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The breaking of Bavor SU(3) symmetry in the axial vector couplings and magnetic moments of 
baryons is analyzed in the IIN, expansion. A simple meson loop graph which is known to be of 
order 6 and leading order in l/N, correctly predicts the pattern of symmetry breaking in the 
magnetic moments. It is, however, not possible to use this graph to predict the magnitude of the 
breaking. The situation with the axial vector couplings is less clear. In this case the breakings 
are relatively small and do not appear to follow an obvious pattern. Nevertheless there is a clear 
indication that, with symmetry breaking taken into account, the F/D ratio [defined in the presence 
of SU(3) breaking] is considerably less than the SU(6) value of Z/3. With sizable uncertainty, we find 
F/D e 0.44. The quantity 3F - D which is relevant for the analysis of spin-dependent deep inelastic 
scattering is considerably smaller than the SU(6) value of unity. The new value 3F - D = 0.28ztO.09 
is consistent with vanishing strange-quark spin in the nucleon. 

PACS number(s): 11.3O.Rd, 11.15.Pg, 11.30.H~ 
I. INTRODUCTION 

The l/N, expansion has proved to be quite useful 
in understanding the spin-flavor structure of baryons in 
QCD [l-5]. In the flavor symmetry limit, a structure 
similar to SU(6) emerges [l-9]. This is not, however, a 
statement that there is an SU(6) symmetry in the La- 
grangian or that the quarks are nonrelativistic. Rather, 
it is the simplified dynamics [lO,ll] of QCD at large N, 
that produces patterns similar, but not exactly equal 
to, the predictions of SU(6). In this paper we focus on 
flavor SU(3) breaking in the baryon magnetic moments 
and axial vector couplings in the l/N, expansion. The 
mathematical groundwork, which involves a considerable 
amount of group theory, was set up in a previous paper 
[l] - here we will concentrate on the data and on the 
physical interpretation of results. 

The pattern of symmetry breaking displayed by the 
baryon magnetic moments is in quite good agreement 
with that predicted by the simple meson loop diagram 
shown in Fig. 1 [12,13]. In the chiral limit, this diagram 
is of order fi N,, i.e., it is of order 6 rather than the 
naively expected rn, and is leading order in N,. However, 
a naive evaluation of the diagram in Fig. 1 predicts sym- 
metry breaking which is, in magnitude, about a factor 
of 2 too large. As pointed out in Ref. [12], this is al- 
most certainly due to the fact that the diagram involves 
meson momenta on the order of MK which are too large 
for the validity of chiral perturbation theory and, con- 
sequently, the numerical value of the diagram cannot be 
taken seriously. Nevertheless, the group theoretic struc- 
ture suggested by this diagram is in rather impressive 
agreement with the data. 

For the axial vector couplings the situation is less clear. 
Here the data are the widths of the decuplet baryons, con- 
verted to axial vector couplings through the Goldberger- 
Treiman relation, and the values of 9~ extracted &om 
fl decays of the octet baryons. In this case the SU(3) 
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breaking is actually rather small-the leading term is or- 
der md N, rather than @Ne--and the experimental 
errors are larger. While we do find what appears to be a 
stable fit with an interesting physical interpretation, we 
have some ccmcerns about the results. Although we feel 
that we are not in a position to make precise aqd defini- 
tive statements about symmetry breaking in the axial 
vector couplings, some trends do emerge. The tist is that 
the pattern of symmetry breaking is broadly consistent 
with the l/N, expansion and the fact that chiral pertw- 
bation theory does not predict a dominant pattern. The 
second is the value of the F/D ratio, a quantity which 
in the presence of SU(3) breaking must be carefully de- 
fined. We parametrize the couplings in such a way that 
the matrix elements of the strangeness preserving AS = 0 
currents’(both isovector and isoscalar) between nucleon 
states are exactly given by D and F, at least through 
first order in SU(3) breaking. Using this definition we 
find F/D e 0.44 with perhaps a 10% error. Although 
the error is significant, the central value for the F/D ra- 
tio is considerably smaller than the SU(6) value of 2/3. 
Finally, the above definition of D and F is used to ob- 
tain a new value for the quantity 3F - D which appears 
in the analysis of spin-dependent deep inelastic scatter: 
ing [14-l?‘]. Our new value, 3F - D ra 0.28 k 0.09, is 
considerably smaller than the SU(6) value of unity or the 
value of u 0.6 obtained from a SU(3) symmetric fit to the 
data. The value of the strange-quark spin in the nucleon 
extracted from experimental data is significantly reduced 
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FIG. 1. Leading chiral correction to the baryon magnetic 
moments. The solid line is the baryon, and the dashed line is 
the meson. The graph is of order MK N 6. 
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using the new value of 3F-D and is consistent with zero. 
The uncertainty in the value of 3F - D limits the accu- 
racy of the extraction of the nucleon’s strange-quark spin. 
Since one is in a region of parameter space where there 
is a large cancellation between 3F and D, neither this 
analysis nor any other is likely to give a highly accurate 
valuefor3F-D. 

We had originally hoped that studying the magnetic 
moments would help in the interpretation of the axial vec- 
tor couplings -in the naive nonrelativistic quark model, 
magnetic moments and axial vector couplings tend to be- 
have in the same way. However, as mentioned above, the 
actual symmetry breaking in the magnetic moments ap- 
pears to come largely from a single diagram which has 
no analog in the axial vector couplings. The reason we 
can make some progress in the analysis of the axial cou- 
plings is that the l/N, expansion predicts that some 
SU(3)-breaking operators are suppressed, and it relates 
the octet and decuplet axial vector couplings so that one 
has more experimental input to constrain the fit. 

