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Natural mass matrices
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We introduce the idea of natural mass matrices, an organizing principle useful in the search for GUT
quark mass matrix patterns that are consistent with known CKM constraints and quark mass eigenvalu
application of this idea is made in the context of SUSY GUT’s and some potentially ‘‘successful’’ GUT s
mass patterns are found. The CKM predictions of these patterns are presented and some relevant stroCP
issues are discussed.

PACS number~s!: 12.15.Ff, 12.10.Kt
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I. INTRODUCTION

It has been a theoretical quest for nearly 20 years to
vise interesting mass matrix patterns which could provi
sound predictions for the Cabibbo-Kobayashi-Maska
~CKM! matrix and quark mass eigenvalues@1#. Recently,
these efforts have centered on constructing patterns at
grand unified theory~GUT! scale in supersymmetric~SUSY!
theories@2,3#. Most of these attempts, although quite su
cessful, have failed to produce results in complete agreem
with precise low energy data~LED! @4#. Part of the difficulty
lies in the fact that one has to rely upon ‘‘guesses’’ at t
GUT scale which are then extrapolated down to the we
scale, with the hope that the mass matrices so obtained
give rise to acceptable fits to the LED. A somewhat mo
promising approach, perhaps, would be to reverse the p
cess: constructing LED-consistent mass matrices at so
low energy scale and then evolve them upwards to se
interesting GUT patterns would emerge. However, sin
there exists considerable arbitrariness in this construct
one typically has to be content with studying only certa
special cases@5,6# often guided merely by simplicity. Here
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we would like to suggest an organizing principle which may
be helpful. This is the idea of natural mass matrices, which
severely restricts the aforementioned arbitrariness in the
mass pattern construction, thereby allowing a search for vi-
able GUT patterns more systematically and efficiently.

This paper is organized as follows: In Sec. II, we summa-
rize our present knowledge of the CKM parameters and
quark masses; in Sec. III, we introduce the idea of natural
mass matrices along with our method of mass-matrix param-
etrization that facilitates its implementation; in Sec. IV, we
present some Hermitian GUT scale mass patterns tha
emerge from this approach and their CKM predictions; in
Sec. V, we discuss issues connected with Hermiticity break-
down and associated problems with strongCP violation; fi-
nally in Sec. VI, we present our conclusions.

II. CKM AND QUARK MASSES: A SUMMARY OF
PRESENT STATUS

A. CKM matrix

In its standard form @7#, the Cabibbo-Kobayashi-
Maskawa~CKM! matrix is
@CKM#s5S c1c3 s1c3 s3e
2 id

2s1c22c1s2s3e
id c1c22s1s2s3e

id s2c3

s1s22c1c2s3e
id 2c1s22s1c2s3e

id c2c3
D . ~2.1!

Taking into account the experimental hierarchy in the mixing angles, one can write

s1[sinu1[l.0.22, s2[sinu2[Al2, s3[sinu3[Asl3, ~2.2!

with A,s being parameters roughly ofO(1). The CKMmatrix then takes the Wolfenstein@8# form1

@CKM#s 5S 12
1

2
l22

1

8
l4 l Asl3e2 id

2l 12
1

2
l22S 12A21

1

8Dl4 Al2

Al3~12seid! 2Al21
1

2
Al4 12

1

2
A2l4

D 1O~l5!. ~2.3!

1Wolfenstein uses the parametersr,h instead ofs,d. They are related byse2 id[r2 ih.
2712 © 1996 The American Physical Society



53 2713NATURAL MASS MATRICES
The parameterA is fixed byVcb which, in turn, is deter-
mined from semileptonicB decays. The most recent analys
from CLEO data@9# gives

uVcbu50.037860.0026↔A50.7860.05. ~2.4!

The parameters is fixed by the ratiouVubu/uVcbu. This in
turn can be extracted from a study of semileptonicB decays
near the end point region of the lepton spectrum, wh
b→c quark transitions are forbidden. The most recent ana
sis @9# gives

uVubu/uVcbu50.0860.02↔s50.3660.09. ~2.5!

The phased ~or the parameterh) can be gotten by com-
bining the measurements of thee parameter inK-K̄ mixing
and those ofDmBd

in Bd-B̄d mixing with the value of

uVubu/uVcbu. A recent analysis@10# gives an allowed region
in the r-h plane roughly specified by the ranges

h.@0.2,0.5#, r.@20.4,0.3#, ~2.6!

with a corresponding CKM phase

d.@45°,158°#. ~2.7!

B. Quark masses

For the purpose of calculating quark mass ratios and th
renormalization group~RG! scaling, it is convenient to ex-
press all quark masses as running masses at some com
energy scale. We shall choose this scale here to be the m
of the top quarkmt . We summarize below what is known
about the quark masses and then extrapolate all the resul
the scalemt . From the recent ‘‘discovery’’ papers on the to
quark @11#, one infers a value for the physical massmt

phys,
which is related to the running mass by

mt~mt!5
mt
phys

11
4

3p
as~mt!

.

These results@11# suggest that

mt~mt!.~175615! GeV.

For medium heavy quarks, the analyses of charmonium
bottomonium spectra@12# give

mc~mc!5~1.2760.05! GeV,

mb~mb!5~4.2560.10! GeV.

Finally, for light quarks, current algebra analyses@12# give
the following values for the masses at a scale of 1 GeV:

mu~1 GeV!5~5.161.5! MeV,

md~1 GeV!5~8.962.6! MeV,

ms~1 GeV!5~175655! MeV.
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These mass values are individually uncertain toO(30%) but
are rather better constrained@13,14# by the current algebra
relation

Smu

md
D 21 1

Q2 Sms

md
D 251 with Q52461.6. ~2.8!

