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Natural mass matrices

R. D. Peccei and K. Wang
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(Received 8 September 1995

We introduce the idea of natural mass matrices, an organizing principle useful in the search for GUT scale
quark mass matrix patterns that are consistent with known CKM constraints and quark mass eigenvalues. An
application of this idea is made in the context of SUSY GUT's and some potentially “successful” GUT scale
mass patterns are found. The CKM predictions of these patterns are presented and some relevadPstrong
issues are discussed.

PACS numbgs): 12.15.Ff, 12.10.Kt

I. INTRODUCTION we would like to suggest an organizing principle which may
be helpful. This is the idea of natural mass matrices, which

It has been a theoretical quest for nearly 20 years to des'everely restricts the aforementioned arbitrariness in the

vise imeres‘?”g mass matrix pattgrns which cogld proViderm\ss pattern construction, thereby allowing a search for vi-
sound predictions for the Cabibbo-Kobayashi-Maskawa,pie GUT patterns more systematically and efficiently.

(CKM) matrix and quark mass eigenvalugl]. Recently, This paper is organized as follows: In Sec. Il, we summa-
these efforts have centered on constructing patterns at thge oyr present knowledge of the CKM parameters and
grand unified theoryGUT) scale in supersymmetriSUSY)  quark masses; in Sec. Ill, we introduce the idea of natural
theories[2,3]. Most of these attempts, although quite suc-mass matrices along with our method of mass-matrix param-
cessful, have failed to produce results in complete agreemeatrization that facilitates its implementation; in Sec. IV, we
with precise low energy dat@ED) [4]. Part of the difficulty  present some Hermitian GUT scale mass patterns that
lies in the fact that one has to rely upon “guesses” at theemerge from this approach and their CKM predictions; in
GUT scale which are then extrapolated down to the wealSec. V, we discuss issues connected with Hermiticity break-
scale, with the hope that the mass matrices so obtained witlown and associated problems with strdDB violation; fi-

give rise to acceptable fits to the LED. A somewhat morenally in Sec. VI, we present our conclusions.

promising approach, perhaps, would be to reverse the pro-

cess: constructing LED-consistent mass matrices at some |l. CKM AND QUARK MASSES: A SUMMARY OF

low energy scale and then evolve them upwards to see if PRESENT STATUS

interesting GUT patterns would emerge. However, since .

there exists considerable arbitrariness in this construction, A. CKM matrix

one typically has to be content with studying only certain In its standard form[7], the Cabibbo-Kobayashi-
special casefb,6] often guided merely by simplicity. Here, Maskawa(CKM) matrix is

—ié

C1C3 S;C3 sge
[CKM]s=| —S1C2—C15;53€'°  C€1C,—51S,53€'°  spC3 | (2.2
$1S,—C1C»53€' % —C1S,—51C,83€'°  €,C3

Taking into account the experimental hierarchy in the mixing angles, one can write
$1=sinf;=A=0.22, s,=sind,=AN?, s3=sind;=Ac\>, (2.2

with A, o being parameters roughly @(1). The CKMmatrix then takes the Wolfenstejg] form®

1 1 .
—IN2-I)\4 A Ach\3e 10
1-5N=g) o
1 1 1 5
[CKM]s = -\ 1—§>\2— §A2+§ A4 AN +O(\5). (2.3
3 ) 2 1 4 1 2y 4
AN3(1—oe'?) —ANZ S AN 1-SA%

Wolfenstein uses the parameters; instead ofc, 5. They are related bye P=p—iz.
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The parameteA is fixed by V., which, in turn, is deter-
mined from semileptoni8 decays. The most recent analysis
from CLEO datd 9] gives

|Vcp|=0.0378+0.0026—A=0.78+0.05. (2.9

The parametes is fixed by the ratidV,u|/|V¢p|. This in
turn can be extracted from a study of semileptdBidecays

near the end point region of the lepton spectrum, where

b— c quark transitions are forbidden. The most recent analy
sis[9] gives

IVyol/|Vep| =0.08+£0.0256=0.36-0.09. (2.5

The phase’s (or the parameter;) can be gotten by com-
bining the measurements of tleeparameter irk-K mixing
and those ofAde in B4-By mixing with the value of

[Vuol/|Vepl- A recent analysi$l0] gives an allowed region
in the p-7 plane roughly specified by the ranges

7=[0.2,0.5, p=[—-0.4,0.3, (2.6
with a corresponding CKM phase
6=[45°,1587. 2.7

B. Quark masses

For the purpose of calculating quark mass ratios and their

renormalization grougRG) scaling, it is convenient to ex-

press all quark masses as running masses at some common
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These mass values are individually uncertai®{@0%) but
are rather better constraing¢ii3,14] by the current algebra

relation
( ) 2 ( “s

d
The RG scaling of the medium heavy and light quark
masses tan, are calculated to three loops in REB], with
the result sensitive to the precise value of the strong coupling
constante(M 7). Usingag(Mz)=0.117+0.05 and express-
ing all quark mass ratios in terms of the small parameter
A=0.22, the above results allow one to write the diagonal

quark mass matrices as

1
Q?

my

2
— ) =1 with Q=24+16. (2.9
My

§ut)\7 0 0
MY m)=175 Ge| O &A* 0
0 0 &

=m,(m)M I, (2.9

where = 0.49+0.15, £,,=1.46+0.13, £, =1+0.09, and

Eah* O 0
MJam)=2.78 Ge\y O &% O
0 0 ¢

diag

(2.10

=my(m)M}

energy scale. We shall choose this scale here to be the maggere ¢,,—0.58+0.18, £,,=0.55+0.18, &, =1+ 0.05.

of the top quarkm,. We summarize below what is known
about the quark masses and then extrapolate all the results
the scalam,. From the recent “discovery” papers on the top
quark[11], one infers a value for the physical mas&™®,
which is related to the running mass by

m{)hys
my(my) =

+_
1 3

ag(my)
These result§ll] suggest that
m;(m;)=(175t15) GeV.

