I. INTRODUCTION

A. Overview

The most promising anticipated source for the Unite
States Laser Interferometer Gravitational-Wave Observat
~LIGO! @1#, or its French-Italian counterpart VIRGO@2#, is
the radiation emitted during the final moments of inspir
before the coalescence of a neutron-star–neutron-star~NS-
NS! binary system@3#. The instruments operating in both the
LIGO and VIRGO facilities will evolve over time, eventu-
ally becoming sensitive to neutron star binary inspirals
distances approaching 2 Gpc@4#.

Binary inspiral observations in the LIGO or VIRGO de
tectors will be characterized by their signal strength a
‘‘chirp mass’’ ~a combination of the binary’s componen
masses and cosmological redshift!. The distribution of ob-
served inspirals with signal strength and chirp mass depe
on cosmological parameters that describe our unive
~Hubble constant, deceleration parameter, density para
eter!, the distribution of neutron star masses in binary sy
tems, the overall density of coalescing binaries, and the pr
erties of the detector. In this paper I explore the bina
inspiral event distribution~with signal strength and chirp
mass! in the LIGO and VIRGO detectors for different cos
mological models.

In addition to their value as quantitative expectations
what LIGO and VIRGO can expect to observe, thesea priori
distributions will play a pivotal role both in the construction
of templates for detecting binary inspirals and in the inte
pretation of the observations. The distributions present
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here, evaluated for our preconceived notion of the binary
inspiral rate and cosmological parameters, are theprior prob-
abilities required to form the likelihood function from the
observed detector output@4#. Additionally, the observed in-
spirals will be a sample drawn from a particular cosmologi-
cal model characterized byH0 , q0 , V0 , neutron star mass
distribution, and evolution characteristic of our own uni-
verse. By comparing the observed distributions to the ones
described here we can measure those properties of our own
universe.1

These cosmological tests are analogous to the number-
count tests of classical cosmology, which, in their simplest
form, involve observing the distribution of a source popula-
tion as a function of apparent luminosity or redshift. The first
suggestion that binary inspiral number counts be used to
measure interesting cosmological parameters was made by
Finn and Chernoff@4,5# ~although they did not use the lan-
guage usually associated with this technique of classical as-
tronomy!. Using Monte Carlo simulations they demonstrated
that the distribution of inspiral events with signal strength
and chirp mass could be used to measure the Hubble con-
stant. In this work I provide a more general, explicit, and

1A detailed study of how accurately those measurements can be
made as a function of the number of inspiral observations is under-
way and will be published separately; here I focus on describing the
properties of a catalog of observations defined by a data cut on the
signal-to-noise ratio and how those properties can be used to mea
sure cosmological parameters.
2878 © 1996 The American Physical Society
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complete exposition of the properties of binary inspiral o
servation catalogs.

The cosmological implications of gravitational wave ob
servations of binary inspiral were first recognized by Schu
@6#. He pointed out that each inspiraling binary is a standa
candle in the sense that, if observed in three independ
interferometers, its luminosity distance can be determin
from the observed detector response. If an observed insp
is associated with one of the several galaxy clusters that
side in its positional error box~whose determination also
requires three interferometers!, and if the redshifts of those
clusters are determined optically, then observation of sev
inspiraling binaries would lead to a statistical determinati
of the Hubble constant that is independent of the cosm
distance ladder and the uncertainties that lurk therein.

Marković @7# proposed a variation on the general them
introduced by Schutz: He observed that known neutron s
masses were all close to 1.4M( and that, in any event, there
is amaximumneutron star mass. The observed chirp mass
a function of the mass of the binary’s two components and
redshift. Assuming that the mass distribution in neutron s
binaries does not evolve significantly over the range of
nary inspiral observations, examination of the chirp ma
distribution in binary systems at fixed luminosity distanc
would reveal the corresponding redshift. Thus, gravitation
radiation observations alone might suffice to determine
Hubble constant.

Unfortunately, detailed calculations show that, even f
the most advanced LIGO and VIRGO detectors that ha
been discussed, the fractional uncertainty in the measu
luminosity distance will be of order unity for events see
more frequently than thrice per year~i.e., for events at dis-
tances greater than approximately 100 Mpc)@8,9#, and the
angular position error boxes for these events are likew
large ~on order 10 deg2 @10#!. Consequently, cosmologica
tests that rely on accurate and precise measurements o
distance and position of inspiraling binaries using LIGO a
VIRGO are not promising.

In contrast, the cosmological tests discussed here an
@5# require only gravitational wave observation in a sing
interferometer. Furthermore, advanced LIGO detectors
expect to observe approximately 50 NS-NS binary inspi
events per year, from distances up to 2 Gpc, whose sig
strength can be measured to better than 10% and whose c
mass can be measured to better than 0.1%@4,9#. The rate,
depth, accuracy, and precision of these single interferom
observations suggest that cosmological tests based on
distribution of observed events with signal strength and ch
mass have great promise.

B. Outline

In this paper I calculate the expected properties of a ca
log of binary inspiral observations made by a single inte
ferometric gravitational wave detector. A catalog is presum
to contain a record of all binaries that coalesced during
observation period and whose inspiral signal-to-noise ra
r was greater than the catalog limitr0 . The catalog proper-
ties depend on the coalescence rate density and the bi
system component mass distribution, both of which m
b-
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vary with redshift. Notation for these and a discussion of the
observations that bear on them are the topic of Sec. II.

In Sec. III, I discuss the signal-to-noise ratior as a mea-
sure of signal strength. The signal-to-noise ratio of a particu-
lar inspiraling binary depends on the binary’s intrinsic prop-
erties, its distance from and orientation with respect to the
detector, and the detector’s intrinsic properties. The way in
which r depends on the signal and detector properties sug-
gests a useful measure of the detector bandwidth, which I
discuss here as well. Finally, Sec. III concludes by specializ-
ing the discussion to the specific properties of the proposed
LIGO and VIRGO gravitational radiation detectors.

The important properties of a binary inspiral observation
catalog are the distribution of cataloged events withr and
the binary system ‘‘chirp mass’’M. These distributions de-
pend on the cosmological model, which includes the evolu-
tion with redshift of the neutron star mass distribution and
the coalescing binary number density. In Sec. IV, I give gen-
eral expression for these distributions and discuss how they
may be used together with actual observations to test cosmo-
logical models. Also in this section I give expressions for the
catalog depth~the maximum redshift of a binary system that
can haver greater thanr0) and the total rate that proposed
interferometers can expect to observe inspiraling binaries
with r greater thanr0 . All of these general expressions are
evaluated explicitly for relevant matter-dominated
Friedmann-Robertson-Walker cosmological models and a
simple model of the neutron star mass distribution. Finally, I
summarize my conclusions in Sec. V.

II. COALESCENCE RATE DENSITY

A. Introduction

The signal-to-noise ratior of a binary inspiral in a LIGO-
like interferometer depends on the relationship between the
binary and the detector~i.e., orientation, distance, and red-
shift! and also on certain intrinsic properties of the system
~i.e., component masses and spins!. Of these intrinsic prop-
erties, theintrinsic chirp mass

M0[m3/5M2/5, ~2.1!

wherem and M are the binary’s reduced and total mass,
plays the most important role: All the other intrinsic proper-
ties offer only small corrections tor.

Gravitational-wave detectors like LIGO or VIRGO do not
measureM0; instead, they measure

M[M0~11z!, ~2.2!

wherez is the system’s redshift with respect to the detector.
To distinguish betweenM, which involves the system’s red-
shift, andM0 , which depends only on the binary’s intrinsic
properties, I refer to the former as theobservedchirp mass,
or simply the chirp mass, and the latter as theintrinsic chirp
mass.

In order to describe the binaries included in a signal-to-
noise limited catalog we must first describe the coalescing
binary distribution in space and inM0 . The notation I use to
describe this distribution is defined in Sec. II B, while in Sec.
II C, I discuss what is known about the distribution from
present-day observations.



2880 53LEE SAMUEL FINN
B. Definitions and notation

Assume that coalescing binaries are distributed homo
neously and isotropically with the cosmological fluid an
define the binary coalescencelocal specific rate densityN
by

N [
dN

dtdVdM0
, ~2.3!

wheredV is a comovingcosmological fluid volume elemen
and dt is a proper time interval measured in the fluid re
frame. The total comoving rate density on the surface
homogeneity at redshiftz is thus

ṅ~z!5E N ~M0 ,z!dM0 . ~2.4!