The RG scaling of the medium heavy and light quark
masses tomt are calculated to three loops in Ref.@3#, with
the result sensitive to the precise value of the strong coupling
constantas(MZ). Usingas(MZ)50.11760.05 and express-
ing all quark mass ratios in terms of the small parameter
l.0.22, the above results allow one to write the diagonal
quark mass matrices as

Mu
diag~mt!5175 GeVS jutl

7 0 0

0 jctl
4 0

0 0 j tt
D

[mt~mt!M̃u
diag, ~2.9!

wherejut50.4960.15, jct51.4660.13, j tt5160.09, and

Md
diag~mt!52.78 GeVS jdbl

4 0 0

0 jsbl
2 0

0 0 jbb
D

[mb~mt!M̃d
diag, ~2.10!

where jdb50.5860.18, jsb50.5560.18, jbb5160.05.

III. NATURAL MASS MATRICES

A. Heuristic two-generation example: The notion of
naturalness

To introduce the idea of natural mass matrices, we con-
sider first the simple two-quark-generation case, assuming
that these mass matrices are Hermitian. A general 232 Her-
mitian mass matrix for the first two quark families can al-
ways be rewritten, after some trivial phase redefinitions of
the quark fields, as some real symmetric matrix. Two such
matrices for theu quarks andd quarks, Mu[mcM̃u ,
Md[msM̃d , in turn can be diagonalized by some orthogonal
matricesOu andOd , resulting in a Cabibbo-quark-mixing
matrix C. One has2

Ou
TM̃uOu5M̃u

diag[S jucl
4 0

0 1D ,
Od
TM̃dOd5M̃d

diag[S jdsl
2 0

0 1D ~3.1!

and

2Note that juc5jut /(jctl)5(1.5360.49) while jds5jdb /jsb
5(1.0560.47).
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C5Ou
TOd5S cosuC sinuC

2sinuC cosuC
D . ~3.2!

In the above,l[sinuC as before and the matricesOu ,
Od have the same form as the matrixC with anglesuu , ud
instead ofuC . We notice that it follows from Eq.~3.2! that
uC5ud2uu . Moreover, since the matrixC is invariant un-
der the changes

Od→OOd , Ou→OOu ,

whereO is some arbitrary orthogonal matrix, we see th
M̃u andM̃d are fixed only up to a common similarity trans
formation

M̃u↔OTM̃uO, M̃d↔OTM̃dO.

Because of this freedom and sinceuC;l!1, we can al-
ways arrange to have both3 ud!1 anduu!1. We can now
contemplate three different options for the anglesuu and
ud :

~ i! sinud;l, sinuu;l,

~ ii ! sinud;l, sinuu&l2,

~ iii ! sinud&l2, sinuu;l. ~3.3!

Upon examining the expressions for the mass matricesM̃u

andM̃d ,

M̃u5OuM̃u
diagOu

T.S jucl
41sin2uu sinuu

sinuu 1 D ,
M̃d5OdM̃d

diagOd
T.S jdsl

21sin2ud sinud

sinud 1 D , ~3.4!

one sees that if options~i! and~iii ! were to hold, one would
require a severe fine-tuning of the matrix element@M̃u#11,
forcing @M̃u#11.(@M̃u#12)

2 to arrive at the large
mu /mc;l4 experimental hierarchy. Such a fine-tuning a
pears to be unnatural. For the two-generation case, the n
ral mass matrices have the form

M̃u.S au8l
4 aul

2

aul
2 1

D , M̃d.S ad8l
2 adl

adl 1
D , ~3.5!

corresponding to option~ii ! in which

sinuu5aul
2, au82au

25juc ,

sinud5adl, ad82ad
25jds ,

and

ad2aul.1.

3As will become apparent below, this restriction need not to
imposed separately for it is in conformity with our naturalness
quirement. It is done here for ease in the discussion that follow
at
-

p-
atu-

With the parametersa and a8 of O(1), onegets the ob-
served hierarchy@i.e., thej ’s being ofO(1)# without any
need for fine-tunings.

B. Three-generation extension

It is straightforward, though somewhat tedious, to extend
the idea of natural mass matrices to the three-generation
case. To facilitate its implementation, however, we need to
introduce a convenient parametrization of the mass matrices
based on a perturbative expansion inl. The procedure we
shall adopt is analogous to, but a slight generalization of, a
method employed by Ramond, Roberts, and Ross@6#. The
benefits of our generalization, aside from allowing a search
for natural mass patterns, also include the flexibility of si-
multaneous adjustments of matrix elements inMu andMd
~useful in imposing 0’s or arranging for equalities among
them!.

Consider some general 333 Hermitian mass matrices
Mu[mt(mt)M̃u andMd[mb(mt)M̃d . These matrices can
be diagonalized by some unitary matricesU andD, resulting
in a CKM-quark-mixing matrix@CKM#

M̃u5UM̃u
diagU†, ~3.6!

M̃d5DM̃d
diagD†, ~3.7!

@CKM#5U†D. ~3.8!

To proceed, it is useful to make two observations.
~1! As in the two-generation case, if we changeU→NU

andD→ND ~whereN is some arbitrary unitary matrix!, the
matrix @CKM# remains unchanged. The matricesM̃u ,M̃d are
thus unique up to an arbitrary~but common! unitary trans-
formationM̃u↔N†(M̃u)N, M̃d↔N†(M̃d)N. As a result of
@CKM# .1, this arbitrariness allows us to focus only on
‘‘small’’ transformations, i.e.,U.1, D.1. Furthermore, in
the particular case whereN5fL , fL being some phase ma-
trix, the induced changes in M̃u and
M̃d (M̃u→fLM̃ufL

† ;M̃d→fLM̃dfL
†) can be absorbed by a

trivial quark field phase redefinition.
~2! So far as constructions of the mass matricesM̃u and

M̃d out of the matricesM̃u
diag,M̃d

diag, and @CKM# are con-
cerned, a change of

@CKM#→fu
† @CKM#fd↔D→Dfd , U→Ufu ,

with thef ’s some arbitrary phase matrices, is inconsequen-
tial due to the fact that fuM̃u

diagfu
†5M̃u

diag and
fdM̃d

diagfd
†5M̃d

diag.
Based on these observations, one is always justified work-

ing with a specific form of the CKM matrix. Thus one can
write

U†D5@CKM#[fu
†@CKM#sfd ,

with

D[fL
†Dsfd ,U[fL

†Usfu .