For medium heavy quarks, the analyses of charmonium an
bottomonium spectrl2] give

m¢(m¢) =(1.27+0.05 GeV,
my(my)=(4.25+-0.10 GeV.

Finally, for light quarks, current algebra analydé®] give
the following values for the masses at a scale of 1 GeV:

my(1 GeV)=(5.1+1.5 MeV,
my(1 GeV)=(8.9x2.6) MeV,

my(1 GeV)=(175+55) MeV.

to
lll. NATURAL MASS MATRICES
A. Heuristic two-generation example: The notion of
naturalness

To introduce the idea of natural mass matrices, we con-
sider first the simple two-quark-generation case, assuming
that these mass matrices are Hermitian. A genexa? Mer-
mitian mass matrix for the first two quark families can al-
ways be rewritten, after some trivial phase redefinitions of
the quark fields, as some real symmetric matrix. Two such
matrices for theu quarks andd quarks, M,=m:M,
My=msMy, in turn can be diagonalized by some orthogonal
gpatricesO,, and Oy, resulting in a Cabibbo-quark-mixing
matrix C. One ha$

. . ENt 0
OIMUOU: 3'395( 0 l ?

. . 40N> 0
ogMdod=Md'ags< o 1 (3.1

and

Note that &,c= &y /(£eh)=(1.53£0.49) while &45=Egp/ésp
=(1.05+0.47).
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CoOSfc  sinfc With the parametergx and «’ of O(1), onegets the ob-
C=OIOd= _sing 9| (3.2 served hierarchyi.e., the é€’s being of O(1)] without any
Sindc COFc need for fine-tunings.
In the above\ =sinf; as before and the matric&3,, B. Three-generation extension

04 have the same form as the matfixwith anglesé,,, 64
instead off:. We notice that it follows from Eq(3.2) that
0c= 64— 6, . Moreover, since the matri is invariant un-
der the changes

It is straightforward, though somewhat tedious, to extend
the idea of natural mass matrices to the three-generation
case. To facilitate its implementation, however, we need to
introduce a convenient parametrization of the mass matrices
based on a perturbative expansioniin The procedure we
shall adopt is analogous to, but a slight generalization of, a
. ) . method employed by Ramond, Roberts, and H@3§sThe
Wwhere O s some arbitrary orthogonal matrl_x, we see thatbeneﬁts of gurygene)r/alization, aside from allowing a search
My andMg are fixed only up to a common similarity trans- ¢or natural mass patterns, also include the flexibility of si-
formation multaneous adjustments of matrix elementsMp and My

%,-0™M.0, My—OTM,O. Eﬁzﬁqf)lljl in imposing O’s or arranging for equalities among

Consider some generalx3 Hermitian mass matrices
M, ,=m,(m)M, and My=my(m)M,. These matrices can
be diagonalized by some unitary matri¢ésandD, resulting
in a CKM-quark-mixing matri{ CKM]

Od—>OOd, Ou_>oou1

Because of this freedom and sinég~\ <1, we can al-
ways arrange to have bdtt#y<1 and§,<1. We can now
contemplate three different options for the angksand

Hd:
. . . M, =UM%2yt, 3.6
(i)  sinfg~\, sind,~N\, ! u S
(i) sinBg~\, sind,=\2, My=DM§eDT, (3.7
(iii) SinadS)\z, sing,~N\. (3.3 [CKM]= u'D. (3.9
Upon examining the expressions for the mass matridgs  To proceed, it is useful to make two observations.
andl\7|d, (1) As in the two-generation case, if we charige>NU
andD—ND (whereN is some arbitrary unitary matrixthe
. ~ oot | EuNtE sirfe, sind, matrix[CKM] remains unchanged. The matriddg ,M are
M,=0,M;*0,= sing 1] thus unique up to an arbitrai§out common unitary trans-
" ~ A 5 H

formationM ;<> NT(M )N, My—NT(My)N. As a result of

[CKM] =1, this arbitrariness allows us to focus only on
), (3.9 “small” transformations, i.e.U=1, D=1. Furthermore, in

the particular case wheié= ¢, ¢_being some phase ma-
trix, _ the _ induced changes in M, and
Mg (My— ¢ My ;My— ¢ Mye]) can be absorbed by a
trivial quark field phase redefinition. .
_ (2) So far as constructions of the mass matrites and
)fla out of the matricesV %, M, and[CKM] are con-
cerned, a change of

[CKM]— ¢! [CKM]pg> D —Doy, U—Udg,,

Eg N2+ sSiPly  sindy

M= O0gM*0j= sinfq 1

one sees that if option®) and (iii) were to hold, one would
require a severe fine-tuning of the matrix elempt,];,
forcing [My];1=(M]1p)? to arrive at the large
m,/m.~\* experimental hierarchy. Such a fine-tuning ap-
pears to be unnatural. For the two-generation case, the nat
ral mass matrices have the form

