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Examination of the resonance contributions to dileptonic rare B decays
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We analyze the long-distance contribution to the B —+ X,E E differential decay rate when the
momentum dependence of the vP and vP'-p conversion strength is taken into account. The results
indicate that the resonance to nonresonance interference in the dilepton invariant mass distribution
is substantially reduced.
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Rare B decays have been the focus of extensive expe-
rimantal and theoretical investigations. The observation
of the inclusive 6 ~ sp decay and the exclusive mode
B ~ K*p by CLEO Collaboration [1] has raised the
hope that other flavor-changing neutral current (FCNC)
transitions, such as b +sl+l-(I.= e, p), for instance,
will be within experimental reach in the near future.
The measurement of these processes can serve, among
other things, to shed light on some less-known Cabibbo-
Kobayashi-Maskowa (CKM) matrix elements, as well as
imposing constraints on "new physics" beyond the stan-
dard model (SM). However, in order to make any reliable
conclusion on these from the experimantal measurements
of rare B decays, we must improve our understanding of
the theoretical uncertainties in the calculation of these
processes.

One of the main background sources for rare B de-
cays is the long-distance (LD) contributions to these pro-
cesses. A lot of theoretical attention has been focused on
this subject [2—7], due to the fact that without a reli-
able estimate of the LD contributions one cannot draw
accurate conclusions &om experimental results.

The CKM favored resonance contributions to the b —+ s
transition are due to the conversion of the intermediate
1t (NS) vector mesons to real (b ~ sp decay) or virtual
(b + sI+E decay) photons. The momentum depen-
dence of the @-p conversion strength was investigated a
long time ago in [8] in order to explain the data on the g
leptonic width and photoproduction simultaneously. Re-
cently, this has been pointed out again in [5,6], where

a large suppression of the @-p transition on the photon
mass shell is argued to indicate that the LD contribu-
tion to b —+ sp decay could be substantially smaller than
previous estimates. For b -+ 8$+S decay, however, the
momentum dependence of the @—p conversion strength
has not been taken into account up to now.

In this paper, we analyze the resonance contribution to
the inclusive dileptonic rare Bdecays using a momentum-
dependent @-p conversion strength. We show that the
dileptonic mass distribution is indeed sensitive to the
short-distance (SD) contributions for a broader q2 (q
is the invariant dileptonic mass).

Vile start with the low-energy efFective Lagrangian for
b -+ sI.+E [9,10]:
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~ I V;,V,b(A L„bIL"E|"~ ( n
(47I BL p

+BsL„bER+E+2m s FsT„bled)'E), (1)

where

and
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where x, = m, /M~, q = n, (mb)/n, (M~), and [11]
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C2 is the Wilson coeKcient of the four-fermion operator
with C2(M~) = —1. For our numerical evaluation we
use mt ——180 GeV (which is the weighted average of
the recent Collider Detector at Fermilab (CDF) and DO

results [12]) and AgcD = 100 MeV so that n, (M14 ) =
0.12 and rt = 1.75 (for mb = 4.5 GeV). As a result, we
obtain

V~ are the Cabibbo-Kobayashi-Maskawa matrix ele-

ments, sL, = sin 8~ = 0.23 (014 is the weak angle),
G~ is the Fermi constant and q is the total momentum
of the anal 8+8 pair.

The SD parts of A and B, denoted by A and B
arise from W box diagrams and penguin diagrams with
Z gauge boson and photon coupled to the E+E pair. For
these coefBcients and C = 8~F we have

ASD embox(x ) + gZ(x ) + BSD

B'D = —s~2 F,"(x,) + 2t."z(x,) —-', (lnx, + 1)
47r 4 (1

—11/23)
cx, (M~) 33

+ —,', (1 —g "~*'))os(Mw),
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AsD 2.020
BsD —0.173
C = —0.146.

(4)
Ci(ms) =

2 g /' —g" ' C2(M~),

( )
1 —s/23 + 12/23 C (M )

(6)

The LD contributions enter A and B coefBcients
through charm-quark loop (cc continuum), and the reso-
nance contributions &om Q and g':

OLD = BLD = —s2~ [3Ci (ms) y C2(ms)] (r' "'+r"').

The cc continuum contribution is obtained &om the elec-
tromagnetic penguin diagrams [10]

(5)

Ci(mb) and C2(ms) are the QCD corrected Wilson coef-
ficients: where z = q2/m&2 and
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On the other hand, the resonance contributions &om
g and g' can be incorporated by using a Breit-Wigner
form for the resonance propagator [3,4]:

res
9

~
m&2 —q2 —im~ I'~ )

The relative phase P that determines the sign between
7' " and w"' is chosen to be zero due to unitarity con-
straint [13].