The baryon axial currents in the presence of SU(3) 
breaking also have been studied recently by Ehrnsperger 
and Sch%fer [18] who assume that the SU(3) breaking is 
proportional to the baryon masses, and by Lichtenstadt 
and Lipkin 1191 using a model. Both calculations give 
results which are similar to those obtained here: SU(3) 
breaking lowers the value of F/D and of 3F -ED. 

The paper is organized as follows. In the next section 
the operator analysis of Ref. [1] is summarized, with some 
additional mathematical details given in an’~ appendix. 
The operator analysis leads to a seven parameter fit to 
the hyperon p decays and decuplet pionic decays, with 
coefficients listed in Table I, and i seven parameter fit 
to the baryon magnetic moments with coefficients listed 
in Table II. The reader not interested in the technical 
details of the l/N, expansion can~skip directly to Secs. III 
and IV, which present the analysis of the axial vector 
couplings and the magnetic moments, ?espectively. 

II. OPERATOR ANALYSIS 

Confining ourselves to the physically int&esting case 
of three light flavors, the lowest-lying baryon states fall 
into a representation of the spin-flavor group SU(6). At 
the physical value N, = 3, this is the familiar 56 dimen- 
sional representation of SU(6) while for larger N, the 
representation becomes more complex, containing spins 
greater than 3/2 and SU(3) representations bigger than 
the S and 10. The complexity of these large represen- 
tations of SU(6) makes a straightforward application of 
group theory very tedious at large N,. It was pointed out 
in Refs. [1,7,8] that it is easier to focus on the operators 
than the states. The magnetic moments, for example, 
have an expansion in operators whose coefficients are in- 
verve powers of N,. Working to a given order in l/N,, 
one can truncate the expansion and connect to physics 
by evaluating the matrix elements at N, = 3. For any 
representation of SU(6), polynomials in the generators 
J’, T”, and G”” form a complete set of operators. For 
the particular representations relevant to the lowest-lying 
baryons, it suffices to keep polynomials through order N, 
and, in addition, there are a number of identities among 
the polynomials of order less than or equal to N,. The 
problem of finding a complete and independent set of op- 
erators for the baryon representations was solved in Ref. 

PI. 
The results of Ref. [1] can be summarized as follows. 

The basic building blocks are the operators .7;, Ta, and 
G”“, where .7” is the spin, the T” are the generators 
of SU(3), and the G’” are the remaining generators of 
SU(6). They satisfy the commutation relations 

and can be defined in terms of the quarks as 

.P = ,t;q, 

‘2’” = qt;,, 

Gi” = 

A complete set of operators can be constructed from 
polynomials in the operators J, T, and G. Because an- 
tisymmetric products can be reduced using the cornmu- 
,tation relations, one need only consider products which 
are completely symmetric in noncommuting operators. 
Furthermore, it can be shown that all products of T’s 
and/or G’s in which two flavor indices are summed over 
or contracted with d or f symbols can be eliminated in 
terms of lower order products. 

The way in which large N, dynam/cs enters can best 
be seen through an example. Let Paa be the operator 
whose matrix elements between SU(6) symmetric states 
gives the actual axial vector couplings of the baryons. 
It is spin-l, an octet under SU(3), and odd under time 
reversal. In the absence of SU(3) breaking and neglecting 
quartic and higher order polynomials, Pia can be written 
as 

;Pia = a G”O + b J’T” + d { J2, Gi”} 

+e{Ji,{Jk,Gk”}}, (2.1) 

where a, b, d, and e are unknown coefficients. By examin- 
ing diagrams one can see that a is order Nz, b is of order 
N,-’ and d and e are of order Nr2. Hence P”” can also 
be expressed as 

where the new coefficients are of order unity for large N,. 
If we consider states who&spin remains fixed as N, + 
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03 , then the matrix elements of J never become large. 
The operators T and G are more complicated - for some 
states in the representation G has matrix elements of or- 
der N, while T has matrix elements of order unity, but for 
other states G has matrix elements of order unity while T 
has matrix elements of order N,. There are other states 
for which both G and T have matrix elements of order 
m. Nevertheless, it is clear that truncating Pi” at or- 
der NT1 is a consistent approximation; the remaining 
two terms multiplied by d and e are everywhere smaller 
than the first term. Dropping the second term is more 
problematic-there are states for which the matrix ele- 
ments of J”T”/N, are of the same order as the matrix 
elements of G”“. Thus, in general, this term must be re- 
tained. Finally, note that keeping all four terms allows 
for arbitrary values of the four possible SU(3) symmetric 
couplings of pseudoscalar mesons to the octet and de- 
cuplet baryons. This is an example of the fact that for 
N, = 3 we never have to go beyond operator products of 
third order in the generators. 