Define the ratio of the total comoving rate density at
redshiftz@ ṅ(z)# to that at the present epoch@ ṅ05ṅ(z50)#
by E :

ṅ~z!5E~z!ṅ0 . ~2.5!

The distribution of coalescing binaries with intrinsic chir
massM0 on the surface at redshiftz is

P ~M0uz!5
N ~M0 ,z!

ṅ~z!
, ~2.6!

where, by construction,

15E dM0P ~M0uz!. ~2.7!

The homogeneous and isotropic local specific rate den
can thus be written

N ~M0 ,z!5ṅ0E~z!P ~M0uz!. ~2.8!

Since we have definedN andṅ in terms of the comoving
volume element and intrinsic chirp mass, in the absence
evolutionE is unity andP is independent ofz. Additionally,
for infinitesimaldM0 , P (M0uz)dM0 can be interpreted as
the probability that a randomly chosen binary on the surfa
at redshiftz has intrinsic chirp mass in the rangeM0 to
M01dM0 .

C. Observational constraints onN

1. Rate density at the current epoch: n˙ 0

Cosmological tests that depend on the observeddistribu-
tion of inspirals with r and/orM do not depend onṅ0 .
Nevertheless, it is necessary to knowṅ0 in order to estimate
how long it will take to accumulate a catalog of observatio
large enough that such tests will give meaningful results.

The best current estimate of the NS-NS binary coal
cence rate density at the current epoch
1.131028h Mpc23 yr21, whereh is the Hubble constant
measured in units of 100 kms21 Mpc21 @11,12#. This esti-
mate relies on the three observed binary pulsar systems
will coalesce in less than a Hubble time~PSR’s 1913116,
1534112, and 2127111C @13–15#!. Since the number of
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observed systems is small, the actual rate is quite uncertain:
Phinney@12# has estimated that, while unlikely, a rate two
orders of magnitude higher or lower could be reconciled with
current observations.

Black-hole–black-hole~BH-BH! and BH-NS binaries are
believed to form at rates comparable to NS-NS binaries;
however, the masses of these systems and the fraction that
merge in less than a Hubble time are entirely uncertain
@11,12#.

2. Intrinsic chirp mass distribution and evolution:P and E

The intrinsic chirp mass distributionP (M0uz) depends
on the binary system component mass distribution on the
slice of homogeneity at redshiftz. Denote a binary’s compo-
nent masses asm1 andm2 and write their joint probability
density on a surface of redshiftz asP(m1 ,m2uz). The intrin-
sic chirp mass distributionP (M0uz) on that slice is then

P ~M0uz!5E E dm1dm2P~m1 ,m2uz!

3d~m3/5M2/52M0!. ~2.9!

The determination ofP (M0uz) thus reduces to finding
P(m1 ,m2uz).

Both theoretical and observational evidence suggest that
the neutron star mass distribution is narrow@16–18#. A
simple model of the mass distribution has the component
masses in a binary uncorrelated and uniformly distributed
between upper and lower boundsmu andml ; then

P~m1 ,m2uml ,mu!5P~m1uml ,mu!P~m2uml ,mu!

5~mu2ml !
22 ~2.10!

and

P~M0uml ,mu!5E
ml

muE
ml

mu
dm1dm2

dF S m2
3m1

3

m11m2
D 1/52M0G

~mu2ml !
2 .

~2.11!

whereml andmu may depend onz. The probability density
P(M0uml ,mu) is maximized when M05(mlmu)

3/5/
(ml1mu)

1/5.
The limited observations of the neutron star mass distri-

bution in binary pulsar systems provide independent 95%
confidence intervals forml andmu @17#:

1.01,ml /M(,1.34,

1.43,mu /M(,1.64. ~2.12!

The most likely values ofml andmu are

ml51.29M( ,

mu51.45M( . ~2.13!

Over this narrow rangeP(M0uml ,mu) is, to an excellent
approximation, piecewise linear:
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P~M0uml ,mu!

.
2

m.2m, 5
M02m,

m02m,
if m0.M0.m, ,

m.2M0

m.2m0
if m..M0.m0 ,

0 otherwise,

~2.14!

where

m,[ml /2
1/5, ~2.15a!

m0[
~mlmu!

3/5

~ml1mu!
1/5, ~2.15b!

m.[mu/2
1/5. ~2.15c!

At present we can observe only nearby binary pulsar s
tems; consequently, there are no observations that bea
rectly on the variation ofE or P with z. Theoretical studies
suggest that the initial mass of neutron stars formed by s
lar core collapse do not vary significantly with the progenit
mass or composition@16#. After formation the mass may
evolve owing to accretion from a companion; however,
any event it is not likely that eitherP or E vary with z more
rapidly than do galaxies. In Sec. IV, I provide general expr
sions for and detailed examples of the expected distribu
of events in a catalog of binary inspiral events; for the d
tailed examples I neglect evolution inE andP entirely. As
shown in Sec. IV D, advanced LIGO and VIRGO detecto
will observe NS-NS binaries from redshifts not expected
exceedz.0.5 and with the preponderance of events aris
from z.0.1; consequently, neglect of evolution is not a
unreasonable approximation.

III. SIGNAL-TO-NOISE RATIO

A. Outline

The signal-to-noise ratio measures the signal amplitud
terms of a detector’s noise properties. In Sec. III B, I defi
the signal-to-noise ratior and discuss the subtle issue of ho
r is estimated, but not determined, by observation. The fu
tional form of r depends on the detector response to bin
inspiral radiation, which I describe in Sec. III C. In Se
III D, I give the binary inspiral signal-to-noise ratio in term
of the same parameters that characterize the detecto
sponse. The form ofr suggests a natural definition of a de
tector’s effective bandwidth for binary inspiral observation
I discuss this bandwidth function in Sec. III D as well.

The relative orientation of the detector and binary is d
scribed by a function of four angles. While these angles c
not be measured by observations in a single interferome
important properties of the angular orientation function c
be calculated independently of the particulars of the bin
or the detector. These properties play an important role
determining the binary inspiral catalog properties and int
preting individual observations. I discuss the angular ori
tation function in Sec. III E.
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Finally, in Sec. III F, I specialize the discussion of the
signal to noise to the proposed LIGO and VIRGO gravita-
tional radiation detectors.

B. Signal-to-noise ratio: General comments

Let s(t) be the detector response to a gravitational radia-
tion signal from any source. If the detector noise is Gaussian
with one-sided power spectral densitySn( f ), then the signal-
to-noise ratior2 is definedto be

r252E
2`

` s̃~ f !s̃* ~ f !

Sn~ u f u!
d f , ~3.1!

wheres̃ is the Fourier transform of the detector response,

s̃~ f ![E
2`

`

d fe2p i f ts~ t !, ~3.2!

and s̃* is its complex conjugate@19#.
An observation of a gravitational wave signal in a noisy

detector entails a measurement of the signal properties in the
presence of a particular instance of the detector noise. Analy-
sis of the detector output results in anestimateof r as well as
other parameters that describes(t). Throughout this work I
user to mean the actual signal-to-noise ratio, as defined by
Eq. (3.1), and not the estimate that arises in an observation.

In Sec. IV, I find the distribution of sources withr and
M in different cosmological models. By comparing these
distributions with the observed one we can determine the
model that best describes our own universe. In making that
comparison it is critical to distinguish betweenr andM @as
definedby Eqs.~3.1! and ~2.2!# and theestimatesof r and
M that results from observations made in a detector.

The estimate that results from an observation is a prob-
ability distribution P for the parameters that describe the
signal— in the case of binary inspiral in a single interfer-
ometer, these includer and the chirp massM ~see Sec. III C
below!. The probability distribution associated with an ob-
servation is generally not reported; instead, what is reported
most often is a set ofestimatorsthat characterize the distri-
bution and its moments. Among the most popular is the the
maximum likelihood estimator, which is the set of parameter
values that maximizeP.

Estimators are summaries of the distributionP and their
utility depends on how accurately they are able to represent
it. WhenP is very sharply peaked~i.e., there is little uncer-
tainty in the measurement! then it may be approximated by a
d function and summarized accurately by the maximum like-
lihood estimator. WhenP is sharply peaked but with a not
insignificant width, then it may be approximated near its
peak by a Gaussian and accurately represented by the maxi-
mum likelihood estimators and their covariance. When the
distribution is not sharply peaked, however, then the more
general uncertainties reflected in the detailed structure ofP
play an essential role in the observation’s interpretation and
no summary ofP is especially useful.