The Wilson coefficient sum 3Ci(p, ) + C2(p, ) is very
sensitive to QCD scale parameter AQCD as well as the
renormalization point p [14]. Inserting g = 1.75, one
would obtain 3Ci(mi, ) + C2(mi, ) = —0.389. However, if
we treat this combination of the wilson coefBcients as a
phenomenological parameter, a value

13Ci(ms) + C2(ms) I

= 0 72.
fits the data on the semi-inclusive B ~ A, @ [5]. We use
this phenomenological value throughout our calculations.

On the other hand, from (9) we observe that r'" de-
pends quadratically on fv(q )(V = g, @' ) defined as

(0lc~ clV(q)) = fv(q')e

where e„is the polarization vector of the vector meson
V. As we mentioned earlier, it has been pointed out re-
cently that in the context of vector meson dominance,
data on photoproduction of @ indicates a large suppres-
sian of f~(0) compare to f~(m+~) [5]. This has been
confirmed independently in [6] by constraining the domi-
nant LD contribution to s + dp using the present upper
bound on the 0 —+ = p decay rate. In fact, it is argued
that this large suppression results in a much smaller LD
contribution to b ~ sp transition.

In the dileptonic rare B decays, however, the momen-
tum dependence of fv (or equivalently, the @-p transi-
tion) has not been taken into account up to now, and
fv(q2) is normally replaced with the decay constant
fv(m2v) obtained &om the leptonic width of @ and g':

16mo.
r(V e+S-) = ', f'( ').

V

The spectrum obtained this way is dominated by the res-
onance interference for a broad range of q2, as already
noted in the literature [7,9].

In this work, however, we use a momentum dependent
fv (q ) (V = @, @') in r"' (as in [5], we assume that the
same suppression occurs for @'). Of course, there is no
significant change in the total branching ratio which is
dominated by @ and @' resonance contributions which in
turn is due to the fact that the dileptonic mass spectrum
has peaks at q = m&, m&, . However, as we demonstrate
later on, as a result, the resonance to nonresonance inter-
ference is substantially reduced, leaving a broader region
of invariant mass spectrum sensitive to a large extent to
SD physics.

We use the momentum dependent fv(q )(V = g, g')
derived in [8] based on the intermediate quark and anti-
quark state:

2

f (q') = f (o) I
1 + [d —~(q')]

Icv )

where cy ——0.54, cy ——0.77, and dy ——d~ ——0.043.
h(q ) is obtained fram a dispersian relation involving the
imaginary part of the quark-loop diagram:
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with r = q /4m for 0 ( q ( 4m . mq is the effec-
tive quark mass and assuming that the vector mesons
are weakly bound systems of a quark and an antiquark,
we take mq mv/2. As a result, Eq. (11), defined
for 0 ( q ( m&, is an interpolation of fv from the
experimental data on fv. (0) (from photoproduction) and
fv (m&) (from leptonic width) based on a quark-loop dia-
gram. We assume fv(q ) = fv(m&) for q ) m& mainly
due to the fact that the behavior of the @-p conversion
strength is not clear in this region. In any case, our fo-
cus will be on the invariant mass spectrum region below
m&~ where the effect of the momentum-dependent @-p
transition is more significant.

The differential decay rate for b ~ X,8+8, taken as
the &ee quark decay 6 ~ sE+8, can be written as

0.5

0.1 0.2 0.3 0.4 0.5
z=q/mb2 2

0.6 0.7

FIG. 1. The dileptonic invariant mass spectrum for the de-
cay b —+ sE+8 . The thin, dotted, and bold lines correspond to
a spectrum without resonances, with resonances but constant
V-p conversion strength, and with resonances having momen-
tum-dependent V-p transition, respectively. For q ) m+,
where the latter two curves coincide, only the dotted curve is
shown.

2 2

I'(B -+ X,ev) dz 4qr@, f(m, /mb)

x A + B 1+2z +2C 1+2 z +6Re A+B C

where

f(&) = I —» +» —x —24x 1n(x).

By normalizing to the semileptonic rate in (13), the
strong dependence on the b-quark mass cancels out. In
Fig. 1, we show the invariant dilepton mass spectrum
corresponding to Eq. (13) for cases when (i) the reso-
nance term q

"' is not included, (ii) q
"' is included but

fv (q ) in Eq. (9) is replaced with constant fv (m&2) and
finally, (iii) q"' with fv (q ) inserted &om Eq. (11) is
included. From Fig. 1 we observe that the resonance
to nonresonance interference in the invariant mass spec-
trum, which is measured by the deviation &om the non-
resonant spectrum (thin line), is suppressed consider-

ably due to momentum dependence of the @-p conver-
sion strength. For example, at q2/m& = 0.3, the reso-
nance interference amounts to around 2%%uo of the differen-
tial branching ratio as compared to 20'%%uo in the case where
fixed fv (m&) is used. As a result, we believe, contrary to
previous conclusions [7j, dilepton mass spectrum can be
used for testing SD physics without significant resonance
interference.
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