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Solar and atmospheric neutrino oscillations with three flavors
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We analyze the solar and the atmospheric neutrino problems in the context of three Qavor

neutrino oscillations. We assume a mass hierarchy in the vacuum mass eigenvalues p, 3 )) pz & p, z,
but make no approximation regarding the magnitudes of the mixing angles. We fj.nd that there are
small but continuous bands in the parameter space where the constraints imposed by the current
measurements of Ga, Cl, and Kamiokande experiments are satis6ed at the lo level. The
allowed parameter space increases dramatically if the error bars are enlarged to 1.6o. The electron
neutrino survival probability has a different energy dependence in different regions of the parameter
space. Measurement of the recoil electron energy spectrum in detectors that use v-e scattering may
distinguish between some of the allowed regions of parameter space. Finally we use the results
for the parameter space admitted by the solar neutrinos as an input for the atmospheric neutrino
problem and show that there exists a substantial region of parameter space in which both problems
can be solved.

PACS number(s): 14.60.Pq, 95.30.Cq, 96.40.Tv, 96.60.Jw

I. INTRODUCTION

Aci ——2.55 + 0.25 SNU.

The water Cherenkov detector at Kamioka, with a
threshold of 7.5 MeV, can detect only the neutrinos &om
the upper end of the B spectrum and the Kamioka result
[5] is

y = = 0.51 + 0.07,
+Kam SSM

(2)

which is the ratio of the observed neutrino flux to that
predicted by the SSM. The gallium experiments SAGE
and GALLEX, with energy threshold of 0.233 MeV, can
detect the neutrinos coming &om the dominant p-p reac-
tion (E„(0.42 MeV) as well as the neutrinos from Be
and B reactions. Their measured rates are [6,7]
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The solar neutrino problem has been an interesting
and intriguing phenomenon in neutrino physics for a long
time. The diferent solar neutrino experiments observe
differing &actions of the neutrino flux predicted by the
standard solar model (SSM) [1,2]. The oldest of the solar
neutrino experiments is the 3"Cl experiment at Homes-
take. Its energy threshold is 0.814 MeV and it can de-
tect the neutrinos from Be (E = 0.862 MeV) and B
(E„(14.02 MeV) reactions. In the standard solar model
(SSM) of Bahcall and Pinsonneault [3], the capture rate
in the Cl experiment is predicted to be 8.0 + 1.0 so-
lar neutrino units (SNU). However, the measured rate is
only [4]

QS~GE ——69 + 11 6 6 SNU,

RGAggEX 79 + 10 + 6 SNU)

and the average is

BG g
——74+8 SNU

as opposed to the SSM prediction of 131.5 SNU.
A rough model independent analysis of these results

indicates that the low energy neutrinos &om the p-p re-
action suffer very little suppression whereas the higher
energy neutrinos are suppressed to a large extent [1,8].
Recently it was pointed out that, if neutrinos have no
properties beyond those in the standard electroweak
model (i.e. , if they are massless), the measurement of
Kamiokande, together with that of the Cl experiment,
implies that the Be neutrinos must be suppressed by
more than 90%%up [9,10].

In addition there exists an anomaly in the ratio of
observed muon neutrinos to electron neutrinos in the
earth's atmosphere. These neutrinos are produced &om
the decay of m+ and K+ which are in turn produced
by cosmic rays interacting with the atmosphere. The
ratio is roughly 2 as suggested by the Monte Carlo cal-
culations whereas both Kamioka [ll] and IMB [12] re-
port that the ratio is only about half of that predicted
by the Monte Carlo calculations. The results for this
ratio are also available from three other groups using
tracking detectors, namely, the NUSEX [13],Frejus [14],
and SOUDAN-II [15] Collaborations. The data from the
NUSEX Collaboration seem to be in agreement with the
no-anomaly situation. A similar conclusion is obtained
&om the Frejus data if all the contained events are con-
sidered. However, if only fully contained results are taken
into consideration, there is a suppression. The SOUDAN-
II results are consistent with the results obtained with
water Cherenkov detectors. It should be noted that the

0556-2821/96/53(5)/2809(11)/$10. 00 53 2809 1996 The American Physical Society



2810 NARAYAN, MURTHY, RAJASEKARAN, AND SANKAR 53

statistics in the tracking experiments is not as high as in
the water Cherenkov experiments. Evidently any solu-
tion of the solar neutrino puzzle must incorporate simul-
taneously a solution of the atmospheric neutrino problem
[16].

A satisfactory solution to the solar neutrino problem
should be able to explain not only the total deficit that
is observed but the differential suppression observed at
low and high energies. Solutions based on astrophysics
or nuclear physics ascribe the deficit to smaller solar
core temperature or smaller cross sections for the nu-
clear reactions taking place in the sun. Recent model-
independent analyses suggest that these solutions can-
not describe the results of Cl and Kamiokande simul-
taneously [2,8]. Particle physics based solutions attempt
to account for the deficit by assuming that the neutri-
nos have interactions beyond those of the standard elec-
troweak model. If the neutrinos possess small mass, an
electron neutrino can oscillate into a neutrino of another
flavor [17]. The amplitude of oscillation is a function of
the mass squared differences, the mixing angles between
neutrino flavors, and the neutrino energy. If one of the
mass square differences is of the order of the effective
mass squared arising &om v, -e interaction, the matter
effects can enhance the mixing to its maximal value, and
the amplitude for v oscillating into another flavor will be
very large [18]. This is the so called Mikheyev-Smirnov-
Wolfenstein (MSW) effect.

