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Prospects for mass unification at low energy scales
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A simple Pati-Salam SU~4! model with a low symmetry breaking scale of about 1000 TeV is presented. The
analysis concentrates on calculating radiative corrections to tree-level mass relations for third generation
fermions. The tree-level relationmb /mt51 predicted by such models can receive large radiative corrections
up to about 50% due to threshold effects at the mass unification scale. These corrections are thus of about the
same importance as those that give rise to renormalization group running. The high figure of 50% can be
achieved because one-loop graphs involving the physical charged Higgs boson give corrections tomt2mb that
are proportional to the large top quark mass. These corrections can either increase or decreasemb /mt depend-
ing on the value of an unknown parameter. They can also be made to vanish through a fine-tuning. A related
model of tree-levelt-b-t unification which uses the identification of SU~2!R with custodial SU~2! is then
discussed. A curious relationmb.A2mt is found to be satisfied at the tree level in this model. The overall
conclusion of this work is that the tree-level relationmb5mt at low scales such as 1000 TeV or somewhat
higher can produce a successful value formb /mt after corrections, but one must be mindful that radiative
corrections beyond those incorporated through the renormalization group can be very important. This moti-
vates that an ongoing search for the rare decaysKL

0→m6e7 be maintained.

PACS number~s!: 12.10.Kt, 12.10.Dm
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I. INTRODUCTION

The fermion mass problem may be usefully divided in
four subproblems: Why do weak isospin partners have
ferent masses? Why are quark and lepton masses split?
is there a mass hierarchy between generations, and wh
there a mixing angle hierarchy? The standard model~SM!
answer is that the gauge groupGSM5SU~3! c^

SU(2)L^U~1!Y permits a different Yukawa coupling con
stant to set each fermion mass and mixing angle. It is p
ductive to suppose that this is really no answer at all, th
motivating us to seek extensions of the SM that are l
accomodating.

Indeed, the multiplet structure of the SM strongly su
gests that these four patterns within the fermionic param
spectrum should be correlated with the breakdown of a sy
metry group larger thanGSM. Recall that each generation o
quarks and leptons is placed in the multiplet pattern giv
below:

qL;~3,2!~1/3!, dR;~3,1!~22/3!, uR;~3,1!~4/3!,

l L;~1,2!~21!, eR;~1,1!~22!, nR;~1,1!~0!.
~1!

The right-handed neutrinonR is optional, and I exercise this
option here.

Weak-isospin partners have different masses in the
because the associated right-handed states are not relat
any symmetry. However, the right-handed fermions can
assembled into doublets of a right-handed weak-isos
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gauge group SU~2!R . This extended symmetry is powerful
enough to force isospin partners to be degenerate@1#.

Quark and lepton masses are unrelated in the SM becau
quarks and leptons are not transformed into each other b
any symmetry. However, quarks and leptons can be placed
quadruplets of the Pati-Salam SU~4! gauge group@2#. Alter-
natively, quarks and leptons can be related by a discrete sym
metry if a spontaneously broken SU~3! l colour group for
leptons is introduced@3#. Both of these extended symmetries
are powerful enough to force quarks and leptons to be de
generate.

Corresponding fermions in different generations have un
related masses in the SM because there are no symmetri
that act horizontally. This also means the Kobayashi-
Maskawa mixing angles area priori arbitrary. Again, it is
possible to place generations into horizontal multiplets in
such a way that masses and mixing angles become related

In this paper I am going to explore how Pati-Salam SU~4!
and right-handed isopsin SU~2!Rmight be lurking behind the
measured spectrum of fermion masses. Furthermore, I wi
explore the interesting possibility that these gauge symme
tries are spontaneously broken at a relatively low scale
There are several very good reasons for performing thi
analysis.

~i! One indication in favor of a low scale SU~4! symmetry
may be the observation that theb quark andt lepton masses
merge at around 1000 TeV if one assumes that only the SM
particles contribute to their renormalization group evolution.
This fact is of great physical relevance provided that radia
tive corrections to the relationmb5mt due to threshold ef-
fects at either the high mass unification scale or the low
electroweak scale are not too large. In this paper I will cal-
culate these threshold effects explicitly. I will find that high
mass scale threshold effects from diagrams involving the
physical charged Higgs boson can be about as important a
2681 © 1996 The American Physical Society
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renormalization group evolution, so thatmb5mt at 1000
TeV need not be the correct boundary condition to use wh
solving the renormalization group equations formb and
mt . ~The precise value of this threshold correction will o
course depend on parameter choices.!

