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The cross sections fap¢ and $K *K ™~ production were measured with 8 GeMgion and kaon beams to
examine the OZI suppression of the reactienp— ¢ ¢n. The measured cross section ratios indicate that this
reaction is not suppressed fgp invariant masses up to 2.5 Ge&¥/

PACS numbsgs): 13.75.Gx, 13.25:k, 14.40.Cs

I. INTRODUCTION The OZI rule has been studied via sevepgl production
experiments in the 2—2.5 Ged#/mass regio10—13. The
The f,(2010, ,(2300, and f,(2340 mesons(formerly  cross section for the OZI allowed reaction
0:, 9; , andgy) were discovered in 1978 by Etkigt al. [1]

as ¢¢ resonances in the reaction K'p—¢pA ©)
3 at 8.25 GeW¢ beam momentum is at least a factor of 4 less
T p—dén. (D) than that for the reaction
It was argued that these states should be identified as the K p— oK KA, (4)

long sought?”®=2"" glueball[2]. Recent lattice gauge pre- o )

dictions place this state at about 2.3 Ge3]. Violation of ~ Which is also OZ| allowed. However, the published data do
the Okubo-Zweig-lizukaOZI) rule [4] in reaction(1) has  Notinclude comparisons between reactiéhsand(3) at the
been the basis for the glueball identification. At 22.5 GeV/ Same beam momentum. Moreover, all of the cross section
beam momentum reactiofl) is suppresse@s] by about a  ratios are given as upper limits. Therefore it is not possible to

factor of 10 relative to the OZI allowed reaction extract quantitative information about the level of OZI sup-
pression in reactiofil).
7 p— KK n 2 In this ¢ production experiment the reactiofly and(2)

were measured at 8 Ge¥/beam momentum, along with the

) ] analogous exclusive reactions witd~ beam. From the
However, typical OZI allowed to OZI suppressed ratios foryresent data we can construct the ratios

single ¢ production are on the order of §6]. Thus further

study of¢¢ production is not only useful as a test of the OZI o(m p—¢KTK™n)
rule, but is also crucial for understanding meson spectros- = ol P bon) (5
copy.

It has been suggested that the OZ| rule may be evaded igng
reaction(1) if it proceeds via two stepf?], or if the proton
contains strange|q pairs in the nonvalence quark Sgg. o(K p—pKTK AIZO)
However, these arguments have been questioned on several Ro= o(K p—ddA/S0) (6)
fronts[9]. At present there is no compelling reason to expect

any violation of the OZI rule for reactiofil) when conven- According to the OZI rule, one exped®;>R,.
tional mesons are involved.

Il. EXPERIMENT
"Present address: Fermi National Accelerator Laboratory, P.O. This experiment was performed at the B2 beam line of the
Box 500, Batavia, IL 60510. Alternating Gradient SynchrotrofAGS) at Brookhaven Na-
TPresent address: CEBAF, 12000 Jefferson Ave., Newportional Laboratory. An electrostatically separated beam of
News, VA 23606. pions (95%), kaons(3.5%), and antiprotong1.5% was de-
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livered to the experimental area. The identification of each
beam track was accomplished with three threshold Cheren-
kov detectors in the beam line, two of which registered pions
only, and one that registered pions and kaons.

The ¢ meson was detected via its decayko K~ pairs.
The Multiple Particle SpectrometéMPS) [13] was used to
analyze all events which yielded four charged kaons in the
final state. A 50 cm long liquid hydrogen target was located
inside the magnet gap. Surrounding the target was a scintil-

lator hodoscope used to veto charged recoil particles, for the ®

pion-beam events only. At the end of the target, inside the |

magnet, were five drift chambers containing a total of 35

sense-wire planegl4]. These chambers were used for

charged-track reconstruction and momentum determination. M’UUH !” ’ﬂ]"]