'y 4 2 ry 2
~ a \" ay\ - agh®  agh
( ) d:( , (3.5 with the ¢'s some arbitrary phase matrices, is inconsequen-

M=
A1 DS . ~ i > i
“u *d tial due to the fact that ¢,M*%¢/=MJ* and
corresponding to optiofii) in which $aMG o= Mg, _ _ o
Based on these observations, one is always justified work-
singy=a \%, a/—al=§&,, ing with a specific form of the CKM matrix. Thus one can
write

sinfg=ag\, ai— a§= Eds»
UTD=[CKM]= ¢{[CKM]s¢y,
and i
with
ag—a A=1. DE¢IDs¢d!UE¢IUs¢u-

The phase matriceg, ,¢4 can be further chosen so as to
3As will become apparent below, this restriction need not to berenderDg to have the same form as the matfi@KM] of
imposed separately for it is in conformity with our naturalness re-Eq. (2.1), and it follows thatUlDSZ[CKM]S. (Notice that
quirement. It is done here for ease in the discussion that follows. having choserDg to be of the same form as the matrix
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[CKM];, there is now no more freedom to redefidg and  orthogonal matrice€;, (of the same form as th€;’s) in-
Us, in fact, will not have quite the standard CKM fomThe  volving angleso;,(i=1,2,3) and satisfying the relations
mass matriced,, My constructed as

M,=UMdayl C/,Cia=C; (no sum over the indeX.

1 — 1y npdiagnt
Mg=DsM¢"Ds, (3.9 In analogy to the two-generation case, the andlgséiq,

are still perfectly general for our consideratidhidaving es- and ¢; obey

tablished their generality, we shall drop the subscijt the
matrice CKM],, Dg, andUg hereafter for notational brev-
ity. o .

With these preliminaries out of the way, it is straightfor- 0i=0iq= b (1=1.2.3. (3.11
ward to give explicit parametrizations for the matri¢¢snd
D. For these purposes, it is useful to note that, in its standar

form, the matrix[CKM] can be expressed as EiJsmg these definitions, the matrix is easily seen to be

[CKM]=C,AC;ATC, U=D[CKM]"={C,{Ca(A4Ca,AHCL}

1 0 O cs 0 s X{Ca(A4C3A4)Cyy(ACIATC}. (3.12
=0 ¢ s|Al O 1 O
0 —-s, Cy —-s3 0 c3 This matrix is not quite of the standard CKM form. How-
ever, since the matriceS;~ 1, the matrixU is not that dif-
¢ s 0 ferent, apart from the placement of some phase factors.
xAT| —s; ¢; O, Once one has explicit forms of the matridésandD, the
N\ expansion of these matrices and henceMQ,f Md is ac-
0 0 1
complished by letting
with
1 0 O
010= X, ", 020= 2, Bo\",036= 2 Yo\".
A=[0 1 0. n=1 n=2 n=4
0 0 €7 (3.13

BecauseD, by assumption, also takes the CKM form, we

can likewise write The expansion of the,, angles are fixed by Eq3.11) in

conjunction with the magnitudes of th@’s in the CKM
D=C,4ACagAlCyq. (3.10  Matrix, as specifitin Eq. (2.2. _ _
Having written out the matricel!,, M4 according to Eq.
Here the matrice€;q and A are defined analogously ©  (3.9) [with M99, M40 given by Eqs(2.9) and(2.10] and
and A, except they involve some new anglég(i=1,2,3) expanded each matrix element innaexpansion similar to
and 4. It is convenient, in addition, to define three more Eq. (3.4), one can follow a procedure analogous to that in the
two-generation case and infer which of the mixing angle op-
tions give rise to natural mass matrices. The detailed expres-
“The matricesM, andM in Eq. (3.9) can still be changed by an  sions forM ande are quite lengthy and not tremendously
overall common unltary transformation. It is possible to remove thlSlIIummatmg, and so we shall omit them and instead only
remaining freedom by adopting(alightly) unconventional param-  present our findings regarding the naturalness conditions. We
etrization of the CKM matrix. DefiningVl, andM as in Eqs(3.6) find that for natural mass patterns we must require again that
and (3.7), one has always the freedom to cljodsao be of the
standard CKM fornrD =Dy, so that the matriM, is described by
six real variables and one phase. However, then there is no further (1) G19~N\, 61,=\?
freedom of redefinition; hencé) being a general 83 Hermitian
matrix must involve six real variables and three phases. It is easy to
show that this more general parametrization corresponds to a defind, for the other angles, that one of the following options
nition of the CKM matrix (in the standard forjp [CKM],  from each set holds:
=U'D.®, with ® being a diagonal phase matrix containing two
arbitrary phases. We find it more convenient to tdke 1 and have
the matricesl\N/Iu andl\7|d undetermined by an overall common uni- °Notice, in particular, that according to Eq&.4) and (2.5),
tary transformation. s;=AcA3=0(\*), if one uses the central values farando.
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(2) 05y~ 62d~)\2 or 02u~)\2>>02d or 02d~)\2>>02u1

(3) O35~ O3g~N\?* OF O3y~ N4>> 034 OF O3g~\*>>03,. (3.19

The above conditions severely restrict the form of the massion |V, ,|=m./m;), or when one assigns specific values
matrices to which they apply. As a result, the general expresiusually 0 to certain(usually small matrix elementde.g.,
sions for these matrices are readily obtainéthe detailed setting [M,];,.=0 results in  the prediction
results and their discussion are relegated to Appendix A.sing.=+/my/m,).

