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The spacings between bound-state levels of the Schrodinger equation with the same principal
quantum number N but orbital angular momenta ! differing by unity are found to be nearly equal

for a wide range of power potentials V = Ar”, with En; = F(v,N) — G(v,N)L

Semiclassical

approximations are in accord with this behavior. The result is applied to estimates of masses for
quarkonium levels which have not yet been observed, including the 2P cc states and the 1D bb

states.

PACS number(s): 12.39.Jh, 02.30.Em, 12.39.Pn, 14.40.Gx

I. INTRODUCTION

The properties of heavy quarkonium (c¢ and bb) lev-
els have provided useful insight into the nature of the
strong interactions. At short distances these interactions
appear to be characterized by a Coulombic potential as-
sociated with asymptotically free single-gluon exchange
[1], while at large distances the interquark force is con-
sistent with a constant, corresponding to a separation
energy increasing linearly with distance [2]. An effective
power potential V ~ r¥, with v close to zero, provides a
useful interpolation between these two regimes for ¢¢ and
bb levels when the interquark separation ranges between
about 0.1 and 1 fm [3].

Charmonium (c€) levels have been identified up to the
fourth or fifth S-wave, the first P-wave, and the first
D-wave excitation. (We are ignoring fine structure and
hyperfine structure for the moment.) Six S-wave levels
and two P-wave levels have been found in the Y (bb) fam-
ily. Many additional levels are expected but have not
yet been seen. There are some reasons currently of in-
terest for predicting their positions in a relatively model-
independent manner.

(1) It has been suggested [4,5] that, depending on
its exact mass, the second charmonium P-wave level
[which we shall denote as x.(2P)] could play a role in
the hadronic production of the %’(25) state.

(2) The first D-wave level of the bb system, which we
shall call Y(1D), may be accessible to experiments of
improved sensitivity at the CLEO detector, both in direct
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production of the 3D; states via the e*e™ channel and
through electromagnetic transitions from the Y (3S) state
[6]-

Explicit calculations in nonrelativistic quark models of
the masses of the x.(2P) and Y(1D) states have tended
to have very small spreads [6,7]. Any interquark poten-
tial which reproduces the known quarkonium levels is
well-enough determined to leave little room for variation
in predictions of these levels. However, in the course of
examining these predictions within the context of power
potentials V' = Ar¥, with Av > 0, we were struck by a cu-
rious feature: The spacings between levels with the same
principal quantum number but orbital angular momenta
differing by unity are nearly identical for a wide range of
values of v.

The principal quantum number N is that which la-
bels nonrelativistic Coulomb energy levels through the
Balmer formula En; oc —1/N2. 1t is related to the radial
quantum number n, and the orbital angular momentum
lviaN =n,+1(n, =1,2,3,...), where n, —1 =n
corresponds to the number of nodes of the radial wave
function between r = 0 and co. Our result amounts to a
formula for levels En; linear in | for a given N:

ENl =F(V,N) —G(I/,N)l (1)

with G(v,N) > 0 for » > —1 in accord with a much
more general result which specifies the order of levels
for fixed N as a function of ! [8]. This general result is
that G is positive for any potential whose Laplacian is
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positive everywhere outside the origin. We investigate
this general case first in Sec. II, turning to the special
case of power potentials in Sec. II1. We apply the results
to specific quarkonium cases in Sec. IV, while Sec. V
summarizes. Some proofs of identities are given in three
appendices.