The phase matricesfL ,fd can be further chosen so as to
renderDs to have the same form as the matrix@CKM# s of
Eq. ~2.1!, and it follows thatUs

†Ds5@CKM# s . ~Notice that
having chosenDs to be of the same form as the matrix

be
re-
s.
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@CKM# s , there is now no more freedom to redefineUs and
Us , in fact, will not have quite the standard CKM form.! The
mass matricesM̃u , M̃d constructed as

M̃u5UsM̃u
diagUs

† ,

M̃d5DsM̃d
diagDs

† , ~3.9!

are still perfectly general for our considerations.4 Having es-
tablished their generality, we shall drop the subscripts in the
matrices@CKM# s , Ds , andUs hereafter for notational brev-
ity.

With these preliminaries out of the way, it is straightfor
ward to give explicit parametrizations for the matricesU and
D. For these purposes, it is useful to note that, in its stand
form, the matrix@CKM# can be expressed as

@CKM#5C2DC3D
†C1

5S 1 0 0

0 c2 s2

0 2s2 c2
D DS c3 0 s3

0 1 0

2s3 0 c3
D

3D†S c1 s1 0

2s1 c1 0

0 0 1
D ,

with

D[S 1 0 0

0 1 0

0 0 eid
D .

BecauseD, by assumption, also takes the CKM form, w
can likewise write

D5C2dDdC3dDd
†C1d . ~3.10!

Here the matricesCid andDd are defined analogously toC
andD, except they involve some new anglesu id( i51,2,3)
and dd . It is convenient, in addition, to define three mor

4The matricesM̃u andM̃d in Eq. ~3.9! can still be changed by an
overall common unitary transformation. It is possible to remove th
remaining freedom by adopting a~slightly! unconventional param-
etrization of the CKM matrix. DefiningM̃u andM̃d as in Eqs.~3.6!
and ~3.7!, one has always the freedom to chooseD to be of the
standard CKM formD5Ds , so that the matrixM̃d is described by
six real variables and one phase. However, then there is no furt
freedom of redefinition; hence,U being a general 333 Hermitian
matrix must involve six real variables and three phases. It is easy
show that this more general parametrization corresponds to a d
nition of the CKM matrix ~in the standard form!, @CKM# s
5U†DsF, with F being a diagonal phase matrix containing tw
arbitrary phases. We find it more convenient to takeF51 and have
the matricesM̃u andM̃d undetermined by an overall common uni
tary transformation.
-

ard

e

e

orthogonal matricesCiu ~of the same form as theCi ’s! in-
volving anglesu iu( i51,2,3) and satisfying the relations

Ciu
T Cid5Ci ~no sum over the indexi !.

In analogy to the two-generation case, the anglesu iu ,u id ,
andu i obey

u i5u id2u iu ~ i51,2,3!. ~3.11!

Using these definitions, the matrixU is easily seen to be

U5D@CKM#†5$C2u%$C2~DdC3uDd
†!C2

†%

3$C2~DdC3Dd
†!C1u~DC3

†D†!C2
†%. ~3.12!

This matrix is not quite of the standard CKM form. How-
ever, since the matricesCi;1, the matrixU is not that dif-
ferent, apart from the placement of some phase factors.

Once one has explicit forms of the matricesU andD, the
l expansion of these matrices and hence ofM̃u , M̃d is ac-
complished by letting

u1d[ (
n51

anl
n,u2d[ (

n52
bnl

n,u3d[ (
n54

gnl
n.

~3.13!

The expansion of theu iu angles are fixed by Eq.~3.11! in
conjunction with the magnitudes of theu i ’s in the CKM
matrix, as specified5 in Eq. ~2.2!.

Having written out the matricesM̃u , M̃d according to Eq.
~3.9! @with M̃u

diag, M̃d
diag given by Eqs.~2.9! and~2.10!# and

expanded each matrix element in al expansion similar to
Eq. ~3.4!, one can follow a procedure analogous to that in the
two-generation case and infer which of the mixing angle op-
tions give rise to natural mass matrices. The detailed expres
sions forM̃u andM̃d are quite lengthy and not tremendously
illuminating, and so we shall omit them and instead only
present our findings regarding the naturalness conditions. W
find that for natural mass patterns we must require again tha

~1! u1d;l, u1u&l2,

and, for the other angles, that one of the following options
from each set holds:

is

her

to
efi-

o

- 5Notice, in particular, that according to Eqs.~2.4! and ~2.5!,
s3[Asl35O(l4), if one uses the central values forA ands.



2716 53R. D. PECCEI AND K. WANG
~2! u2u;u2d;l2 or u2u;l2..u2d or u2d;l2..u2u ,

~3! u3u;u3d;l4 or u3u;l4..u3d or u3d;l4..u3u . ~3.14!
e

o

.

r

e

-

l

The above conditions severely restrict the form of the ma
matrices to which they apply. As a result, the general expr
sions for these matrices are readily obtained.~The detailed
results and their discussion are relegated to Appendix A!
Here, as an example, we give a mass patte
with u1d;l,u1u;u2d;l2,u2u;u3u;l4, andu3d;l5.
This pattern corresponds to

M̃u.S u11l
7 u12l

6 e2 iduu13l
4

u12l
6 u22l

4 u23l
4

eiduu13l
4 u23l

4 1
D ,

M̃d.S d11l
4 d12l

3 e2 iddd13l
5

d12l
3 d22l

2 d23l
2

eiddd13l
5 d23l

2 1
D , ~3.15!

where the real coefficientsui j ’s, di j ’s are functions of the
following O(1) parameters: the CKM parametersA, s; the
quark mass ratiosj ’s; and the l expansion coefficients
$a1 ,b2 ,g5%. The coefficientu13 and the phasedu in addition
also depend on the arbitrary phase parameterdd from the
matrix Dd@Eq. ~3.10!# as well as on the CKM phased.