Here, as an example, we give a mass pattern

W|th 01d~)\,01u 02d )\ 02u 03u )\ and 03d~7\

Th|5 pattern Corresponds to IV. POTENTIALLY SUCCESSFUL GUT SCALE MASS

PATTERNS
Uggh’ U12)\6 e*i%ule})\4 A. A pattern

Mu: T Up\? 7 Having constructed certain low energy natural mass pat-

8, 4 1 terns, one can then apply RG equatidRSE'’s) to evolve
Ugh™ Uzt these patterns to some high mass scales where global sym-

_ metries originating from some GUT texture should become

di At dph® e dd \® manifest, hopefully gaining some useful insights. As a study

~ in thi r we examine the evolution of our natural

Mg=| din®  dy2 Oy 2 . 315 case, in this paper we examine the evolution of our natura

_ mass patterns in the minimal supersymmetric standard model

e'%d;\° g\ 1 (MSSM) theory. For simplicity, we consider only the sce-
nario where the vacuum expectation valyg&€V’'s) of the

where the real coefficients;;’s, d;;’s are functions of the Higgs bosons coupled 0 quarks andi quarks are approxi-

following O(1) parameters: the CKM parameteks o; the  mately equal, i.e., tg8~1. The relevant one-loop RGE’s

quark mass ratiog’s; and the\ expansion coefficients [2,15] are

{a1,B2,7vs}. The coefficienu,; and the phasé, in addition

also depend on the arbitrary phase paramétefrom the

matrix A4[Eq. (3.10] as well as on the CKM phas& dihyliy

The principal goal of our construction is to allow us to dt (4w )2{(3[hU]33 Ckgk)[hU]'J
extrapolate LED-consistent natural mass patterns to some
GUT scale where we can look for hints of “new” physics. +3[hylislhylad hyls} (4.9

Nevertheless, low energidefined here as-m;) mass pat-

terns such as the one discussed above are also interesting in drho ] 1

their own right. For instance, for the pattern given in Eq. Dlij _ n -
(3.15, by appropriately choosing the signs of the quark dt (4w z{(?’[hD]% tr{hg} — crgi )[hplij
masses one can arrange to have

+[hylislhylsd holsj)s 4.2

SN (AN ade\® —Age !\ where the g,’s are the three gauge couplings,
M= aée\® Ee? 0 : ck=(13/15, 3, 16/3) c,=(7/15, 3, 16/3), andh ,hp, and
—Ageld)\3 0 1 he are the Yukawa coupling matrices forquarks,d quarks,
and lepton$, respectively. To pursue our analysis further, we
need to solve the above equations to find the mass matrices

0 VéapEsh® 0 at the GUT scaleng=10' (GeV) [2]. An input is then nec-
|\7|dz NI Eq\? AN |, (3.16 essary at the energy scaig. For definiteness, we assume as

a boundary conditiorfhy(m,)]s3=1, although the general
pattern of our result is largely independent of this choice. For
the concrete example of our mass pattern of BdL5), the
solution of Eqs(4.1) and (4.2) gives

0 AN? 1

with a={&4p/&sp— 1}/A=0.12. This new pattern now has
a large number of the much sought-after “texture zeros”: It

has three exact ones to begin with, i[e?tu]zg,[Md]ll, and

[Mgl1s, and two more to the accuracy lev@(\?) of the SAlthough our analysis so far does not concern the lepton mass
CKM matrix, i.e.,[M]11,[M]12=O(\"). Moreover, this  matrix, one can still argue that it must be of the form which reflects
new pattern exhibits useful features commonly exploited inhe lepton mass hierarchy, especially in light of the fact that one
the study of mass matrix patterns: Sensible CKM and otheyishes to implement the successful Georgi-Jarlskog GUT mass re-
“predictions” can come about when one imposes equalitiesation [16] mb/m 3m5/m md/3me 1 at some point. It then
among matrix elements of approximately the same ordefollows that tl{hE} [hel5s~[hp]3sin which case, the contribution
(e.g., demanding thatMu]13| [M ]2 result in the predic-  of the term tfh2} to the solution of Eq(4.2) is very minimal.
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({0.6Lu;,+{0.08U2)N" {0.6u A8 e Pt
M y(mg)={0.82 {0.63up\° 063U A" |,
e\t Upah 1
{0.85d;;\* {0.85d 03 ({0.85e %ad g+ AN

My(mg)={0.38| {0.88d;A* {0.88dp\*  {0.8Fd\*+A\* |, (4.3
e'%d o\ 5 dyah? 1

with A;3={0.68e '%u,53 and Ay3={0.13u,;. The above
result illustrates several general features of the RG runnings
of natural Hermitian mass patterns.

(2) As is obvious from the form oM 4(mg), the Hermi-
ticity of the mass matrices is not strictly preserved by the RG )
evolution. However, the extent to which Hermiticity is bro- Where the magnltudes 60f the parameters — are
ken is relatively minor. A=0(1), B=O(\), C=0(\"); D=0(1), E=0(\"),

(2) Because of the hierarchy in the mass matricesiat and F=0(\"). Given this ansatz, one can then try to find

the RG runnings of various mass matrix elements are quit@Ut Whether it fits the LED. As we shall see below, some
straightforward computation shows that indeed it dbes.