II. POTENTIALS WITH POSITIVE LAPLACIAN

We consider the Schrodinger equation in appropriate
dimensionless units (A = 2u = 1, where u is the reduced
mass), for a spherically symmetric potential V (r):

[—A + V(T‘)]‘I’N[(l‘) = ENI\I’NI(I'). (2)

Potentials with positive Laplacian AV > 0 play a spe-
cial role in quarkonium physics. First, all potentials used
to fit the bb and c¢ spectrum have positive Laplacian
(except for spurious pathologies when one expands the
potential in powers of the strong coupling constant at a
given scale). It is in fact very natural to take potentials
with positive Laplacian because this property is a kind
of expression of asymptotic freedom: If we say that the

force between a quark and an antiquark is F = —a(r) /72,
asymptotic freedom requires that a(r) be an increasing
function of r. Writing F = —dV/dr, saying that «o(r)
increases is equivalent to

d ,dV

—r*— >0 3

ar dr ’ (3)

which means that V has a positive Laplacian. If this is
the case we have [8], for a given multiplet,

Eni—1> Eny > Eniy (4)

for N >3,1>1.

Very soon after the discovery of this property, Baum-
gartner [9] proved the following theorem.

Define

Ry = —r——— (5)

Then

I N?2-—-(+1)2
>
RN,I = l+ 1 N2z _ 2 ) (6)

if V.= —(1/r) + Av, with Av > 0, X sufficiently small.
Notice that the right-hand side of (6) is always less than
unity. So (6) holds for perturbations of a Coulomb poten-
tial. It is not known if this inequality also holds outside
the perturbative regime. Our belief is that it does hold,
but the proof must be rather complex. The perturbative
proof is based on the equation

laj 1 (Eng-1— Enyg) — (1 +1)of (Eny — Enyta)

2l

| aveukdr o
0

where up; is a pure Coulomb wave function, and
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407 =(1+1)"2-N"2 (8)

For AV > 0, the inequality (6) follows from (7) and (4).
In fact, inequality (6) would also hold for a potential
with purely negative Laplacian, since both (7) and (4)
are reversed. The proof of (7) will be given in Appendix
A. What is important is that this equation shows that
Baumgartner’s result [9] cannot be improved, because
it is saturated by a potential v whose Laplacian has its
support concentrated at the zeros of u, ;. Such a poten-
tial is easy to construct: It is made of piecewise shifted
Coulomb potentials. The resulting overall potential is
not concave, but can be made so by a correction of order
A2 (X being the coefficient of v), for example by joining
pairs of Coulomb segments by linear pieces tangent to
each.

Even if one believes that (6) holds for nonperturbative
situations, it is a rather disappointing result for practical
applications. For instance, using the “particle physics”
spectroscopic notation, we get

Ess —Ep 5 )
Esp— Eip ~ 16’

while, as we shall see in the next section, this ratio can
be very close to unity. On the other hand, no improve-
ment is possible. Even the very simple-minded potential
—(1/7) + Ar gives

Ess —Ep 1

_— 10
E;p — Eip 2 (10)

for A — 0, as shown in Appendix A, and we have checked
numerically that for finite A this limit is approached
smoothly. Therefore, to make progress, we should use
a more restricted class of potential, the power potentials,
which are known to give excellent fits of the heavy quark-
antiquark spectra [3].

III. THE CASE OF POWER POTENTIALS

If V(r) = e(v)r¥, where £(v) is the sign function and
—1 < v < 2, one finds that Ry is always very close to
unity, to summarize briefly this section. The evidence
comes from indications from semiclassical formulas valid
for large quantum numbers, analytical investigations in
the neighborhood of ¥ = —1 and 2, and explicit numerical
calculations of energy levels for small quantum numbers,
shown in Fig. 1. For the purpose of this figure, in order
to obtain a smooth limit as ¥ — 0, we have represented
the Schrédinger equation as

[(=(1/2)A+ (r" = 1)/v]¥n (1) = En1¥na(r), (11)

and levels are labeled by the radial quantum number
n, = N — 1 and the orbital angular momentum ! =
(0,1,2,3,...) = (S,P,D, F,...).