The principal goal of our construction is to allow us t
extrapolate LED-consistent natural mass patterns to so
GUT scale where we can look for hints of ‘‘new’’ physics
Nevertheless, low energy~defined here as;mt) mass pat-
terns such as the one discussed above are also interestin
their own right. For instance, for the pattern given in Eq
~3.15!, by appropriately choosing the signs of the qua
masses one can arrange to have

M̃u.S jutl
71~As!2l6 ajctl

6 2Ase2 idl3

ajctl
6 jctl

4 0

2Aseidl3 0 1
D ,

M̃d.S 0 Ajdbjsbl
3 0

Ajdbjsbl
3 jsbl

2 Al2

0 Al2 1
D , ~3.16!

with a5$Ajdb /jsb21%/l.0.12. This new pattern now has
a large number of the much sought-after ‘‘texture zeros’’:
has three exact ones to begin with, i.e.,@M̃u#23,@M̃d#11, and
@M̃d#13, and two more to the accuracy levelO(l4) of the
CKM matrix, i.e., @M̃u#11,@M̃u#125O(l7). Moreover, this
new pattern exhibits useful features commonly exploited
the study of mass matrix patterns: Sensible CKM and oth
‘‘predictions’’ can come about when one imposes equaliti
among matrix elements of approximately the same ord
~e.g., demanding thatu@M̃u#13u5@M̃u#22 result in the predic-
ss
s-

.
rn

me

g in
.
k

It

in
er
s
er

tion uVubu.mc /mt), or when one assigns specific values
~usually 0! to certain~usually small! matrix elements~e.g.,
setting @M̃u#1250 results in the prediction
sinuC5Amd /ms).

IV. POTENTIALLY SUCCESSFUL GUT SCALE MASS
PATTERNS

A. A pattern

Having constructed certain low energy natural mass pat-
terns, one can then apply RG equations~RGE’s! to evolve
these patterns to some high mass scales where global sym
metries originating from some GUT texture should become
manifest, hopefully gaining some useful insights. As a study
case, in this paper we examine the evolution of our natural
mass patterns in the minimal supersymmetric standard mode
~MSSM! theory. For simplicity, we consider only the sce-
nario where the vacuum expectation values~VEV’s! of the
Higgs bosons coupled tou quarks andd quarks are approxi-
mately equal, i.e., tanb;1. The relevant one-loop RGE’s
@2,15# are

d@hU# i j
dt

.
1

~4p!2
$~3@hU#33

2 2ckgk
2!@hU# i j

13@hU# i3@hU#33@hU#3 j%, ~4.1!

d@hD# i j
dt

.
1

~4p!2
$~3@hD#33

2 1tr$hE
2%2ck8gk

2!@hD# i j

1@hU# i3@hU#33@hD#3 j%, ~4.2!

where the gk’s are the three gauge couplings,
ck5(13/15, 3, 16/3),ck85(7/15, 3, 16/3), andhU ,hD , and
hE are the Yukawa coupling matrices foru quarks,d quarks,
and leptons,6 respectively. To pursue our analysis further, we
need to solve the above equations to find the mass matrices
at the GUT scalemG.1016 ~GeV! @2#. An input is then nec-
essary at the energy scalemt . For definiteness, we assume as
a boundary condition@hU(mt)#3351, although the general
pattern of our result is largely independent of this choice. For
the concrete example of our mass pattern of Eq.~3.15!, the
solution of Eqs.~4.1! and ~4.2! gives

6Although our analysis so far does not concern the lepton mass
matrix, one can still argue that it must be of the form which reflects
the lepton mass hierarchy, especially in light of the fact that one
wishes to implement the successful Georgi-Jarlskog GUT mass re-
lation @16# mb /mt53ms /mm5md/3me51 at some point. It then
follows that tr$hE

2%;@hE#33
2 ;@hD#33

2 in which case, the contribution
of the term tr$hE

2% to the solution of Eq.~4.2! is very minimal.
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M̃u~mG!.$0.82%S ~$0.61%u111$0.08%u13
2 !l7 $0.61%u12l

6 e2 iduu13l
4

$0.61%u12l
6 $0.61%u22l

4 u23l
4

eiduu13l
4 u23l

4 1
D ,

M̃d~mG!.$0.38%S $0.85%d11l
4 $0.85%d12l

3 ~$0.85%e2 iddd131D13!l
5

$0.85%d12l
3 $0.85%d22l

2 $0.85%d23l
21D23l

4

eiddd13l
5 d23l

2 1
D , ~4.3!
with D135$0.68%e2 iduu13 and D235$0.15%u23. The above
result illustrates several general features of the RG runni
of natural Hermitian mass patterns.

~1! As is obvious from the form ofM̃d(mG), the Hermi-
ticity of the mass matrices is not strictly preserved by the R
evolution. However, the extent to which Hermiticity is bro
ken is relatively minor.

~2! Because of the hierarchy in the mass matrices atmt ,
the RG runnings of various mass matrix elements are qu
different.

~3! This notwithstanding, the likely mass-matrix-eleme
candidates for ‘‘texture zeros’’ atmG are the same ones
which are present atmt . These are the matrix elements o
O(l4) or smaller.