That a small set of estimators built fromP for a particular
observation does not provide a useful summary does not
mean that the observation itself is unreliable or uninforma-
tive; rather, it means only that greater care must be taken in



l

-

a

2882 53LEE SAMUEL FINN
its interpretation. Finn@Sec. ~c!# @20# gives an example of
how the the probability distribution resulting from an obse
vation should be used in the interpretation of neutron s
mass observations in binary pulsar systems; a further disc
sion of this point in the context of cosmological tests usin
binary inspiral observation catalogs is part of a work
preparation.

C. Detector response to binary inspiral

The detector responses(t) to the gravitational radiation
from an inspiraling binary system depends on the distan
and relative orientation of the source and the detector, as w
as on certain intrinsic properties of the binary. The relativ
orientation of the source and the detector is described by f
angles: Two (u andf) describe the direction to the binary
relative to the detector, and two (i andc) describe the bina-
ry’s orientation relative to the line of sight between it and th
detector.

To describeu and f, consider a single interferometric
gravitational wave detector whose arms form a right ang
Let the arms themselves determine thex and y axes of a
right-handed Cartesian coordinate system with thez axis
pointing skyward. In this coordinate system the gravitation
waves from an inspiraling binary arrive from the directio
n, which can be defined in terms of the spherical coordina
u andf in the usual way:

cosu[2n•z, ~3.3a!

tanf[
n•y

n•x
. ~3.3b!

To describei andc, let J represent the total angular mo
mentum of the binary system. The detector responses(t)
depends on theinclination angle ibetweenJ andn,

cosi[2J•n/uJu, ~3.3c!

and the orientationc of the angular momentum aboutn,

cotc[
J•n3z

J•@z2n~z•n!#
. ~3.3d!

The conventions for the orientation anglesu, f, i , andc
described here are the same as those used in@3,4# ~note,
however, that thedescriptionof the angles in@4# is incor-
rect!.

At Newtonian ~i.e., quadrupole formula! order the only
intrinsic property of the binary system that affects the wav
form isM0 . At this order the detector response~a dimen-
sionless strain! to the binary inspiral signal is

s~ t !5HMdL Q~p fM!2/3cos@x1F~ t !# for t,T8,

0 for t.T8,
~3.4a!

wherex is a constant phase,

Q[2@F1
2 ~11cos2i !214F3

2 cos2i #1/2, ~3.4b!
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F1[
1

2
~11cos2u!cos2fcos2c2cosusin2fsin2c,

~3.4c!

F3[
1

2
~11cos2u!cos2fsin2c1cosusin2fcos2c,

~3.4d!

f5
1

pM F 5

256

M

T2t G
3/8

, ~3.4e!

F[2pE
T

t

f ~ t !dt522S T2t

5M D 5/8, ~3.4f!

dL is the source’s luminosity distance,T8 is the moment
when the inspiral waveform terminates~either because the
binary components have coalesced or because the orbita
evolution is no longer adiabatic!, andT.T8 would be the
moment of coalescence if the two components of the binary
system were treated as point masses in the quadrupole ap
proximation ~the difference betweenT andT8 is small but
not negligible!. Note that dependence of the response on the
anglesu, f, i , andc is contained entirely in the orientation
functionQ, which does not depend on any other properties
of the binary or the interferometric detector. This important
point will be discussed further in Sec. III E.

Post-Newtonian corrections do not contribute signifi-
cantly to the signal-to-noise ratio for solar-mass binary in-
spiral in the LIGO and VIRGO interferometers. For symmet-
ric binaries ~i.e., those with equal or near equal mass
components! the first post-Newtonian correction is propor-
tional toM /r , whereM is the binary’s total mass andr the
component separation. Advanced LIGO and VIRGO interfer-
ometers are expected to be most sensitive to binary inspiral
radiation in the bandwidth 20–200 Hz~see Sec. III D 2! and,
in this bandwidth,M /r&4% for solar mass binaries. Post-
Newtonian effects are more important for more massive bi-
naries, since at fixed quadrupole radiation frequencyM /r is
greater for greaterM :

SMr D.~p fM !1/3 ~3.5a!

.0.042S f

200 Hz

M

2.8M(
D 2/3 ~3.5b!

.0.16S f

200 Hz

M

20M(
D 2/3. ~3.5c!

Post-Newtonian effects are more important for binaries with
extreme mass ratios: In general, the first post-Newtonian cor-
rection is proportional to (dm/M )(M /r )1/2, wheredm is the
component mass difference. Finally, spin-orbit coupling in
systems whose components have large spin angular moment
can lead to orbital precession and a waveform modulation
which can affectr significantly @21#.

That the quadrupole waveform can be used toestimate
r for an inspiraling binary does not mean it can also be used
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to detecta binary inspiral signal in the detector output. D
tection, or estimation of signal parameters from observati
involves the comparison of the detector output with a mo
of the detector response to the radiation. ‘‘Small’’ differenc
between the actual and modeled signal evolution, part
larly its phase, can have a large effect on the measured v
of the signal parameters, including the signal-to-noise ra
estimated from the observations@4,22#.

D. Binary inspiral signal-to-noise ratio

The signal-to-noise ratior @Eq. ~3.1!# corresponding to
the detector responses(t) @Eq. ~3.4a!# is @4#

r58Q
r 0
dL

S M

1.2M(
D 5/6z~ fmax!, ~3.6a!

where

r 0
2[

5

192p S 320D
5/3

x7/3M(
2 , ~3.6b!

x7/3[E
0

` d f~pM(!2

~p fM(!7/3Sn~ f !
, ~3.6c!

fmax5 f ~T8!/2, ~3.6d!

z~ fmax![
1

x7/3
E
0

2 fmax d f~pM(!2

~p fM(!7/3Sn~ f !
. ~3.6e!

In Eq. ~3.6a!, Q, M, anddL depend on the particular binar
system under consideration andr 0 is a characteristic distanc
that depends only on the detector’s noise power spectral d
sity Sn( f ). The dimensionless functionz, which also de-
pends only on the detector’s noise spectrum, increases m
tonically from 0 to 1. Its argumentfmax is the redshifted
instantaneous orbital frequency when the inspiral termina
~at t5T8) either because the compact components have c
lesced or because the orbital evolution is no longer adiab
and coalescence is imminent.

1. r0 and z

The characteristic distancer 0 and the functionz describe
different aspects of an interferometric detectors sensitivity
binary inspiral gravitational radiation. For a fixed binary, th
largerr 0 , the greaterr; for fixed r, the largerr 0 , the farther
the detector can ‘‘see.’’ Decreasing the noise power in a
band increasesr 0 , but ~owing to the factorf

27/3 in the inte-
grand of the expression forx7/3) improvements at low fre-
quency are more effective than those at high frequency.

The functionz reflects the overlap of the signal powe
with the detector bandwidth. The orbit of an inspiraling com
pact binary evolves adiabatically owing to gravitational r
diation emission until an innermost circular orbit~ICO! is
reached at an instantaneous orbital frequencyf ICO . At the
ICO the orbit evolves on a dynamic timescale and the co
ponents coalesce quickly. Thus, the adiabatic inspiral wa
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form ends2 when the orbital frequency reachesf ICO. The
quadrupole radiation frequency observed at the detector
when the orbital frequency isf ICO is

2 fmax5
2 f ICO
11z

~3.7!

and the inspiral signal termination is represented in the de-
tector response by the cutoff att.T8 @see Eqs.~3.4a! and
~3.6d!#.

Since the binary orbit evolves adiabatically from low fre-
quencies tof ICO , the observed quadrupole radiation spec-
trum has significant power only up to frequency 2fmax. If
2 fmax is very much greater than the frequency where the
detector noise is minimized, then the signal power bandwidth
overlaps completely with the detector bandwidth and
z( fmax).1. On the other hand, if 2fmax is much less than the
frequency where the detector noise is minimized, then the
overlap of the signal power and detector bandwidths is neg-
ligible, z( fmax).0 andr.0.

The orbital frequency at the transition of the binary orbit
from adiabatic inspiral to plunge and coalescence has been
studied using high-order post-Newtonian methods@23#. For
symmetric binaries~i.e., those with equal-mass components!
the instantaneous redshifted instantaneous orbital frequency
of the ICO is given by

fmax5
f ICO
11z

~3.8a!

5
710Hz

11z S 2.8M(

M D , ~3.8b!