For power potentials, semiclassical formulas are ex-
pected to hole for N — oco. However there are several
regimes depending on whether ! stays small compared to
N or, on the contrary, N — ! stays small. In the latter
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case two of us [10] have shown that Ex ; depends asymp- . v| —v/(v+2) v
totically only on the combination N — I(1 — 1/y/v + 2). E(n,l) ~e(v) (7) (1 + 5)
In the former case N — oo, ! finite, En; depends on 20/ (v42)
N —1/2, the same combination as in the case of the har- x |1+ 1 +(n+ 1 Vo) (12)
monic oscillator, as shown by one of us and Quigg [11]. 2 2

An exhaustive study of the various cases has been made
by Feldman, Fulton, and Devoto [12]. We shall not give in

ii- 1 , | finite [11], 0 :
the text the refined formulas obtained by these authors. (i-a) n large nite [11], 0 < v < o0

(A further refinement is given in Appendix B.) We shall 2v/(2v+2)
i . . I'(3/2+1/v) 11
content ourselves with the leading terms. Here we express E(nd) ~ [2¢y/r—t—T"T  n+-—-= .
energies in terms of the number of nodes n = n, — 1 = F+1/v) 2 4
N —1—1 and the angular momentum [.- We have, defining (13)
E(N,l) = E(n,l), the following cases.
(i) ! large, n finite, —2 < v < oo: (ii-b) n large, [ finite [11], -2 < v < 0:
J
v/(v+2)
. r(1-1/v) 1 (14+v—20\11*
N~ — — 1 - _Ipn--|—- . 14
E(n.0) {2|”lﬁr(—1/2 1 "2\ 250 (14)

These formulas exhibit very smooth behavior of the energies as functiors of n and / and hence N and . Further
support for the smoothness in [ for fixed n is given in Appendix B, because [E(n,1)]*+?)/* is a “Herglotz” function
of (I +1/2)2 for v > 0.
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In case (i), for I — oo, n finite, one can write a systematic expansion of the energies in inverse powers of I 4 % [13].

The first terms are
v/(v+2) 2v/(v+2)
- v\ ? 2+v 1
Em) = (X crvp 2
(m,1) ( 2 , \"T2

n+1/2 v(v —2)

2v
x<1 +
{ +\/V+2l+1/2

Notice that this expression becomes exact for v = 2. In
Appendix B we show that (15) can be used to improve
the Feldman-Fulton-Devoto [12] asymptotic expression
for large ! in a rather impressive way. Equation (15)
yields the behavior of Ry for I = oo, N — [ finite:

rv=22% 4-3Vv+2-v
6(2l+1) (v +2)(Vv +2+2)

+0 (gﬁ%) : (16)

Ry;~1+

This expression shows that Ry, is indeed very close to
unity for -1 < v <2,aslongas! > 2.

Other limiting cases which can be treated analytically
are v =& —1 and v — 2, for arbitrary n and [.

In the case v — —1 it is sufficient to look at a pertur-
bation of the Coulomb potential by a potential In(r)/r,
since

r” —r~! In(r)

u—l>-1 v+1 7 (17)
Calculations presented in Appendix C give
N+1+1
=" 1
Ry, N1l (18)

for v —» —1.

In the case v — 2, one should, similarly, take a pertur-
bation V' = r2lnr. Then one gets the surprise that the
terms of order v — 2 vanish and

Ry ~1+O0((v - 2)?). (19)

At this point, we see that it may be advantageous to
replace Eq. (16) by

(v—2)2 4-3v+2-v
6(N+1) (v+2)(Vv+2+2)

which preserves the large-! asymptotic behavior and
agrees with (18) for v — —1 and (16) for v — 2.

All this fits perfectly into the numerical calculations
presented in Figs. 2 and 3 for (N =3, | = 1), (N =
4, l = 1), and (N = 4, | = 2). It is striking that the
asymptotic formula (16) agrees quite well with the case
in which n is smallest and [ largest, i.e., N = 4, | = 2.
In particular the asymptotic formula reproduces the fact
that R — 1 is negative for ~ 0.1 < v < 2.