These observations suggest a strategy on how to proc
in the search for GUT patterns. First of all, since in practi
it makes more sense to imagine the mass matrices at
GUT scale to be Hermitian~or symmetric!, one should really
reverse the procedure. Clearly, if one chooses the GUT p
tern to be Hermitian@e.g., by manipulating Eq.~4.3! into its
nearest Hermitian form#, one should expect only modest de
viation in the low energy mass matrices from being perfec
LED consistent. This is even less of a real problem since
a matter of fact, one can obtain LED-consistent mass ma
ces which are non-Hermitian~see the more detailed discus
sion in Sec. V!. Second, one can exploit the differences
the RG runnings of mass matrix elements to arrange for p
sible equalities among them at the GUT scale. Finally, sin
‘‘texture zeros’’ track between high and low energy scale
one can look for possible ‘‘texture zeros’’ of a GUT patter
in the ‘‘texture zeros’’ or ‘‘near-texture zeros’’of its corre
sponding low energy pattern.7

For concreteness, it is useful to demonstrate our id
with a specific example. Let us consider again the mass
tern of Eq.~4.3!. By choosing the signs of the quark mass
appropriately, one finds among other possibilities, a pot
tially ‘‘successful’’ GUT mass pattern in which

M̃u~mG!5S 0 C Be2 if

C B B

Beif B A
D , ~4.4!

7Equalities among matrix elements and ‘‘texture zeros’’ are
ways desirable in GUT mass patterns in that they reduce the num
of input parameters and, as a result, enhance the predictive pow
the patterns.
ngs
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M̃d~mG!5S 0 F 0

F E E

0 E D
D , ~4.5!

where the magnitudes of the parameters are
A5O(1), B5O(l4), C5O(l6); D5O(1), E5O(l2),
andF5O(l3). Given this ansatz, one can then try to find
out whether it fits the LED. As we shall see below, some
straightforward computation shows that indeed it does.8

B. CKM predictions

Running the RGE’s backwards, at the energy scalemt the
matrices of our mass pattern become

M̃u.S 20.6B82 C8 B8e2 if

C8 1.6B8 B8

B8eif B8 1
D ,

M̃d.S 0 F8 20.18B8e2 if

F8 1.2E8 1.2E820.18B8

0 E8 1
D . ~4.6!

Notice that to our accuracy onlyM̃d is slightly non-
Hermitian. For ease in the computations that follow, it is
convenient to specify the approximate magnitudes of the
various parameters above by definingB8[bl4, C8[cl6,
E8[el2, andF8[ fl3. With these choices, one can relate
the parametersb,c,e, f to the quark mass eigenvalues~with
the signs ofu, c, andd quark masses chosen to be negative!
by solving the corresponding eigenequations of the mass ma-
trices: i.e.,

det$M̃u1jctl
4%50,

det$M̃dM̃d
†2~jsbl

2!2%50, . . . .

These computations give

al-
ber
er of

8Alternatively, and in fact more efficiently, we could take as our
starting point the Hermitian mass pattern in Eq.~3.15! to be our
GUT pattern with all the quark mass ratios and CKM parameters
therein evaluated at the energy scalemG ~Appendix B! and directly
arrange for ‘‘texture zeros’’ and equalities among its matrix ele-
ments.
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b.20.6jct ,

c.6Ajct~24.5jut10.6jct
2 !,

e.0.8jsb ,

f.Ajsbjdb.

With these values, one can further calculate the diagonaliz
unitary matricesUL , DL from the equations

UL
†~M̃u!UL5M̃u

diag,

DL
†~M̃dM̃d

†!DL5$M̃d
diag%2.

The final result is

@CKM#5UL
†DL.S 1 D12 D13

2D12 1 D23

D31 2D23 1
D ,

where

D125Ajdb /jsbl6A24.5jut /jct10.6jctl
2,

D1350.7jcte
2 ifl46jsbA24.5jut /jct10.6jctl

4,

D235jsbl
210.7jctl

4,

D315Ajdbjsbl
320.7jcte

ifl4.

Comparing this matrix with the CKM matrix in the Wolfen-
stein parametrization and denoting the absolute values of
quark masses asmq’s, one arrives at the ‘‘predictions’’9

sinuC.Amd

ms
6A2

mu

mc
10.6

mc

mt
,

Vcb.
ms

mb
10.7

mc

mt
,

Vub.0.7
mc

mt
e2 if6

ms

mb
A2

mu

mc
10.6

mc

mt
. ~4.7!

To check the soundness of these results, we choose the1
sign in the above expressions and input various quark m
ratios. Although these are not the only possible choices,
find that, for

jct.1.55, jut.0.30, jsb.0.73, jdb.0.66,

we have a decent fit corresponding to the central values
sinuC.0.22, A.0.78, andse2 id.0.31e2 if10.05. Choos-
ing f590° in the last equation, for example, gives the poi
(0.05,0.31) in ther-h plane, which is well within the known
constraints@Eq. ~2.6!#. We note also that the mass ratio

9In terms of the scaling parameterr defined in Appendix B, the
numerical factors in these expressions correspond tor.0.85 ~and
hencer 2.0.7,r 3.0.6).
ing

the

ass
we

of

nt

s

above are in reasonable agreement with the much more r
strictive light-quark-mass constraint relation of Eq.~2.8!.