Matter-enhanced oscillations have been studied thor-
oughly in the scenario where only two flavors, v, and
v„, mix with each other [19—21]. The vacuum oscillation
here is controlled by two parameters, the mass square
difference b'2i ——m~2 —m2i and the mixing angle u. The
matter effect is taken into account by adding to the mass
squared of v, the term

A(r) = ~2 Gp n, (r)2E,

(P„)= cos tucos w + sin csin
—xi2 cos 24) cos 2(d~,

where u is to be evaluated at the point of produc-
tion and x&2 is the probability of a nonadiabatic jump
between the matter-dependent mass eigenstates. If the
variation of the solar density in the resonance region is
slow enough, the adiabatic condition

b2g sin 2~

EP "+~„, cos 2u

is satisfied, the matter-dependent mass eignestates evolve
adiabatically, and there are no transitions between them.
If (8) is not satisfied, then there will be nonadia-
batic transitions between the two matter-dependent mass
eigenstates in the resonance region and the probability
of this jump has the general form exp( —C/E). The term
C has dimensions of energy and is some function of b2~,
u, and the derivative of the solar density. The expres-
sions for C for various density profiles are tabulated in
Ref. [22]. For linear density variation in the resonance re-
gion, the jump probability is given by the I andau-Zener
formula

xi2 = exp
2

The predictions for the rates of various experiments are
obtained by convoluting the SSM neutrino fluxes with
the expression for survival probability in (7). A fit to
the data &om " Ga, Cl, and Kamiokande experiments
yields solutions in two regions in the 82i-sin 2~ plane,
one with small vacuum mixing and one with large vacuum
mixing:

82i 6.1 x 10 eV and sin 2~ 0.0065,

b2i 9.4 x 10 eV and sin 2u 0.62.

which is proportional to the electron number density in
the Sun, n, (r), where r is the radial distance from the
center of the Sun. The maximum value of A occurs at the
core and is roughly 10 E eV, where E is the neutrino
energy in MeV. The mixing angle w in the presence of
matter is given by

b2i cos 2(d —A
cos 24)~ =

Q(h2i cos 2w —A) + (h2i sm 2(u)
(5)

The MSW resonance condition is

A = b2i cos 2ur. (6)

Note that, if the resonance condition is to be satisfied,
A, „)b'2i cos2m, which implies that ~ ) m/4 at the
core. At resonance it becomes m/4 and approaches its
vacuum value after passing through the resonance.

The probability for an electron neutrino produced in
the solar core to be detected as an electron neutrino on
earth, averaged over the time of emission and the time of
absorption, is given by

In the case of the small mixing angle solution, the reso-
nance occurs for neutrinos with energy greater than 0.6
MeV. Therefore, the p-p neutrinos (whose maximum en-
ergy is 0.42 MeV) are unaffected whereas the neutrinos
with energy greater than 0.6 MeV are almost completely
converted into v„. But the measurement of Kamiokande
shows that the neutrinos with energy greater than 7.5
MeV are suppressed by only a factor of 0.5. This can
be accommodated through the nonadiabatic jump xq2
in (7). If t 10 MeV, or equivalently h2i sin 2u
4 x 10 eV, then xi2 is negligible for energies less than
5 MeV, but becomes appreciable at higher energies, and
(P„) satisfies Kamiokande constraint. The energy de-
pendence of (P„) in this case is precisely of the form
that is required to satisfy the data from the three solar
neutrino experiments. In the case of the large angle so-
lution, the nonadiabatic effects are totally negligible and
the (P ) is about 0.55 below 0.5 MeV and slowly falls to
about 0.35 around 5 MeV, after which it remains almost
independent of the neutrino energy.

In the case of two flavor oscillations, the area of the pa-
rameter space which can satisfy all the three constraints
at the lo. level is very small. Especially in the case of the
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small angle solution, the requirement that the resonance
should occur around 0.6 MeV uniquely fixes the value
of b2i. The requirement that the Be neutrinos should
be completely suppressed and that the high energy B
neutrinos should have a suppression of about 0.5 deter-
mines the product b2i sin 2~ almost exactly. Therefore
there is very little leeway in the allowed values of b2i
and sin 2u. An appreciable region of parameter space
is allowed only at the 95'%%uo C.L. (or the 2.4 o level). In
addition, this simple picture is inadequate to simultane-
ously explain the solar and atmospheric neutrino deficits
since the mass squared differences required are in vastly
different regimes. To explain the atmospheric neutrino
anomaly on the basis of two flavor vacuum oscillations,
one requires a mass squared difference of the order of
10 —10 eV, with a large mixing angle. This must
be compared with the best fit to the data in the case of
the solar neutrino problem given in Eq. (10). Therefore
one has necessarily to consider the scenario in which all
three neutrinos participate. This of course is also a more
realistic situation since the experiments at the CERN
e+e collider LEP have already pinned down the num-
ber of light neutrino generations to be three.