When first order SU(3) breaking is taken into account, 
Pia contains pieces transforming according to all SU(3) 
representations contained in the product 8 @I S = 1 $ 
8~ ‘23 8s CB 10 @a ‘23 27. We summarize the results of a 
more detailed analysis presented in Ref. [l]. The possible 
spin-l singlets containing three or fewer generators are J” 
and J2J” with the second operator having a coefficient of 
order N;’ relative to that of the first. The only singlet 
term that we will keep is 6”J”. The octet operators 
were discussed in the previous paragraph. We will drop 
the N;’ terms, leaving dab8G’” and d”*‘J”T* as the octet 
terms. (Similar terms with the d symbol replaced by an f 
symbol are ruled out by time reversal.) We do, however, 
have to keep the operator 

IJ’, [TE, @‘II, (2.3) 

which can be reduced, by use of the commutation rela- 
tions, to a sum of operators of the form {J’, Gjb}-this 
particular sum cannot appear in the SU(3) limit by time 
reversal invariance but is allowed in the case of broken 
symmetry. This operator receives a coefficient of order 
N;’ and contributes only to processes which change both 
spin and strangeness. The leading operator containing a 
27 is 

{G”*,T*] + {G”*,T”}, (2.4) 

which receives a coefficient of order f;‘. In the 
next orde! there are two operators, J”{T*,T*} and 
{ J”Gka, Ga*} + { JkGk8, Gia} which have coefficients of 
order NT’. The leading operator containing 10 $ i0 is 

{Gin,Ts} - {Gis,Tn} (2.5) 

with a coefficient of order NT’ and in the next order one 
has {JkG”“,G”*} - {JkGks,G”“} with a coefficient of 
order N;‘. We will keep only the leading 27 and lO@i% 
terms. In the Appendix, it is shown that matrix elements 
of the higher order terms are always down by a factor of 
at least N;’ relative to matrix elements of the leading 
terms. 
In terms of N, and J$ the number of strange quarks 
and the strange quark spin, defined by 

G”8 = &(Ji - 3J,), 

Ts = & (Nc - 3N,), (2.6) 

the leading 10 @ i% and 27 operators are {Gin, Na/N,) 
and {T“, Jj/N,}, where we have dropped constants and 
terms that simply renormalize the symmetric couplings. 
A consistent truncation of P’” valid to first order in 
SU(3) breaking is therefore 

where the CL are of order SU(3) breaking and the scaling 
with N, is explicit. The large N, expansion yields one 
further piece of information: as explained in Ref. [l] the 
coefficients are constrained by 

34 = c; + c; (2.8) 

up to terms of order N;*. Rearranging tams and ab- 
sorbing factors of N;’ into the coefficients leads to the 
form that we will actually use in fitting data: 

;Pia = a G”” + b J”T“ + AD(clG”n + czJ’Tn) 

+c~{G(~,N,}+c~{To,J~} (2.9) 

cP8 d 
+-$I” - 5({JZ,Gh} 

-g5”,{Jj,@))), 
where 

W” = (cd - 24 J; + (ca - 2~) N. Ji 

-3(c3 + cd)N,J,“, (2.10) 

A,’ = 1 for a = 4,5,6, or 7 and is zero otherwise, and 
the unprimed coefficients are linear combinations of the 
primed ones. The term involving [J’, [T’, G’“]] which 
does not contribute to any observed decay has been 
dropped and a term proportional to d has been added 
to allow the SU(3) symmetric parameters [ZO] D, F, and 
C to have arbitrary values. Our main interest is to study 
SU(3) breaking and adding this extra symmetrical term 
keeps symmetry breaking effects from being mixed up 
with l/N, corrections in the symmetric couplings. The 
coefficient d is of order N;’ and is presumably compa- 
rable to some of the other coefficients, e.g., cz which is 
of order E/N, where E - 0.3 is the strength of SU(3) vio- 
lation. Note that the couplings have been parametrized 
in such a way that only the symmetric parameters a, b, 
and d contribute to processes which take place entirely 
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TABLE I. Coefficients for axial vector couplings. 

a b d Cl e* cc‘ c.4 
AN -2 0 912 0 0 0 0 

C’A -2 0 912 0 0 -4 0 

C'C -2 0 912 0 0 -4 8 

E.5 -2 0 912 0 0 -8 4 

nP 513 1 0 0 0 0 0 

CA 

AP -g -&z it -&2 -&2 -$$ -JTjs 

Cn l/3 l/3 l/3 

a l/d l/d 7143 

z:c 5/a 5/m UJZ 
in the strangeness zero sector. We define D and F in the 
presence of SU(3) breaking by 

D = a, 

F=2a/3fb. (2.11) 

The ?rNN and qNN couplings are given exactly by the 
formulas in the SU(3) symmetry limit with these values 
of D and F. 

For any given process, the matrix element of Pi” 
can be expressed as a sum of the seven parameters 
a, b,d, cl, , cq times coefficients derived fxom the ma- 
trix elements of the operators. The coefficients for the 
axial vector couplings are tabulated in Table I and those 
for the magnetic moments are tabulated in Table II. 

III. THE AXIAL VECTOR COUPLINGS 

In the large N, limit P’” gives the matrix elements 
of the space components of the axial vector currents be- 
tween baryon states. For the octet baryons there is little 
ambiguity as to how to apply this to the real world of 
N, = 3. We use the ga parameters as conventionally de- 
fined in P-decay experiments with a normalization such 
that g,, N 1.26 and gv = 1 for neutron decay. Exper- 
imentally, one measures the lifetimes which are propor- 
tional to l/(jgv1’ + 31g.#) and the asymmetry which 
gives ga/g”. The gv parameters are taken from SU(3) 
because of the Ademollo-Gatto theorem which states that 
SU(3) violation ingv occurs only in second order. When 
form factor effects’ [21], radiative corrections [22,23], and 
weak magnetism are taken into account, the values of ga 
obtained from the asymmetries and the rates are in gen- 
eral, although not spectacularly good, agreement with 
each other.’ There is one exception: for 2- + A 0 de- 

‘We have used a dipole form for the axial and vector form 
factors, with masses M = 1.08 GeV for the AS = 0 axial form 
factor, M = 1.25 GeV for the AS = 1 axial form factor [24]. 
The corresponding masses for the vector form factor are M = 
0.84 GeV and M = 0.97 GeV. 

