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Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged
according to signal-to-noise ratjw and chirp mass#. The distribution of events in a catalog composed of
observations witlp greater than a threshofg, depends on the Hubble expansion, deceleration parameter, and
cosmological constant, as well as the distribution of component masses in binary systems and evolutionary
effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model,
for the distribution withp and. 7 of cataloged events; | also evaluate these distributions explicitly for relevant
matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribu-
tion. In matter-dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will
observe binary neutron star inspiral events with 8 from distances not exceeding approximately 2 Gpc,
corresponding to redshifts of 0.48.26) for h=0.8 (0.5), at an estimated rate of 1 per week. As the binary
system mass increases so does the distance it can be seen, up to a limit: in a matter-dominated Einstein—de
Sitter cosmological model with=0.8 (0.5) that limit is approximatelg= 2.7 (1.7) for binaries consisting of
two 10M black holes. Cosmological tests based on catalogs of the kind discussed here depend on the
distribution of cataloged events wighand. 7. The distributions found here will play a pivotal role in testing
cosmological models against our own universe and in constructing templates for the detection of cosmological
inspiraling binary neutron stars and black holes.

PACS numbe(s): 04.80.Nn, 04.30.Db, 97.806d, 98.80.Es

I. INTRODUCTION here, evaluated for our preconceived notion of the binary
inspiral rate and cosmological parameters, aretia prob-
abilities required to form the likelihood function from the
The most promising anticipated source for the Unitedghserved detector outp{#]. Additionally, the observed in-
States Laser Interferometer GraVitational'WaVe ObservatorXpira|S will be a Samp'e drawn from a particu'ar Cosm0|ogi_
(LIGO) [1], or its French-Italian Counterpal‘t VlRGp], is cal model characterized UyO! qO, QO' neutron star mass
the radiation emitted during the final moments of inspiralgjstripution, and evolution characteristic of our own uni-
before the coalescence of a neutron-star—neutrontSi&f  yerse. By comparing the observed distributions to the ones
NS) binary systenj3]. The instruments operating in both the described here we can measure those properties of our own
LIGO and VIRGO facilities will evolve over time, eventu- niverset
ally becoming sensitive to neutron star binary inspirals at These cosmological tests are analogous to the number-
distances approaching 2 Gpt]. count tests of classical cosmology, which, in their simplest
Binary inspiral observations in the LIGO or VIRGO de- form, involve observing the distribution of a source popula-
tectors will be characterized by their signal strength andion as a function of apparent luminosity or redshift. The first
“chirp mass” (a combination of the binary’s component suggestion that binary inspiral number counts be used to
masses and cosmological redshiffhe distribution of ob- measure interesting cosmological parameters was made by
served inspirals with signal strength and chirp mass dependsnn and Chernoff4,5] (although they did not use the lan-
on cosmological parameters that describe our universguage usually associated with this technique of classical as-
(Hubble constant, deceleration parameter, density paranironomy). Using Monte Carlo simulations they demonstrated
eten, the distribution of neutron star masses in binary systhat the distribution of inspiral events with signal strength
tems, the overall density of coalescing binaries, and the propgand chirp mass could be used to measure the Hubble con-
erties of the detector. In this paper | explore the binarystant. In this work | provide a more general, explicit, and
inspiral event distribution(with signal strength and chirp
mas$ in the LIGO and VIRGO detectors for different cos-
mological models. 1A detailed study of how accurately those measurements can be
In addition to their value as quantitative expectations ofmade as a function of the number of inspiral observations is under-
what LIGO and VIRGO can expect to observe, thagiori way and will be published separately; here | focus on describing the
distributions will play a pivotal role both in the construction properties of a catalog of observations defined by a data cut on the
of templates for detecting binary inspirals and in the inter-signal-to-noise ratio and how those properties can be used to mea-
pretation of the observations. The distributions presentedure cosmological parameters.

A. Overview
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complete exposition of the properties of binary inspiral ob-vary with redshift. Notation for these and a discussion of the
servation catalogs. observations that bear on them are the topic of Sec. II.

The cosmological implications of gravitational wave ob- In Sec. lll, | discuss the signal-to-noise raticas a mea-
servations of binary inspiral were first recognized by Schutzsure of signal strength. The signal-to-noise ratio of a particu-
[6]. He pointed out that each inspiraling binary is a standardar inspiraling binary depends on the binary’s intrinsic prop-
candle in the sense that, if observed in three independegtties, its distance from and orientation with respect to the
interferometers, its luminosity distance can be determined€tector, and the detector’s intrinsic properties. The way in
from the observed detector response. If an observed inspiréfhich p depends on the signal and detector properties sug-
is associated with one of the several galaxy clusters that rfl€StS @ useful measure of the detector bandwidth, which |
side in its positional error boxwhose determination also discuss here as well. Finally, Sec. Ill concludes by specializ-
requires three interferometérand if the redshifts of those ing the discussion to the ;pecmc propertles of the proposed
clusters are determined optically, then observation of severélIGO and VIRGO gravitational radiation detectors.

inspiraling binaries would lead to a statistical determin::xtioncat-&r1 ?()eglgseo&a:amci?srt?i%irtti:)e: gff gatt);séiénzsgﬁlsosggxgnon
O.f the Hubble constant that is .in(.jependent of the_ Cosmi(fhe binary system “chirp mass’#. These distributions de-
distance ladder and the uncertainties that lurk therein. pend on the cosmological model, which includes the evolu-

Markovic [7] proposed a variation on the general themey, \vith redshift of the neutron star mass distribution and

introduced by Schutz: He observed tha_t known neutron staf, coalescing binary number density. In Sec. IV, | give gen-
masses were all close to M4, and that, in any event, there 5| expression for these distributions and discuss how they
is amaximunmneutron star mass. The observed chirp mass ignay pe used together with actual observations to test cosmo-
a function of the mass of the binary’s two components and itogical models. Also in this section | give expressions for the
redshift. Assuming that the mass distribution in neutron statatalog depththe maximum redshift of a binary system that
binaries does not evolve significantly over the range of bi-can havep greater tharp,) and the total rate that proposed
nary inspiral observations, examination of the chirp massnterferometers can expect to observe inspiraling binaries
distribution in binary systems at fixed luminosity distancewith p greater tharp,. All of these general expressions are
would reveal the corresponding redshift. Thus, gravitationakvaluated explicitly for relevant matter-dominated
radiation observations alone might suffice to determine thé&riedmann-Robertson-Walker cosmological models and a
Hubble constant. simple model of the neutron star mass distribution. Finally, |
Unfortunately, detailed calculations show that, even forsummarize my conclusions in Sec. V.
the most advanced LIGO and VIRGO detectors that have
been discussed, the fractional uncertainty in the measured Il. COALESCENCE RATE DENSITY
luminosity distance will be of order unity for events seen
more frequently than thrice per yeére., for events at dis-
tances greater than approximately 100 Mp8)9], and the ~ The signal-to-noise ratip of a binary inspiral in a LIGO-
angular position error boxes for these events are likewiséke interferometer depends on the relationship between the
large (on order 10 defy[10]). Consequently, cosmological blr)ary and the detectc(l_.e.: orientation, dls_,tance, and red-
tests that rely on accurate and precise measurements of tﬁg'ﬁ) and also on certain |ntr|nS|_c propeme_s qf the system
distance and position of inspiraling binaries using LIGO and("e." component masses and spirGf these intrinsic prop-
VIRGO are not promising. erties, theintrinsic chirp mass
In contrast, the cosmological tests discussed here and in o= M5, (2.2)
[5] require only gravitational wave observation in a single
interferometer. Furthermore, advanced LIGO detectors cawhere u and M are the binary’s reduced and total mass,
expect to observe approximately 50 NS-NS binary inspiraplays the most important role: All the other intrinsic proper-
events per year, from distances up to 2 Gpc, whose signdies offer only small corrections tp.
strength can be measured to better than 10% and whose chirp Gravitational-wave detectors like LIGO or VIRGO do not
mass can be measured to better than O[#98]. The rate, mMeasure 7, instead, they measure
depth, accuracy, and precision of these single interferometer o
observations suggest that cosmological tests based on the M= M0(142), 2.2

distribution of observed events with signal strength and chirp . , e
mass have great promise. wherez is the system’s redshift with respect to the detector.