5
99.Hz

11z S 20

M(M
D , ~3.8c!

whereM is the binary’s total mass. More generally, for bi-
naries with compact componentsf ICO depends inversely on
M and directly on a function of the dimensionless ratio
m/M ; Kidder et al. ~Fig. 4 of Ref.@23#!, showM f ICO for
binary systems of arbitrary mass asymmetry. For a NS-NS
binary the component’s proper separation at the ICO is
greater than a neutron star diameter; so coalescence occur
after the transition from inspiral to plunge@23#. Tidal dissi-
pation is important in determining the inspiral rate only in
the last few orbits before contact@24,25#; consequently, Eq.
~3.8! is applicable for NS-NS binaries and should be appli-
cable for black hole binaries as well.

2. Detector bandwidth and data analysis templates

The probability that a signal with detector responses(t) is
present in the outputg(t) of a noisy detector is related to

2The radiation waveform from the final plunge and the early
stages of coalescence is not yet known. If, after coalescence, a black
hole forms, then the final radiation reflects the black hole’s quasi-
normal modes, which are damped rapidly. The inspiral waveform,
and with it our ability to model the detector response, ends when
the orbital frequency reachesf ICO .
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2^g,s&2^s,s&, ~3.9a!

where

^g,h&[E
2`

`

d f
g̃~ f !h̃* ~ f !

Sn~ u f u!
. ~3.9b!

The actual signal, and consequently the detector respo
s, may be difficult or impossible to evaluate exactly~this is
certainly the case for binary inspiral!; so we would like to be
able to use an approximate modelS(t) in lieu of the actual
detector responses in Eqs.~3.9!. From Eqs.~3.9! it is clear
that any approximate modelS(t) may be used as long as i
matchess̃( f ) closely whereverus̃u2/Sn( f ) is relatively large.
This latter quantity is just the fraction ofr2 contributed by
the signal power at frequencyf and is proportional toz8.
This suggests that we define thebandwidth function

B~ f ![H f

2

z8~ f /2!

z~ fmax!
f,2 fmax,

0 f.2 fmax,

~3.10!

which is the fraction of the signal-to-noise ratio contribute
by signal power at frequencyf in a logarithmic frequency
bandwidth.An approximate detector response model S˜ may
be used instead of the actual response s˜ as long as S˜ accu-
rately reflects s˜ whereverB is large. Knowing where and
how S̃needs to be accurate can simplify greatly the constr
tion of approximate templates for data analysis; for this p
poseB should prove a useful guide.

E. Distribution of the orientation function Q

The signal-to-noise ratio of an inspiraling binary in
single interferometric detector depends on the relative ori
tation of the source and the detector through the anglesu,
f, i , andc. The dependence ofr on these angles is con
fined to the angular orientation functionQ, which is inde-
pendent of all other properties of the binary system. Fro
observations of binary inspiral in a single interferometer w
can measurer andM but notQ. Even thoughQ cannot be
measured, because it depends only onu, f, i , andc we
actually know quite a bit about it: Since, averaged over ma
binaries, cosu, f/p, cosi, andc/p are all uncorrelated and
uniformly distributed over the range (21,1), we know the
probability thatQ takes on any value. This probability dis
tribution is found numerically in@4#; here I note only that
0<Q<4 and that to an excellent approximation

PQ~Q!5H 5Q~42Q!3/256 if 0,Q,4,

0 otherwise.
~3.11!

To determine the binary coalescence rater greater than
r0 we need to knowN and also how the signal-to-nois
ratio of binaries with intrinsic chirp massM0 on a surface at
redshift z is distributed. This latter distribution,
Pr(ruM0 ,z), is related toPQ :
nse

d

c-
r-

a
n-

m
e

ny

-

Pr~ruM0 ,z,C ,D !5PQ@Q~r!#
]Q

]r U
M0 ,z

5PQFr8 dL~z!

r 0~11z!5/6S 1.2M(

M0
D 5/6G

3
dL~1.2M( /M0!

5/6

8r 0~11z!5/6
, ~3.12!

whereC represents the cosmological model (H0 , q0 , V0 ,
P , E) andD the detector~i.e., r 0 andz).

F. r 0 and z for the LIGO and VIRGO detectors

LIGO will consist of three interferometers: one in Living-
ston, Louisiana and two in Hanford, Washington. The Loui-
siana interferometer and one of the Washington interferom
eters will have 4 km arm lengths; the second Washington
interferometer will have a 2 km armlength and share the
same vacuum system as the 4 km interferometer. For th
proposed LIGO interferometers as described in@26# and
modeled in@4#, r 0 ranges from 13 Mpc~for ‘‘initial’’ inter-
ferometers! to 237 Mpc ~for ‘‘advanced’’ interferometers!.3

As the LIGO detectors develop, incremental improvements
will increaser 0 .

The orientations of the Washington and Louisiana inter-
ferometers were chosen to be as close to parallel as possib
consequently, a simple approximation treats the LIGOdetec-
tor ~all three interferometers operating in ‘‘triple coinci-
dence’’! as a single interferometer of arm length

@42142122#1/2 km56 km. ~3.13!

For this ‘‘superinterferometer’’r 0 ranges from 19 Mpc to
355 Mpc.

Here and below, reference to the LIGOdetectorrefers to
the three interferometers operating as a single detector, whi
reference to a LIGOinterferometerindicates one of the 4 km
interferometers operating in isolation.

Figure 1 showsz for early LIGO and VIRGO interferom-
eters and also more advanced LIGO interferometers as hav
been discussed in the literature@26,4#. The solid curve shows
z representative of advanced interferometers, while the
dashed and dotted curves showz representative of initial
LIGO and VIRGO interferometers. As the LIGO detector
evolves,r 0 will increase from approximately 20 Mpc toward
350 Mpc, andz will evolve from the dashed curve toward
the solid curve. Setting aside the overall sensitivity gain with
increasingr 0 , the evolution ofz signifies an increasingrela-
tive sensitivity to systems with smallfmax: i.e., systems with
larger total masses and/or redshifts.

3The noise model used in@26# and @4# assumed a thermal noise
spectrum corresponding to viscous damping in the pendulum sus
pensions and the internal modes of the test masses. It is now re
ognized that these modes are structure damped@27–29# with a cor-
respondingly different noise spectrum. Preliminary estimates
indicate that this improved noise model reducesr 0 for initial LIGO
interferometers, but leaves it unchanged for advanced ones.
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VIRGO will consist of a single 3 km interferometer. Th
target noise curve for the initial operation of the VIRG
interferometer is described in@2#; for this interferometerr 0 is
13 Mpc. Like the LIGO interferometers, incremental im
provements in VIRGO will increaser 0 and it is reasonable to
assume that these improvements could raiser 0 for VIRGO to
approximately 200 Mpc. The dotted curve in Fig. 1 sho
z for the initial VIRGO interferometers. Note how, eve
thoughr 0 is the same for both the initial LIGO and VIRGO
interferometers, the relative sensitivity of these two detect
to signals at low and high frequency, corresponding to m
or less massive binaries, is markedly different. Improv
ments in the VIRGO interferometer can be expected
evolvez toward the solid curve as well. Note that the initi
VIRGO interferometers are expected to be relatively mo
sensitive to massive~i.e., low fmax) binaries than are the
initial LIGO interferometers.

For neutron star binariesfmax.710 Hz @Eq. ~3.8!# and
z( fmax).1 in any of the proposed LIGO and VIRGO inte
ferometers~see Fig. 1!. Figure 2 shows the bandwidth func
tion for neutron star binary observations in early VIRG
~dotted curve! and LIGO~dashed curve! interferometers and
also more advanced LIGO interferometers~solid curve!. It is
clear that the approximate detector response models for
nary inspiral observations must evolve with the interfero
eters: In the early interferometers the detector response m
els will need to be quite accurate at high frequenc
( f.200 Hz) but not at low ones; on the other hand, in mo
advanced interferometers these models will need to be a
rate at low frequencies (f.60 Hz) and, to obtain this low
frequency accuracy, the high frequency performance may
sacrificed at no cost to the signal detectability.

FIG. 1. The signal-to-noise ratio of the radiation from an i
spiraling compact binary in an interferometric gravitational wa
depends, through the functionz @defined in Eq.~3.6e!# on the red-
shifted orbital frequencyfmax of the system’s last orbit before coa
lescence. Here is shownz( fmax) for initial LIGO ~dashed curve!,
VIRGO ~dotted curve! and advanced LIGO~solid curve! interfer-
ometers. For more detail, see the discussion in Secs. III F and II
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IV. DISCUSSION

A. Introduction

Consider a catalog of binary inspiral events with signal-
to-noise ratior greater than a thresholdr0 . Suppose that for
each event in the catalogr andM are known. How do we
make use of the catalog to test cosmological models agains
cataloged observations?