For completeness let us indicate that for v =+ —2, Ry,
tends to +oo. Notice first that, by scaling, Ry, is inde-

RNJ ~ 1+

(20)

12(v + 2)(1 + 1/2)2

[(11 —) (n+ %)2 + ”1—*;] +0 l('z—:“;/‘zz)—rf]} (15)

pendent of the strength of the power potential. We can
always take V = —gr” with (I4+1)% > g > (I—1)?. Then
En, and Epn 41 approach zero as v — —2, while En;_;
goes to —oo. This is because, for a state of angular mo-
mentum [, the limit Hamiltonian is, for v — —2,

d? 1 (+1/2)2—g

—— e = (21)

Hiim = T drz 4r2 r2

The operator —(d?/dr?)—1/(4r?) is known to be positive,
i.e., its expectation value for any reduced wave function
vanishing at the origin is positive. Hence, if g < (I + })?
the eigenvalues of Hyy, are positive. However, for 0 >
v > —2, the Hamiltonian has negative eigenvalues (in
fact infinitely many) and therefore the lowest eigenvalue
has to go to zero for v - —2. On the other hand, for g >
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FIG. 2. Ratios of spacings of levels with the same princi-
pal quantum number in power-law potentials V(r) ~ r” as a
function of v. Solid curve, [E(3S)—[E(2P)]/[E(2P)—E(1D)];
dashed, [E(4S) — E(3P)]/[E(3P) — E(2D)]; dotted,
[E(3P) — E(2D)]/[E(2D) — E(1F)]. Here levels are labeled
by n.(S,P,D,F,...), where n, = N —1 is the radial quantum
number.
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FIG. 3. Ratios of spacings of levels with the same prin-
cipal quantum number in power-law potentials V(r) ~ r*
near v = 2. Solid line, [E(3S) — E(2P)]/[E(2P) — E(1D)};
dashed line, [E(4S) — E(3P)]/[E(3P) — E(2D)]; dotted line,
[E(3P) — E(2D)]/[E(2D) — E(1F)]. Levels are labeled as in
Fig. 2.

I+ %)2 it is known that Hy;y, is not lower bounded, as can
be seen by taking its expectation value with, for instance,
a trial function u = 0 for r < Ry, (r — Rpn) Y2 ¢ (Rpr — 1)
for R,, < r < Rp, O for 7 > Rjpyg, and letting R, and
€ go to zero. This not only proves that the ground-state
energy goes to —oo, but all radial excitation energies do
so as well. If F,, is a finite limiting value of the energy
level of the nth radial excitation, there is a sequence of
energies and wave functions (defined by integration of
the Schrédinger equation from infinity) which approaches
the limit energy and wave function. Let rx be the first
nonzero limit of a node for » — —2. Then taking rp_; <
R,, < Rp < 7, the energy corresponding to the interval
(Rm, Rar) with Dirichlet boundary conditions is higher
than the one corresponding to (rx—1,7%) and goes to —oo,
which is what we wanted to prove. If all nodes approach
zero (which is in fact the case) the proof obviously works,
taking R,, > rp.

The opposite extreme case is v — 00, i.e., the square
well. Then the solutions of the Schr6 equation are Bessel
functions which can be approximated near their turning
point by Airy functions. One gets, for instance,

_ las| = |a2|

lim R = = 0.818709... 22
Jim Breag = ) (22)

where the a; are successive zeros of the Airy function.
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IV. APPLICATIONS TO QUARKONIUM LEVELS

Realistic quarkonium potentials appear to have a
power-law behavior V' ~ r¥, [3], with v not far from zero.
For —0.1 < v < 0.1, R3 is 1.007 + 0.002. Consequently,
one can anticipate that energy levels with the same prin-
cipal quantum number N will depend nearly linearly on
the orbital angular momentum I. We apply this result to
two examples, one in charmonium and one in the upsilon
family.

A. Charmonium 2P states

The 1P levels of charmonium were identified nearly 20
years ago in electric dipole transitions from the ’(2S5)
[14]. Recently they have been studied with great pre-
cision in proton-antiproton formation experiments [15].
Since they lie below threshold for decay to a pair of
charmed mesons, they are quite narrow, facilitating their
observation. The 3P; and 3P, levels, in particular, have
substantial branching ratios to v + J/%.