‘In all cases, the value of Igal obtained from the lifetime is 
greater than that obtained from the asymmetry. 
cay the two methods produce inconsistent values of ga. 
This can be understood f?om the fact that for this de- 
cay ga/g” is unusually small, and the extraction of ga 
from the rate is difficult both because of ambiguities in 
the rate and the various corrections and because the ex- 
tracted value of ga is likely to be sensitive to the (second 
order) SU(3) violations in gv. For this decay we use only 
the value of ga extracted from the asymmetry. In the 
case of 2- to Co decay, only the rate has been measured 
so we have no choice but to take ga from the rate- 
fortunately jga/gv[ is fairly large for this decay. For the 
other decays, we have combined the values of gA from 
the decay asymmetry and lifetimes using scaled errors, 
as recommended by the Particle Data Group [25]. The 
experimental values for gd are listed in the fourth column 
of Table III. Apart from the Z- 3 Co entry, they are 
essentially the same as the standard values derived from 
the asymmetry, except that in some cases the errors have 
been enlarged to account for discrepancies between the 
rates and the asymmetries. 

Off-diagonal elements of P”” connecting the decuplet 
baryons to the octet baryons can be extracted from the 
r decays of the decuplet. Here there is some ambiguity 
in how to handle the kinematics-in the N, + ca limit 
the baryon masses become i&mite and static kinematics 
apply, but in the real world we have to deal with finite 
masses. There is no definitive answer to this problem, but 
Peccei [26] has developed a formalism that is internally 
consistent and compatible with chiral symmetry. In his 

TABLE II. Coefficients for magnetic moments. 

a b d Cl 02 cs Cd 
P 1 1 0 0 0 0 0 
n -213 0 0 0 0 0 0 

0 

,: 1 1 0 
-l/3 0 -213 -213 -213 0 

219 -213 2 -213 

c- -1/3 -1 0 219 -213 -213 213 
PA -l/ti 0 0 0 0 -2/&i 0 
80 -2/3 0 0 -819 -413 -a/3 0 
E- -l/3 -1 -a/9 -413 -413 -813 

PA+ &/3 0 -3;Jz 0 0 0 0 
n- -1 -3 0 -2 -6 -6 -6 

A++ 2 6 0 0 0 0 0 
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.TABLE III. Axial vector coupling fits. The experimental values for the decay rates and asym- 
metries are taken from the Particle Data Group [25]. We have also included a new measurement 
of ga for neutron @ decay 1291. 

Decay Experiment 3.4 Average Fit A Fit B Fit C 
A-tN?i -2.04 S 0.01 -2.04 -2.04 -2.03 
Ir+hr -1.71 f 0.03 -1.75 -1.73 -1.74 

-1.60 * 0.13 -1.62 
-1.42 i 0.04 -1.40 

1.2711 f 0.002 1.2665 + 0.0043 1.266 
1.2573 zt 0.0028 
1.266 z!c 0.004 

0.601 f 0.015 0.601 zk 0.015 0.601 
0.624 + 0.079 

-0.906 + 0.024 -0.889 zk 0.015 -0.895 
-0.879 f 0.018 
-0.977 ,ck 0.180 

0.348 f 0.030 0.342 + 0.015 0.340 
0.340 Lk 0.017 
0.309 * 0.071 

0.428 f 0.049 0.306 zk 0.061 0.219 
0.306 zk 0.061 
1.010 + 0.776 

z + Yzev e 0.929 * 0.112 0.929 rt 0.112 0.718 0.717 0.703 

-1.73 -1.74 
-1.42 -1.45 

1.267 1.271 

0.596 0.590 

-0.899 -0.867 

0.342 0.352 

0.177 0.158 
formalism, which we will adopt, the width of a decuplet 
baryon B’ decaying to a pion and an octet baryon B is, 

rB, = g2W, B’)YEB + MB)q3 
24rf,&, ’ (3.1) 

where EB and q are the~octet baryon energy and the 
pio: three-momentum in the rest frame of the decaying 
baryon, fr is the &on decay constant equal to 93 MeV, 
g is the analog of ga for this process, and C(B,B’) is 
a Clebsch-Gordan coefficient {l, l/d, l/d, l/d} for 
{A + N?r, C’ + An, C* -$ C?r, E* --t %} chosen so that 
all the couplings become equal in the SU(3) symmetric 
limit. For each decay we take the widths of the differ- 
ent charged states and use the Particle Data Group 1251 
averaging procedure to determine g. These numbers are 
listed in the fourth column of Table III. 

A. Fits to the experimental data 

We will perform a number of different fits to the exper- 
imental data. All the fits have large x2. In interpreting 
the results, it is important to keep in mind that the dom- 
inant error in all the fits is theoretical; the theoretical 
formulas are not as accurate as the experimental mea- 
surements. For example, the SU(3) symmetric fit to the 
hyperon fl decays discussed below has x2 = 13.1 for four 
degrees of freedom. The large x2 is an indication that 
the experimental data show evidence for SIJ(3) breaking 
in the axial vector currents. The value of x2 can be used 
to estimate the amount of SU(3) breaking. If one in- 
cludes, for example, a theoretical uncertainty of &0.025 
(added in quadrature to the experimental errors) then x2 
is reduced to 3.7 for four degrees of freedom. This indi- 
cates that the SU(3)-breaking part of the octet baryon 
ga (which is of order unity) is of order 0.025. What is 
surprising is that SU(3) breaking in the hyperon fl decays 
is so small. 