The simplest test involves the distribution of events with
r. As the catalog limitr0 decreases, sources at increasingly
larger distance become members. The number of adde
sources depends on the increase of the spatial volume, th
density of sources at that distance, and~since these sources
areeventsthat occur at a givenrate! the cosmological red-
shift. Thus, adopting a cosmological modelC implies an
expected distributionP(rur0 ,C ,D) for the catalog events
taken with detectorD . Denote the cataloged binary inspiral
signal-to-noise ratio observations by$rur.r0%. Suppose
that, before studying these observations, we have reason o
are otherwise prejudiced to believe the probability thatC is
the correct cosmological model isP(C ). Using Bayes’ law
of conditional probabilities, thea posterioriprobability that
we assign to modelC after considering the observations is

P~C u$rur.r0%!}P~C !)
i
P~r i ur0 ,C ,D i !, ~4.1!

wherer i is the signal-to-noise ratio of thei th catalog obser-
vation andD i represents the detector configuration (r 0 , z)

n-
ve

-

I D.

FIG. 2. The bandwidth functionB( f ) @defined in Eq.~3.10!#
describes the fraction ofr2 contributed by signal power at fre-
quencyf in a logarithmic frequency interval. Here is shownB for
initial LIGO, VIRGO, and advanced LIGO interferometers. The
bandwidth function is especially useful for determining over what
frequency interval an approximate model of the detector response t
the radiation, which might be used for identifying the presence of a
signal in detector output, must accurately mimic the real detector
response. For more details see the discussion in Sec. III D 2.
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when the observation was made.4 This test is exactly analo-
gous to number-flux cosmological tests using distant gal
ies.

More subtle tests involve other distributions of catalog
events. For example, each source in the catalog is chara
ized by its observed chirp massM. The observed chirp
mass depends on both the intrinsic chirp massM0 and the
redshift z @see Eq.~2.2!#; consequently, the distribution o
events in the catalog withM depends on the cosmologica
model. Denote the cataloged chirp mass observations
$Mur.r0%. Adopting a cosmological modelC implies an
expected distributionP(Mur0 ,C ,D). As before, if we ini-
tially favor model C with probability P(C ), then after
studying the observations the probability we ascribe
modelC is

P~C u$Mur.r0%!}P~C !)
i
P~M i ur0 ,C ,D i !, ~4.2!

whereM i represents thei th cataloged chirp mass observa
tion.

Of the four parameters that describe, at quadrupole or
binary inspiral observed in a single interferometer, onlyr
andM convey astrophysically interesting information. Th
distributionsP(rur0 ,C ,D) andP(Mur0 ,C ,D) are each in-
tegrals over the distributionP(r,Mur0 ,C ,D) that com-
pletely characterizes the catalog:

P~rur0 ,C ,D !5E P~r,Mur0 ,C ,D !dM, ~4.3a!

P~Mur0 ,C ,D !5E
r0

`

P~r,Mur0 ,C ,D !dr. ~4.3b!

These integrals aresummariesof the catalog contents: As
such, they are less informative thanP(r,Mur0 ,C ,D). The
most sensitive test that we can make using the catalog
volves not a summary, but the full information availabl
Given the observations$r,Mur.r0%, the probability that
cosmological modelC describes our universe is

P~C u$r,M%,r0!}P~C !)
i
P~r i ,M i ur0 ,C ,D i !. ~4.4!

Cosmological tests based on the summary distributio
are still useful to make. Summary distribution often depe
only weakly or not at all on some of the parameters of t
modelC ; in that case, the effective dimensionality ofC is
reduced in the summary test and we may be able to dis
guish more closely among cosmological models described
the remaining parameters than with a test using the full d
tribution. This is particularly true when the number of obse
vations in the catalog is small.

4Changes in the detector noise spectrum change the relation
tweenr and the cosmological model. This is not a problem in t
interpretation of a catalog as long as the detector properties
properly associated with each cataloged observation.
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B. Outline

In this section I give general expressions for the distribu-
tions P(r,Mur0 ,C ,D) and the summary distributions
P(rur0 ,C ,D) andP(Mur0 ,C ,D) that can be evaluated in
any homogeneous and isotropic cosmological model; in ad-
dition, I evaluate the summary distributions explicitly for
matter-dominated Friedmann-Robertson-Walker~FRW!
models. The essential properties of FRW cosmological mod-
els are summarized in Sec. IV C.

In addition to the distributionsP(r,Mur0 ,C ,D),
P(rur0 ,C ,D), andP(Mur0 ,C ,D) are other catalog prop-
erties of intrinsic interest. In a given cosmological model
there is a distance beyond which no binary inspiral of fixed
intrinsic chirp mass will have signal-to-noise ratio greater
than the catalog limitr0 , and I calculate thiscatalog depth
z0 in Sec. IV D. A catalog takes time to build, and, in a given
period of time, the size of a binary inspiral catalog is limited
by the ratedN/dt at which binaries coalesce withr greater
than the catalog thresholdr0 . In Sec. IV E, I calculate both
the expected rate of binary inspiral observations and the dis-
tribution P(rur0 ,C ,D) for advanced LIGO interferometers
and describe how these depend on the cosmological mode
C . Finally, in Sec. IV F, I calculate the distribution
P(Mur0 ,C ,D) and describe how it depends onC .

C. Cosmological model

Specific examples of the catalog distributions, catalog
depth, and rate of binary inspiral observations made in this
section are in the context of matter-dominated Friedmann-
Robertson-Walker ~FRW! cosmological models. The
Robertson-Walker spacetime metric has the line element

ds252dt21a2~ t !F dr2

12kr2
1r 2~du21sin2udf2!G ,

~4.5!

where a(t) is the usual~dimensioned! scale factor,r is a
dimensionless parameter related to the area of spheres o
constant radius, andk is11,21, or 0 depending on whether
the spatial geometry of the slices of homogeneity has posi-
tive, negative, or zero curvature~i.e., is closed, open, or flat!.
In matter-dominated FRW models~which have vanishing
cosmological constant! the comoving radial coordinater and
the luminosity distancedL can be written in terms of the
redshift explicitly:

r5
zq01~q021!@~112q0z!1/221#

a0H0q0
2~11z!

, ~4.6a!

dL5a0~11z!r , ~4.6b!

wherea0 , H0 , andq0 are the scale factor, expansion rate,
and curvature parameter~deceleration parameter! at the
present epoch~Eq. 15.3.24 of Ref.@30#!.

D. Sample depth

The signal-to-noise ratio of an inspiraling neutron star bi-
nary system with intrinsic chirp massM0 is

be-
e
are
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r58QS r 0dLD S M0

1.2M(
D 5/6~11z!5/6z~ fmax!. ~4.7!

SinceQ is between 0 and 4, even an optimally oriente
binary system hasr less thanr0 whenz is greater thanz0 ,
wherez0 satisfies

45
r0dL~z0!

8r 0z~ fmax!
5/6S 1.2M(

M0
D 5/6. ~4.8!

Evaluation ofz0 requiresz( fmax), which depends on the de-
tails of the detector’s noise power spectral density~through
z) as well as the binary’s component masses and reds
~throughfmax). For advanced interferometersz.1 as long as
fmax*70 Hz ~see Fig. 1! while fmax.710 Hz @2.8M( /
(11z0)M ] for symmetric binary in spiral@see Eq.~3.8!#.
Consequently, we can approximatez.1 as long as
11z0&10(2.8M( /M ). For small z0 we can approximate
dL.z/H0; then

z0.
32H0r 0

r0
S M0

1.2M(
D 5/6 ~4.9a!

.0.48hS 8r0D S r 0
355 MpcD S M0

1.2M(
D 5/6, ~4.9b!

which is much less than 10. Thus, the approximationz.1 is
a good one for binary systems with solar mass componen
but not for binaries whose components are on order 5M( .

For a specific example, focus attention first on solar ma
component binaries. Thenz.1 for any of the proposed
LIGO or VIRGO interferometers~at the end of this subsec-
tion I return to consider briefly the case of more massiv
binary systems where this is not true!. In an Einstein–de
Sitter (q051/2) cosmological modelz0 is then given explic-
itly by

z05Fb1
256

9b
a0
21

16

3
a0G621, ~4.10a!

where

a05
8H0r 0

r0
S M0

1.2M(
D 5/6 ~4.10b!