C. Other GUT patterns

By examining the general expressions for the GUT scal
Hermitian matricesM̃u andM̃d ~Appendixes A and B!, it is
not difficult to find other potentially interesting mass pat-
terns. We list here four more such patterns which are sligh
variations of the one we discussed in detail above. The firs
two have the same form for theM̃d matrices as the one in
Eq. ~4.5!: i.e.,

~1! and ~2! M̃d~mG!5S 0 F 0

F E E

0 E D
D ,

with D;1, E5O(l2), andF5O(l3), but have somewhat
different M̃u’s:

~1! M̃u~mG!5S C 0 Be2 if

0 B B

Beif B A
D ,

with A;1, B5O(l4), andC5O(l7),

~2! M̃u~mG!5S C C Be2 if

C B B

Beif B A
D ,

again withA;1, B5O(l4), andC5O(l7). The remain-
ing two patterns have a differentM̃d matrix which takes the
form

~3! and ~4! M̃d~mG!5S 0 F Fe2 if

F E E

Feif E D
D ,

with D;1, E5O(l2), andF5O(l3), and theM̃u matri-
ces

~3! M̃u~mG!5S C 0 0

0 B B

0 B A
D ,

with A;1, B5O(l4), andC5O(l7),

~4! M̃u~mG!5S C 0 0

0 0 B

0 B A
D ,

with A;1, B5O(l2), andC5O(l7). The CKM ‘‘predic-
tions’’ of the above GUT patterns are most readily obtained
in terms of various quark mass ratios and the parameterr
defined in Appendix B, by comparing the matrices of these
patterns with the general results of Appendix A applied a
mG ~see the example and comments in Appendix B for de
tails!. The relevant predictions for these GUT patterns are
tabulated in Table I.

Several comments are in order at this point.
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TABLE I. GUT pattern predictions for CKM parameters.

~1! ~2! ~3! ~4!

sinuC Amd

ms
Amd

ms
2
mu

mc
1r 3

mc

mt
Amd

ms
Amd

ms

Vcb ms

mb
1r 2

mc

mt

ms

mb
1r 2

mc

mt

ms

mb
1r 2

mc

mt
Ar

mc

mt
2
ms

mb

Vub
r 2
mc

mt
e2 if r 2

mc

mt
e2 if2

ms

mb$
mu

mc
2r 3

mc

mt% Amdms

mb
2 e2 if 2Amdms

mb
2 e2 if
~1! Although the mass patterns listed here all conta
‘‘texture zeros,’’ we have not tried to impose ‘‘texture zeros
in all possible places. For example, one could have in t
matrix M̃u(mG) of pattern ~1! an extra ‘‘texture zero’’ by
takingC50. The resultant new pattern would, in addition t
its CKM ‘‘predictions,’’ generate a GUT scale quark mas
relation corresponding tomumt.r 3mc

2 which, according to
Eq. ~2.9!, is actually allowed. A systematic search for LED
consistent patterns with the maximum number of ‘‘textu
zeros’’ has already been thoroughly carried out in Ref.@6#
where, specifically, a total of five patterns with five ‘‘textur
zeros’’ were found and discussed in substantial detail.

~2! Because of the specific mass matrix parametrizati
scheme we have chosen, certain frequently encountered H
mitian mass patterns in the literature may not seem transp
ent from the constructions of our natural mass matrices. S
in general, these patterns can be related to our easily de
able patterns by some simple unitary transformations. F
example, consider the following pattern which can easily
arranged from our general results in Appendix A:

M̃u.S C 0 0

0 B 0

0 0 A
D , M̃d.S 0 F Ge2 if

F E E8

Geif E8 D
D ,

where A, D;1; E,E85O(l2); F5O(l3); B,G5O(l4),
andC5O(l7). With the various parameters carefully cho
sen, this pattern can be transformed into a much mo
familiar-looking form @6#

M̃u8.S 0 C8 0

C8 B 0

0 0 A
D , M̃d8.S 0 F8e2 if8 0

F8eif8 E E8

0 E8 D
D

by a unitary matrixT ~i.e., TM̃u,dT
†.M̃u,d8 ) with

T.S eif 2v 0

veif 1 0

0 0 1
D ,

wherev[G/E85O(l2).
in
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~3! If one wishes to incorporate the Georgi-Jarlskog mass
relation @16#, the corresponding lepton mass matrices of the
GUT patterns listed in this section can be chosen in a
straightforward manner. For instance, following Ref.@2#, one
can simply let, for patterns~1! and ~2!,

~1! and ~2! M̃ l~mG!5S 0 F 0

F 23E E

0 E D
D ,

and similarly for patterns~3! and ~4!, one can let

~3! and ~4! M̃ l~mG!5S 0 F Fe2 if

F 23E E

Feif E D
D .

With these matrices, it is easy to see that the Georgi-Jarlskog
relation results directly.

V. HERMITICITY BREAKDOWN AND STRONG CP
COMPLICATIONS

In our introductory discussion we described how to con-
struct Hermitian mass matrices from LED information. We
must, however, face the fact that imagining the mass matri-
ces are Hermitian at the weak scale is not a very compelling
assumption. Indeed, as we have argued in the preceding sec-
tions it is much more sensible to imagine that quark mass
matrices are Hermitian~or symmetric! at the GUT scale.
When this is the case, the RG evolution definitely introduces
some non-Hermitian~or nonsymmetric! components at the
weak scale. This was illustrated in explicit detail in the ex-
ample based on the mass matrices given in Eqs.~4.4! and
~4.5!. Thus, to be realistic, we should instead display a set of
natural non-Hermitian weak scale mass matrices constructed
from the LED and then evolve these matrices to the GUT
scale.

If one attempts this kind of a general construction from
the LED without any further constraints, one is immediately
faced with considerable arbitrariness and little progress ap-
pears possible. However, if one assumes that the resulting
weak scale matrices are only ‘‘slightly’’ non-Hermitian, be-
cause they are Hermitian at the GUT scale, then a general
construction becomes feasible. In fact, such a construction is
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really not necessary in the case of SUSY GUT’s wit
tanb;1. In this latter case one can simply detail how th
CKM parameters and the quark mass ratios evolve to
GUT scale. With these parameters in hand one can direc
construct natural Hermitian mass patterns at the GUT sca
The resulting non-Hermitian mass matrices, by constructio
will be natural and reproduce the LED. This is basically th
technique used to deduce Table I. The details of this pro
dure is further illustrated through an example in Appendix B

The presence of non-Hermitian mass matrices at the we
scale, incidently, raises the issue of strongCP violation. Be-
cause of the nontrivial nature of the QCD vacuum@17#, the
standard model is augmented by an extraCP-violating term
involving the gluon field strength and its dual

LstrongCP5
as

8p
ūFa

mnF̃amn .