Three flavor oscillations were considered previously
[23—25]. However, the uncertainties in the gallium ex-
periments have come down significantly in recent times
and the parameter region allowed by the current data
will be much smaller. Recently Joshipura and Krastev
[26] have attempted a complete solution of the solar and
atmospheric neutrino problems in the three generation
&amework. They present a combined analysis of these
two problems in the framework of the MSW effect and
indeed show that there exists a parameter space in which
both sets of data can be reconciled. Giunti et at. [27]
analyse these two problems and present a solution based
on maximally mixed (in vacuum) three generations of
neutrinos. This latter analysis is, however, a rather fine
tuned solution since the parameter space allowed is rather
tiny.

In this paper, we analyze the solar neutrino problem
by considering the oscillations between the three neutrino
flavors. The analysis is done with no particular model of
neutrino masses and mixings assumed. The analysis is
similar in spirit to that of Joshipura and Krastev [26].
We carry their analysis further and not only map out
the full parameter space, but also discuss the average
survival probability and recoil electron spectrum. In ad-
dition we also discuss a nonstandard solution where no
resonance occurs but nevertheless there is a parameter
space in which all the three experiments discussed earlier
can be reconciled. We also do not make any assumption
about the evolution being adiabatic and take into account
nonadiabatic effects. These effects may be ignored, how-
ever, in parts of allowed parameter space. In the three
generation case the neutrino oscillations are determined
by two mass differences and three mixing angles neglect-
ing the CP-violating phase. One of the mixing angles is
irrelevant for the solar neutrino problem [23,24] while be-
ing relevant to the atmospheric neutrino problem and one
of the mass differences is constrained by the atmospheric
neutrino deficit. Therefore the solar neutrino oscillations

in the three flavor case are dependent on three parame-
ters. Because of the additional parameter, a larger region
of the parameter space is allowed by the solar neutrino
data compared to the two generation scenario. In Sec. II,
we present the theoretical &amework for our analysis of
the solar neutrino problem and in Sec. III we present the
numerical results for the solar neutrino problem in con-
junction with the atmospheric neutrino problem. The
last section consists of a brief summary and discussion.

II. THREE NEUTRINO OSCILLATIONS
IN MATTER—A PERTURBATIVE ANALYSIS

In this section we discuss the mixing between three
flavors of neutrinos and obtain the probability for a v
produced in the sun to be detected as a v, on earth.
The three flavor eigenstates are related to the three mass
eigenstates in vacuum through a unitary transformation:

ve vi
v~ —U v2
v~ v3

U" =
t

chic~

( —Syc~

Cps~ 8y
c 0

—sos~ cy
(Z2)

where sy = sing and cy = cosP, etc. The angles w and
P can take values between 0 and m/2. Note that one of
the fiavors decouples if either u or P is zero and we have
a two flavor scenario. As mentioned earlier the approach
here is similar to that of Joshipura and Krastev [26] who,
however, assume that the mixing angle between the sec-
ond and third generations, @, is small and hence can be
neglected. We wish to emphasize that this is not an as-
sumption and in fact @ can be arbitrary and the result
for survival probability of the electron neutrino is inde-
pendent of this [23,24]. In fact the solution of the atmo-
spheric neutrino deficit requires g to be rather large. To-
gether, solutions of the atmospheric neutrino deficit and
the solar neutrino problem determine the mixing matrix
U completely apart from the CP-violating phase.

The masses of the vacuum eigenstates are taken to be
pq, p2, and ps. In the mass eigenbasis, the (mass) ma-
trix is diagonal:

where the superscript v on the right-hand side (RHS)
stands for vacuum. The 3 x 3 unitary matrix U can be
parametrized by three Euler angles (ur, P, vP) and a phase.
The form of the unitary matrix can therefore be written
in general as

= Uphase U23 (@)+$3 (Q) U] 2 (~) y

where U;z(0,~) is the mixing matrix between the ith and
jth mass eigenstates with the mixing angle 0,.~. It has
been shown that the expression for electron neutrino sur-
vival probability, integrated over the time of emission and
of absorption, is independent of the phase and the third
Euler angle @ [23,24]. They can be set to zero without
loss of generality and we have the following form for U:
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(p', o o)
0 0 ps)

(0 o 0)
211+

(o o a„)
where b21 ——pz —pi and b31 ——p, 3

—pi. Without loss
of generality, we can take b21 and b31 to be greater than
zero. Neutrino oscillation amplitudes are independent of
the first term so we drop it from further calculation. In
the flavor basis the (mass) matrix has the form

M„=UMUt0
—~31M31 + ~21M21) (14)

where

( st O sqsq f
M31 —— ' 0 0 0

( Bycy o cy )
2 2cps cps~ c~

M21 = cystic( c

( —Cy By 8 —By 8~ C~2

—cysyB
—SyS~C~

Bys )
(15)

As in the two flavor case, matter effects can be included
by adding A(r), defined in (4), to the e-e element of M2.
The matter corrected (mass) matrix in the flavor basis
is

M~ = ~31M31 + ~21M21 + AMP) (i6)

where

(1 o 0)000
o o o)