50.12hS 8r0D S r 0
355 MpcD S M0

1.2M(
D 5/6, ~4.10c!

h is the Hubble parameter (H0 in units of 100 km/s Mpc!,
and

b5F121S 16a0

3 D 31S 141
4096

27
a0
3D 1/2G1/3. ~4.10d!

More generally (q0Þ1/2 butz still unity! z0 satisfies

z05x621, ~4.11a!

wherex is a root of
d

ift

ts,

ss

e

05x1218q0a0x
11116q0

2a0
2x1022q0x

6

28a0~2q021!x512q021. ~4.11b!

The appropriate root of this equation can be found as a
power series for smalla0:

z054a01
8

3
~3q012!a0

218~6q021!a0
3

1
160

81
~54q0

219q027!a0
4

1
5600

243 S 27q022 447

25
q01

323

100Da0
51O~a0

6!.

~4.12!

This truncated expansion is accurate to better than 0.2% for
a0,0.12 and 0<q0<1; for a0,0.1 and 0&q0&3/4 the
accuracy is better than 0.01%. An asymptotic expansion for
z0 valid for largea0 ~but z still 1) is

z054096q0
6a0

62384A2q05~q021!a0
316q0211O~a0

23!.
~4.13!

This asymptotic expansion is accurate to better than 1% for
a0*1/2 and 0.1&q0&1.

FIG. 3. The distance to the farthest inspiraling binary system
with signal-to-noise ratior greater than a thresholdr0 depends on
the detector noise spectrum, the binary system component masses
and the cosmological model. Shown here is the redshift to the far-
thest NS-NS binary system observable withr>8 in an advanced
LIGO detector as a function of the Hubble parameterh ~the Hubble
constant in units of 100 km/s Mpc!. The three curves represent
matter-dominated Friedmann-Robertson-Walker cosmological mod-
els with differentq0: a closed model withq053/4 ~dashed curve!, a
flat model (q051/2, solid curve!, and an open model with
q051/4 ~dotted curve!. For more discussion see Sec. IV D.
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Figure 3 showsz0 as a function ofh for neutron star
binaries withM051.19M( ~corresponding to 1.37M( neu-
tron stars!, r058, r 05355, and three different values ofq0
corresponding to an open (q051/4, dotted curve!, flat
(q051/2, solid curve!, and closed (q053/4, dashed curve!
cosmological model. The redshift of the most distant su
source is less than 1/2 forh,0.8 and does not exceed 7/1
for h,1. The sensitivity ofz0 to q0 is modest but significant:
Inspection of Eq.~4.11! shows that
ch
0

z0.4a0@11a0~2q021!#1O@a0
3 ,~2q021!2#,

~4.14!

wherea0.0.12h for advanced LIGO interferometers. For
open spatial geometries (2q021,0) the most distant
sources are at smaller redshifts than in closed spatial geo
etries~where 2q021.0).

In luminosity distance, the sample depth is
dL,05
4a0

H0
F11

40

3
a01

40

3
~2q011!a0

21
1280

81
~9q022!a0

31
40

243
~2052q0

22180q02143!a0
41O~a0

6!G . ~4.15!
Figure 4 showsdL,0 for the same cases (h, q0) as Fig. 3
shows z0 . Advanced LIGO interferometers may obser
neutron star binaries withr greater than 8 at luminosity dis
tances of order 2 Gpc.

For more massive binariesz( fmax) is substantially less
than unity atz0 and the approximationz.1 is no longer
valid. Figure 5 showsz0 @given implicitly by Eq. ~4.8!# for
an advanced LIGO detector (r 05355 Mpc) and a range o
binary systems in two distinct Einstein–de Sitter (q051/2)
cosmological models. One pair of curves showsz0 for sym-
metric binaries consisting of two~e.g.! black holes each of
massMBH , while the second pair of curves showsz0 for
asymmetric binaries, consisting of~e.g.! a black hole of mass
MBH and a neutron star of mass 1.4M( . Note how, inall
cases,z0 does not increase without bound asMBH increases;
instead, it has a maximum value for someMBH and de-
creases asMBH increases further.

The finite bandwidth of the detector and its overlap w
the signal power, as represented byz, determines the maxi-
mum redshift at which a detector can observe binary inspi
If z were constant, thenz0 would increase monotonically
with M0 @see Eq.~4.8!#; however,z is not constant and as
M increasesfmax decreases both becausef ICO is decreasing
and also becausez0 is increasing@ fmax}M /(11z); see Eq.
~3.8!#. Eventuallyz begins to decrease with increasingM0

or decreasingfmax ~for advanced LIGO interferometers,z
remains unity untilfmax.70 Hz; see Fig. 1!. Oncez begins
to decrease, so too willz0 . For sufficiently largeM0 even a
local binary (z50) will coalesce before the gravitational ra
diation signal enters the detector bandwidth.

Thus, decreasing the detector noise at low frequencies
a dual effect: By increasingr 0 it increases the overall detec
tor sensitivity, and by decreasing the frequency below wh
z!1 it further boosts the sensitivity of the interferometer
more massive and more distant binary systems. Advan
LIGO detectors are expected to be most sensitive to insp
ing binaries with two 10M( black hole components, which
will be observable withr greater than 8 at redshifts great
than 1.5.
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E. Coalescence rate above threshold

The distribution of catalog events withr is given by

P~rur0 ,C ,D !5H dN/dtdr

dN/dt
, r.r0 ,

0, r,r0 ,

~4.16a!

where

dN

dtdr
5E dM0

dN

dtdrdM0
, ~4.16b!

dN

dtdrdM0
5E dz

dr

dz

4pa0
3r 2

A12kr2
ṅ0E~z!

11z

3
P ~M0uz!

11z
Pr~ruz,M0 ,C ,D !,

~4.16c!

dN

dt
5E

r0

`

dr
dN

dtdr
, ~4.16d!

andPr is given in Eq.~3.12!.
SincedN/dtdr depends onr only throughPr , the inte-

gral overr in Eq. ~4.16d! can be evaluated explicitly. First
note that

E
r0

`

drPr~ruM0 ,z,C ,D !5E
x

`

PQ~Q! ~4.17a!

[CQ~x!, ~4.17b!

where

x5
r0
8

dL
r 0~11z!5/6S 1.2M(

M0
D 5/6. ~4.17c!

The probability densityPr is a conditional one: It depends
on M0 , z, and the cosmological model. In contrast, the
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distributionPQ of Q is universal: It is independent of all the
specific properties of the binary or the detector.CQ(x) is
universal in this same way and can be evaluated withPQ . In
terms ofCQ the total rate of inspirals withr greater than
r0 is

dN

dt
5E dM0

dN

dtdM0
, ~4.18a!

where

dN

dtdM0
5E

0

`

dz
dr

dz

4pa0
3r 2

A12kr2
ṅ0E~z!

11z
P ~M0uz!

3CQF dL~z!

a0~11z!5/6z~ fmax!
G ~4.18b!

and

a0[
8H0r 0

r0
S M0

1.2M(
D 5/6. ~4.18c!

Equation ~4.18! for dN/dt, which is also the total rate of
binary inspiral with r.r0 , and Eqs. ~4.16! for
P(rur0 ,C ,D) are valid for any homogeneous and isotrop
cosmological model.
ic

1. Examples: ConstantM0

Turn now to the specific example of neutron star binaries
in matter-dominated FRW cosmological models, so tha
z.1 andr anddL are given by Eqs.~4.6!. Assume also that
evolution in the binary population is unimportant over red-
shifts z&1/2; thenE is unity andP is independent ofz.
Finally, use the approximation given above forPQ @Eq.
~3.11!# to evaluateCQ :

CQ~x!.H 1 if x<0

~11x!~42x!4/256 if 0<x<4

0 if 4,x.

~4.19!