The parameterū is a linear combination of a phase angleu
connected with the QCD vacuum and another connec
with the quark mass matrices@18#:

ū5u1 (
i5u,d

Arg$detMi%.

One knows, however, that this parameter must be extrem
small (ū<1029) @19#, so as to avoid being in conflict with
the present bound on the neutron electric dipole mome
Why should the QCD vacuum angle be so precisely align
as to cancel~or very nearly cancel! Arg $detMu,d% is not
known and constitutes the strongCP problem.

For the quark mass matrices we have been discussing
we assume that at the GUT scale these matrices are Her
ian, then obviously

Arg$detMu,d~mG!%50.

However, as we have seen from our analysis, RG evolut
induces non-Hermiticity. Thus, starting with some Hermitia
mass matricesMu,d at the GUT scale, in general, these ma
trices become slightly non-Hermitian at the scale ofmt . This
is a direct consequence of the RGE’s not being Hermitia
conjugation invariant. In the one-loop RGE@Eq. ~4.2!#, for
example, the term@hU#@hU

† #@hD# is responsible for this non-
invariance. Nevertheless, such a term is found to be insu
cient to generate

Arg$detMu,d~mt!%Þ0.

In general, however, one expects eventually that at su
ciently high order such a term will ensue from the RG ev
lution.

The actual order at which a nonzero value fo
Arg $detMu,d% at the top scale appears depends on the u
derlying theory. For instance, in a globally supersymmetr
theory this mass matrix phase is never generated since
not renormalized@20#, while with the standard model it may
first appear at six loops in the Higgs sector, with an add
tional gauge boson loop@21#. In supersymmetric theories
where SUSY is broken softly the actual contribution depen
on the breaking. In certain instances no mass matrix ph
appears@22# but, in general, if there are nonvanishing e
h
e
the
tly
le.
n,
e
ce-
.
ak

ted
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nt.
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, if
mit-

ion
n
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n-

ffi-

ffi-
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r
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ic
it is

i-

ds
ase
l-

ementary or induced gluino masses one expects a phase t
appear @23#. For instance, with an explicit gluino mass,
one induces a nonvanishing Arg$detMu,d(mt)% at two
loops @23#.

It is quite possible that with the right underlying theory,
imposing Arg$detMu,d(mG)%50 at the GUT scale, suffices
to guarantee that Arg$detMu,d(mt)% is much below 1029.
However, this still does not solve the strongCP problem
unless, somehow,ū vanishes atmG @which certainly is not
sufficiently guaranteed by just having Arg$detMu,d(mG)%
50#. These additional observations indicate, perhaps com-
pellingly, the necessity of having some dynamical strong-
CP-removal mechanism, conceivably by imposing a U~1!

PQ symmetry@24#.

VI. CONCLUSIONS

Interesting patterns of quark masses are surely signals o
‘‘new’’ physics. The task of searching for them therefore can
be very rewarding. In order to conduct these searches more
effectively, we have suggested in this paper the idea of natu-
ral mass matrices as an organizing principle. This idea, along
with the efficient mass-matrix-parametrization scheme we
have described, allows a procedure whereby one can system
atically input low energy data to construct viable GUT pat-
terns. Encouragingly, this procedure has produced a rathe
small set of ‘‘working’’ mass patterns and our preliminary
work in extrapolating these patterns to GUT scales has gen
erated some interesting possibilities. We have discussed, spe
cifically, one such application in the context of SUSY GUT’s
and some potentially successful GUT mass patterns were
readily found. Although we do not particularly wish to assign
too much significance to these mass patterns and their pre
dictions, such examples do indicate the usefulness of our
approach. An important future task is to perform a more
systematic and complete investigation, with different RGE
boundary conditions and perhaps different matter contents.
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APPENDIX A: GENERAL EXPRESSIONS FOR NATURAL
MASS MATRICES

Adopting the parametrization scheme we have developed
in Sec. III B, we arrive at the following general expressions
for natural mass matrices, incorporating all naturalness re-
quirements@Eq. ~3.14!#:
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M̃u.S u11l
7 u12l

6 u13l
4

u12* l6 u22l
4 u23l

2

u13* l4 u23l
2 1

D
1S O~l9! O~l8! O~l6!

O~l8! O~l6! O~l6!

O~l6! O~l6! O~l4!
D , ~A1!

M̃d.S d11l
4 d12l

3 d13l
4

d12l
3 d22l

2 d23l
2

d13* l4 d23l
2 1

D
1S O~l6! O~l5! O~l6!

O~l5! O~l4! O~l4!

O~l6! O~l4! O~l4!
D . ~A2!

Here,

u115jut1$au
2jct1ugue

2 idd2auA1L~e2 idd2e2 id!u2%l,

u125aujct1bu@gue
2 idd2auA1L~e2 idd2e2 id!#,

u135gue
2 idd2auA1L~e2 idd2e2 id!,

u225jct1bu
2 ,

u235bu ,

d115jdb1ad
2jsb ,

d125adjsb ,

d135gde
2 idd2adbdjsbl,

d225jsb ,

d235bd . ~A3!

The various parameters in the above equations are as
lows:l,A,L([sAl21) andd are the CKM parameters@Eq.
~2.3!#; j ’s are the quark mass ratios@Eqs.~2.9! and ~2.10!#;
dd is a free input phase parameter@Eq. ~3.10!#; and finally
a ’s, b ’s, and g ’s are input parameters defined from thel
expansion coefficients of theuu,d’s ~Sec. III B!:

sinu1d[adl, sinu1u[aul
2,

sinu2d[bdl
2, sinu2u[bul

2,

sinu3d[gdl
4, sinu3u[gul

4.