To distinguish between/Z, which involves the system’s red-
shift, and. 7, which depends only on the binary’s intrinsic
properties, | refer to the former as tbéservedchirp mass,

In this paper | calculate the expected properties of a cataer simply the chirp mass, and the latter as ititeinsic chirp
log of binary inspiral observations made by a single inter-mass.
ferometric gravitational wave detector. A catalog is presumed In order to describe the binaries included in a signal-to-
to contain a record of all binaries that coalesced during th@oise limited catalog we must first describe the coalescing
observation period and whose inspiral signal-to-noise ratidinary distribution in space and i,. The notation | use to
p was greater than the catalog linpig. The catalog proper- describe this distribution is defined in Sec. 1l B, while in Sec.
ties depend on the coalescence rate density and the binalyC, | discuss what is known about the distribution from
system component mass distribution, both of which maypresent-day observations.

A. Introduction

B. Outline
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B. Definitions and notation observed systems is small, the actual rate is quite uncertain:
Assume that coalescing binaries are distributed homoge-hinney[12] has estimated that, while unlikely, a rate two
neously and isotropically with the cosmological fluid and orders of magnitude higher or lower could be reconciled with

define the binary coalescentmal specific rate density/”~  current observations.
y P v Black-hole—black-holéBH-BH) and BH-NS binaries are

b
y believed to form at rates comparable to NS-NS binaries;
_ dN however, the masses of these systems and the fraction that
'/Z/’EW’ 2.3 Energ% in less than a Hubble time are entirely uncertain
11,12

wheredV is acomovingcosmological fluid volume element S I o ,
anddt is a proper time interval measured in the fluid rest 2. Intrinsic chirp mass distribution and evolution”” and #

frame. The total comoving rate density on the surface of The intrinsic chirp mass distributiog. #,|z) depends

homogeneity at redshitt is thus on the binary system component mass distribution on the
slice of homogeneity at redshift Denote a binary’s compo-
h(z)= f N (M, 2)d. 7. (2.4y ~ nent masses as; andm, and write their joint probability
density on a surface of redshiftasP(m, ,m,|z). The intrin-

Define the ratio of the total comoving rate density at aSiC chirp mass distributiomr{(.#|2) on that slice is then

redshiftz[n(z)] to that at the present epoghy=n(z=0)]

by &: .a/')(.//zo|z)=f fdmldmzP(ml,mzlz)
n(z)=£(z)n,. (2.5 X S(u3MZ5—_1/,). 2.9

The distribution of coalescing binaries with intrinsic chirp

mass 7, on the surface at redshitis The determination ofA.#;|z) thus reduces to finding

P(my,m,|2). _ ' '
N My,2) Both theoretical and observational evidence suggest that
AMo|2)= ———"F, (2.6)  the neutron star mass distribution is narr¢h6-18. A
n(z) simple model of the mass distribution has the component

masses in a binary uncorrelated and uniformly distributed

where, by construction, between upper and lower bounds, andm, ; then

1=f d. oA My|2). 2.7 P(my,mylm;,my)=P(my|m;,my)P(my|m;,m,)
. . \p . :(mu_ml)72 (2-1@
The homogeneous and isotropic local specific rate density
can thus be written and
N (Mo, 2) =N 2) A M0|2). (2.9 { mim3 | V5 p
. -
Since we have defined " andn in terms of the comoving P( /oMy, my) = fmu mudm dm m; +m, °
volume element and intrinsic chirp mass, in the absence of "0/ 1w/ ] PR (m,—m;)?

evolution# is unity and7”is independent of. Additionally, (2.1
for infinitesimald. 7, A #,|z)d. 7, can be interpreted as

the probability that a randomly chosen binary on the surfacavherem; andm, may depend omz. The probability density
at redshiftz has intrinsic chirp mass in the range, to ~ P(.%g|m;,m,) is maximized when .7y=(mm,)%%

Mo+ d . (my+my) Y.
The limited observations of the neutron star mass distri-
C. Observational constraints on./”" bution in binary pulsar systems provide independent 95%

_ . confidence intervals fom, andm, [17]:
1. Rate density at the current epoch:;yn

Cosmological tests that depend on the obsenlisttibu- 1.01<m/M<1.34,
tion of inspirals with p and/or.# do not depend omj.
Nevertheless, it is necessary to knawin order to estimate 1.43<m,/Mp<1.64. (212

how long it will take to accumulate a catalog of observations .
large enough that such tests will give meaningful results. The most likely values ofn, andm, are
The best current estimate of the NS-NS binary coales-

cence rate density at the current epoch is m=12Mgq,
1.1x10 8h Mpc™2 yr 1, whereh is the Hubble constant
measured in units of 100 km$ Mpc ™! [11,12. This esti- m,=1.48. (2.13

mate relies on the three observed binary pulsar systems that
will coalesce in less than a Hubble tifBSR’s 191316, Over this narrow rangé®(.#,/m,,m,) is, to an excellent
1534+12, and 212#11C [13-15). Since the number of approximation, piecewise linear:
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P(.%o|m; ,my) Finally, in Sec. lll F, | specialize the discussion of the
P signal to noise to the proposed LIGO and VIRGO gravita-
Mp—M i iati
0o M< it mo>. Ze>m. | tional radiation detectors.
My — M.
- E m.—. % ’ p B. Signal-to-noise ratio: General comments
m- =M< m- —mq it m.>.7Zo>mo, Let s(t) be the detector response to a gravitational radia-
0 otherwise tion signal from any source. If the detector noise is Gaussian
' with one-sided power spectral dens8y(f), then the signal-
(2.19 to-noise ratiop? is definedto be
where ) f‘” S()s*(f)
= ———df, 3.1
s S XL @3
mo=m/2™°, (2.153
wheres is the Fourier transform of the detector response,
(mymy)3° (2,158
Mo= 175+ : o ,
(my+m,) §(f)zf dfe?mifts(t), 3.2
m.=m,/25. (2.150

ands* is its complex conjugatgl19].

At present we can observe only nearby binary pulsar sys- An observation of a gravitational wave signal in a noisy
tems; consequently, there are no observations that bear dtetector entails a measurement of the signal properties in the
rectly on the variation of” or 7 with z. Theoretical studies presence of a particular instance of the detector noise. Analy-
suggest that the initial mass of neutron stars formed by stekis of the detector output results in estimateof p as well as
lar core collapse do not vary significantly with the progenitorother parameters that describg). Throughout this work |
mass or compositio16]. After formation the mass may usep to mean the actual signal-to-noise ratio, as defined by
evolve owing to accretion from a companion; however, ingq. (3.1), and not the estimate that arises in an observation.
any event it is not likely that either’ or £ vary with z more In Sec. IV, | find the distribution of sources with and
rapidly than do galaxies. In Sec. IV, | provide general expres: / in different cosmological models. By comparing these
sions for and detailed examples of the expected distributiogjistributions with the observed one we can determine the
of events in a catalog of binary inspiral events; for the de-model that best describes our own universe. In making that

tailed examples | neglect evolution ifi and.»” entirely. As  comparison it is critical to distinguish betweprand. 7 [as
shown in Sec. IV D, advanced LIGO and VIRGO detectorsdeﬁnedby Egs.(3.1) and(2.2)] and theestimateof p and

will observe NS-NS binaries from redshifts not expected to_/ that results from observations made in a detector.

exceedz=0.5 and with the preponderance of events arising The estimate that results from an observation is a prob-
from z=0.1; consequently, neglect of evolution is not anapility distribution P for the parameters that describe the

unreasonable approximation. signal — in the case of binary inspiral in a single interfer-
ometer, these include and the chirp mass# (see Sec. Il C
. SIGNAL-TO-NOISE RATIO below). The probability distribution associated with an ob-

servation is generally not reported; instead, what is reported
most often is a set oéstimatorsthat characterize the distri-
The signal-to-noise ratio measures the signal amplitude itpution and its moments. Among the most popular is the the
terms of a detector’s noise properties. In Sec. Il B, | definemaximum likelihood estimator, which is the set of parameter
the signal-to-noise ratip and discuss the subtle issue of how values that maximizé.
p is estimated, but not determined, by observation. The func- Estimators are summaries of the distributiBrand their
tional form of p depends on the detector response to binartility depends on how accurately they are able to represent
inspiral radiation, which | describe in Sec. llIC. In Sec. it. WhenP is very sharply peake(l.e., there is little uncer-
Il D, | give the binary inspiral signal-to-noise ratio in terms tainty in the measuremerthen it may be approximated by a
of the same parameters that characterize the detector ré-function and summarized accurately by the maximum like-
sponse. The form gb suggests a natural definition of a de- lihood estimator. WherP is sharply peaked but with a not
tector’s effective bandwidth for binary inspiral observations;insignificant width, then it may be approximated near its
| discuss this bandwidth function in Sec. Il D as well. peak by a Gaussian and accurately represented by the maxi-
The relative orientation of the detector and binary is de-mum likelihood estimators and their covariance. When the
scribed by a function of four angles. While these angles candistribution is not sharply peaked, however, then the more
not be measured by observations in a single interferometegeneral uncertainties reflected in the detailed structure of
important properties of the angular orientation function carplay an essential role in the observation’s interpretation and
be calculated independently of the particulars of the binaryno summary ofP is especially useful.
or the detector. These properties play an important role in That a small set of estimators built frofhfor a particular
determining the binary inspiral catalog properties and interobservation does not provide a useful summary does not
preting individual observations. | discuss the angular orienmean that the observation itself is unreliable or uninforma-
tation function in Sec. Il E. tive; rather, it means only that greater care must be taken in