~ii ! There is ongoing interest in the phenomenology
Pati-Salam models~see for instance@4#!. It is pertinent to
note that the phenomenological lower bound on Pati-Sal
SU~4! breaking is about 1000 TeV, which is roughly th
same scale as that at which renormalization group evolut
mergesmb with mt . This means that if unification ofmb
with mt occurs at about 1000 TeV, then the resulting mod
should be testable in the forseeable future via indirect effe
~principally KL

0→m6e7). Calculation of the threshold cor
rections will then tell us how close to 1000 TeV the ma
unification can occur. For instance, if these corrections tu
out to imply thatmb,mt then we know that we will have to
run the masses for longer in order to obtain agreement w
experiment. This will in turn imply that the mass unificatio
scale is higher than 1000 TeV.

~iii ! Quite apart from the above observation, it is ve
important to study the fermion mass relation problem in Pa
Salam theory if one is serious about searching for expe
mental signatures of the model. Although there is great
terest in these experimental searches, it is not as yet c
which version of Pati-Salam theory they should be based
because of the fermion mass issue. One should really l
for experimental evidence for a realistic theory, and Pa
Salam theory cannot be realistic until the fermion mass re
tion problem is solved. The present paper aims to contrib
to this study.

~iv! The indirect signatures of Pati-Salam theory are e
hanced if the SU~4!-breaking scale is relatively low. It is
therefore important to specifically re-examine the theo
when a low symmetry breaking scale is used. Low sc
breaking has different implications for the construction of t
model compared with the often considered scenario of SU~4!
being broken at grand unified energies. Indeed, in gene
terms the approach pursued here should be contrasted
the use of grand unified gauge groups in relating fermio
parameters. The desire in that case to also unify gauge c
pling constants forces an enormously high symmetry bre
ing scale of 1016 GeV upon us, thereby reducing the testab
ity of the models considerably. I wish to emphasize that it
not necessary to unify both gauge and Yukawa coupling c

1The schemes I will present will not be immediately grand uni
able. For reasons just discussed, I do not consider this to b
serious drawback. The model-building philosophy employed her
of the ‘‘bottom-up’’variety. The unification of gauge interactions
inherently a concern for physics at higher energy scales, and is
beyond the scope of this investigation. One may nevertheless sp
late that gauge unification could perhaps occur if one extends
models to be presented to feature intermediate scales between
TeV and 1016GeV. Additional hypothetical particles that are heavi
than 1000 TeV could thereby be introduced so as to alter the re
malization group evolution of gauge coupling constants in order
achieve gauge unification. It is clear that gauge unification w
follow a different pattern from that of supersymmetric grand unifi
theories, if it is to occur at all, in extensions of these models.
en
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stants simultaneously. It is easy to unify the latter without
unifying the former, as I will show. This has the interesting
consequence of freeing us from the need to do physics at
1016 GeV. I will provide a framework for addressing the
fermion mass problem with physics at 1000 TeV. One should
bear in mind that the unification of Yukawa coupling con-
stants is in no way a lesser goal than the unification of gauge
coupling constants, and indeed may even be more important
since there are more of them. Gauge coupling constant uni-
fication must occur at 1016GeV if it occurs at all. It would be
pleasing to discover that Yukawa coupling constant unifica-
tion occurs at a much lower scale.1

Having motivated the present study, it is important to un-
derstand its scope. The fermion mass problem is an issue of
some complexity. My goal here is to attack the subproblems
of isospin and quark-lepton splitting only. This means I will
concentrate on trying to explain why the top quark, bottom
quark, tau lepton and tau neutrino have their observed mass
pattern. It has long been realized that this is a sensible place
to start because the lighter generations are more liable to
receive complicated higher-order corrections thus making
their analysis much more difficult. Nevertheless I will com-
ment in due course on how a horizontal structure might be
superimposed on the scheme.