The magnitudes of these last parameters are specified be
in accordance with our naturalness condition@Eq. ~3.14!#:

ad;1,au&1, with ad2aul511O~l3!,

bd&1,bu&1, with bd2bu5A1O~l4!,

gd&1,gu&1, with gd2gu5L1O~l8!. ~A4!

The general expressions summarized here are particul
useful for the purpose of arranging interesting mass patter
fol-

low

rly
ns.

Specifically, ‘‘texture zeros’’ and equalities among mass ma-
trix elements can, whenever possible, be rather conveniently
imposed by adjusting the parametersa ’s, b ’s, andg ’s, sub-
ject to the constraints in Eq.~1.4!. Furthermore, CKM and
other ‘‘predictions’’ then ensue when the aforementioned
constraints overspecify these parameters.

APPENDIX B: MASS RATIOS, CKM PARAMETERS AND
CONSTRUCTION OF HERMITIAN MASS PATTERNS

AT THE GUT SCALE

The relevant formulas for calculating the RG scaling of
mass ratios and CKM parameters are derived in Refs.
@15,25#. Here, we give only a brief summary of the results.
For the SUSY GUT case we are considering~Sec. IV A!
where tanb;1, one finds the following simple RG scaling
relations.

Mass ratios:

jct~mG!.r 3jct ,jut~mG!.r 3jut ,

jsb~mG!.r jsb ,jdb~mG!.r jdb . ~B1!

CKM parameters:

l~mG!.l,

A~mG!.rA,

s~mG!.s. ~B2!

The scaling parameterr in these relations is defined by

r5expS 2
1

~4p!2
E
0

ln~mG /mt!

@hU~m!#33
2 dtD ~ t[ ln$m/mt%!

~B3!

which, based on Eq.~4.1! and the one-loop RGE’s for the
gauge couplings,10 can also be expressed as

r5H @hU~mG!#33
@hU~mt!#33

J 21/6

$h~mG!%1/12, ~B4!

with

H @hU~mG!#33
@hU~mt!#33

J
.$h~mG!%1/2H 12

3

4p2 @hU~mt!#33
2 I ~mG!J 21/2

, ~B5!

h~m![)
i

$gi~mt!/gi~m!%2ci /bi,

and

I ~m![E
0

ln~m/mt!

h~m!dt.

10These are dgi /dt5bigi
3/16p2 ( i51,2,3) with bi5(33/5,

1,23).
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To obtain a numerical value for r , we input
gi
2(mt)/4p.(0.017, 0.033, 0.100) as values for the gaug
couplings11 ~at mt) along with the boundary condition
@hU(mt)#3351 into the above results, and we find12

r.0.85.
The general expressions for natural Hermitian mass m

trices at the GUT scale can be gotten by substituting th
mass ratios and CKM parameters evaluated atmG in Eqs.
~B1! and~B2! into the expressions given in Appendix A. For
illustrative purposes, we ‘‘derive’’ a somewhat generic Her
mitian GUT pattern and its CKM ‘‘predictions’’ below.

Choosing in Eqs. ~1.1!–~1.3! the parameters
dd5d, bu5O(l2), and demandingu11,d11<O(l2), one
arrives at a mass pattern which can be written as

M̃u.S 0 C yuBe
2 ifu

C B xuB

yuBe
ifu xuB A

D ,
M̃d.S 0 F ydFe

2 ifd

F E xdE

ydFe
ifd xdE D

D , ~B6!

where A,D;1, E5O(l2), F5O(l3), B5O(l4), C
5O(l6), and x’s, y’s are adjustable parameters which ar
constrained only by the naturalness requirement.

Mapping the matrix elements in Eq.~2.6! onto those in
Eq. ~1.3!, one can immediately establish the following:

11These numbers were also used to produce Eq.~4.3!. They cor-
respond to a set of values for the gauge couplings~atmZ) used as
inputs in Ref.@2# where, solving the one-loop RGE’s with these
inputs, the three gauge couplings were found to merge
mG.1016 ~GeV!.
12Notice from Eq.~2.5! that the solution for@hU(mG)#33 depends

rather sensitively on the choice of the boundary condition. How
ever, while still important, this dependence is, comparatively spea
ing, much milder forr .
e

a-
e

-

e

bu.xujctl
2, bd.xdjsb ,

2auA1gue
2 id.yujcte

2 ifu,

2adbdjsbl1gde
2 id.ydadjsbl

21e2 ifd,

jut1au
2jctl1~yujct!

2l.0,

jdb1ad
2jsb.0.

Next, solving for the parametersa ’s, b ’s, andg ’s from the
above equations and subsequently applying the CKM con-
straint relations given in Eq.~1.4!, one has

1.A2jdb /jsb6A2jut /~jctl!2yu
2jctl,

A.xdjsb2xujctl
2,

Le2 id.ydjsbA2jdb /jsbe
2 ifdl212yujcte

2 ifu

6AA2jut /~jctl!2yu
2jct1xdA2jdbjsb

3 l.

Finally, in the above equations, if one keeps only the signifi-
cant terms and takes into account the RG scaling of mass
ratios and CKM parameters@i.e., Eqs.~2.1! and ~2.2!#, one
sees that the GUT pattern of Eq.~2.6! has the following
CKM ‘‘predictions’’:

sinuC.A2
md

ms
6A2

mu

mc
2yu

2r 3
mc

mt
,

Vcb.xd
ms

mb
2xur

2
mc

mt
,

Vub.yd
ms

mb
A2

md

ms
e2 ifd2yu

2r 2
mc

mt
e2 ifu

6xd
ms

mb
A2

mu

mc
2yu

2r 3
mc

mt
.

The signs of the quark masses above have yet to be chosen a
either1 or 2, depending on which choice is more sensible
and gives better agreement with experimental measurements
of the CKM parameters.
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