The integral fordN/dtdM0 @Eq. ~4.18b!# can then be evalu-
ated as a power series in smalla0:

dN

dtdM0
5S dNdt D

0

P ~M0!, ~4.20a!

where
eaked
S dNdt D
0

5S 12821 pr 0
3ṅ0D S 8r0D

3S M0

1.2M(
D 5/2F12

25

9
a01

2

45
~6q0185!a0

22
224

33
q0a0

3

1
20

8019
~1188q0

219108q024123!a0
41O~a0

5!G ~4.20b!

anda0 is given by Eq.~4.10b!. Similarly, dN/dtdrdM0 is given by

dN

dtdrdM0
5S dN

dtdr0
DP ~M0!, ~4.21a!

where

S dN

dtdr D
0

5S 167 pr 0
3ṅ0D S 8r D 4S M0

1.2M(
D 5/2F12

100

27
a1

2

27
~6q0185!a22

448

33
q0a

3

1
140

24057
~1188q0

219108q024123!a41O~a5!G ~4.21b!

and

a5
8H0r 0

r S M0

1.2M(
D 5/65a0S r0

r D . ~4.21c!

Equations~4.20! and~4.21! for dN/dtdM0 anddN/dtdrdM0 can be integrated overM0 to find dN/dt anddN/dtdr, and
thusP(rur0 ,C ,D).

Observational and theoretical evidence suggests that the NS-NS binary intrinsic chirp mass distribution is sharply p
~see Sec. II C!. In the most extreme limit that all binary systems have intrinsic chirp massM0 , P is ad function inM0 and

dN

dt
5S dNdt D

0

, ~4.22a!
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P~rur0 ,C ,D !5
~dN/dtdr!0

~dN/dt!0

5
3

r S r0
r D 3 12

100

27
a1

2

27
~6q0185!a22

448

33
q0a

31
140

24057
~1188q0219108q024123!a4

12
25

9
a01

2

45
~6q0185!a0

22
224

33
q0a0

31
20

8019
~1188q0

219108q024123!a0
4

1O~a0
5 ,a5!.

~4.22b!
e

e

e

e
e

Figure 6 shows (dN/dt)0 as a function ofh in an
Einstein–de Sitter cosmological model (q051/2) for a rea-
sonable signal-to-noise ratio limit in an advanced LIGO d
tector (r058 and r 05355 Mpc), typical neutron star
masses (M051.19M(), and two different coalescence rat
densities. The solid curve shows (dN/dt)0 for the ‘‘best
guess’’ coalescence rate density,ṅ051.131027h
Mpc23 s21 ~see Sec. II C 1!, which is proportional toh; the
dashed curve shows (dN/dt)0 for a constant coalescence rat
densityṅ05831028 Mpc21 yr21. The dashed curve shows
how (dN/dt)0 scales for constantṅ0 in advanced interferom-
eters with interestingh. Present estimates ofṅ0 suggest that,
if h50.75, advanced LIGO detectors can expect to observ
little more than one neutron star binary inspiral event p
week.

The distributionP(rur0 ,C ,D) is also sensitive toh. Let
C 0 represent a flat and static cosmological model. Then

P~rur0 ,C 0 ,D !5H 3r0
3/r4, r.r0 ,

0, r,r0 .
~4.23!

The first-order correction~in 1/r) owing to the expansion of
the universe depends only on the rate of expansion (H0);
corrections owing to the curvature of space (kÞ0) enter
only at second order in 1/r. Since, for NS-NS binaries and

FIG. 4. The same as Fig. 3, except shown here is the luminos
distance instead of the redshift.
-

a
r

reasonable limiting signal to noise,a2 is less than 1% even
for advanced interferometer designs, cosmological tests that
focus only on the observed distribution ofr will be insensi-
tive toq0 even though the redshift to the most distant sources
in the catalog is large~this weak dependence onq0 is char-
acteristic of number-flux cosmological tests; see, e.g., p. 798
of Ref. @31#!. On the other hand, for advanced detectors and
interesting cosmological models, the distribution
P(rur0 ,C ,D) is sensitive toh at the 10% level, which
makes possible a measurement ofh from the obser-
vations $rur.r0% alone. Figure 7 showsP(rur0 ,I )/
P(rur0 ,C 0 ,D) for two Einstein–de Sitter cosmological
models that differ only byh ~in both casesM051.19M().
The general trend is that with increasingh inspiral events are
shifted toward largerr compared to the distribution in a
static universe.

ity

FIG. 5. The expected redshift to the farthest inspiraling binary
system observed by an advanced LIGO detector withr>8 in
matter-dominated Einstein–de Sitter cosmological models
(q051/2). Results for symmetric binary systems, consisting of two
components each of massMBH , and asymmetric binary systems,
consisting of a 1.4M( component and aMBH component, are
shown forh50.8 andh50.5. The maximum observable depth at
any signal-to-noise threshold is limited by the cosmological model
and the properties of the detector; for advanced LIGO interferom-
eters andr058 it peaks for symmetric binaries composed of
10M( black holes. For more discussion see Sec. IV D.
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2. Examples: Uniformly distributed neutron star masses

In a less extreme limit assume that neutron star masses
bounded above bymh and below byml , that between these
are

bounds their masses are uniformly distributed, and that t
component masses of an inspiraling binary system are unc
related. ThenP (M0) is given approximately by Eq.~2.14!,
and
dN

dtdr
5S 167 pr 0

3ṅ0D S 8r D 4S m0

1.2M(
D 5/2Fj5/22 100

27
āj10/31

2

27
~6q0185!ā2j25/62

448

33
q0ā

3j5

1
140

24057
~1188q0

219108q024123!ā4j35/61O~ ā5!G , ~4.24a!

dN

dt
5S 12821 pr 0

3ṅ0D S 8r0D
3S m0

1.2M(
D 5/2Fj5/22 25

9
ā0j10/31

2

45
~6q0185!ā0

2j25/62
224

33
q0ā0

3j5

1
20

8019
~1188q0

219108q024123!ā0
4j35/61O~ ā0

5!G , ~4.24b!

where

jn~xh ,xl !5
2@xh

n12~12xl !1xl
n12~xh21!2~xh2xl !#

~n12!~n11!~xh2xl !~xh21!~12xl !
~4.24c!
s

and

ā5S 8H0r 0
r D S m0

1.2M(
D 5/6, ~4.24d!

ā05S 8H0r 0
r0

D S m0

1.2M(
D 5/6, ~4.24e!

xh5
m.

m0
, ~4.24f!

xl5
m,

m0
, ~4.24g!

m,5ml /2
1/5, ~4.24h!

m05~mlmh!
3/5/~ml1mh!

1/5, ~4.24i!

m.5mh/2
1/5. ~4.24j!

Over the range ofā0 relevant for neutron star binary in-
spiral observations in LIGO-like interferometric detector
dN/dt anddN/dtdr are only weakly dependent onml and
mh for constantm0: Taking

xl512e, ~4.25a!

we find

xh511e1
6

5
e21

36

25
e31

42

25
e41

1188

625
e51O~e6!,

~4.25b!

dN

dt
~e!5

dN

dt
~0!F11

21

16
e21O~a,e3!G . ~4.25c!
,

Observations suggest thate is small @20#, in which case the
distribution of r in LIGO observations is insensitive to the
finite neutron star mass range.

F. Chirp mass spectrumP„Mzr0 ,I …

In a homogeneous and isotropic cosmology the rate at
which binary inspiral signals corresponding to chirp mass
M andr greater thanr0 are observed is

dN

dtdM
5E

0

`

dz
dr

dz

4pa0
3r 2

~12kr2!1/2
ṅ0E~z!

11z

P S M11z UzD
11z

3CQFr08 dL
r 0z~ fmax!

S 1.2M(

M
D 5/6G . ~4.26!

The catalog’sa priori chirp mass distribution is thus

P~Mur0 ,C ,D !5
dN/dtdM

dN/dt
, ~4.27!

wheredN/dt is given by Eq.~4.16d! andC represents as-
sumptions regarding the cosmology (H0 , q0 , V0), evolu-
tion, and the distribution of neutron star masses (E , P ), and
other, unenumerated, model assumptions.

As discussed in Sec. II C, observational and theoretical
evidence suggests that the NS-NS binary intrinsic chirp mass
distribution is sharply peaked. Neglecting evolution and tak-
ing the intrinsic chirp mass of all binary systems to be a
constantM0 ,
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dN

dtdM
5
ṅ0E~Z!

M

dr

dz
~Z!

4pa0
3r 2~Z!

A12kr2~Z!

3CQFr08 dL~Z!

~11Z!5/6r 0
S 1.2M(

M0
D 5/6G , ~4.28!

where

Z5
M

M0
21. ~4.29!