Outside the magnet, at the downstream end, was an unseg- 0 h ! . ) I]H .
1 3 1.4 15

mented freon Cherenkov detec{dr5] which operated at a o121
ressure of 45 PSIG. This detector was used to veto pion - 2
gventsl P K'K™ Mass (Ge\//c )
Data were acquired for approximately two months. The he effectivek K - Hen the othét K- pai
event trigger included an online veto by the Cherenkov de- F'G'tﬁ' The e ect“"dfj t'; mass when t etot & K bpalr
tector. It also required at least three signals in each of thregasses ?Tass E“ a”d e mrl]ssmg-mass cu S(Iﬁ)rp'g” eam
single-plane proportional wire chambeRWC's) in front of ata, andb) kaon beam data. The¢ events are plotted once per
the Cherenkov detector. In addition, a memory look-up uniEVent: randomly selected.

rejected events that fell outside the relevant phase dfi#te

a~
o

N
o

e

Events/5 MeV/c?

simulations included the geometry of the apparatus, multiple
scattering, kaon decay, detector inefficiencies, pattern recog-
l1l. DATA ANALYSIS nition inefficiencies, and the cuts used in the actual data
analysis. An exponential dependence for the simulations
The analysis of the four-kaon events included a cut on thgvas used. The acceptance for each 50 MéWass bin in
vertex location that required the intersection of the four prothe ¢¢ or pK K~ effective mass was calculated separately,
duction tracks and the beam to be inside the target. To assufgr each beam type. Figure 3 shows the uncorrectefd
efficient pion rejection, a cut was also applied which re-effective-mass spectrum for the pion beam data along with
quired at least two positive or two negative tracks with mo-the calculated acceptance. The shape of the acceptance curve
menta greater than 1.7 Geo pass through the veto Cher- s dictated mostly by the cuts on the momentum and location
enkov detector. The Cherenkov detector efficiency wasf the particles at the Cherenkov detector. A similar proce-
determined by tests using the charged-pion decag®fThe  dure was followed for thesK 'K~ data. It gave nearly iden-
single-pion efficiency was found to be greater than 85% ovetical acceptance curvé47].
the desired momentum range. The ¢¢ production withm~ beam can be compared with
Missing-mass an@-mass cuts were applied to the data.the published results at higher energies. Figu@ ghows
The values of the missing-mass cuts were determined bjhe present data, corrected for experimental acceptance. Fig-

Monte Carlo simulations. The pion-data cut was placed atire 4b) is for 16 GeVt beam(reproduced from Fig. 5 in
0.664—1.089 Ge\’. The kaon-data cut was placed at

0.947-1.405 Ge\¢?, which encompassed both theand the
3% An event was accepted asdap event if one of two L @
possible hypotheses of kaon-pair combinations had effective
masses of 1.0180.0125 GeV¢?. If either of the pairs or
both passed this cut then the event was considersid 5K ~
candidate. The mass spectra of the sedéii& ~ pair, when
the first lies within the¢ mass band, are shown in Fig. 1. A
second¢ peak is evident at approximately 1.02 Ge¥in
the pion beam data, but the low-statistics kaon data do not
show a similar peak. The events in Fig. 1 that lie outside the
¢ peak constitute thebK *K ™~ yield and four-kaon back-
ground.

Figure 2 shows the missing-mass spectra fordiefinal
states, with the missing-mass cut removed. Enhancements
corresponding to exclusive production are evident at the neu- 050 55 10 5 20
tron andA/3° masses forr~ and K~ beams, respectively. o ,
The pion-beam data yielded 130 events which passed all Missing Mass (GeV/c”)
cuts, but the kaon-beam data provided only eight.