To calculate the evolution of a neutrino in matter we
have to find the matter corrected eigenstates by diago-
nalizing M . For arbitrary values of b31 and b21) it is
cumbersome to find the eigenvalues and eigenvectors of
M algebraically. However, the eigenvalue problem can
be solved using perturbation theory, if the mass differ-
ences have the hierarchy b31 )) b21. This assumption
is plausible in light of the observed atmospheric muon
neutrino deficit. Recently Kamiokande analyzed their
atmospheric neutrino data, assuming that the deficit is
caused by the oscillation of a v~ into another flavor.
Their analysis assumes mixing between only two flavors
(v„e+ v, or v„~ v ). For both cases their best fit
yields a mass square difference of the order of 10 eV
[11]. In our analysis we take hsi to be 10 eV . Thus
we have b31 much larger than A „and hence the oscil-
lations involving the third generation are not influenced
very much by the matter effects. In order for the mat-
ter efFects to be significant (as necessitated by the solar
neutrino problem), the other mass difFerence in the prob-
lem, b21) should be such that the resonance condition
is satisfied for some values of parameters. This means
b21 A . Thus we work in an approximation where

A gg 631 ~

In this approximation, to the zeroth order, both the
matter term and the term proportional to b21 can be
neglected in Eq. (16). Then M = hsiMsi, whose eigen-
values and eigenvectors are

(cy1
0

&
—'y)

(0)
0; 1

0

( Cy

0;

Treating AM~ + h2iM2i as a perturbation to the dom-
inant term in M and carrying out degenerate pertur-
bation theory, we get the matter-dependent eigenvalues
and eigenvectors:

( cy c~
ml) —8 )—By C~

, ( ~- -- 1
m2 ~no )

, ("-)
(19)

E 'y- )
The above eigenvectors are the columns of the unitary
matrix U which relates the flavor eigenstates to matter-
dependent mass eigenstates v, through the relation

ve vi
v~ = U v2 (2o)

m
V7- V3

The matter-dependent mixing angles can be expressed in
terms of the vacuum parameters and A as

821 Sin 2&
tan 2u

bgi cos 2(d —A cos (21)

sing = sing 1+ cos
A

~31

cos P = cos P 1 — sin
A

~31

(22)

The matter-dependent eigenvalues m; are given by

mi -——Acos icos u + b2i sin (w —u ),
m2 ——A cos P sin w + 82i cos (w —~ ),
m', = b» + A sin' P = h». (23)

A(r) cos P = h2i cos2(u (24)

can undergo a resonance if the values of h2i, P, and
~ are such that the resonance condition
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(P..) = ). I&.";I' U., (25)

I(v,
"

I
v ) I

is the probability that the jth matter-
dependent eigenstate evolves into the ith vacuum eigen-
state. As in the two flavor case, if the adiabatic approx-
imation holds, then

1(v,
"

I v, ) I' = ~v.

We introduce the jump probabilities

(26)

is satisfied for some I [22]. Note that this condition is

very similar to the resonance condition in the two flavor
case [Eq. (6)]. The new feature here, which occurs due
to the mixing among the three neutrino flavors, is the
presence of the second mixing angle P in the resonance
condition. This dependence on P leads to a larger region
of allowed parameter space in the three flavor oscillation
scenario as will be shown in the next section. Since b2q,

A(r), and cos2 P are all positive, a resonance can occur
only if cos 2id is also positive, or if ~ ( 7r/4.

In the three flavor case, the electron neutrino survival
probability is given by

III. RESULTS

In this section we discuss the results of the numeri-
cal analysis first for the solar neutrino problem and us-

ing that we map out the region in the parameter space
which contains the solution to the atmospheric neutrino
problem.

A. Solar neutrinos

We analyze the expression for (P„) in (28) and find
the ranges of h21, w, and P allowed by the three solar
neutrino experiments. Since ha~ )) A, we see from
the expression for P in (22) that the angle P is almost
unaffected by the matter effects. However, u can be
significantly different from u and can undergo resonance
if the resonance condition in (24) is satisfied. Since this
resonance condition depends on P, in addition to h21 and
w, a larger region of parameter space satisfies the three
constraints from the experiments.

To search for the regions allowed in the three parame-
ter space b21, u, and P, we define the suppression factors
observed by the three types of experiments,

x;, = I(v,"-

I v,. ) I' for i g j

(P~~) = COS Q COS Q~ (Cos CtJ COS ld~ + S1I1 (d S1I1 (d~)

+ sin /sin

—XI2 COS ICOS Q~ COS 2(d COS 2ld~.2 2 (28)

For xq2 we use the formula

1 —exp[ —2,~, ]
(29)

where p is defined in Eq. (8) and

E= 1 —tan (3O)

for an exponentially varying solar density [22]. We use
this form for the jump probability since it is valid for
both large and small mixing angles. In the extreme non-
adiabatic limit x~2 ~ cos u and when pE )& 1 we
have the usual Landau-Zener jump probability given by
x12 ~ exp[ — ~z ] as expected. In fact, for much of the
allowed parameter space, this form can be used without
any appreciable change in the results obtained.

to take into account the nonadiabatic transitions, if the
adiabatic condition does not hold.