I. SU(3) symmetric fit 

We first perform a two parameter fit to the experimen- 
tal data on hyperon @ decays alone using a and b. This 
is identical to a fit using only F and D neglecting all 
SU(3)-breaking effects. The results are D = 0.79 + 0.01, 
F = 0.47 i 0.01 (or equivalently a = 0.794 i 0.007 and 
b = -0.060 zk O.Oll), and 3F - D = 0.62 f 0.03, with 
x2 = 13.1 for four degrees of freedom. The results are 
consistent with earlier fits 1271, and the differences are 
due to different treatment of the inconsistent experimen- 
tal values for ga. As mentioned above, the large x2 is an 
indication of SU(3) breaking. It also indicates that the 
nominal errors on F, D, and 3F - D obtained from the 
fit are underestimates of the true error. 

2. AS = 0 fit 

Before presenting the results of a full fit, it is useful to 
make a preliminary investigation of the n -+ p and C + A 
/3 decays and the strong decays A --t N?r and C’ + An. 
These AS = 0 decays depend only on the four parameters 
a, b, d, and ca which can therefore be extracted from these 
data alone. The results, a = 0.9OzLO.02, b = -0.24zlcO.04, 
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d = -0.05 zk 0.01, and cs = -0.08 f 0.01, are consistent 
with expectations. The leading parameter a is of order 
unity, b N l/N, is small compared to a, d - l/N: is quite 
small, and cs - e/N, is consistent with a 30% SU(3)- 
breaking e divided by N, = 3. The D and F couplings 
derived from this analysis are D = 0.90 A 0.02 and F = 
0.37 + 0.02 with 3F - D = 0.20 + 0.L3 

A variant of the above is to include all six AS = 0 
decays, which can be fit using the five parameters a, b, 
d, cs, and c4. The results are a = 0.893 + 0.023, b = 
-0.222hO.039, d = -0.056~0.010, CQ = -0.079&0.007, 
and c4 = 0.002 z! 0.014, with F = 0.37 j; 0.02, D = 
0.89f0.02,and3F-D=0.23f0.09,with~~=1.1for 
one degree of freedom. 

3. Global fits 

Turning now to the global fit, we minimize x2 weight- 
ing each datum with its experimental error. The fit has 
x2 = 7.9 with three degrees of freedom, and the results, 
labeled as fit A, are summarized in, Tables III and IV. 
We have tried weighting th+ data with theoretical errors 
of various forms4 and, although x2 decreases, the general 
character of the fit changes very little. Note that in this 
fit ct. and cd are very small, suggest&g a fit where c1 and 
ca are constrained to be zero. The restilts of the con- 
strained fit, labeled as fit B, are also listed in Tables III 
and IV. Here x2 = 9.9 but there ark now five degrees of 
freedom. Note that the values of a, b, d, c2, and cs do not 
change much between the constrained and unconstrained 
fits. 

Fit A is shown in Fig. 2. The first four points are 
the decuplet decays, followed by the hyperon p decays. 
Rather than plot the data points directly, we have sub- 
tracted the best SU(3) symmetric fit (a = 0.794, b = 
-0.060, d = -0.086) from experiment and theory. The 

TABLE IV. Best fit parameters for axial vector couplings. 

Fit A Fit B Fit C 
a 0.880 f 0.022 a.885 f 0.013 0.867 f 0.011 
b -0.201 i 0.037 -0.208 dc 0.022 -0.176 + 0.019 
d -0.061 * 0.010 -0.058 5 0.006 -0.067 i 0.005 
Cl -0.021 f 0.025 0 0 
=* 0.128 i 0.039 0.135 5 0.020 -b/2 
c3 -0.072 f 0.006 -0.078 f 0.004 -0.073 f 0.004 

c4 0.016 f 0.012 0 0 
F 0.39 * 0.02 0.38 zk 0.014 0.40 f 0.01 
D 0.88 ct 0.02 0.89 f 0.013 0.87 f 0.01 

3F-D 0.28 + 0.09 0.26 & 0.05 0.34 i 0.04 

‘There are correlated errors on the parameters in all the fits, 
so that the error on F, D, and 3F - D is computed using the 
covariance matrix. 

4For example, assuming that there is an additional theoret- 
ical uncertainty in the formulas for the AS = 1 decays and 
decuplet decays, because of the larger momentum transfer. 
FIG. 2. Deviation of the axial vector couplings from the 
best SU(3)-symmetric fit. The open circles are the experi- 
mental data, and the filled circles are the values from fit A 
discussed in the text. The points plotted are (from left to 
right) A --t N, C’ + A, E* + Z, %* --f E, n --t p, C + A, 
A + p, C --f n, % + A, and E + C. 

plot shows the deviations from SU(3) symmetry of the 
axial vector couplings and the best fit. It is clear from 
the plot that the SU(3) breaking in the decuplet decays 
is significantly larger than that in the hyperon p decays. 
The hyperon p decays show very little SU(3) breaking. 
Our large-N= fits indicate that the ga values for Z decay 
should be smaller than the experimental central values 
in Table III. The fits A and B, as well as our AS = 0 
fits all indicate that 3F - D iS approximately 0.28 & 0.09, 
which is significantly smaller than the SU(3) symmetric 
fit value of 0.62 f 0.03. 