Monte Carlo simulations were performed to determine the FIG. 2. The missing-mass spectra afifp identification for(a)
data cuts and the experimental acceptance. The Monte Canidon beam data, angh) kaon beam data.
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FIG. 3. The uncorrecteg¢ effective masgsolid line) and the } 2000 — <C)
calculated acceptandeolid points. § -
. . o 2000 |
Ref.[10]), and Fig. 4c) is for 22.5 GeV¢ beam(reproduced Q r
from Fig. 1(@) in Ref. [1]). Each measurement shows an 2 500 L
enhancement around 2.1-2.4 Ge¥/A partial-wave analy- o N
sis of the 22.5 Ge\¥ data yielded thef ,(2050, f,(2300, ) o lle v v el
2 2.2 2.4 2.6 2.8 3

and f,(2340 glueball candidates. However the paucity of : )
events in the present data sample precludes such an analysis

at 8 GeVt. Therefore, one cannot be certain that the same vy Mass (GG\//C >
states are excited at all energies.

The nonresonant background in thgp yield was re- FIG. 4. Acceptance correcteflp mass spectra fofa) this ex-
moved by fitting a third-order polynomial to th¢K K™ periment,(b) Armstronget al, and(c) Etkin et al. The curve in(c)
background outside the peak in Fig. 1. ThepK "K ™ con-  depicts the results of the published partial-wave analysis.
tribution to theg¢ peak was then subtracted. The four-kaon
contamination was removed from thgeK "K~ data in a
similar fashion. The data on either side of thiepeak in a
plot of the K"K~ effective mass, where all four combina-
tions of theK ™K~ were plotted, were fit by a third-order , - )
polynomial. Thee contribution was removed by subtract- from the preV|ous¢<¢12exper|ments. Etkiret al. [1] found
ing twice the number ofp¢ events found after the back- P=9.5+0.10 (GeVéc) , and Armstronget al. [10] found
ground subtraction. This method was used to compensate f&—=12=2 (GeVic) .
the nonuniform background shape. The uncertainty in deter- The data in Table | have been used to extract the r&jos
mining the background shape dominates the uncertainty iandR;. The ratioR,=10.3=3.3 is consistent with the 22.5
the extracted yields. Fd¢~ production of¢¢ only an upper ~ GeVic value[5], R;~10. What has been lacking until now is

change. The piop—beam¢ production data were fit to the
form do/dtce "', wheret’=|t—t,,,|, resulting in the value
b=8.53+1.26(GeV/c) 2. This result is similar to the results

limit was determined. a similar comparison at the same beam energyRiarThe
data in Table | yield the valuR,>7.2. An upper limit forR,
IV. RESULTS AND CONCLUSION can be obtained by combining the present result for the kaon

_ _ cross section foryK "K ™ production with theg¢ results of
The results of the present experiment are summarized iBaupillier et al. [11]. Using a 8.25 Ge\W beam they mea-

Table |. The cross section for the integrated yigfthss<2.5  sured a cross section of 78200 nb, integrated over a simi-
GeV/lc?) and standard deviation are shown, where a correc-

tion has been applied for the unseen decay modes ap te
well as theA and 3° for reactions(3) and (4). The cross
section for reaction{3) is consistent with that measured for
the ¢gA final state, 70&:200 nb[11], provided the strength

TABLE |. Integrated cross sections.

Cross section

to the3° state in the present experiment is small. The cros':'.?eaCtlon (nb)
section for reactionfl) is larger than the value obtained at 16 =~ p— ¢¢n 108+26
GeVic, 40+10 nb[10], and the value obtained at 22.5 GeV/ 7 p—¢K*K™n 1112227
C, 23+2 nb[18]. K~ p—ppA/SO <691
Thet dependance of reactidf) indicates that it is domi- K —p— gk K~ A/3° 7500 = 2520

nated by peripheral production of th#p, and one-pion ex-
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lar mass range for thed¢ pair. This yields a ratio of 10.7 consistent with the glueball identification fof,(2050,
+4.7. However, since only thépA final state was measured f,(2300, andf,(2340.
in that experimentno 3, production), this is an upper limit
on R,. The combined upper and lower limits f&, allow
one to conclude thaR;~R,. ACKNOWLEDGMENTS
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