Recent interest has focused on the possibility that one
or more charmonium 2P states may be narrow enough
to have a substantial branching ratio to v+ %’(25) [4,5].
This suggestion is motivated by a production rate for
1'(2S) in high-energy proton-antiproton collisions [16]
which appears too high to be explained by conventional
QCD mechanisms. It then becomes of some interest to
predict exactly where the 2P levels should lie. If the 3P,
level lies sufficiently low, its decay to DD, though kine-
matically allowed, will be suppressed by a large [ = 2 cen-
trifugal barrier, so that its branching ratio to vy + ¢'(25)
could be non-negligible. The 3P; level cannot decay to
DD; it will be narrow if it lies below the DD* threshold
at 3.87 GeV. Reliable anticipation of the positions of the
2P levels may permit their discovery and study in the
same low-energy direct-channel experiments which stud-
ied the 1P levels so successfully [15].

In order to anticipate the spin-weighted average 2P
mass in charmonium, we need similar quantities for the
35S and 1D levels. The masses of the 33S; and 13D,
states are quoted as 4040 £+ 10 and 3769.9 + 2.5 MeV,
respectively [17]. Assuming hyperfine splittings in the
S-wave levels to scale roughly as 1/N [3], and using the
observed splitting of about 118 MeV between the 135
and 11S, charmonium levels, we expect the spin-weighted
average 3.5 mass to be about 4030 £+ 10 MeV. We must
rely on a specific calculation [18] of fine structure to es-
timate the spin-weighted average 1D mass; the result is
3820 MeV. Thus we predict the spin-weighted 2P mass
to lie around 3925 MeV. This value is sufficiently high
that it is unlikely to lead to appreciable suppression of
the 3P, — DD decay width, since the center-of-mass mo-
mentum is more than 600 MeV /¢, far in excess of typical
values leading to centrifugal barrier suppression. The
prediction of a 2P level near the average of the 35 and
1D levels should be a feature of any smooth potential
which reproduces charmonium and upsilon levels.
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B. 1D states of the upsilon family

Electromagnetic transitions from the Y(3S) to the
x4 (2P) levels, followed by transitions to the Y(1D) lev-
els and their subsequent decays, can rise to characteris-
tic photon spectra [6] to which the CLEO II detector is
uniquely sensitive. It is also possible for the CLEO II de-
tector to scan in energy for the Y(13D;) level, whose
leptonic width is expected to be one or two electron
volts [18]. We expect the spin-weighted Y(1D) mass to
be the same distance below the spin-weighted 2P mass
(10.260 + 0.001 GeV) as the distance between this mass
and the spin-weighted 35 mass. Here we do not know
the hyperfine splitting between the observed Y(3S) at
10.3553 £ 0.0005 GeV and its spin-singlet partner. On
the basis of the range of predictions for the 15 level and
our assumption that hyperfine splittings scale as 1/N, we
estimate the hyperfine splitting in the 3.S system to be
20 MeV, give or take a factor of 2, and hence the spin-
averaged 35S level to lie at 10.349 £+ 0.007 GeV. Thus, we
would expect the spin-averaged Y (1D) level to lie around
10.17 GeV.

C. 2D and 3P states of the upsilon family

It may be possible to detect 2D upsilon levels through
direct-channel ete™ annihilation or hadronic production
[6]. Potential models predict the spin-average of the 2D
levels to lie around 10.44 GeV. Let us imagine that such
a level has indeed been seen. Then, since the YT(4S5) state
has a mass of about 10.58 GeV, the 3P level should lie
midway between the two in a power-law potential, at
10.51 GeV. Since this is below BB threshold, the 3P
level should be narrow, as has been noted previously [6].
This level, more easily produced in hadronic interactions
than the Y(3S), should then be able to populate the
3S level through electric dipole transitions, which may
be detectable. Whichever level, 2D or 3P, is seen first,
our equal-spacing rule permits the other’s mass to be
anticipated.