Graphically, the parameter b arises from diagrams 
where the quark line to which the current is attached has 
a spin-dependent interaction with another quark. The 
parameter cz is a measure of how this interaction is mod- 
ified when the current carrying quark line represents a 
strange quark. If cz were exactly equal to -b/2, it would 
mean that this spin-dependent interaction is completely 
ineffective for the heavier strange quark. Since the fits 
do produce a value of cz which is close to -b/2, we have 
done another fit with three constraints, cl = 0, cq = 0, 
and c2 = -b/2. The results of this fit, labeled as fit 
C, are also shown in Tables III and IV. By now x2 has 
increased to 17.3 for six degrees of freedom. Note that 
this doubly constrained fit has the same four parameters 
that appeared in our preliminary investigation plus the 
constraint c2 = -b/2. The parameters turn out to be 
almost identical with a = 0.87, b = -0.18, d = -0.07, 
ca = -0.07, D = 0.87, F = 0.40, and 3F -D = 0.34. 
We believe that this fit is the closest to the physics. The 
physical interpretation of b and c2 has already been dis- 
cussed. To interpret cs, we note that in diagrams it car. 
responds to a nonstrange quark line~carrying the current 
interacting, through a spin-independent gluon exchange, 
with strange quarks elsewhere in the baryon. Thus ca can 
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be interpreted as the effect of the strange quark mass on 
the average, spin-independent color field through which 
the quarks propagate. 

While we have achieved an apparently stable set of fits 
with an interesting interpretation, we are not entirely 
comfortable with these results. For one thing, we do not 
understand why ca and especially c1 are so small. Also, 
the E decays have been measured in only one experiment 
which causes some worry -note that in fit A x2 is domi- 
nated by the Z decays - and, except for the A, there has 
been no recent work on the decuplet widths. While cu 
fit may not turn out to be definitive, there is, neverthe- 
less, a,very clear trend. By all indications, 3F-D = 0.28 
is small compared to the SU(3) symmetric value of 0.6, or 
the nonrelativistic quark model value of one. As a word 
of warning, however, we are in a parameter regime where 
there xe large cancellations between 3F and D and the 
fractional error in 3F - D may be relatively large. 

IV. MAGNETIC MOMENTS 

In the large iV, limit, the baryon magnetic moments 
have the same kinematic properties as the axial vector 
couplings and can be expressed in terms of the .same op- 
erators. The operator which gives the magnetic moments 
is A4” = P”3+P”8/J;i. It is straightforward to determine 
the coefficients in M’. We use the measured moments of 
the octet baryons and the a- as well as the C”A and 
AN transition moments. The A++ magnetic moment is 
not included in the fits, because of the very large exper- 
imental error. As before, we minimize x2 but this time 
the data are accurate enough that we have to include a 
theoretical error in order to get a meaningful X2. The 
‘dominant error is the theoretical error in the formulas 
,used, not the experimental errors on the data. Guessing 
that the higher order [in SU(3) breaking and l/N,] effects 
are at the few percent level we arbitrarily add an extra 
error of 0.05 nuclear magnetons to each moment. The 
fit produces x2 = 5.5 with four degrees of freedom but 
this particular value is largely a reflection of our choice of 
theoretical error. The results of the fit are listed as fit A 
in Tables V and VI. The fit is quite good and sizes of 

TABLE V. Magnetic moment fits. The experimental value 
for the a- magnetic moment is from Ref. 130). The remaining 
values are taken from the Particle Data Group [25]. 

Experiment Fit A Fit B 

I, 2.793 * 0.000 2.844 2.803 
-1.913 * 0.000 
-0.613 & 0.004 

Cf 2.458 f 0.010 
c- -1.160 + 0.025 

co A -1.610 It 0.080 
z:’ -1.250 f 0.014 
E- -0.651 f 0.003 

PA+ 3.230 + 0.100 
n- -2.024 f 0.056 

A++ 5.6 zk 1.9 

-1.871 -1.915 
-0.588 -0.596 
2.455 2.464 
-1.058 -1.123 
-1.511 -1.509 
-1.278 -1.257 
-0.608 -0.629 
3.530 3.530 
-2.078 -2.057 
5.836 5.859 
TABLE VI. Best fit parameters for magnetic moments. 

Fit A Fit B 

a 2.806 f 0.061 2.784 z!z 0.058 
b 0.037 * 0.058 0.078 + 0.053 
d -0.417 + 0.071 -0.427 zk 0.071 
Cl -0.515 * 0.103 -0.535 zt 0.099 

672 0.089 0.003 f zt 0.041 0.041 -0.056 0.033 * + 0.040 0.044 
23 -0.095 -0.009 * zk 0.035 0.048 -0.085 0.004 f * 0.047 0.035 

=4 0.038 * 0.037 0.041 + 0.036 
6c4 -0.048 i 0.030 -0.049 * 0.030 

the various output parameters are consistent with expec- 
tations. The plot of the deviations of the experimental 
data from the SU(3) symmetric values (using a = 2.602, 
b = -0.071, and d = -0.508) are shown in Fig. 3. The 
figure clearly shows that SU(3) breaking in the magnetic 
moments is significantly larger than in the axial vector 
current sector. The small value of b also shows that the 
F/D ratio for the baryon magnetic moments is very close 
to 213. 