A. Outline
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its interpretation. FinfSec.(c)] [20] gives an example of 1 . _
how the the probability distribution resulting from an obser- F.= §(1+CO§9)COSZ¢COS2¢— cosIsin2¢sin2y,
vation should be used in the interpretation of neutron star (3.49

mass observations in binary pulsar systems; a further discus-

sion of this point in the context of cosmological tests using 1
binary inspiral observation catalogs is part of a work in FXE§(1+CO§6)cosz¢sin2¢/+ COos9sin2¢cos2iy,
preparation. (3.40)
C. Detector response to binary inspiral 1 5 138
The detector responsxt) to the gravitational radiation = w.,/%z[ﬁ‘ﬁ—t} : (3.49

from an inspiraling binary system depends on the distance
and relative orientation of the source and the detector, as well t —t\ 58
as on certain intrinsic properties of the binary. The relative ‘I’EZWfo(t)dt: _Z(W) ; (3.49
orientation of the source and the detector is described by four '
angles: Two @ and ¢) describe the direction to the binary d, is the source’s luminosity distanc& is the moment
relative to the detector, and two &nd¢) describe the bina- \yhen the inspiral waveform terminatésither because the
ry’s orientation relative to the line of sight between it and thebinary components have coalesced or because the orbital
detector. _ _ _ ~evolution is no longer adiabaticand T>T’ would be the
To described and ¢, consider a single interferometric moment of coalescence if the two components of the binary
gravitational wave detector WhOSQ arms form a right ang|esystem were treated as point masses in the quadrupole ap-
Let the arms themselves determine th@ndy axes of &  nroximation (the difference betweef and T’ is small but
right-handed Cartesian coordinate system with thexis ot negligible. Note that dependence of the response on the
pointing skyward. In this coordinate system the gravitationalang|esg, #, i, andy is contained entirely in the orientation
waves from an inspiraling binary arrive from the diregtion function ®, which does not depend on any other properties
n, which can be defined in terms of the spherical coordinategs the pinary or the interferometric detector. This important
¢ and ¢ in the usual way: point will be discussed further in Sec. Il E.
cosf=—n-z (3.39 Post-Newtonian corrections do not contribute signifi-
' ’ cantly to the signal-to-noise ratio for solar-mass binary in-
n. spiral in the LIGO and VIRGO interferometers. For symmet-
_ (3.3p  ric binaries (i.e., those with equal or near equal mass
-X componentsthe first post-Newtonian correction is propor-
o tional toM/r, whereM is the binary’s total mass andthe
To describé and ), letJ represent the total angular mo- component separation. Advanced LIGO and VIRGO interfer-
mentum of the binary system. The detector respa{$  ometers are expected to be most sensitive to binary inspiral
depends on thenclination angle ibetweenJ andn, radiation in the bandwidth 20—200 Hgee Sec. Il D 2and,
. in this bandwidth,M/r=<49% for solar mass binaries. Post-
cog=—J-n/|J], (3-39 Newtonian effects are more important for more massive bi-
naries, since at fixed quadrupole radiation frequelidy is
greater for greateM:

<

tang

=

and the orientationy of the angular momentum abont

J-nXz

- -t M

COW’_J-[Z— nzml’ (3.30 T):(WfM)lls (3.53
The conventions for the orientation anglés ¢, i, and ¢ f M |23
described here are the same as those usd®,# (note, :0_042<__ 350
however, that thalescriptionof the angles in4] is incor- 200 Hz2.8Mo (3.5b
rect.

At Newtonian (i.e., quadrupole formu)aorder the only f M |28

intrinsic property of the binary system that affects the wave- =0. 16(— _
form is .#,. At this order the detector responge dimen- 200 Hz20M o (3.50

sionless strainto the binary inspiral signal is

Post-Newtonian effects are more important for binaries with

A . . -

%@(wf.,/%)mcoiﬁ d(t)] for t<T’, extreme mass ratios: In general, the first post-Newtonian cor-
s(t)=9 G rection is proportional to§m/M)(M/r)¥2 wheredm is the

0 for t>T’, component mass difference. Finally, spin-orbit coupling in

(3.43 systems whose components have large spin angular momenta
can lead to orbital precession and a waveform modulation
wherey is a constant phase, which can affecp significantly[21].
That the quadrupole waveform can be usedestimate
®=2[F% (1+cosi)?+4F%cosi]"? (3.4b  , for an inspiraling binary does not mean it can also be used
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to detecta binary inspiral signal in the detector output. De-form end$ when the orbital frequency reachég. The
tection, or estimation of signal parameters from observationquadrupole radiation frequency observed at the detector
involves the comparison of the detector output with a modelvhen the orbital frequency ifcg is

of the detector response to the radiation. “Small” differences

between the actual and modeled signal evolution, particu-
larly its phase, can have a large effect on the measured value

2fICO

217

(3.7

of the signal parameters, including the signal-to-noise ratio

estimated from the observatiof,22].

D. Binary inspiral signal-to-noise ratio

The signal-to-noise ratip [Eq. (3.1)] corresponding to
the detector responsét) [Eq. (3.439] is [4]

rol # \5®
p:8®d_L(1_2M®) {(fmax), (3.69
where
5 3 5/3
2— | — 2
0= 102 ( 20, X Mo, (3.6b
_foc df(mMg)? 2
X713= 0 (WfM@)7 Sn(f)’ ( . (j
fma=F(T7)12, (3.60
f _ 1 fomax df(’]TM@)z 36
g( max):;B 0 (ﬂ,fMO)738n(f) ( . e

In Eq.(3.63, ®, .#, andd, depend on the particular binary
system under consideration arglis a characteristic distance

and the inspiral signal termination is represented in the de-
tector response by the cutoff at-T' [see Eqs(3.49 and
(3.60].

Since the binary orbit evolves adiabatically from low fre-
quencies tof,co, the observed quadrupole radiation spec-
trum has significant power only up to frequency,2,. If
2fax IS very much greater than the frequency where the
detector noise is minimized, then the signal power bandwidth
overlaps completely with the detector bandwidth and
{(fmap=1. On the other hand, iff2,,is much less than the
frequency where the detector noise is minimized, then the
overlap of the signal power and detector bandwidths is neg-
ligible, {(f 20 =0 andp=0.

The orbital frequency at the transition of the binary orbit
from adiabatic inspiral to plunge and coalescence has been
studied using high-order post-Newtonian meth@2i3|. For
symmetric binariegi.e., those with equal-mass componénts
the instantaneous redshifted instantaneous orbital frequency
of the ICO is given by

fICO
max:m (3-83
_ 710Hz( 2.8M, 385
14z M ) (3.8
_99.Hz( 20 ag
C1+z\MgM)’ (3.89

that depends only on the detector’s noise power spectral den-

sity S,(f). The dimensionless functiod, which also de-

whereM is the binary’s total mass. More generally, for bi-

pends only on the detector’s noise spectrum, increases MoNAaries with compact componentgo depends inversely on

tonically from 0 to 1. Its argument,,,, is the redshifted

M and directly on a function of the dimensionless ratio

instantaneous orbital frequency when the inspiral terminateg /M ; Kidder et al. (Fig. 4 of Ref.[23]), showM f o for
(att=T’) either because the compact components have Cogjinary systems of arbitrary mass asymmetry. For a NS-NS
lesced or because the orbital evolution is no |0nger adiabati§inary the Component’s proper Separation at the ICO is

and coalescence is imminent.

l.rpand¢
The characteristic distaneg and the functiory describe

different aspects of an interferometric detectors sensitivity t
binary inspiral gravitational radiation. For a fixed binary, the

largerr g, the greatep; for fixed p, the larger, the farther

the detector can “see.” Decreasing the noise power in any

band increases,, but (owing to the factorf =2 in the inte-

grand of the expression foty;5) improvements at low fre-

guency are more effective than those at high frequency.