Mg(mg) = , (4.5

o T O

=
E
E

O m ©

different.
(3) This notwithstanding, the likely mass-matrix-element
candidates for “texture zeros” amg are the same ones B. CKM predictions

which are present an,. These are the matrix elements of Running the RGE’s backwards, at the energy saaléhe

O(\%) or smaller. .
. matrices of our mass pattern become
These observations suggest a strategy on how to proceeda P

in the search for GUT patterns. First of all, since in practice —068'2 (C' B'e’i®

it makes more sense to imagine the mass matrices at the ~ , , ,
GUT scale to be Hermitiafor symmetrig, one should really M= c _ 1.8 B '
reverse the procedure. Clearly, if one chooses the GUT pat- B'e'? B’ 1

tern to be Hermitiaje.g., by manipulating Eq4.3) into its

nearest H(—E]rmlitian forp one should expefct onlg modestf del— 0 = —018'e"i¢

viation in the low energy mass matrices from being perfectly ~ , , , ,

LED consistent. This is even less of a real problem since, as Mg=| F" 12" 1.22'-0.18"|. (4.6
a matter of fact, one can obtain LED-consistent mass matri- 0 E’ 1

ces which are non-Hermitiafsee the more detailed discus-

sion in Sec. V. Second, one can exploit the differences inNotice that to our accuracy only is slightly non-
the RG runnings of mass matrix elements to arrange for pog{ermitian. For ease in the computations that follow, it is
sible equalities among them at the GUT scale. Fina”y, SinC%onvenient to Specify the approximate magnitudes of the
“texture zeros” track between high and low energy scalesyarious parameters above by definiBy=br* C’=c\®,

one can look for possible “texture zeros” of a GUT pattern g/ =e\2, andF’=f\3. With these choices, one can relate
in the “texture zeros” or “near-texture zeros"of its corre- the parameterb,c,e,f to the quark mass eigenvalu@sith
sponding low energy patterh. the signs olu, ¢, andd quark masses chosen to be negative

_For concreteness, it is useful to demonstrate our ideagy solving the corresponding eigenequations of the mass ma-
with a specific example. Let us consider again the mass pafrices: i.e.,

tern of Eq.(4.3). By choosing the signs of the quark masses
appropriately, one finds among other possibilities, a poten- det M. + £ =0
tially “successful” GUT mass pattern in which Myt £} =0,

defMgM}—(£02)2=0, . ...

0 C Bel? A
~ These computations give
Myme)=| C B B | (4.9 P J
Be? B A

8alternatively, and in fact more efficiently, we could take as our
starting point the Hermitian mass pattern in £§.15 to be our
"Equalities among matrix elements and “texture zeros” are al-GUT pattern with all the quark mass ratios and CKM parameters
ways desirable in GUT mass patterns in that they reduce the numbérnerein evaluated at the energy scalg (Appendix B and directly
of input parameters and, as a result, enhance the predictive power afrange for “texture zeros” and equalities among its matrix ele-
the patterns. ments.
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b=—0.6¢, above are in reasonable agreement with the much more re-
strictive light-quark-mass constraint relation of Eg.8).

== \/gm( ~458uct 0, 6§§t), C. Other GUT patterns

e=0.8p, By examining the general expressions for the GUT scale
Hermitian matricesM , and My (Appendixes A and B it is
f=Vé&spédb: not difficult to find other potentially interesting mass pat-

With these values, one can further calculate the dia onaIizintemS' We list here four more such patterns which are slight
’ 9 gariations of the one we discus§ed in detail above. The first

unitary matricedJ, , D, from the equations two have the same form for thd 4 matrices as the one in
UI(Mu)UL:MSiag! Eq.(4.5: i.e.,
~ o~ -~ 0O F O
D{(MgM{)D ={M{*32, -
(1) and (2) Mg(mg)=| F E E
The final result is 0 E D
1 App Ay with D~1, E=0(\?), andF=0(\%), but have somewhat
[CKM]=U{D, =| —A1, 1 Ay, different M ,’s:
Ag;  —Apxp 1 C 0 Be'?
where (1) Mymg)={ 0 B B |,
Be B A
A o= VEqpl Esph F = 456/ £+ 066\,
" , with A~1, B=0O(A%), andC=0(\"),
— =1 _
A13_0-7§cte A igsb\/ 4-5§ut/§ct+0-6§ct7\ ' C C Beﬁid’
Apz=Eph >+ 0. 760 Y, (2) Mymg)=| ¢ B B |,
BeY B A

Ay= \/gdbgsbks_ 0-7§ctei N4

Comparing this matrix with the CKM matrix in the Wolfen-
stein parametrization and denoting the absolute values of t
quark masses as,’s, one arrives at the “predictiong”

again withA~1, B=0O(\*), andC=0()\"). The remain-
l{Eg two patterns have a differeMy matrix which takes the
orm

0 F Fe™
. My m, me ~
smecz\lmt _F+0'6ﬁ’ (3) and (4) Mymg)=| F E E ,
S C t .
Feé® E D
m m ~
vcbzm—s+o.7ﬁ°, with D~1, E=0(\?), andF=0(\3), and theM, matri-
b t ces
m . m m m,
Vyp=07—e +=1/—- —2+06— (4.7 y c oo
M Mo ¥ Me My (3) Mymg)=| 0 B B,
0 B A