As mentioned in the Introduction, the diagram in 
Fig. 1 should be the dominant source of SU(3) viola- 
tion in the magnetic moments. Using the leading order 
coupling G”” at the meson-baryon vertices and neglecting 
the baryon mass differences, tbis diagram can be written 
as 

where I”” is an antisymmetric matrix which is the re- 
sult of doing the loop integral. The Hermitian matrix 

FIG. 3. Deviation of the magnetic moments from the best 
SU(3)-symmetric fit. The open circles are the experimental 
data, and the filled circles are the values from fit A discussed 
in the text. The order of the magnetic moments is the same as 
id Table V. The A++ magnetic moment has not been plotted, 
since the experimental value has a very large error. 
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iI”” is diagonal in a basis corresponding to particles of 
definite quantum numbers. It has four zero eigenvalues 
corresponding to the four neutral mesons, two equal and 
opposite eigenvalues +IK corresponding to K+ and K- 
and two more equal and opposite eigenvalues iI, corm 
sponding to & and n-. We can write 

where 

and 

TQ=P+$T*= [,,, -$ip;,3], 

TQ=T3-&T8= [ ‘” -;,3 l;3]. (4.4) 

If’ is an SU(3) octet that transforms like the elec- 
tric charge Q and gives baryon magnetic moments with 
F/D = 2/3 that satisfy the Coleman-Glashow rela- 
tions [28]. Irb is also an SU(3) octet, which transforms 
like the electric charge rotated by ?r in isospin space. 
Its contribution to the magnetic moments satisfies the 
Coleman-Glashow relations, but not F/D = 2/3. Jab 
breaks SU(3) as a 10 $10. The SU(3)-violating part of 
the diagram is, therefore, a constant times 

~,&k@aGkbJda, 
NC 

(4.5) 

where J”” is completely independent of the dynamics. 
For example, if the diagram is modified by putting in 
form factors to cut off the kaon loops, I, - IK will change 
but J”” will not. The identities of Ref. [l] can be used 
to express e +GjaGkbJab in terms of the operators which 
occur in our parametrization of the magnetic moments. 
The coefficients have the correct scaling with N, and 
for the physical case of N, = 3, we find c2 = -cl/6, 
ca = cl/6, and cd = -cl/6 where cl is arbitrary and 
reflects the overall scale of the diagram. Defining de- 
viations from the coefficients predicted by the diagram, 
6~ = cz + q/6, deg =~Q - q/6, and dcq = cd + c,,6, 
the fit gives cI = -0.515 f 0.103, bcz = 0.003 f 0.041, 
6~s = -0.009 + 0.048, and &a = -0.048 f 0.030. The 
fact that cl is an order of magnitude larger than the 6% 
is a striking indication that the symmetry breaking part 
of the magnetic moments is dominated by this one dia- 
gram. Actually, the current fit does not reflect the full 
content of the diagram. The expression in Eq. (4.5) fails 
to satisfy the relation 3~; = ci +ca by a term which is ex- 
plicitly of order l/N, and such terms have been dropped 
in the above analysis. However, there is no harm in keep- 
ing this extra term and doing so is equivalent to adding 
a term eJi to M” where the diagram gives e = cl/9 at 
NC = 3. If we add clJ”/9,to M” and redo the fit, x2 
drops from 5.5 to 1.3 and the new coefficietits are listed 
as fit B in the tables. We take the drop in x2 associ- 
ated with this extra term as a further indication that 
this single diagram is the dominant symmetry breaking 
effect in the magnetic moments. The deviation of the 
baryon magnetic moments from the SU(3) symmetric fit 
plus the loop graph of Fig. 1 is shown in Fig. 4. The 
residual SU(3) breaking is clearly quite small. 

Despite the factor of l/N, which comes from the pion 
couplings, ML,, is leading order in NC-the expansion 

of eiikGiaG”* contains a term N,GiC. In the limit of 
small rn. , the symmetry breaking part of M& is also 
of order 6, so it should not be surprising that this dia- 
gram dominates. However, when one actually calculates 
the loop integrals, the numerical value of the diagram is 
about a factor of 2 too large. The resolution of this para- 
dox is, no doubt, that the integrals contain virtual meson 
momenta up to roughly MK which is too large for chiral 
perturbation theory to be valid and that some dynamical 
effect is cutting off theloop integrals at a lower value of 
the momenta. 

V. CONCLUSIONS 

This work has produced two clear results. The first is 
that the pattern of symmetry breaking in the magnetic 
moments is in excellent agreement with the pattern as- 
sociated with thk meson loop shown in Fig. 1. The mag- 
nitude of the loop is, however, about a factor of 2 too 
big. The discrepancy is probably due to dynamical ef- 
fects that cut off the loop integral at a momentum some- 
what smaller than MK. The second result is that the 
quantity 3F - D M 0.26 is considerably smaller than its 
SU(6) symmetric value of one. This appears to be an in- 
escapable result of our fits and is, of course, important in 

0.6 r---Y 

FIG. 4. Deviation of the magnetic moments from the best 
SU(3)-symmetric fit plus the chiral loop diagram of Fig. 1. 
The deviations should be compared with those in Fig. 3. 



53 FLAVOR SYMMETRY BREAKING IN THE l/N, EXPANSION 281 
the analysis of spin-dependent deep inelastic scattering. 
For the axial vector couplings we also found c2 z -b/Z 
which suggests that the strange quark is heavy enough 
that its spin-dependent interactions are rather strongly 
suppressed. Beyond that, however, the fit to the axial 
couplings, while good and seemingly stable, is rather un- 
satisfying from a theoretical point of view. In particular, 
we do not know why cq and especially c1 are so small. 
Further progress on the axial vector couplings probably 
awaits better data, which is likely to be years away, or a 
better understanding of large NC baryon dynamics, which 
might produce a simple reason for the smallness of cl. 