Figure 8 shows the distributionP(Mur0 ,C ,D) for cata-
logs with r greater than 8 compiled by an advanced LIG
detector (r 05355 Mpc) in several matter-dominated FRW
cosmological models. The intrinsic chirp mass of all syste
is assumed to be 1.19M( . Six different models are shown
exploring two differenth (0.5 and 0.8) and three differen
q0 (1/4, 1/2 and 3/4). The closely spaced curves with co
cated extrema are of the sameh and differ only inq0 . Note
the strong dependence ofP(Mur0 ,C ,D) on h and the
weaker, but still significant, dependence onq0: The dotted
and solid curves correspond to flat cosmological mod
(q051/2), the long-dashed and dot-long-dashed curves c
respond to open cosmological models (q051/4), and the
short-dashed and dot-short-dashed curves correspond to
closed models (q053/4). In general the smallerq0 , the more
compressed the spectrum and the smaller the tail at la
M.

FIG. 6. The rate of NS-NS binary inspiral observations wi
signal-to-noise ratio greater than 8 in an advanced LIGO detecto
largely insensitive to the neutron star mass range or the decelera
parameter in matter-dominated Friedmann-Robertson-Walker c
mological models. The solid curve shows the expected rate in
Einstein–de Sitter model as a function of the Hubble parameteh
assuming the comoving NS-NS binary coalescence rate densit
the current epoch is 1.1h Mpc23 yr21 ~solid curve!; the dashed
curve shows the same assuming the rate density
831028 Mpc23 yr21, which is independent ofh. For more dis-
cussion see Sec. IV E.
O
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FIG. 7. The expected distribution of NS-NS inspiral events with
r greater than 8 in advanced LIGO detectors depends almost ex-
clusively on the Hubble parameterh. Shown here is the ratio of the
distribution in two matter-dominated Friedmann-Robertson-Walker
cosmological models to the distribution expected in a flat and static
cosmological model. For more details see Sec. IV E 1.

FIG. 8. A binary system’s observed chirp massM depends on
its redshift; consequently, a NS-NS binary inspiral sample will
show a range of chirp masses corresponding to the range of system
redshifts. Shown here is the expected distribution ofM for binary
systems consisting of two 1.37M( neutron stars withr.8 in ad-
vanced LIGO detectors for open (q051/4), flat (q051/2), and
closed (q053/4) matter-dominated Friedmann-Robertson-Walker
cosmological models withh50.5 andh50.8. In all cases, asq0
increases the tail of the chirp mass spectrum is extended. For more
details, see the discussion in Sec. IV F.
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Since the abscissaM is related to redshift according to
M5(11z)M0 , Fig. 8 also shows the redshift of the pre
ponderance of catalog events. Forh50.8 most events are a
a redshift of 9%, while forh50.5 most events are at a red
shift of 14%.

More generally, neutron star masses are not all identic
correspondingly,P (M0) is not as simple as ad function.
Modeling the neutron star mass distribution as uniform b
tween lower boundml and upper boundmh leads to the
intrinsic chirp mass distributionP (M0) given by Eq.~2.11!;
the corresponding spectrumP(Mur0 ,C ,D) can be deter-
mined through Eqs.~4.26! and ~4.27!. Figure 9 shows the
spectrum P(Mur0 ,C ,D) for four different matter-
dominated Einstein–de Sitter cosmological models cor
sponding to two differenth (0.5 and 0.8) and two different
neutron star mass distributions: One set of curves co
sponds to the assumption thatM051.19M( for all binary
systems, while in the second set the binary compon
masses are assumed to be uniformly distributed betw
1.29M( and 1.45M( . For all models shownr 05355 Mpc
andr058.

As ml and mh approach m0 , P (M0) approaches
d(M02m0). The dependence ofP(Mur0 ,I ) on q0 ,
shown in Fig. 8, is similar but not identical to its dependen
onmh2ml ~for constantm0): Variations inq0 shift the spec-
trum’s largeM tail, while increasingmh2ml increases the
spectrum’s overall breadth.

FIG. 9. Neutron stars do not all share the same mass, altho
indications are that the mass range is small. Shown here is
expected chirp mass distribution for observations withr.8 made
in an advanced LIGO detector for two different matter-dominat
Einstein–de Sitter cosmological models (q051/2 andh50.5 or
h50.8) and two different neutron star mass distributions. In t
first distribution all binaries are assumed to have intrinsic ch
massM051.19M( , while in the second the binary componen
masses are assumed to be uniformly distributed between lo
bound 1.29M( and upper bound 1.45M( . As the mass distribution
broadens, the chirp mass spectrum also broadens. It does so n
symmetrically; in contrast, variations inq0 for fixed mass distribu-
tion ~shown in Fig. 8! alter the largeM tail of the spectrum, leav-
ing the smallM tail essentially unchanged. For more details s
Sec. IV F.
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V. CONCLUSIONS

Observations of binary inspiral in a single interferometric
gravitational wave detector can be cataloged according to
signal strength~as measured by signal-to-noise ratior) and
chirp massM. The distribution of events in a catalog com-
posed of observations withr greater than a thresholdr0
depends on the Hubble expansion, deceleration paramete
and cosmological constant, as well as the distribution of
component masses in binary systems and evolutionary ef
fects ~though for neutron star binary observations evolution
is not expected to be important!. In this paper I find general
expressions for the distribution withr andM of cataloged
events, valid in any homogeneous and isotropic cosmologi-
cal model; I also evaluate those distributions explicitly for
matter-dominated Friedmann-Robertson-Walker models and
simple models of the neutron star mass distribution.

These distributions have two immediate, practical uses in
gravitational-wave data analysis for interferometric detec-
tors: First, when evaluated for with the cosmological param-
eters reflecting our current best understanding of the uni-
verse, they are the prior probabilities which, together with
the matched-filtered detector output, form the likelihood
function and determine the posterior probability that an in-
spiral has been detected; second, when compared with th
observed distribution inr andM of many separate binary
inspiral observations, they are used to infer new and more
informed estimates for the cosmological parameters that de
scribe the universe.

The signal-to-noise ratior of a binary inspiral event is a
detector-dependent measure of the signal strength from a ra
diation source that is estimated in the course of making an
observation. The normalization ofr depends on the detec-
tor’s noise power spectral densitySn( f ). In interferometric
gravitational wave detectors like LIGO and VIRGO the nor-
malization involves a characteristic distancer 0 and a func-
tion of the detector bandwidthz, both of which are depend
on Sn( f ).

The characteristic distancer 0 gives an overall sense of the
depth to which the detector can ‘‘see’’ binary systems whose
radiation traverses the detector bandwidth, which is deter-
mined byz. Advanced LIGO interferometers are expected to
be most sensitive to binary inspiral radiation in the band-
width 30–200 Hz: Over 90% of the signal-to-noise ratio is
contributed by signal power in this narrow band.

When searching the output of a detector for the signal
from a source an accurate model of the detector response i
needed. The model need not be accurate over the entire fre
quency domain, but only over that part of the domain where
the signal power overlaps with the detector bandwidth. The
dependence ofr on z suggests the definition of abandwidth
functionB for binary inspiral observations that will be use-
ful for determining over what range approximate templates
describing the detector response need be accurate.

Cosmological tests based on catalogs of binary inspiral
observations withr greater than a thresholdr0 depend on
the distribution of cataloged events withr andM. Tests can
make use of all the information available in the catalog or
properly constructed summaries of the cataloged events. The
sensitivity of the test depends on how the expected catalog
distributions change with changing cosmological models.
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For advanced LIGO detectors, the most distant neutr
star binary inspiral events with signal-to-noise ratio great
than 8 will arise from distances not exceeding approximate
2 Gpc, corresponding to a redshift of 0.48~0.26! for
h50.8 (0.5). The depth is only weakly dependent on th
range of neutron star masses or the deceleration param
As the binary system mass increases so does the distan
can be seen, up to a limit: In a matter-dominated Einstein–
Sitter cosmological model withh50.8 (0.5) the limit is ap-
proximatelyz52.7 ~1.7! for binaries consisting of approxi-
mately 10M( black holes.

The distribution of catalog events withr depends prima-
rily on h and is only very weakly sensitive to eitherq0 or the
range of neutron star masses; however, the chirp mass s
trum ~i.e., the distribution of catalog events withM) is very
on
er
ly

e
eter.
ce it
de

pec-

sensitive toh and reasonably sensitive to bothq0 and the
neutron star mass range. This suggests that the spectrum i
an especially powerful tool for cosmological measurements.
The dependence of the spectrum onq0 and the neutron star
mass distribution is similar~though not identical!, suggesting
that it may be difficult to determine these separately from
observations. I am currently investigating this point and will
report on it at a later time.
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