D. Possible sources of error in predictions

Explicit potential models predict a slightly lower
Y (1D) mass (ranging from 10.15 to 10.16 GeV) than our
prediction of 10.17 GeV, as a consequence of the change
in the effective power of the potential with distance. The
3S-2P splitting is more sensitive to the short-distance
(more Coulomb-like) part of the potential, while the 2P-
1D splitting is sensitive to longer-range effects, where
the potential is expected to be closer to linear. For
example, a typical Coulomb-plus-linear potential, such
as V(r) = —0.4/r + 0.16r, where r is in GeV~!, and
mp = 5 GeV, implies E(3S) — E(2P) around 15% less
than E(2P) — E(1D). To a lesser degree, such changes
in effective power of the potential may be visible in de-
viations of the charmonium 2P and upsilon 3P masses
from our predictions.
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Coupled-channel effects can significantly distort pre-
dictions of potential models near pair production thresh-
olds [19]. We expect such effects to be most significant
in the anticipation of the charmonium 2P and upsilon
3P levels mentioned above, and less important for the
upsilon 1D level.

V. SUMMARY

Interesting questions remain to be settled in quarko-
nium systems. The nonrelativistic Schrédinger equation
continues to provide a useful guide to the properties of
such systems, with power-law potentials V ~ r¥, v = 0,
permitting rapid anticipation of charmonium and upsilon
properties. We have shown that in a wide range of power-
law potentials, energy levels characterized by the same
principal quantum number are approximately linear in
orbital angular momentum I, with a coeflicient which is
negative as long as ¥ > —1. We have exhibited this
behavior numerically, discussed the limiting cases of per-
turbations around the Coulomb and harmonic oscillator
potentials, presented semiclassical results for the coeffi-
cient of I, and applied the results to the anticipation of
several charmonium and upsilon levels which have yet
to be observed. The small spread in predictions of ex-
plicit models [6,7] for these levels may be understood as
a general feature of a class of interpolating potentials
whose applicability to quarkonium levels has been amply
demonstrated [3].
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APPENDIX A: PROOF OF THE
BAUMGARTNER THEOREM AND EFFECT
OF LINEAR PERTURBATIONS

The Schrodinger equation for a pure Coulomb poten-

tial is taken to be
2 l(l+1) 1
(_E‘E + 2 ;) UN,1

1
TaNEUN

Huy,; =

To prove the Baumgartner theorem, we let
ANy =Eng— Enq1. (A1)

Then we have
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Aw = / o(udy; — wdy 1ay)dr, (A2)

where the u’s are Coulomb functions. wuy,; and un ;41
are linked by raising and lowering operators:

d 1+1 1

2(1+1)’

- _ + _
A uni+1 = oqun, A ung = oqun 41, (A3)

with 402 = (I +1)~2 — N=2. The Coulomb Hamiltonian
can be written as

1

— A- At
=4 gy

Using these operators, one can transform Ay ; into

alAN,l = / V"U,N,l.',l’u,)vyld’l‘ (A4)
V]

and
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oo

7

o +1AN 141 =/ Vunip1un,iq2dr
0

oo
1
!
=/ V'un 1 ——Af, jun 141dr.
0 Qaj41

Hence, using the expression for A;:_l and integrating by

(I+1)afAng— (I +2)of ANt = / ((21 + 3)7 + (21 + 3)—) uRy 4107

parts,
[ v 1+2
al2+1AN,l+1 = /o [——2— I |4
1 1,2
+mv uN,l+1d7" (A5)
Similarly
oo , 1 B
AN = v a—lA, UNI+1 | UN 141
0
and
oo n
o} AN = / [+L - H—IV’
0 2 T
1 1 2
+‘2-(TI‘5V uN,l+1d"" (Aﬁ)
Combine now Egs. (A5) and (A6):
VII VI
r
= gl—;——3 /AVu?V’Hld'r (A7)

which is what we wanted to prove.