The function{ reflects the overlap of the signal power

greater than a neutron star diameter; so coalescence occurs
after the transition from inspiral to plunde3]. Tidal dissi-
pation is important in determining the inspiral rate only in
the last few orbits before contal@4,25; consequently, Eqg.

43.8) is applicable for NS-NS binaries and should be appli-

cable for black hole binaries as well.

2. Detector bandwidth and data analysis templates

The probability that a signal with detector resposgs is
present in the outpud(t) of a noisy detector is related to

with the detector bandwidth. The orbit of an inspiraling com- 2The radiation waveform from the final plunge and the early
pact binary evolves adiabatically owing to gravitational ra-stages of coalescence is not yet known. If, after coalescence, a black

diation emission until an innermost circular orliCO) is
reached at an instantaneous orbital frequefigy. At the

hole forms, then the final radiation reflects the black hole’s quasi-
normal modes, which are damped rapidly. The inspiral waveform,

ICO the orbit evolves on a dynamic timescale and the comand with it our ability to model the detector response, ends when
ponents coalesce quickly. Thus, the adiabatic inspiral wavethe orbital frequency reachdg.q .
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2(g,5)—(s,s), (3.93 Pp(p|-///zo,2,g}~@)=P@[@(p)]% )
where o
_p P 4@ (1.2MO>5/6}
(g,h)= f dfg(f)h*(f) (3.9 o8 14(1+2)°° 7,
S«(fh : e

8ro(1+2)%® (312

The actual signal, and consequently the detector response

s, may be difficult or impossible to evaluate exadiiis is  \yhere 7 represents the cosmological modély, dq, Qo,
certainly the case for binary inspijako we would like to be 7, #) and Z the detectofi.e., ro and ).

able to use an approximate modgl) in lieu of the actual

detector responsein Egs.(3.9). From Eqgs.(3.9) it is clear

that any approximate mod&(t) may be used as long as it F. 1o and £ for the LIGO and VIRGO detectors
matchesS(f) closely whereve{s|?/S,(f) is relatively large. LIGO will consist of three interferometers: one in Living-
This latter quantity is just the fraction @f contributed by  ston, Louisiana and two in Hanford, Washington. The Loui-
the signal power at frequendy and is proportional t@’.  siana interferometer and one of the Washington interferom-
This suggests that we define thandwidth function eters will have 4 km arm lengths; the second Washington
interferometer will hag a 2 km armlength and share the
f ' (f12) same vacuum system as the 4 km interferometer. For the
e () f<2f naxs proposed LIGO interferometers as described[26] and
A)= ma (310 modeled in[4], ry ranges from 13 Mpdfor “initial” inter-
0 f>2fa ferometers to 237 Mpc (for “advanced” interferometens’®

As the LIGO detectors develop, incremental improvements

which is the fraction of the signal-to-noise ratio contributedWill increaser.

by signal power at frequenc§ in a logarithmic frequency The orientations of the Washington and Louisiana inter-

bandwidth.An approximate detector response moaemSy ferometers were chosen to be as close to parallel as possible;

be used instead of the actual respofisassiong as Saccu- consequently, a simple approximation treats the Li@@ec-

rately reflects”swherever. 7 is large. Knowing where and tor (all three interferometers operating in “triple coinci-
dence’) as a single interferometer of arm length

how S needs to be accurate can simplify greatly the construc- ) g g

tion ofﬁapproxmate templates for data analysis; for this pur- [4%+ 4%+ 22]Y2 km= 6 km. (3.13

pose.# should prove a useful guide.

For this “superinterferometer’t, ranges from 19 Mpc to
E. Distribution of the orientation function @ 355 Mpc.
Here and below, reference to the LIG#Btectorrefers to
the three interferometers operating as a single detector, while
reference to a LIGOnterferometelindicates one of the 4 km
interferometers operating in isolation.
Figure 1 showg for early LIGO and VIRGO interferom-

The signal-to-noise ratio of an inspiraling binary in a
single interferometric detector depends on the relative orien
tation of the source and the detector through the angles
¢, i, and¢. The dependence gf on these angles is con-

fined to the angular orientation functidg®, which is inde- .
pendent of all other properties of the binary system. Fro ters and also more advanced LIGO interferometers as have

observations of binary inspiral in a single interferometer we een dlscusse_d in the Ilteratt[%,él_]. The solid curve Sh.OWS
can measure and. 7 but not®. Even though® cannot be ¢ representative of advanced mterferomet.ers, W.h'.k.a the
measured, because it depends onlyénd, i, and ¢ we dashed and dotted_ curves shdwrepresentative of initial
actually know quite a bit about it: Since, averaged over man IGO and V.IR.GO mterferometers..As the LIGO detector
binaries, co8, ¢/, cos, and ¢/ are all uncorrelated and evolves,ro Wil Increase from approximately 20 Mpc toward
uniformly distributed over the range—<1,1), we know the 350 Mpc, anag will _GVOIVPT from the dashed curve tOWa“?'
probability that® takes on any value. This probability dis- Fhe SOI'q curve. Setting g3|de th? oygrall sgnsmwty gain with
tribution is found numerically irf4]; here | note only that Increasing’o, the evolution qu signifies an mcreasmgala_-
0=0<=4 and that to an excellent approximation tive sensitivity to systems with smdllnaxz i.e., systems with
larger total masses and/or redshifts.

50(4—0)3%/256 if 0<©®<4,

Po(©)= 0 otherwise.

(3.1)
3The noise model used if26] and[4] assumed a thermal noise
spectrum corresponding to viscous damping in the pendulum sus-
To determine the binary coalescence ratgreater than pensions and the internal modes of the test masses. It is now rec-
po We need to know/ " and also how the signal-to-noise ognized that these modes are structure danip@d29 with a cor-
ratio of binaries with intrinsic chirp mass”, on a surface at respondingly different noise spectrum. Preliminary estimates
redshift z is distributed. This latter distribution, indicate that this improved noise model reducggor initial LIGO

#4,2), is related toPg : interferometers, but leaves it unchanged for advanced ones.
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FIG. 1. The signal-to-noise ratio of the radiation from an in-  FIG. 2. The bandwidth functions(f) [defined in Eq.(3.10]
spiraling compact binary in an interferometric gravitational wavedescribes the fraction op? contributed by signal power at fre-
depends, through the functigh[defined in Eq(3.68] on the red-  quencyf in a logarithmic frequency interval. Here is showfor
shifted orbital frequency,a, of the system’s last orbit before coa- initial LIGO, VIRGO, and advanced LIGO interferometers. The
lescence. Here is show(f ) for initial LIGO (dashed curve bandwidth function is especially useful for determining over what
VIRGO (dotted curvg and advanced LIG@solid curve interfer-  frequency interval an approximate model of the detector response to

ometers. For more detail, see the discussion in Secs. Il F and |1l Dthe radiation, which might be used for identifying the presence of a
signal in detector output, must accurately mimic the real detector

) . ) ) response. For more details see the discussion in Sec. 11l D 2.
VIRGO will consist of a single 3 km interferometer. The

target noise curve for the initial operation of the VIRGO
interferometer is described [&]; for this interferometer is
13 Mpc. Like the LIGO interferometers, incremental im- A. Introduction

provemerlllts thIR(_BO will increase, arll;d it _|;;easonable to Consider a catalog of binary inspiral events with signal-
assumgt at these improvements could reg .rVI.RGO 0 {9noise ratiop greater than a threshojg,. Suppose that for
approxma_te_ly 200 Mpc. _The dotted curve in Fig. 1 ShOWSeach event in the catalqgand.# are known. How do we

¢ for the initial VIRGO interferometers. Note how, even ..o se of the catalog to test cosmological models against
thoughr is the same for both the initial LIGO and VIRGO cataloged observations?

interferometers, the relative sensitivity of these two detectors The simplest test involves the distribution of events with

to signals at low and high frequency, corresponding to more, - aq 1he catalog limitp, decreases, sources at increasingly
or less massive binaries, is markedly different.