To check the soundness of these results, we choose-the
sign in the above expressions and input various quark mass,
g P P g th A~1, B=0O(\%), andC=0(\7),

ratios. Although these are not the only possible choices, w!
find that, for cC o0 o0
£=155, £,=0.30, £4=0.73, £qp=0.66, (4) Mymg)=( 0 0 B,
0O B A

we have a decent fit corresponding to the central values of

sinfc=0.22, A=0.78, andoe '°=0.31e"'¢+0.05. Choos- with A~1, B=0O(\?), andC=0(\7). The CKM “predic-

ing ¢=90° in the last equation, for example, gives the pointtions” of the above GUT patterns are most readily obtained

(0.05,0.31) in thep-n plane, which is well within the known in terms of various quark mass ratios and the paranteter

constraints[Eq. (2.6)]. We note also that the mass ratios defined in Appendix B, by comparing the matrices of these
patterns with the general results of Appendix A applied at
m¢ (see the example and comments in Appendix B for de-

°In terms of the scaling parameterdefined in Appendix B, the tails). The relevant predictions for these GUT patterns are

numerical factors in these expressions corresponc=t0.85 (and  tabulated in Table |I.
hencer?=0.7,3=0.6). Several comments are in order at this point.
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TABLE |. GUT pattern predictions for CKM parameters.

@ @) ©) 4

sin6c my mg my 3 me my my
mS mS mC mt mS mS
Vep m m m m m m, m. m
c _s+ 2l _s+ 2l _s+ 2l r—C— s
My m; My m; my m; m;, m,

(1) Although the mass patterns listed here all contain (3) If one wishes to incorporate the Georgi-Jarlskog mass
“texture zeros,” we have not tried to impose “texture zeros” relation[16], the corresponding lepton mass matrices of the
in all possible places. For example, one could have in th&UT patterns listed in this section can be chosen in a
matrix M ,(mg) of pattern(1) an extra “texture zero” by straightforward manner. For instance, following Réfl, one
taking C=0. The resultant new pattern would, in addition to can simply let, for patterngl) and (2),
its CKM “predictions,” generate a GUT scale quark mass

relation corresponding tmumt=r3m§ which, according to . 0 F 0
Eq. (2.9), is actually allowed. A systematic search for LED- (1) and (2) M|(mg)=| F —3E E|,
consistent patterns with the maximum number of “texture 0 E D

zeros” has already been thoroughly carried out in R6f.

where, specifically, a total of five patterns with five “texture and similarly for pattern$3) and(4), one can let
zeros” were found and discussed in substantial detail.

(2) Because of the specific mass matrix parametrization 0 F Fe ¢
sc_h_eme we have cho;en, ce_rtam frequently encountered Her- (3) and (4) |\7||(me)= = —_3E E
mitian mass patterns in the literature may not seem transpar- i
ent from the constructions of our natural mass matrices. Still, Fe E D

in general, these patterns can be related to our easily deriy: . . - .
able patterns by some simple unitary transformations. FOKN'th.these matrices, it is easy to see that the Georgi-Jarlskog
elation results directly.

example, consider the following pattern which can easily be’

arranged from our general results in Appendix A:
V. HERMITICITY BREAKDOWN AND STRONG CP

cC 0 O 0 E Gei¢ COMPLICATIONS
|\"/|uz 0 B 0], |\7|dz F E E’ , In our introductory discussion we described how to con-
0 0 A Gd?® E’ D struct Hermitian mass matrices from LED information. We

must, however, face the fact that imagining the mass matri-
ces are Hermitian at the weak scale is not a very compelling
assumption. Indeed, as we have argued in the preceding sec-
tions it is much more sensible to imagine that quark mass
fhatrices are Hermitiarfor symmetri¢ at the GUT scale.
When this is the case, the RG evolution definitely introduces
some non-Hermitiarfor nonsymmetric components at the

where A, D~1; E,E'=0(A?); F=0(\3); B,G=0(\%),
andC=0(\"). With the various parameters carefully cho-
sen, this pattern can be transformed into a much mor
familiar-looking form[6]

0 C o0 0 Fe'™ 0 weak scale. This was illustrated in explicit detail in the ex-
m~lc B o M ~| Frei¢’ E = ample based on the mass matrices given in E4<) and
. ’ d (4.5). Thus, to be realistic, we should instead display a set of
0 0 A 0 E’ D natural non-Hermitian weak scale mass matrices constructed
. . from the LED and then evolve these matrices to the GUT
by a unitary matrixT (i.e., TMu,dTTz M| 4) with scale.
' If one attempts this kind of a general construction from
e —w 0 the LED without any further constraints, one is immediately

faced with considerable arbitrariness and little progress ap-

' pears possible. However, if one assumes that the resulting
0 0 1 weak scale matrices are only “slightly” non-Hermitian, be-

cause they are Hermitian at the GUT scale, then a general

wherew=G/E'=0(\?). construction becomes feasible. In fact, such a construction is

T= wei¢’ 1 0
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really not necessary in the case of SUSY GUT’s withementary or induced gluino masses one expects a phase to
tan3~1. In this latter case one can simply detail how theappear[23]. For instance, with an explicit gluino mass,
CKM parameters and the quark mass ratios evolve to thene induces a nonvanishing ArfdetM, 4(m,)} at two

GUT scale. With these parameters in hand one can directlypops[23].