Because bsi )) A „,h21, the third eigenvalue, both in
vacuum and in matter, is much larger than the other
two eigenvalues. Nonadiabatic effects are significant
only if the eigenvalues of two states come close together
[28]. Therefore the jump probabilities involving the third
state, x&3 and x23, are expected to be negligibly small.
Thus we have the expression for electron neutrino sur-
vival probability to be

y~ —— ——0.563 + 0.067,
RcaSSM

+Cl = 0.318 + 0.051,yC& =
&Ci SSM

y. = '- =0.51+0.07,
+Kam SSM

(3i)

&max

)
y=

dEC Ic (E)o.(E)(P„)(E)

dEOIc (E)o(E).(32)

where the sum over K refers to the neutrino fluxes from
various sources contributing to the process. We also in-
clude the contributions from the CNO cycle apart from
the dominant contributions from the p-p cycle. In the
case of Kamioka, only the B flux contributes and one
must also take into account the neutral current contribu-
tion arising &om the muon neutrinos interacting with the
detector material. The parameter ranges are then calcu-
lated by putting vetos on y at 10 and 1.60 levels. The
energy-dependent Ruxes were taken from Ref. [3] and the

where the first number refers to the average of the
data given by two experiments namely, GALLEX and
SAGE. The predicted SSM rates for various experiments
were taken from Bahcall-Pinsonneault SSM calculations
[3]. The uncertainties in y, are the sum of the experi-
mental uncertainty in the numerator and the theoretical
uncertainty in the denominator, added in quadrature.

The predictions for yi for the three flavor oscillation
scenario are obtained by convoluting the SSM fluxes and
the detector cross sections with (P„) &om (28). The
expression we use is
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cross sections were taken from Ref. [29].
Figure I shows the allowed values of ~ and P with b2i

varying between 10 eV and 10 ' eV'. Note that the
allowed values of b2i are also determined by the same
veto conditions. In the two generation case it is a stan-
dard practice to plot 82i against sin (2u) since that is
the combination that enters the survival probability. In
the three generation case all possible circular functions
of the mixing angles are possible. Hence we depart from
the standard practice in this paper and plot the angles
themselves. The points refer to the allowed values af-
ter the vetos corresponding to all three experiments are
imposed. The dark squares show the values allowed by
10 uncertainties given in (31) whereas the hollow squares
show the values allowed when the uncertainty is increased
to 1.6a. Figure 2 shows the allowed regions in the P-b2i
plane, with ~ varying between 0 and vr/2 but obeying the
same set of vetos. In Figs. 1 and 2 if we restrict ourselves
to the P = 0 lines (the y axes) we get the known [2] two
flavor solutions for u and b2i. The large extended regions
of the parameter space brought in through the additional
degree of freedom P in the three flavor scenario are shown
clearly in Figs. 1 and 2. For completeness we also plot in
Fig. 3 the allowed range in the ur-b2i plane. Here again
the three flavor scenario provides an enlargement of the
allowed parameter space over that of the two flavor solu-
tion (small regions around the isolated dark patch in the
left and around the end of the dark arm on the right).

The various regions of the allowed parameter space
may be classified as follows: (I) small h2i, small ~, sznall

(2) large b2i, large ~, small P, (3) small b2i, small
~, large P, (4) large b2i, small u, large P, (5) large 62i,
large ~, large P, where the small or large h2i means either
b2i ( 10 eV or b2i ) 10 eV . The first two regions
corresponding to small P in the above classification be-

10 4—

10-6

10 6—

0 10 20 30 40
y(deg. }

50 60

FIG. 2. Allowed regions in P-b2i plane
(with 0 & w & vr/2) at 1cr (dark squares) and at 1.6a (hollow
squares).

long to an approximate two generation situation since
the angle P is small. The one corresponding to small
u is the usual nonadiabatic solution, whereas the one
corresponding to large w is the usual adiabatic solution.
The rest invoke the genuine three generation oscillation
mechanism. In the two flavor scenario, the small angle
solution (corresponding to w small as in case 1 above)
gives the best fit [2]. There the parameter space allowed
at 1' level is very small because the resonance condition

40
10 '—

RJs

30

Q0
(D

20 I I I ~ ~

I I I
I ~

C.

10-6

10

10 6—

4(deg-)
40 60 0 10 30 40

FIG. 1. Allowed regions in P — cu plane (with
10 eV & b2i & 10 eV ) at 1cr (dark squares) and at
1.6a (hollow squares).

FIG. 3. Allowed regions in u-b2~ plane
(0 & P & 7r/2) at lo (dark squares) and at 1.6cr (hollow
squares).
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I I I I I I I
I

I I

— (a)

0.8
— (b)

A

Q
V

0.6

0
0

Energy (Mev)

FIG. 4. Survival probability (P, ) vs E„ for typical val-
ues of P, u, and bsi in the allowed region. The pa-
rameters chosen are (a) bqi —— 4.0 x 10, cu = 2.5',
p = 2.0'; (b) b» = 5.0 x 10 ', ~ = 2.0', It = 16.5'; (c)
b2i ——7.0 x 10, ~ = 1.75', p = 37.5'I (d) Ihi ——2.5 x 10
cu = 35.0', P = 3.0'; (e) bsi = 7.0 x 10, ur = 2.0', P = 30.0';
(f) bsi = 1.0x10, m = 24.5', P = 24.0'; b2i is given in terms
ofeV .

and the nonadiabatic jump factor fix b2i and u almost
uniquely. These values of parameters indicate that the
neutrinos from the p-p cycle sufI'er very little suppression
and those &om Be sufFer almost complete suppression
as will be illustrated soon in the analysis of the survival
probability.