The remainder of this paper is structured as follows: In
the next section I concentrate on deriving theb-t mass split-
ting from spontaneously broken SU~4!. I discuss how the
Pati-Salam model should be configured in order to have its
breaking scale set as low as about 1000 TeV. This motivates
the use of a different and simpler Higgs sector from that
usually employed, and a different seesaw mechanism for
neutrinos. I then analyze both the renormalization group evo-
lution of mb,t as well as important radiative corrections due
to the high mass threshold. The core of the paper is an ex-
plicit and detailed calculation of these threshold corrections.
They can be large because some of them are proportional to
mt rather thanmb . Section III is then devoted to the use of
SU~2!R in conjunction with SU~4! to achieve unification of
t, b, t, andnt masses at 1000 TeV. The hierarchy between
mt andmb,t is then constructed to be due to a type of seesaw
mechanism. I also find in this case that the tree-level rela-
tionship betweenb andt ismb.A2mt rather than the more
familiar relationmb5mt . I argue that this model can prob-
ably deliver a realistic value formb /mt through a combina-
tion of renormalization group evolution and large threshold
corrections, although an explicit calculation of the relevant
diagrams is beyond the scope of this work. I conclude in Sec.
IV. An Appendix provides details of the computation of the
finite radiative corrections tomb /mt in the model of Sec. II.

II. LOW SCALE PATI-SALAM SU „4…
AND THE b-t MASS SPLITTING

A. Basics

The Pati-Salam gauge groupGPS given by

GPS5SU~4!c^SU~2!L^SU~2!R ~2!

assembles the rather unruly multiplet structure of the SM as
given in Eq.~1! into the simple pattern
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f L;~4,2,1!, f R;~4,1,2!. ~3!

Quarks and leptons are identified by breaking SU~4! down to
its maximal subgroup SU~3!^U~1!, where the first factor is
identified with color and the second withB2L. Under this
breakdown the4 of SU~4! decomposes to3(1/3)%1(21)
which clearly identifies the quark and lepton components
the f ’s.

The mass relations which result fromGPS depend cru-
cially on how simple one makes the electroweak Higgs s
tor. The minimal electroweak Higgs multiplet is actually
real bidoubletF5Fc;(1,2,2) whereFc[t2F* t2 . Use of
this minimal multiplet forces mass equality between isosp
partners. I defer discussion of this possibility until the ne
section. The next simplest multiplet is acomplexbidoublet
FÞFc. This is the one most commonly used in the liter
ture when discussing either the Pati-Salam model or the l
right symmetric model, because the issue of isospin m
splitting is usually avoided. However, it is important to rea
ize that this is a nonminimal choice, akin to choosing tw
Higgs doublets in the SM. Nevertheless I make this choice
this section because it is sensible to concentrate onb-t split-
ting first.

The electroweak Yukawa Lagrangian is then

LYuk5l1Tr~ f̄ LF f R!1l2Tr~ f̄ LF
cf R!1H.c. ~4!

The gauge transformation rules for the fields are written

f L→ULf LU4
T , f R→URfRU4

T, and F→ULFUR
† , ~5!

where UL,R,4 are special unitary matrices for SU~2! L ,
SU~2!R , and SU~4!, respectively.~The fields f L,R are 234
matrices, whileF is a 232 matrix.! Electroweak symmetry
breakdown is caused by a nonzero vacuum expectation v
~VEV! for F of the form

^F&5S u1 0

0 u2
D . ~6!

Inputting this intoLYuk rewritten in terms of the quark and
lepton components reveals that

mb5mt and mt5mn3

Dirac, ~7!

where I have taken thef ’s to be third generation fields. I
have denoted the neutrino field asn3 instead ofnt for a
reason to be explained shortly. The goal is now to see h
these mass relations can be corrected into phenomeno
cally acceptable ones. As I have already discussed, renorm
ization group evolution ofmb and mt should be used in
conjunction with the radiative corrections tomb2mt due to
mass thresholds. In order to calculate these threshold cor
tions, I must describe the whole model.