_ , IMProveq,ger distance become members. The number of added
ments in the VIRGO interferometer can be expected 1Q, caq depends on the increase of the spatial volume, the
evolve { toward the solid curve as well. Note that the initial density of sources at that distance, dsthce these sources
VIRGO interferometers are expected to be relatively MOre, e eventsthat occur at a givemate) the cosmological red-
;gqsitive to.massiveéi.e., low f,0 binaries than are the i Thus, adopting a cosmological model implies an
initial LIGO mterferom.eter.s. expected distributiorP(p|pg,%,%) for the catalog events
« fFO:) EeluE:]OQnSti:c ti'ga”:f”;g: d7lj_-?Gl_|Oz gﬁg.\ﬁféz]oaiz?er- taken with detector”. Denote the cataloged binary inspiral
feromr?]eters(see Iglig 1 Figpurepz shows the bandwidith func- S/9nal-to-noise ratio observations Hy|p>po}. Suppose

y that, before studying these observations, we have reason or

tion for neutron star binary observations in early VIRGO . N . A
(dotted curve and LIGO (dashed curveinterferometers and are otherwise prejudiced to believe the probability tHais
the correct cosmological model B(%). Using Bayes’ law

also more advanced LIGO interferometésslid curve. It is = e o .
clear that the approximate detector response models for bRf conditional probabilities, the posterioriprobability that
nary inspiral observations must evolve with the interferom-We assign to modet™ after considering the observations is
eters: In the early interferometers the detector response mod-

els will need to be quite accurate at high frequencies p(g|{p|p>p0})ocp(g)]_[ P(pilpo. %, 7)), (4.0
(f=200 Hz) but not at low ones; on the other hand, in more i

advanced interferometers these models will need to be accu-

rate at low frequenciesf&60 Hz) and, to obtain this low

frequency accuracy, the high frequency performance may beherep; is the signal-to-noise ratio of thi¢h catalog obser-
sacrificed at no cost to the signal detectability. vation andZ; represents the detector configuration,({)

IV. DISCUSSION
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when the observation was mati&his test is exactly analo- B. Outline

gous to number-flux cosmological tests using distant galax- |, thjs section | give general expressions for the distribu-

I€S. . s tions P(p, #|pg,?,%) and the summary distributions
More subtle tests involve other distributions of catalogedp(p|p0 7, ) andP(./|po,7,) that can be evaluated in

events. For example, each source in the catalog is charactefa, homogeneous and isotropic cosmological model: in ad-

ized by its observed chirp massZ. The observed chirp giion | evaluate the summary distributions explicitly for

mass depends on both the intrinsic chirp magg and the  \oter-dominated Friedmann-Robertson-WalkefFRW)

redshift z [see Eq.(2.2]; consequently, the distribution of 5465, The essential properties of FRW cosmological mod-
events in the catalog with7Z depends on the cosmological gis gre summarized in Sec. IV C.

model. Denote the cataloged chirp mass observations by |, aqdition to the distributions P(p,. Z| po, 7, %),
{.///|p>p0}.' A.dop.ting a/cosmo!orgical modé&“‘implies an  p(plpo.%,2), andP(.#|po.%,7) are other catalog prop-
expected d'St”b“t'O,'P(/dPO'g?@)_-_As before, if we ini-  grties of intrinsic interest. In a given cosmological model
tially favor model 7" with probability P(7), then after ihere js a distance beyond which no binary inspiral of fixed
studying the observations the probability we ascribe tQnyinsic chirp mass will have signal-to-noise ratio greater
model 7" is than the catalog limipy, and | calculate thigatalog depth
Zy in Sec. IV D. A catalog takes time to build, and, in a given
period of time, the size of a binary inspiral catalog is limited
by the ratedN/dt at which binaries coalesce with greater
than the catalog threshojg},. In Sec. IV E, | calculate both
Whereu//éi represents theth Cata'oged Chirp mass observa_ the eXpeCted rate Of, binary inspiral Observations a.nd the diS'
tion. tribution P(p|po,%,%) for advanced LIGO interferometers
Of the four parameters that describe, at quadrupole orde®nd describe how these depend on the cosmological model
binary inspiral observed in a single interferometer, oply ¢. Finally, in Sec. IVF, | calculate the distribution
and. 7 convey astrophysically interesting information. The P(-#|po,7,<) and describe how it depends @n
distributionsP(p|pg, %, %) andP(.#|pq,?,%) are each in-
tegrals over the distributioP(p,.#|py,%,%) that com- C. Cosmological model
pletely characterizes the catalog: Specific examples of the catalog distributions, catalog
depth, and rate of binary inspiral observations made in this
section are in the context of matter-dominated Friedmann-
Robertson-Walker (FRW) cosmological models. The
Robertson-Walker spacetime metric has the line element

P(sﬂ{.//Z|p>po}>o<P(%>fi[ P(.Z,

p0. 2. %), (4.2

P(p|po,f,@)=f P(p, #|po, % )d.7, (4.33

©

P(Zlpo. 2. 7)= | P(p,.#|po. %, Z)dp. (4.3D
(-7po. 7. 2) LO (p,-#|po. 7, Z)dp. (430 A= — dt?+a2(1)

2

1—kr?

+r2(d6?+sirfed¢?) |,
(4.9

These integrals arsummariesof the catalog contents: As

[ i 7 7, 9). . . . )
such, they are less informative th&p,.//|p,,7,~). The where a(t) is the usual(dimensionell scale factorr is a

most sensitive test that we can mak_e using .the cat,_alog '_ndimensionless parameter related to the area of spheres of
volves not a summary, but the full information available:

Given the observation$p,. 7#|p>pg}, the probability that constant radius, arkdis +1, = 1,0r0 depending on whether .
. : ; . X the spatial geometry of the slices of homogeneity has posi-
cosmological modet” describes our universe is

tive, negative, or zero curvatufee., is closed, open, or flat

In matter-dominated FRW modelavhich have vanishing

po, 7,7, (4.4 ~ cosmological constanthe comoving radial coordinateand
the luminosity distancel, can be written in terms of the
redshift explicitly:

Cosmological tests based on the summary distributions

are still useful to make. Summary distribution often depend ZGo+ (00— 1)[(1+2qe2)Y?—1]

only weakly or not at all on some of the parameters of the r= agHoq2(1+2)

model £ in that case, the effective dimensionality of is 07700

reduced in the summary test and we may be able to distin-

guish more closely among cosmological models described by di=ap(1+2)r, (4.6b

the remaining parameters than with a test using the full dis-

tribution. This is particularly true when the number of obser-wherea,, Hy, andq, are the scale factor, expansion rate,

vations in the catalog is small. and curvature parametedeceleration parameferat the

present epockEq. 15.3.24 of Ref[30]).

P(ZHPH//Z}’PO)“P(Z)H P(pi .. 7

, (4.63

4Changes in the detector noise spectrum change the relation be-
tweenp and the cosmological model. This is not a problem in the
interpretation of a catalog as long as the detector properties are The signal-to-noise ratio of an inspiraling neutron star bi-
properly associated with each cataloged observation. nary system with intrinsic chirp masg/ is

D. Sample depth
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p:8®(d_|_)(m) (1+2)*%(frag. (4.7

Since O is between 0 and 4, even an optimally oriented

binary system hap less tharpy whenz is greater tharzg,
wherez, satisfies

5/6
4

_ podi(zo) [1.2Mg
8r0§(fmax)5/6 -//50

4.9

Evaluation ofz, requires{(f .0, Which depends on the de-

tails of the detector’s noise power spectral dengityough

{) as well as the binary’'s component masses and redshift

(throughf 5. For advanced interferometefs-1 as long as
fma= 70 Hz (see Fig. 1 while f,=710Hz[2.8M¢/
(1+2zg)M] for symmetric binary in spira[see Eq.(3.9)].
Consequently, we can approximatée=1 as long as
1+2,=<10(2.8M/M). For smallz, we can approximate
d_ =z/H; then

32H0ro( My \5®
Zp= 4.9
0= | Tamg (4.99
0.48n| 2 fo o | 4.9b
— " po) 1355 Mpd/ | 1.2oM ) (4.99

which is much less than 10. Thus, the approximatienl is
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FIG. 3. The distance to the farthest inspiraling binary system
with signal-to-noise ratip greater than a threshols}, depends on
the detector noise spectrum, the binary system component masses,
and the cosmological model. Shown here is the redshift to the far-
thest NS-NS binary system observable wite8 in an advanced
LIGO detector as a function of the Hubble paramététhe Hubble
constant in units of 100 km/s MjpcThe three curves represent
matter-dominated Friedmann-Robertson-Walker cosmological mod-
els with differentq,: a closed model witly,= 3/4 (dashed curve a

a good one for binary systems with solar mass component§iz model @o=1/2, solid curvg, and an open model with

but not for binaries whose components are on orddi5

go=1/4 (dotted curveé For more discussion see Sec. IV D.