Note added. This paper differs from the previous ver- 
sion in that we have included recent measurements of 
ga/g” in neutron p decay [29] and of the Q2- magnetic 
moment [30]. The small change in the value of gA does 
not significantly affect the fit. The new measurement 
of the a- magnetic moment is in good agreement with 
the best fit value given in the preprint, and supports the 
pattern of symmetry breaking discussed in Sec. IV. 

We have used ga in Z + A decay from the asymme- 
try measurement alone. The conclusions are essentially 
unchanged if one uses the average of the asymmetry and 
rate determinations of ga. For example, the central val- 
ues for F, D, and 3F-D are 0.39, 0.87, and 0.30 instead 
of 0.39, 0.88, and 0.28, respectively. 
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APPENDIX: HIGHER ORDER OPERATORS 

The point of this appendix is to show that the trun- 
cation scheme is consistent in the sense that matrix el- 
ements of the operators that have been dropped are al- 
ways smaller, for large N,, than the corresponding ma- 
trix elements of at least one of the operators that has 
been retained. This has already been done for the sin- 
glet and octet operators - the corresponding analysis 
for the 10 $ % and 27 follows. Up to terms which sim- 
ply renormalize the symmetrical couplings and irrelevant 
constants, the operators that we keep are 

where the scaling with NC has been made explicit, and 
we drop the operators 
WI 

First consider the operators 01, 04, and 06, all of 
which contain the basic operator G’“. Since J.” = 
(N,/2)(N,/2 + l), J; cannot have matrix elements larger 
than [(N./2)(N./2+1)]‘/’ and it is clear that for low spin 
states any matrix element of O4 or Or, is of order N;’ 
times the corresponding matrix element of 01. Dropping 
O4 and Os is therefore justified by the fact that these op 
erators are always small compared to O1. Now consider 
the matrix elements of 02 and 03, both of which contain 
the basic operator ‘I’“. The comparison of these opera- 
tors is simplified by noting that 03 has matrix elements 
only between states of the same spin and that the ma- 
trix element of Jj between states of equal spin is equal to 
the matrix element of J”JkJ,k/J2. Therefore the state- 
ment that 03 is small compared to 02 is equivalent to the 
statement that, for low spin states, {T”, N./N,} is small 
compared to {T”, JjJ”/J’}. We will explicitly carry out 
the calculation for the experimentally interesting case of 
spin-l/2 - other cases can be studied in a similar way. 
The structure of the baryon multiplet is such that (i) the 
isospin of a baryon is equal to the total angular momen- 
tum (spin) of the up and down quarks and (ii) the total 
angular momentum (spin) of the strange quarks is Na/2. 
It follows that (i) there are no spin-l/2 baryons with 
N. > (NC + 1)/2 and (ii) a spin-l/2 baryon must have 
isospin (N, - 1)/2 or (Ne + 1)/2 where either possibility 
is allowed for 1 5 N. 5 (NC - 1)/2 and only the smaller 
isospin is allowed when N, = (N,+1)/2. The case N. = 0 
also is exceptional, with only the larger isospin allowed, 
I = l/2. A straightforward calculation then shows that 
JEJ2/J” is equal to -Na/3 for the higher isospin and 
(N, + 2)/3 for the lower isospin. Note that, unlike the 
matrix elements of N., the matrix elements of J,kJ”/J” 
can have dierent signs giving rise to the possibility of 
cancellations between the two terms in {T”, JiJ”/J’}. 
If the SU(3) index a is 1,2,3, or 8, then neither 02 nor 
Os can change the isospin of a state, so there can be no 
cancellation for any N, and the matrix elements of 03 are 
down by N;’ relative to the matrix elements of 02. How- 
ever, in the case of strangeness changing operators, a can- 
cellation can occur. There are two types of strangeness 
changing matrix elements, those with ANs = 2AI where 
the state with the largest number of strange quarks also 
has the larger isospin and those with AN, = -2AI where 
the state with the largest number of strange quarks has 
the smaller isospin. For the AN, = ZAI transitions, the 
two terms in 02 have the same sign and, independent 
of the value of N., the matrix element of 03 is always 
smaller than that of 02 by a factor of l/N,. However, 
for the AN. = -2AI transitions there is a cancellation 
and, for large N,, the matrix element of 03 is smaller 
than that of Oz by a factor of order N./N,, i.e., a fac- 
tor which is of order unity when N. - N,. However, 
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for these transitions the matrix elements of O1 are large 
compared to the matrix elements of either Oz or Ox. To 
see this, we note that the matrix element of Gi” between 
states of the same spin is equal to the matrix element of 
J’J”Gk”/JZ and use the identity 

which is a linear combination of two of the (0,adj) SU(6) 
identities listed in Ref. [l]. Taking matrix elements of this 

identity and working out the Clebsch-Gordan coefficients 
yields 
J”G”“f Jz = i Ta + +&Ta) 

> 

@4) 

for AN. = -2AI transitions, where this relation 
is understood to be valid only for matrix elements 
of strangeness changing operators between spin-l/2 
baryons. It follows immediately that for N, - N, the 
strangeness changing matrix elements of 03 are order 
N;2 times the corresponding matrix elements of 01. The 
conclusion of these rather lengthy calculations is that in 
all cases matrix elements of 03, 04, and 05 are smaller 

than a corresponding matrix element of 01 or 02 by at 
least a factor of N;‘. 
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