The first issue is how to breakGPS down toGSM. I want
this breakdown to occur at as low a scale as experim
allows. A recent analysis shows that the SU~4! gauge bosons
which mediate transitions between quarks and leptons m
be heavier than 1400 TeV@4#. I will therefore adopt 1000
TeV as the generic scale forGPS breaking.~The difference
between 1400 TeV and 1000 TeV will not be important, a
I adopt the latter for simplicity.! This immediately implies
of
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that I definitely do not want to impose a discrete symmetry
between the SU~2! L and SU~2!R sectors. Such a discrete
symmetry, be it parity or charge conjugation, is supported by
the multiplet structure of Eq.~3! and is often imposed in
addition to the gauge symmetryGPS. This has the effect of
equating the gauge coupling constants of the two isospi
groups, resulting in a partial gauge unification.~The number
of gauge coupling constants is reduced from three to two
rather than all the way to one as in grand unified theories.! A
renormalization group analysis of the running of the gauge
coupling constants then reveals that the Pati-Salam breakin
scale must be chosen to be about 1012 GeV in order to be
consistent with low energy measurements ofaem, as , and
sin2uW @5#. If the discrete symmetry is not imposed, then the
breaking scale can be reduced to 1000 TeV.

The absence of discrete left-right symmetry also frees u
from having to pair every multiplet up with its putative dis-
crete symmetry partner, although we can still do so if we
wish. The lack of left-right symmetry can either be taken as
fundamental, or perhaps indicative of a separate and highe
symmetry breaking scale where the discrete symmetry is bro
ken but notGPS. ~This can be achieved by a parity-odd
gauge singlet Higgs field, for instance@6#.!

It is attractive to connect the breakdown ofGPS with a
seesaw mechanism for explaining why neutrinos are so ligh
This will immediately solve the problem of explaining how
the observed light neutrinos can be consistent with
mu5mn

Dirac. To this end, a Higgs multipletD in the
(10,1,3) representation ofGPS is often employed. It can
break SU~4!^SU~2!R down to SU~3! c^U~1!Y while simul-
taneously imparting large Majorana masses to right-hande
neutrinos through the Yukawa termf̄ R( f R)

cD. This sets up
the seesaw form for the neutrino mass matrix, and the ligh
neutrino eigenstates become Majorana particles of mas
;mu

2/^D& @7#.
However, this Higgs multiplet is not appropriate for my

stated purpose. Hot big bang cosmology indicates that th
sum of the masses of stable neutrinos should not excee
about 30 eV in order to avoid conflict with the observed
longevity of the universe.2 Equatingmu

2/^D& with 30 eV and
usingmu5mt.175 GeV shows that̂D& must be at least
1012 GeV. This is inimical to having a 1000 TeV Pati-Salam
breaking scale.

Fortunately, there is a very elegant way out of this appar
ent impasse@9#. The fieldD is not used but instead I intro-
duce into the model a massless gauge singlet fermionNL and
the Higgs multipletx where

x;~4,1,2!. ~8!

Note thatx is in a much simpler representation than isD. In
fact, x is the simplest multiplet that can simultaneously
break SU~4! and SU~2!R . The nonelectroweak Yukawa La-
grangian

LYuk5nN̄LTr~x†f R!1H.c. ~9!

2This bound does not hold if neutrinos have a sufficiently short
lifetime. However, previous studies have shown that no suitable
decay modes exist for models resembling the one just discussed@8#.
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delivers the neutrino mass matrix

Lnmass5
1
2 @~nL!c n̄R ~NL!c#S 0 mt 0

mt 0 nv

0 nv 0
D F nL

~nR!c

NL

G
1H.c., ~10!

wherev is defined through

^x&5S 0 0 0 v

0 0 0 0D . ~11!

This mass matrix may be diagonalised to yield

Lnmass5mss̄RsL1H.c., ~12!

where

ms[AM21mt
2 ~13!

with M[nv. The neutral fermions given by

sL[sinunL1cosuNL and sR[nR ~14!

where

tanu[mt /M ~15!

is a Dirac particle of massms . The field orthogonal tosL ,

ntL5cosunL2sinuNL , ~16!

is identified as the masslesst neutrino. In the limit that
M@mt , ntL.nL2mtNL /M , which means thatntL has SM
couplings to left-sector electroweak gauge bosons to a v
good approximation.