For a specific example, focus attention first on solar mass

component binaries. Theg=1 for any of the proposed

LIGO or VIRGO interferometersat the end of this subsec-
tion | return to consider briefly the case of more massive

binary systems where this is not tjuén an Einstein—de
Sitter (o= 1/2) cosmological modée, is then given explic-

itly by

6

256 16

Zo= ﬁ+%a§+§a0 -1, (4.10a
where
8H ofo ( //50 5/6
= 4.10
0= | TaMg (4.10b
0.1 2| L0 o | 4.10
N po/\ 355 Mpd | 1.2v ) (4.109

h is the Hubble parameteH( in units of 100 km/s Mpg
and

1/211/3

L,
2

16a0)3 (1 4096 (4.100

3 Z

T\t
More generally (o# 1/2 but{ still unity) z, satisfies
Zo=x5-1, (4.113

wherex is a root of

0=x'2+8qgaox*+ 16q2a3x - 2qox°
—8ap(209—1)x°+2q,— 1. (4.11b

The appropriate root of this equation can be found as a
power series for smalk:

8
Zo=4ap+ 3(3do+ 2)a3+8(6qy—1)ad

160 ,
+ ﬁ(54%+ 99p—7)ap

5600, 447 323 .
+m %‘E%"’ﬁ) aptO(ag).

(4.12

This truncated expansion is accurate to better than 0.2% for
ap<0.12 and BG=qgg=<1; for a¢<0.1 and G=qy=<3/4 the
accuracy is better than 0.01%. An asymptotic expansion for
Z, valid for largeaq (but ¢ still 1) is

2o=409615 05— 384\/203(qo— 1) a3+ 60— 1+ O(ap 3).
(4.13

This asymptotic expansion is accurate to better than 1% for
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Figure 3 showszy as a function ofh for neutron star 2024%[14_ao(zqo_1)]+o[ag,(2qo_1)2],
binaries with.Z,=1.19M, (corresponding to 1.3 3 neu- (4.19
tron star$, po=8, ro=2355, and three different values qj
corresponding to an openqf{=1/4, dotted curvg flat
(go=1/2, solid curvg, and closed q,=3/4, dashed curye Where ay=0.12h for advanced LIGO interferometers. For
cosmological model. The redshift of the most distant suciPPen spatial geometries ¢g—1<0) the most distant
source is less than 1/2 fér<0.8 and does not exceed 7/10 Sources are at smaller redshifts than in closed spatial geom-

for h<<1. The sensitivity ok, to qq is modest but significant: etries(wh.ere ,210_, 1>0). .
Inspection of Eq(4.11) shows that In luminosity distance, the sample depth is

4ag 40 40 , 1280 s 40 ) 4 6
dL’O:H_O 1+ gao'i‘ 3(2q0+ 1)ao+ H(QQO—Z)CYO‘F %(205210— 180g,— 143)a0+ O(ao) . (4.15
|
Figure 4 showdd, , for the same casedh( qo) as Fig. 3 E. Coalescence rate above threshold

shows z,. Advanced LIGO interferometers may observe

varlt - ay UUSE The distribution of catalog events wighis given by
neutron star binaries with greater than 8 at luminosity dis-

tances of order 2 Gpc. dN/dtdp

For more massive binarie&(flmax)-is sub;tantially less P(plpo. %, 2)= “dN/dt p=po; (4.16a
than unity atz, and the approximatiod=1 is no longer 0 -
valid. Figure 5 showg, [given implicitly by Eq.(4.8)] for r P=Po
an advanced LIGO detector (=355 Mpc) and a range of \yhere
binary systems in two distinct Einstein—de Sitteg € 1/2)
cosmological models. One pair of curves shagygor sym- dN N
metric binaries consisting of tw¢e.g) black holes each of M_J d‘//éodtdpd,//zo’ (4.16
massMgy, while the second pair of curves showg for
asymmetric binaries, consisting @.g) a black hole of mass dN dr 47ra8r2 No(2)
Mgy and a neutrqn star of mass W4 . Note h.ow, inall m—j dzd_zﬁﬁ
casesz, does not increase without bound Mgy increases;
instead, it has a maximum value for sorivgy and de- A Mo|Z) -
creases aM gy, increases further. X?Pp(ﬂzr%o-ﬁ@),

The finite bandwidth of the detector and its overlap with
the signal power, as represented jydetermines the maxi- (4.169
mum redshift at which a detector can observe binary inspiral.

) . dN = dN

If ¢ were constant, the@y would increase monotonically _:f dp—rv, (4.160
with .7, [see Eq.4.8)]; however,{ is not constant and as dt po  dtdp

7 increased . decreases both becaulgg is decreasing
and also becausg, is increasind f,,,,>cM/(1+2); see Eq.
(3.8)]. Eventually{ begins to decrease with increasing
or decreasingdf ax (for advanced LIGO interferometersg,

andP,, is given in Eq.(3.12).
SincedN/dtdp depends o only throughP,, the inte-
gral overp in Eq. (4.1609 can be evaluated explicitly. First

. . : A . note that
remains unity untilf ,,,,=70 Hz; see Fig. 1 Once{ begins
to decrease, so too willy. For sufficiently large 7, even a o o o
local binary ¢=0) will coalesce before the gravitational ra- J dpP,(pl-70,2,%,7)= J'X Po(0) (4.173
diation signal enters the detector bandwidth. Po
Thus, decreasing the detector noise at low frequencies has =Cgq(X), (4.17bH

a dual effect: By increasing, it increases the overall detec-
tor sensitivity, and by decreasing the frequency below whictwhere
<1 it further boosts the sensitivity of the interferometer to

more massive and more distant binary systems. Advanced _Po dp (1-2\/'@ o0

LIGO detectors are expected to be most sensitive to inspiral- X= 8 ro(1+2)°8\ %, (4.179

ing binaries with two 1M black hole components, which
will be observable withp greater than 8 at redshifts greater The probability densityP,, is a conditional one: It depends
than 1.5. on .#,, z, and the cosmological model. In contrast, the
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distributionPg of ® is universal: It is independent of all the 1. Examples: Constant/,
specific properties of the binary or the detectOp(x) is Turn now to the specific example of neutron star binaries

universal in this same way and can be evaluated ®Righ In iy atter-dominated FRW cosmological models, so that
terms of Cg the total rate of inspirals witlp greater than {=1 andr andd, are given by Eqs(4.6). Assume also that

Po is evolution in the binary population is unimportant over red-
dN dN shifts z<1/2; then# is unity and” is independent of.
Jd///o —, (4.183 Finally, use the approximation given above fBg [EQ.
dt dtd. 7o (3.1D] to evaluateCg :
where
dN (= dr 4madr? hgs(z) 1 if x<0
W‘f 202 ic? 1vz ol Cox)=1{ (1+X)(4—X)¥256 if 0=x=<4 (4.19
0 if 4<x.
XC du(2) (4.18b
L ao(1+2) 7% (fma) '
The integral fordN/dtd. 7, [Eq. (4.18h] can then be evalu-
and ated as a power series in smai:
8H0r0( My
apg= 4.18
" po |12Mg (4-189 dN (dN) A Me) (4,203
—=|—| Y .,/72 y .
Equation (4.18 for dN/dt, which is also the total rate of dtd 7, \dt/; °
binary inspiral with p>p,, and Egs. (4.16 for
P(p|po.%,Z) are valid for any homogeneous and isotropic
cosmological model. where
|
dN| (128 .. \[8\% ., 5’21 25 2 em2 224 s
at . 21 ™o | ool | Tamg ~ g @07 75(6do+ 85 ap— o= doap
8019(1188:10+9108:10 4123 aj+ O(ag) (4.20bh
and ag is given by Eq.(4.10h. Similarly, dN/dtdpd. 7Z is given by
aN___ [N ) s 4.21
dtdpd. 7, | dtdp, A M), (4.213
where
dN\ (16 .\ (8\* o | | 100 st 85 a2 118, 3
dtdp) 17 ™)\ 5) V1w [P 2r et (6008907 e
140 118832+ 9108&y,— 4123 a*+ O(a®) (4.21b
*+ 52057 0 0~ :
and
8H0r0( //50 5/6 (po)

Equations4.20 and(4.21 for dN/dtd.#, anddN/dtdpd. 7, can be integrated overZ, to find dN/dt anddN/dtdp, and
thusP(p|po,%,2).