construct natural Hermitian mass patterns at the GUT scale. |t js quite possible that with the right underlying theory,
The resulting non-Hermitian mass matrices, by constructionymposing Arg{detM, 4(mg)}=0 at the GUT scale, suffices
will be natural and reproduce the LED. This is basically they, guarantee that Af@deﬂ\/lu 4(m)} is much below 10°.
technique used to deduce Table I. The details of this ProCeowever, this still does not solve the stro@pP problem

dure is further illustrated through an example in Appendix B. . . L
2 . nless, somehowj vanishes atng [which certainly is not
The presence of non-Hermitian mass matrices at the weak i iontlv quaranteed by iust havin Adpt, (M)}
scale, incidently, raises the issue of str@DB violation. Be- y 9 vl 9 u,d\''G

cause of the nontrivial nature of the QCD vaculihd], the :OJ' These additiongl observa_\tions indicate, pgrhaps com-
standard model is augmented by an ex@fa-violating term pellingly, the necess!ty of havm.g some dynamlpal strong-
involving the gluon field strength and its dual CP-removal mechanism, conceivably by imposing &)U

po Symmetry[24].

L o p= s OFAE
=/ strondC P 87 @ auv:*

The paramete# is a linear combination of a phase angle VI. CONCLUSIONS
connected with the QCD vacuum and another connected
with the quark mass matric¢s8: Interesting patterns of quark masses are surely signals of
“new” physics. The task of searching for them therefore can
9= 9+.Ed Arg{deiM}. be very rewarding. In order to conduct these searches more
1=u,

effectively, we have suggested in this paper the idea of natu-

. ral mass matrices as an organizing principle. This idea, along
One”kngczvibpgo Wi\éer’ that tTIS par%mbetg ' must b?I.e;(tr?trel%ith the efficient mass-matrix-parametrization scheme we
fr:ga rSes\ent bgu[n d ];)rfotr?; noelj‘t\:gh eIE?t?icm d(izo(?lelcm\(l)véwenpave described, allows a procedure whereby one can system-
P he . jtically input low energy data to construct viable GUT pat-
Why should the QCD vacuum angle be so precisely allgnetg1

; erns. Encouragingly, this procedure has produced a rather
as to cancelor very nearly cancglArg {deMy g} is not small set of “working” mass patterns and our preliminar
known and constitutes the stro@P problem. . ng P P y

For the quark mass matrices we have been discussing, \ﬁlOI’k in extrapolating these patterns to GUT scales has gen-

we assume that at the GUT scale these matrices are Hermﬁ-rated some interesting possibilities. We have discussed, spe-
ian, then obviously cifically, one such application in the context of SUSY GUT'’s

and some potentially successful GUT mass patterns were
Arg{detM, 4(mg)}=0. readily found. Although we do not particularly wish to assign
too much significance to these mass patterns and their pre-
However, as we have seen from our analysis, RG evolutiogictions, such examples do indicate the usefulness of our
induces non-Hermiticity. Thus, starting with some Hermitianapproach. An important future task is to perform a more
mass matriced/, 4 at the GUT scale, in general, these ma-systematic and complete investigation, with different RGE
trices become slightly non-Hermitian at the scalenpf This  boundary conditions and perhaps different matter contents.
is a direct consequence of the RGE’s not being Hermitian-
conjugation invariant. In the one-loop RGEq. (4.2)], for
example, the terrﬁhu][hL][hD] is responsible for this non-
invariance. Nevertheless, such a term is found to be insuffi- ACKNOWLEDGMENTS
cient to generate
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Arg {detM 4} at the top scale appears depends on the un-

derlying theory. For instance, in a globally supersymmetric

theory this mass matrix phase is never generated since it BPPENDIX A:  GENERAL EXPRESSIONS FOR NATURAL

not renormalized20], while with the standard model it may MASS MATRICES

first appear at six loops in the Higgs sector, with an addi-

tional gauge boson loop21]. In supersymmetric theories Adopting the parametrization scheme we have developed

where SUSY is broken softly the actual contribution dependsn Sec. Ill B, we arrive at the following general expressions

on the breaking. In certain instances no mass matrix phader natural mass matrices, incorporating all naturalness re-

appearg22] but, in general, if there are nonvanishing el- quirementdEq. (3.14]:
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ugh’ uph® Ut Specifically, “texture zeros” and equalities among mass ma-
trix elements can, whenever possible, be rather conveniently

* \ 6 4 2
My=| UA" Uzh" Uzgh imposed by adjusting the parameters, 8's, and y's, sub-