Now we can use Eq. (A6) to calculate Apx; for the case of a linear perturbation, Ar, to the Coulomb potential. We

l+1 1
QIZAN’I = )\/ (__7'— + m) ’ll,?v’l+1d7',

get

and, using the virial theorem,

a?Any = -\ [2(1 + 1)|ERT™

T 2(l+1)

1 ]_)\Nz—(l-i—l)z (A8)

T2 N2(+1)

Hence, from the definition of a;, Enx; — Eniq1 = 2A(I + 1), and, therefore, for V = —(1/r) + Ar,

e ((Bas = Bap _ 1
A—0 EzP—Elp 2

(A9)

APPENDIX B: SOME COMMENTS ABOUT POWER POTENTIALS IN THE LARGE-1 LIMIT

(i) Equation (15) has been obtained in [13], but in this reference, the expansion parameter was [[(I + 1)]~/2. The
advantage of reexpressing things in an expansion in (I + %)_1 is that for » = 2 the expansion stops and gives the exact

answer.

(ii) Equation (12) gives only the leading term of the large-/ behavior obtained by the semiclassical approximation,

while Feldman, Fulton, and Devoto (FFD) give
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—v/(v v/(v+2)
~ ,Vl /( +2) v 1 1 2
E(n,1) e(u)( (1+2) L5+ (n+3) VT2
2w (n+1/2)° e (B1)
24 (+1/2+ (n+ 1/2)vV2 + v)?

When one expands this expression in inverse powers of (I +

2)~! and compares with Eq. (15) which is the beginning

of a systematic asymptotic expansion in (I + %)‘1 one finds a small difference which can be corrected by subtracting

1/12 from (n + 1)? in the second set of brackets:

b= (5) " 103

(n+1/2)% —1/12

I+>+

1 1 2v/(v+2)

x[l_(u—z)(vﬂ)

24 l+1/24+V2+v(n+1/2)]2

It turns out that the small change made in the second
bracket makes this new expression extremely accurate
especially for small n and in particular for n = 0. Then
for v = —0.5, 0.5, 1 we find by numerical tests that the
relative error of Eq. (B2) is less than 10~* for n = 0,
arbitrary | > 0. For n = 1 it is less than 5 x 1073, We
believe that this holds on the whole interval —1 < v < 2.
Examples of the accuracy of Eq. (B2) for v = —0.5 and
v = 1 are shown in Tables I and II.

(iii) The smoothness of F(n,!) for fixed n, as a function
of I can be connected to the fact that [E(n,1)]#+2/¥ is
a “Herglotz” function of (I + %)2 A Herglotz function is
defined by

0 H(z"dz'
H(z):AJrBH%/ ImH(z')dz'

—oo 22 —2)

with ImH(2') > 0. It has the characteristic property
ImH (2)/Imz > 0, and cannot grow faster than z in any
complex direction. Furthermore, it is easy to see that it
is concave, i.e., d2H(z)/dz? < 0.

It has been shown by one of us (A.M.) and Grosse [20]
that E(n, l) for V. =7r¥, v > 0 is analytic in the variable
z = (I + 3)? in a cut plane, with the cut running from
z = —oo to 0. For positive z, E is real. Furthermore
for Imz > 0 we have 0 <Arg F < gu/(v + 2)]m, hence 0
<Arg (E)*2/¥ < 7. Hence E“*+2)/¥ is a Herglotz func-
tion of z, and, as we said, is, in particular, concave. Let
us illustrate the usefulness of this remark by considering

TABLE 1. Comparison of exact and approximate
[Eq. (B2)] energy levels for the Schrédinger equation (2) in

] 2v/(v+2)
(B2)

[
V = r%. We have, for instance,

E(4,0) = 44.0, E(4,1) =50.1, E(4,2) = 56.4.

Using the concavity of E3/2 in (I+1)? we get from E(4,0)
and E(4,2) the bound

E(4,1) > 48.3.