Observational and theoretical evidence suggests that the NS-NS binary intrinsic chirp mass distribution is sharply peaked
(see Sec. Il € In the most extreme limit that all binary systems have intrinsic chirp mags &’ is a é function in.#, and
dN (dN 422
dt | dt o (4.223
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B (dN/dtdp),
P(P|Po,?f,f%‘)zm
1 100 .2 60q,+ 85) a? A48 ary 20 118810%+ 910 4123 o*
3 po|317 27" 27(0%0 T8I 53 Goa™ 5 oy 11BHO7H 91080~ 4123 L OuE a
ele 1 25 2 60+ 85) a2 224 oy 20 118812+910 4123 o e
gao+ 4—5( Jo+85aj 33 Qoap+ 8019( o+ o Jay

(4.22h

Figure 6 shows dN/dt), as a function ofh in an  reasonable limiting signal to noise? is less than 1% even
Einstein—de Sitter cosmological modej,& 1/2) for a rea- for advanced interferometer designs, cosmological tests that
sonable signal-to-noise ratio limit in an advanced LIGO de{ocus only on the observed distribution @fwill be insensi-
tector (pp=8 and r,=355 Mpc), typical neutron star tive toq, even though the redshift to the most distant sources
masses.(Z,=1.1Mg), and two different coalescence rate in the catalog is largéthis weak dependence ap is char-
densities. The solid curve showsiN/dt), for the “best  acteristic of number-flux cosmological tests; see, e.g., p. 798
gues_s; _10061'6509”09 rate  densityno=1.1x10"'h  of Ref.[31]). On the other hand, for advanced detectors and
Mpc™~ s~ (see Sec. Il C L which is proportional td; the  jnteresting  cosmological models, the  distribution
dashed curve showsi {\/dt), for a constant coalescence rate P(plpo.7,7) is sensitive toh at the 10% level, which
densityno=8x10"° Mpc™* yr*. The dashed curve shows ;. eq possible a measurement lof from the obser-
how (dl_\l/d_t)o scal_es for constamt, i_n advanced interferom- vations {p|p>p,} alone. Figure 7 showsP(p|po.7)!
eters with interestingp. Present estimates af, suggest that, P(p|po.%0,7) for two Einstein—de Sitter cosmological

if h=0.75, advanced LIGO detectors can expect to observe a - 4ois that differ only by (in both cases/Zy=1.10M ).
little more than one neutron star binary inspiral event perry,q general trend is that with increasihgnspiral events are

week. . c T
T o . shifted toward largelp compared to the distribution in a
The distributionP(p|pg, 7, %) is also sensitive th. Let static universe.

“ o represent a flat and static cosmological model. Then

~(3p3I*, p>po.
P(plpo.©0.2)= (4.23
0, p<po. 25

LA L S et N L Y N B N B N B L B

The first-order correctiofin 1/p) owing to the expansion of

the universe depends only on the rate of expansigp) 5
corrections owing to the curvature of spade#(0) enter

only at second order in @/ Since, for NS-NS binaries and

ETI TTRR S T NI
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N
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5 10 15 20
Mbh/MO
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FIG. 5. The expected redshift to the farthest inspiraling binary
system observed by an advanced LIGO detector wwith8 in
. matter-dominated Einstein—de Sitter cosmological models
(go=1/2). Results for symmetric binary systems, consisting of two
components each of maddg,, and asymmetric binary systems,
| 7 i consisting of a 1Ml component and @lg, component, are
shown forh=0.8 andh=0.5. The maximum observable depth at
A ’ any signal-to-noise threshold is limited by the cosmological model
and the properties of the detector; for advanced LIGO interferom-
FIG. 4. The same as Fig. 3, except shown here is the luminositgters andpy=8 it peaks for symmetric binaries composed of
distance instead of the redshift. 10M ¢ black holes. For more discussion see Sec. IV D.

1800 —
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2. Examples: Uniformly distributed neutron star masses bounds their masses are uniformly distributed, and that the

component masses of an inspiraling binary system are uncor-
In a less extreme limit assume that neutron star masses arelated. Then/(. #,) is given approximately by Eq2.14),
bounded above by, and below bym,, that between these and

dN (16 . |(8|* my \¥ 100_ 2 448 _,
dtdp = oo o) \Tamg 8512~ 57 @&10i3t 55(600t e 33 Jo &s
140 ) —, .
+ 52057 L1881 + 910810~ 4123 a* a5+ O(a) |, (4.243
dN (128 .. |\[8|3 my |* 25_ 2 224
at |27 ™Mo ool \T2Mg €512~ —6¥0§10/3ﬂL 45(GQO+85)6¥0§25/6 33 == do@oés
8019(1188404— 9108)y— 4123a0§35,6+ O(ao) (4.24b
where
20 A1 =x) X 20— 1) = (Xp = X)]
EnlXh X0 = = o () (k= X)) (= 1) (1 (4249
h=X)(Xp—=1)(1=x))
|
and Observations suggest thatis small[20], in which case the
56 distribution of p in LIGO observations is insensitive to the
—_ ( 8H0r0)< Mo (4.249  finite neutron star mass range.
P 12\/'@ ’ ’
<8H0ro>( my |%® (4.249 F. Chirp mass spectrumP(.#|pg,.7)
“ po /\1L2Mg/ ' In a homogeneous and isotropic cosmology the rate at
which binary inspiral signals corresponding to chirp mass
m X
Xh=m—>, (4.24% .7 andp greater tharp, are observed is
° e
- w209 L dr 4wl otz 7\ 1+ z
my ' dtd//& dz 1-kr5)1? 1+7 1+z
m. =m;/2*, 4.24 d 1.2Mg)%®
<=M (4.24h XCo| 20 L o) (4.26
3/5 1/5 8 rod(fmad \ -7
Mo = (mymy,)>"~/(m;+my)~">, (4.24)
m. = m;/2%5. (4.24)

The catalog'sa priori chirp mass distribution is thus

Over the range ofy, relevant for neutron star binary in-
spiral observations in LIGO-like interferometric detectors,

dN/dt anddN/dtdp are only weakly dependent an, and P(.\po,C,2)= W (4.27)
m,, for constantmy: Taking dN/dt
=1—c¢, (4.25a

_ wheredN/dt is given by Eq.(4.160 and Z represents as-

we find sumptions regarding the cosmologii{, o, Q,), evolu-
6 36 42 1188 tion, and the distribution of neutron star massé&s ¢”), and
Xr=1+ e+ — €2+ — 3+ g 51 0(€b), other, unenumerated, model assumptions.
h €T5€ " 25¢ 5¢ 7 625 € (€%) As discussed in Sec. Il C, observational and theoretical

. evidence suggests that the NS- inary intrinsic chirp mass
(4.25D id hat the NS-NS binary intrinsic chi

dN dN o1 distribution is sharply peaked. Neglecting evolution and tak-
aiN 4 3 ing the intrinsic chirp mass of all binary systems to be a
dt( €)= (0) 1+ 16€ 2+ 0(a,€%)|. (4.259 constant 7,
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dN  ng#(Z) dr , 4mwadr?(z) CTT T T T
a7 a2 )~/—1—kr2(Z)
po du(2) 1.2Me o
*Col g (1+2), | 7, (428 N
5y
where %:’
&
z=2 1 4.29 B
=1L (4.29 s
3
Figure 8 shows the distributioR(. 7| py,%,<) for cata- =
logs with p greater than 8 compiled by an advanced LIGO
detector (,=355 Mpc) in several matter-dominated FRW
cosmological models. The intrinsic chirp mass of all systems
is assumed to be 1.0, . Six different models are shown, 0.9 L 11 | [ S N NP
exploring two differenth (0.5 and 0.8) and three different 8 910 20 30 40 50607080

Jo (1/4, 1/2 and 3/4). The closely spaced curves with colo- L

cated extrema are of the samend differ only ingo. Note FIG. 7. The expected distribution of NS-NS inspiral events with

the strong depender_u;e #(.~]po,2,Z) on h and the p greater than 8 in advanced LIGO detectors depends almost ex-
Weaker,_ but still significant, dependence gg1 Th? dotted clusively on the Hubble parameter Shown here is the ratio of the
and solid curves correspond to flat cosmological mOdEI%iistribution in two matter-dominated Friedmann-Robertson-Walker
(9o=1/2), the long-dashed and dot-long-dashed curves cotsssmological models to the distribution expected in a flat and static

respond to open cosmological modelg€1/4), and the  cosmological model. For more details see Sec. IV E 1.
short-dashed and dot-short-dashed curves correspond to the

closed modelsdy=3/4). In general the smalley,, the more
compressed the spectrum and the smaller the tail at large
M.