Ui\ up\? 1 ject to the constraints in Eq1.4). Furthermore, CKM and
0 6 6 other “predictions” then ensue when the aforementioned
O(A%) O(N®) O(N°) constraints overspecify these parameters.
+[ 0% o(® oM |, (A1)
6 6 4 APPENDIX B: MASS RATIOS, CKM PARAMETERS AND
18\@‘ )dlzg)‘ 313)9 M) CONSTRUCTION OF HERMITIAN MASS PATTERNS
Mdz d]_Z)\g dzz)\z d23)\2 AT THE GUT SCALE
A dp)? 1 The re!evant formulas for calculating the R_G scgling of
mass ratios and CKM parameters are derived in Refs.
O(\% O(\® O\ [15,25. Here, we give only a brief summary of the results.
+| o8 oY oY |. (A2) For the SUSY GUT.case we are _consi'deri@pc. v A).
6 4 4 where taB~ 1, one finds the following simple RG scaling
O(A\%) O OMY) relations.
Mass ratios:
Here,
< . 4 ~r3 —r3
U= gut_f_{aﬁgct_’_|,yue—léd_auA_'_A(e—lﬁd_e—lﬁ)lZ})\' gct(mG) r gctagut(mG) r gut;
U= aybort Bul yue - ayA+ A(e 1%—e 19)], Esb(MG) =T &sp, Eab(MG) =T Eab - (B1)
. . . CKM parameters:
Ups=y,e %d—a, A+ A(e Pa—e 19,
) )\(mg):)\,
U= &t By
A(mg)=TA,
Uz3=Bu,
, o(mg)=o. (B2
di1=E&gp+ agésp,
o sdb T Tassh The scaling parameterin these relations is defined by
d1o= agésp, 1 JIn(mG/mt) A 2 ) -
, r=exp — ——= t|(t=In{u/m
d13:7de_|6d_ad,8d§sb}\v (4m?2), [hy(u) I3t | ( {u/mi})
(B3)
d2o=&sp, .
which, based on Eq4.1) and the one-loop RGE's for the
dys=Bq. (A3) gauge coupling&? can also be expressed as
The various parameters in the above equations are as fol- [ [hy(mg)]as] ~H° e 112 (B4)
lows:\,A,A(=cAN"1) and$ are the CKM parametef&q. | [hy(my)]ss {n(me)} ™
(2.9)]; &'s are the quark mass ratipggs.(2.9) and (2.10]; _
54 is a free input phase parameféq. (3.10]; and finally ~ With
a’s, B's, and y’'s are input parameters defined from the
expansion coefficients of thé, ¢'s (Sec. Il B): [ [hu(me)]ss]
Sinfdig=ag\, Sindy,=a,\>, [hu(m) s
: : 3 2
SiNByq=PBa\?,  SiNdyy=PB N>, :{n(mG)}l’z(l— m[hu(mt)]§3|(me)] , (Bb)
Sinﬁgdzyd)\4, Sinﬁguzyu)\4. )
I
The magnitudes of these last parameters are specified below p(w) =11 {gi(m)/gi(m)}2e
in accordance with our naturalness conditjé. (3.14)]:
ag~1,a,<1, with ag—a A\=1+0(\3), and
. 4 In(u/mg)
Bi=1,B,=1, with 4= f,=A+O(Y), = [ wwat

Ya=1,7,=1, with y4—y,=A+O(\®). (A4)

The general expressions summarized here are particularly’®These are dg; /dt=b;g*/16x2 (i=1,2,3) with b;=(33/5,
useful for the purpose of arranging interesting mass patternsi,—3).
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T(Z) obtain a numerical value forr, we input Bu=Xy€ch?, Bya=Xgésp

g (my)/4mw=(0.017, 0.033, 0.100) as values for the gauge , '

couplings! (at m,) along with the boundary condition —a Aty 0=y Eqe

[hy(m)]se=1 into the above results, and we ftAd _ _

r=0.85. — agBafsh T ve€ ' *=Yqaqésph %,
The general expressions for natural Hermitian mass ma- 2 ’

trices at the GUT scale can be gotten by substituting the Surt aybeh + (Yube) A =0,

mass ratios and CKM parameters evaluatedngtin Egs. 2

(B1) and(B2) into the expressions given in Appendix A. For €abT @gésb=0.

illustrative purposes, we “derive” a somewhat generic Her- oyt solving for the parametetgs, B's, andy's from the

mitian GUT pattern and its CKM *predictions” below. above equations and subsequently applying the CKM con-
Choosing in  Egs. (1.D—(1.3 the parameters gqyaint relations given in Eq1.4), one has
84=96, B,=0(\?), and demandingu,;,d;;<O(\?), one

arrives at a mass pattern which can be written as 1=\ — Egp/Esp™ \/_ gut/(gct)\)_yﬁgct)\,
0 C yBe ' A=Xgésp— Xuéc\?,
M= C B x,B , Ae P=yqép\—EgplEpe PNy Ee T P

iz;bu
ypet xp A + AN Eul (Eoh) — Yot Xy — EqnEonh.

Finally, in the above equations, if one keeps only the signifi-

0 F  yqFe % . .
. cant terms and takes into account the RG scaling of mass
M= F E X4E , (B6) ratios and CKM parameteis.e., Egs.(2.1) and(2.2)], one
ygFeids  x E D sees that the GUT pattern of E(R.6) has the following
CKM “predictions”:
where AD~1, E=0(\%), F=0(\%), B=0O(\%), C o my \/ my 5, oM
=0(\®), andx’s, y’s are adjustable parameters which are sinfe="\/ ~ m V m, Yy
constrained only by the naturalness requirement.
Mapping the matrix elements in Eq2.6) onto those in mg > Me
Eq. (1.3, one can immediately establish the following: Vcbzxdm_b_xur m
- Vomy s [ Mgy 22Me g,
ese numbers were also used to produce(E®). They cor- ub™Yd m, ms Yu
respond to a set of values for the gauge coupli@sn;) used as
inputs in Ref.[2] where, solving the one-loop RGE's with these N Mg m, , .M
inputs, the three gauge couplings were found to merge at —de_b - R u ﬁ

mg=10'® (GeV).
2Notice from Eq.(2.5) that the solution fof h,(mg)]s3 depends  The signs of the quark masses above have yet to be chosen as

rather sensitively on the choice of the boundary condition. How-either + or —, depending on which choice is more sensible

ever, while still important, this dependence is, comparatively speakand gives better agreement with experimental measurements

ing, much milder forr. of the CKM parameters.
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