In the three flavor scenario, the resonance condition
[Eq. (24)] and the survival probability [Eq. (28)] are de-
pendent on the second angle P also. The suppression of
the p-p neutrinos depends on the value of P and if this
suppression is significant then the complete suppression
for Be neutrinos can be relaxed. This is one of the im-
portant difI'erences between the three flavor and the two
flavor oscillations.

Figure 4 shows the energy dependence of (P„) for some
representative values of ur, P, and b2i. The curve labeled
(a) corresponds to P = 2'. As there is very little mixing
between the erst and the third generations of neutrinos,
this is in fact an almost two generation case. In agree-
ment with the two generation analysis, there is almost no
suppression of the p-p neutrinos and the Be neutrinos
are almost completely suppressed. The survival proba-
bility at the high energies relevant to Kamioka is almost
a linear function with an average around. 0.5 as one would
expect. Also here the values of w and b2i are small (they
are almost equal to the values obtained in the two fla-
vor case) and the nonadiabatic efFects become important
beyond 2 MeV. Keeping w small, if we increase P in
the allowed region there is a perceptible reduction in the
probability in the p-p energy range and an increase in

0.35
(el Q LJ.& I I I I

f
I I

0.3

g

s. 0.25

A 0, 2
'e
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FIG. 5. Recoil electron spectrum for diferent representa-
tive points of the allowed parameter region. The parame-
ters for the different curves labeled (a)—(f) are the same as in
Fig. 4. The inset shows a comparison of all six cases with the
SSM spectrum (dashed line).

the survival probability of the Be neutrinos [curves (b)
and (c)]. When b2i is increased, however, there is a qual-
itative change in the survival probability profile. In this
range both u and P are allowed to be large. Here also
there is a qualitative change when u is small or large.
For large tu the survival probability is a smooth function
resembling the adiabatic case of the two generation anal-
ysis [curves (d) and (f)] whereas for small w it is almost
a step function [curve (e)] which is like the classic adia-
batic case discussed by Bethe in the two generation case
[19]. One common feature of the large b2i case is that
the p-p neutrinos undergo substantial suppression vary-
ing between 0.6 and 0.5. The resonance also occurs at a
much higher energy than in the small b2i case. Curve (f)
has ~, P, and b2i all large and in some sense it can be
called "most representative" of the three flavor oscilla-
tion scenario because both the mixing angles in this case
are large. In all the above cases, except (e), the average
survival probability above 7 MeV is in the neighborhood
of 0.4 which is what is required by the Kamioka data
and there is no dramatic change from one to the other.
This is not so at low energies where the curves difFer
dramatically. In this sense the Kamioka experiment can-
not distinguish between difFerent theoretical scenarios of
masses and mixings.

One way of experimentally measuring the energy de-
pendence of (P„) is to look at the recoil electron spec-
trum in those detectors that use v -e scattering. In Fig. 5
we have shown the recoil electron spectrum for the six
cases plotted in Fig. 4. Except case (f), they cannot be
distinguished beyond 10 MeV, whereas there are substan-
tial difFerences at low energies. While this energy range
is not completely accessible in Kamioka, it is interest-



2816 NARAYAN, MURTHY, RAJASEKARAN, AND SANKAR 53

ing to note that it may be possible to see this difference
in the experimental recoil electron spectrum in the SNO
[30] and Borexino [31] detectors. Note that in computing
the recoil electron spectrum we have used the spectrum
of B neutrinos as input. This is because the thresh-
old in experiments which can measure the recoil electron
spectrum (such as SNO and Kamioka) is more than a
few MeV's where only this flux matters. The only ex-
ception is Borexino where the threshold is much lower
and there are other contributions below 1.5 MeV. In par-
ticular, the Be neutrino source, which is a li.ne spec-
trum at 0.862 MeV, will show up as a sharp bump in the
recoil spectrum where the height of the bump depends
on the survival probability. A complete absence of the
bump would point to the set parameters as in case (a)
of Fig. 4.

Finally we consider a nonstandard mixing which leads
to a substantial region in the parameter space. We con-
sider a situation where the electron neutrino is coupled
more strongly to the heavier mass eigenstate v2. Obvi-
ously this implies that the mixing angle between the first
two mass eigenstates, u, is greater than vr/4. In the stan-
dard analysis the mixing has to be less than ~/4 so that
the resonance condition is satisfied as can be seen from
Eq. (24). This is true in the two as well as in the three
generation case since the I HS of the resonance condition
is positive for arbitrary P whereas the sign in the RHS
depends on the magnitude of ~. There are no strong the-
oretical reasons not to consider this situation. Because

at core is very close to vr/2, w is then constrained
to be u & ~ & m/2. In fact, for b2i & 10 eV, ~
is approximately vr/2. Since P hardly varies with density
the effective survival probability may be approximately
written as

QP"60-
3

40

20
y(deg. )

40 60

FIG. 6. Allowed regions in +m plane (with 0.4 & C & 6.4)
(dark squares) and at 1.6cr (hollow squares) for the nonstan-
dard solutions.