F T T T T T T I T T T =
60 - = .
- - 6_ —
- T 1 L J
5T i ~ | i
550 - - g.
O L i L4 - |
~ a | |
z ] 3
J - J
40 — 2 _]
[ R B RN oL |
0.4 0.6 0.8 1 T T IR SR IR S |
h 1.2 1.4 1.6 1.8

M/M

FIG. 6. The rate of NS-NS binary inspiral observations with ¢
signal-to-noise ratio greater than 8 in an advanced LIGO detector is FIG. 8. A binary system’s observed chirp magg depends on
largely insensitive to the neutron star mass range or the deceleratidts redshift; consequently, a NS-NS binary inspiral sample will
parameter in matter-dominated Friedmann-Robertson-Walker coshow a range of chirp masses corresponding to the range of system
mological models. The solid curve shows the expected rate in aredshifts. Shown here is the expected distributionffor binary
Einstein—de Sitter model as a function of the Hubble paranteter systems consisting of two 1.B¥; neutron stars witlp>8 in ad-
assuming the comoving NS-NS binary coalescence rate density aanced LIGO detectors for opemd=1/4), flat (@y,=1/2), and
the current epoch is 1h1Mpc 3 yr~! (solid curve; the dashed closed €,=3/4) matter-dominated Friedmann-Robertson-Walker
curve shows the same assuming the rate density igosmological models witthh=0.5 andh=0.8. In all cases, agq
8x1078 Mpc 3 yr 1, which is independent ofi. For more dis- increases the tail of the chirp mass spectrum is extended. For more
cussion see Sec. IV E. details, see the discussion in Sec. IV F.
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— — ; . — V. CONCLUSIONS

. Observations of binary inspiral in a single interferometric

7 gravitational wave detector can be cataloged according to
m signal strengthias measured by signal-to-noise rapip and

] chirp mass #. The distribution of events in a catalog com-
Ho=1-19M, 1 posed of observations witp greater than a thresholg,
1.208m,,/Mo=1.45 4 depends on the Hubble expansion, deceleration parameter,
and cosmological constant, as well as the distribution of
component masses in binary systems and evolutionary ef-
fects (though for neutron star binary observations evolution
is not expected to be importantn this paper | find general
expressions for the distribution witth and. 7 of cataloged
events, valid in any homogeneous and isotropic cosmologi-
cal model; | also evaluate those distributions explicitly for
matter-dominated Friedmann-Robertson-Walker models and
simple models of the neutron star mass distribution.

These distributions have two immediate, practical uses in
gravitational-wave data analysis for interferometric detec-
tors: First, when evaluated for with the cosmological param-

FIG. 9. Neutron stars do not all share the same mass, althougters reflecting our current best understanding of the uni-
indications are that the mass range is small. Shown here is thgerse, they are the prior probabilities which, together with
expected chirp mass distribution for observations with8 made  the matched-filtered detector output, form the likelihood
in an advanced LIGO detector for two different matter-dominatedfnction and determine the posterior probability that an in-
Einstein—de Sitter cosmological modelgo€1/2 andh=0.5 or  gnirg| has been detected; second, when compared with the
h=0.8) and two different neutron star mass distributions. In theypysapyed distribution im and.Z of many separate binary
first distribution all binaries are assumed to have intrinsic Ch'rpinspiral observations, they are used to infer new and more

mass. Zo=1.1Mo, while in the second the binary component j ¢, a4 estimates for the cosmological parameters that de-
masses are assumed to be uniformly distributed between lower

bound 1.2 5 and upper bound 1.4B; . As the mass distribution scribe the universe.

broadens, the chirp mass spectrum also broadens. It does so nea(rjjggéfof_lggag;cggﬂsni;:ggrgo?tggizyéglsggzlnelﬁ ?rtolrsnaa ra-
symmetrically; in contrast, variations iy, for fixed mass distribu- P 9 g

tion (shown in Fig. 8 alter the large /7 tail of the spectrum, leay- diation source that is estimated in the course of making an
ing the small. / tail essentially unchanged. For more details seeOPServation. The normalization @f depends on the detec-
Sec. IVF. tor’s noise power spectral densig;(f). In interferometric
gravitational wave detectors like LIGO and VIRGO the nor-
Since the abscissa” is related to redshift according to malization involves a characteristic distanggand a func-
/= (1+2).7,, Fig. 8 also shows the redshift of the pre- tjon of the detector bandwidtti, both of which are depend
pondera}nce of catalqg events. for 0.8 most events are at S.(f).
a redshift of 9%, while foh=0.5 most events are at a red-  The characteristic distancg gives an overall sense of the
shift of 14%. ) . __depth to which the detector can “see” binary systems whose
More generally, neutron star masses are not all Ident'calradiation traverses the detector bandwidth, which is deter-

correspond|ngly;'//>(//éo) IS not as ;lm.ple as a func;Uon. mined by{. Advanced LIGO interferometers are expected to
Modeling the neutron star mass distribution as uniform be;

tween lower boundm, and upper boundn, leads to the be most sensitive to binary inspiral radiation in the band-

| h : . : - L
intrinsic chirp mass distributiog(.7,) given by Eq.(2.12); W'd'f[h.bg(:_dz%o Hz: Olver 90% o{h'ghe S|gnal-k';0-nd0|se ratio Is
the corresponding spectrul(.#|py,7,7) can be deter- CONOULEd by Signal power in this narrow band.

mined through Eqs(4.26 and (4.27). Figure 9 shows the When searching the output of a detector for the signal
spectrum P(.Z|po,7,7) for four different matter- from a source an accurate model of the detector response is

dominated Einstein—de Sitter cosmological models correN€eded. The model need not be accurate over the entire fre-

sponding to two differenh (0.5 and 0.8) and two different quency domain, but only over that part of the domain where
neutron star mass distributions: One set of curves correhe signal power overlaps with the detector bandwidth. The
sponds to the assumption that,=1.19M, for all binary ~ dependence g on { suggests the definition ofleandwidth
systems, while in the second set the binary componerfunction.” for binary inspiral observations that will be use-
masses are assumed to be uniformly distributed betweehl for determining over what range approximate templates
1.2M¢ and 1.4841. For all models showm,=355Mpc  describing the detector response need be accurate.
and py=38. Cosmological tests based on catalogs of binary inspiral
As m; and my, approachmy, A.7#,) approaches observations withp greater than a threshold, depend on
8(.#y—mg). The dependence oP(.7#|py,7) on qp, the distribution of cataloged events wijthand. 7. Tests can
shown in Fig. 8, is similar but not identical to its dependencemake use of all the information available in the catalog or
onm,—m (for constanimg): Variations inqq shift the spec-  properly constructed summaries of the cataloged events. The
trum’s large. 7 tail, while increasingn,—m;, increases the sensitivity of the test depends on how the expected catalog
spectrum’s overall breadth. distributions change with changing cosmological models.

P(#lpy.8.2)
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For advanced LIGO detectors, the most distant neutrosensitive toh and reasonably sensitive to botly and the
star binary inspiral events with signal-to-noise ratio greatenmeutron star mass range. This suggests that the spectrum is
than 8 will arise from distances not exceeding approximatelyan especially powerful tool for cosmological measurements.
2 Gpc, corresponding to a redshift of 0.48.26 for  The dependence of the spectrumapand the neutron star
h=0.8 (0.5). The depth is only weakly dependent on themass distribution is similaithough not identica) suggesting
range of neutron star masses or the deceleration parametgiat it may be difficult to determine these separately from

As the binary system mass increases so does the distanceyiservations. | am currently investigating this point and will
can be seen, up to a limit: In a matter-dominated Elnstem—dgeport on it at a later time.

Sitter cosmological model with=0.8 (0.5) the limit is ap-
proximatelyz=2.7 (1.7) for binaries consisting of approxi-
mately 1M, black holes.

The distribution of catalog events wifh depends prima-
rily on h and is only very weakly sensitive to eithgg or the | am grateful for the support of both the Alfred P. Sloan
range of neutron star masses; however, the chirp mass spdésundation and the National Science Foundati®HY
trum (i.e., the distribution of catalog events with¥) is very ~ 9308728.
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