APPENDIX C: BEHAVIOR OF Ry; NEAR v = —1
AND v =2

To study the behavior of Ry, in the neighborhood of
v = —1 we have to take a perturbation of the Coulomb
potential which is v =(Inr)/r, but we shall first look at
a perturbing potential which is v =lnr. Then according
to Eq. (A6) of Appendix A we have

1 l+1 1
2 " ! !
Ani=(-v" — v+ v
st <2 T 2(l+1) >N,l+1
_ _2l + 3< 1 > " 1 <1>
2 2/ a1 20+ )\7T/ N
10FE 1
= ——— ——(—2E
2 9l 2(1+1) ( )
n fixed
1 1 1
=——--=]. 1
4N?2 (l +1 N) (C1)
TABLE II. Comparison of exact and approximate

[Eq. (B2)] energy levels for the Schrodinger equation (2) in

a potential V(r) = —r~1/2, a potential V(r) =r.
Exact N=1 N =2 N =3 N =4 Exact N=1 N =2 N =3 N =4
S —0.438041 —0.263203 -—0.197558 —0.161705 S 2.338107 4.087949 5.520 560 6.786 708
P —0.286611 —0.209800 —0.169416 P 3.361 255 4.884 452 6.207 623
D —0.221506 —0.176817 D 4.248 182 5.629 708
F —0.184 005 F 5.050926
Eq. (B2) N=1 N=2 N=3 N=4 Eq. (B2) N=1 N=2 N=3 N=14
S —0.438043 —0.264647 —0.199228 —0.163352 S 2.338231 4.066 542 5.479175 6.727770
P —0.286615 —0.210156 —0.170025 P 3.361231 4.874 358 6.183 454
D —0.221507 —0.176947 D 4.248 160 5.623973
F —0.184 006 F 5.050910
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Therefore, for n =lnr, With
1 I+1 +_, d l+1 r
AN = ——" Bf=+— — + = (C8)
NTNNFI+1 L dr T 2
= /0 (uf\,’, — u?v,l+1)lnrdr. (C2) we have
+ — —_
Now, following a standard strategy of multiplying the B tnt1,0 = Yatnit1s Bp Ungg1 = Yatnirg,  (C9)

Schrodinger equation by ulnr and «/rlnr and integrat-
ing, it is possible to obtain the identity

oo l
nr
2 2
/ (“N,z - “N,z+1)—“d7'
0 T

= aN? /0 A (un, — U 41)Inrdr — NG (C3)

Hence combining (C2) and (C3) we get

W — ) e =L (cy
| UN Ni+1) ] T 2N (N +1+1)
and, hence,
Eni-1—Eny  N+I1+1
Ry, = : o= C5
M Eng — Engn N+l (5)
Now we turn to the neighborhood of v = 2. The
harmonic-oscillator Hamiltonian is taken to be
a2 l(l+1) r?
=——4 ——" 4+ —. Cé
hu dr? + r2 + 4 (C6)

Then, for V = r2/4, we have E(n,l) = 2n+ 1+ 2, and

E(m+1,01—1) — E(n,l) = 1. We consider now the per-
turbation

5 = / w(u2y — U2y ,)dr. (1)
0

with 42 = 2n 4 2. Then, by repeated use of these raising
and lowering operators one can get

oo .t 2\ '/ 2
2 s vofrely) _w
V-1 ]ﬁ r [( 2 2

oo 1 2\ '/ 2 2
25 = v _ru l_lz T_Zd
o [TE(EY

where u = u, ;. Then we get

oo v !
0 — 011 = / - (—)
0 T

1 ® ! [r2
— [ Y\ _Em, | uidr
+%@+UA r[z (mﬂur

(C10)

2n+1

T rdPdr
4n(n+1)

For v = Inr and for v = r2Inr all these integrals can
be calculated and one finds in both cases §; — §;_1 = 0.
Hence if the total potential is

V=i =gt r? 4 (v - 2)r %,

then &; — &;—1 is of higher order, i.e., O((v — 2)2), which
fits with the numerical observations of Fig. 3.
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