ical variation of the survival probability (P„) for some
typical values of ~, P, and C in Fig. 7. The curve (a) cor-
responds to small C where nonadiabatic effects are im-
portant while the curve (b) corresponds to large C which
is an almost adiabatic case. We wish to stress that this
is an ad hoc solution but we have analyzed this situation
because there are no strong theoretical reasons to ignore

(P„) = cos /sin u + sin P —xi2 cos Pi cos 2w~, (33)
0.8 I I

I
I I I I I l

where we have retained the jump probability xi2. While
it may appear somewhat unusual to keep the jump prob-
ability when there is no resonance, a plot of the eigenval-
ues clearly shows that the difference between the first two
eigenvalues is not very different from that of the standard
case close to vacuum and one cannot completely discard
the existence of nonadiabatic jumps between mass eigen-
states. However, most of the derivations of the jump
probability assume the existence of resonance and the
profile of the density variation close to resonance. Since
we do not have a handle on this, we assume that the
jump probability is simply given by xi2 ——exp( C/E)—
and treat C as a free parameter of the theory. The sur-
vival probability is then energy dependent as would be
required by the solution to the solar neutrino puzzle. The
resulting parameter space is shown in Fig. 6 for m, P.
The parameter C varies from 0.4 to 6.3 in the allowed
region. If we assume any one of the expressions for the
jump probability discussed earlier, then we will have to
discard small values of C (C & 4) since then the jump
probability becomes very large and unacceptable. How-
ever, in the allowed region, the points corresponding to
small C are very few and there is no substantial change
from the plot shown in Fig. 6. We also show some typ-

0.6

0.4

0.2
0

I I I I I I I l I I

Energy (MeV)
15

I'IG. 7. Typical survival probability profile in the non-
standard case. The curve labeled (a) corresponds to
C = 0.4, u = 55', P = 2' and the curve labeled (b) corre-
sponds to C = 6, u = 89', P = 38'.
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this possibility.
To conclude this section, we note that the solution to

the solar neutrino puzzle fixes the parameter space de-
fined by ~, P, and h2i. While we have actually chosen
the fourth parameter b3i to be 10 eV we might as
well have set the limit b3~ ) 10 eV without afFecting
our results. One therefore requires more inputs to fix the
range of bsi and the angle @ (mixing angle between the
second and third generation neutrinos) which is arbitrary
as far as the solar neutrino puzzle is concerned. The new
input is provided by the analysis of the atmospheric neu-
trino problem which we consider next.

B. Atmospheric neutrinos

In order to 6x the mixing matrix completely we still
need to flx the range of @, which is the mixing angle
between the second and third generation neutrinos, as
this is arbitrary in the solar neutrino analysis. To have a
consistent solution for both the solar neutrino and the at-
mospheric neutrino problems, we need to show that there
exists a range of g in the allowed range of parameters oc-
curring in the solar neutrino problem. The Kamiokande
Collaboration presents its results in the form of the dou-
ble ratio [11]

(34)

N„= „P„„o.„dE + — P„-„-o.„-dE

+ .P,„o.„dE+ „- P;„-cr„-dE, (35)

y P..~,dE+ f P- P;.-a;dE

The numerator of B is the observed ratio of muon type
events to the electron type events and the denominator
of B the Monte Carlo expectation of the same ratio in
the absence of neutrino oscillations. For sub-GeV data
(E ( 1.33 GeV) R = 0.60+t'Os + 0.05 and for multi-GeV
data (E ) 1.33 GeV) R = 0.57+o O7 + 0.07. These two
numbers are consistent with each other and seem to in-
dicate that the suppression of atmospheric muon neutri-
nos is independent of energy. For sub-GeV data there is
no zenith angle dependence whereas the multi-GeV data
show some evidence that B depends on the zenith angle.

In the presence of oscillations, the number of muon
type and electron type events can be written as

cross sections are well known. The energy dependence
of the P;j's is very complicated if the matter effects, in-
cluding those arising &om the density profile of earth,
are taken into account. The matter efFects are very im-
portant for the analysis of multi-GeV data which show
a zenith angle dependence. This analysis is in progress.
Here we consider only the sub-GeV data to keep the anal-
ysis simple. For sub-GeV energies, the matter efFects are
negligible. Hence we can use vacuum oscillation proba-
bilities for P;~'s:

P&j +ji +ji + +j2 +j2 + +j3 +j3
f dh2, 'l

+2U;iU;2U~iU~2 cos
~

2.53 E)
f dbsi l

+2U, iU;sU~iU~s cos
~

2.53

( dhs2 l
+2U;sU;2Uj3Uj2cos

~

2.53 (37)

Ps& + "P~u
] P ) (38)

where

where E is the energy given in units of MeV, b;j are
the mass difFerences in eV, d is the distance of traversal
in m, and the U's are the elements of the vacuum mix-
ing matrix given in Eq. (12). In vacuum the oscillation
probability for antineutrinos is the same as that for the
neutrinos; i.e. , P» ——P~~, P„=P;;, etc. In Eq. (37)
the cosine term containing b2& can be set to unity because
the maximum distance traveled by neutrinos ( 13000
km) is much smaller than the corresponding oscillation
length. Since the sub-GeV data do not have zenith angle
dependence, the cosine terms involving b3q and b32 can
be replaced by the corresponding averages over d. This
is possible only if many oscillation lengths are contained
in the distance traveled by the neutrinos. This sets a
lower limit on the mass difFerence b3q ) 10 eV . It is
interesting to note that the same lower limit is needed
on b3q to satisfy the approximation we made in the solar
neutrino analysis. Since the cosine terms in Eq. (37) are
replaced by their average values, the exact value of b3~ is
immaterial as long as it satisfies the above constraint.

We make one further approximation which simplifies
the analysis considerably. The charged current cross sec-
tions o~ and u„ in general, have difFerent energy depen-
dence. However, it was shown [32] that cr„o., and
o.„- o- for E„& 200 MeV. Using all these above ap-
proximations, the expression for B can simply be written
as

+ „P„,o,dE + — P„-;o.-dE, (36)
f [P„,o, + P„-,o;] dE

f P „o„+Pg„oo dE (39)

where P's are the atmospheric neutrino fluxes, P,~'s are
the probabilities for neutrino of flavor i to oscillate into
flavor j, and u s are the charged current cross sections
for the neutrinos of flavor i to interact with the material
of the detector.

The energy dependence of the fluxes and the reaction

r is simply the ratio of the number of electron type of
events to the muon type events if there were no oscil-
lations. Therefore we restrict our attention to the part
of the data satisfying the constraint E ) 200 MeV. The
Kamiokande Collaboration [ll] has given the values for r
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and R for different energy bins. By taking the weighted
average of the results for bins with E ) 200 MeV, we get

p: 0 ~ 523 and R:0 533 0 06 + 0 05 (40)

We fix the range of g by requiring the theoretical value
of R calculated from Eq. (38) to be within lo. and 1.6o.

of the experimental value. The resulting range for g is
shown in Fig. 8, where as usual the full squares show the
1o. veto and the open squares show the 1.6' veto.

A few comments are in order here. As in the two gen-
eration analysis of the atmospheric neutrino problem, we
find that the preferred value of @ is large and around a/4.
This can be checked easily by looking at the conversion
probability P„, in the allowed range of parameters for
the atmospheric neutrino problem. It turns out that this
conversion probability is always less than 20%%uo. Thus the
solution to the atmospheric neutrino problem is mainly
driven by the v~-v oscillations whereas the solution to
the solar neutrino problem is mainly driven by v, -v„os-
cillations at least for small values of P. However there are
large domains of the parameter space where one requires
the full three generation analysis presented here to have
a consistent solution to both the problems.

IV. SUMMARY AND DISGUS SION

We have examined in detail the possible solutions to
the solar neutrino and atmospheric neutrino puzzles in
the realistic three generation framework. There are in
general three mixing angles, one phase from the mixing
matrix, and two mass squared differences which define
the full parameter space. In the case of solar neutrinos
the survival probability for the electron neutrino, even
after taking into account the matter effects, is indepen-
dent of the phase and one of the mixing angles. We also
fix one of the mass squared differences by appealing to
the atmospheric neutrino problem. Thus our parameter

space in the solar neutrino analysis consists of two angles
and one mass squared difference. In our case these are
chosen to be ~, which gives the mixing between first and
second generations, P, which is the mixing between first
and third generations, and b2~, which is the mass squared
difference between the first two generations. The mass
difFerence bsi is fixed to be around 10 2 eV to explain
the atmospheric neutrino problem. We have mapped out
the parameter space (P, u, b2i) by invoking the vetos aris-
ing from the data given by the three solar neutrino ex-
periments. Next we have used these allowed ranges of
parameters from the solar neutrino analysis as input in
the atmospheric neutrino analysis to fix the angle g and
find that there exists a substantial range in this param-
eter which allows a solution to the atmospheric neutrino
puzzle. The numerical calculations necessarily depend on
the bin size for the parameters. We have ensured that the
bin size we have chosen is such that a further reduction
will not change the overall profile of the allowed region.
However, it is conceivable that the rough edges that one
still sees in parts of the allowed region will be smoothed
out by a further reduction of the bin size.

In conclusion, we have shown that there exists a con-
sistent solution to the solar and atmospheric neutrino
deficit puzzles within the framework of the standard
MSW mechanism based on the set of all available mea-
surements of the solar neutrino fluxes. The full analy-
sis involves five parameters which we have mapped out
by accommodating the solar and atmospheric neutrino
fluxes seen by the present set of experiments. While the
allowed region in the parameter space is still large, these
can be constrained further by measuring the distributions
of recoil electron energies in solar neutrino detectors that
use v-e scattering. Although the threshold energy at the
Kamioka detector is rather too high for this purpose, the
SNO and Borexino detectors may be effective in narrow-
ing the parameter space. Finally we would like to remark
that the analysis of solar and atmospheric neutrino prob-
lems presented here is exploratory in nature. This is so
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since with time the errors are bound to change, which in
turn will affect the vetos imposed by us at lo and 1.6a
levels. Nevertheless we believe there is already sufBcient
indication that a robust solution of both problems is pos-
sible within the framework provided by the mechanism
of neutrino oscillations with three generations.

After finishing this work we learned that a similar anal-
ysis was carried out by Fogli, Lisi, and Montanino [33].
Their results agree with ours.
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