The massless nature ofntL may be traced back to the
choice of no diagonal Majorana massMN(NL)

cNL for NL .
This choice introduces the global symmetryNL→eiaNL ,
x→e2 iax into the model. Afterx develops a VEV, this glo-
bal symmetry gets rotated into an exact global lepton num
invariance which protectsntL from obtaining a Majorana
mass.~It cannot gain a Dirac mass because there is no rig
handed state with which it can pair up.! An acceptable non-
zero Majorana mass forntL may be introduced by making
MN nonzero but small. In this case the smallest eigenvalu
approximately (mt

2/nv)(MN /nv). The standard seesaw
evalue mt

2/nv thus receives an extra suppression fro
MN /nv, allowing the cosmological impasse to be overcom
even with a massiventL . Although a small value forMN
would be techincally natural because setting it to zero
creases the symmetry group of the theory, I would exp
that a satisfactory version of the theory with massive neu
nos would attempt to provide a good reason forMN being
small. It could, for instance, be radiatively generated. I w
for simplicity suppose thatMN50 in this paper. Small val-
ues forMN will not alter the results.

There is an auxilliary reason whyx might be preferred to
D. With three generations of fermions andD, the SU~2!R
gauge coupling constant is not asymptotically free. Howev
it is asymptotically free with three generations plus ax field.
This fact should not be accorded undue importance, beca
ery
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the scale at which the SU~2!R coupling constant would blow
up is well above the Planck mass. Nevertheless, it is pleasin
that all of the gauge interactions are asymptotically free and
thus well defined at all scales whenx is used instead ofD.
All in all, x is a very simple and elegant alternative toD.

I now need to further discuss the physical effects of
^x&. The VEV pattern forx given by Eq.~11! breaks SU~4!
^SU~2!R down to SU~3! c^U~1!Y , where

Y52I R1~B2L !. ~17!

The symbol I R denotes the diagonal generator of SU~2!R
normalized so that Tr(I R

2)51/2 for the fundamental represen-
tation.

The right-sectorW bosons, aZ8 boson and a color triplet,
charge12/3 gauge boson I will callX gain mass from
^x&. Denoting the SU~2!R coupling constant bygR these
masses are

mWR

2 5 1
2 gR

2v2,

mZ8
2

5
1

2 S gR21
3

2
gs
2D v2,

and

mX
25 1

2 gs
2v2, ~18!

where the SU~4! coupling constant is of course equal to
gs .

TheWR bosons couple to quarks and leptons via

LR5
gR

A2
~ s̄RgmWRm

1 tR1 t̄RgmWRm
1 bR!1H.c. ~19!

while the interaction ofX with fermions is given by

LX5
gs

A2
~sinu t̄ Lg

mXmsL1cosu t̄ Lg
mXmntL

1 t̄RgmXmsR1b̄gmXmt)1H.c. ~20!

The Z8 field is a linear combination of the gauge bosons
associated withI R andB2L. The orthogonal fieldB couples
to weak hyperchargeY. The interaction Lagrangian is

LZ8,B5
1

AgR
21

3

2
gs
2

(
c

c̄S gmZm8 FgR2 I RPR2
3

4
gs
2~B2L !G

1gmBmA3

2
gRgsF I RPR1

B2L

2
G D c, ~21!

wherec5t,b,t,n and PR[(11g5)/2. The coupling con-
stant forB is identified withgLtanuW , wheregL is the usual
SU~2! L coupling constant. This allows us to calculategR in
terms of the measured values ofgL , cosuW, andgs .

When F develops a nonzero VEV,B and the neutral
gauge boson of SU~2! L form into the massless photon and
the massiveZ boson. The latter also mixes withZ8. The



53 2685PROSPECTS FOR MASS UNIFICATION AT LOW ENERGY SCALES
left-sector W boson acquires its standard ma
mWL

2 5gL(u1
21u2

2)/2, and it also mixes with the right secto

WR .
I will also need to display the Yukawa couplings of bot

the physical and unphysical Higgs bosons. Writing

F5S f1
0 f2

1

f1
2 f2

0 D ~22!

the electroweak Yukawa Lagrangian is rewritten as

LYuk5l1~ t̄ LtRf1
01 t̄ LbRf2

11b̄LtRf1
21b̄LbRf2

01 n̄LnRf1
0

1 n̄LtRf2
11 t̄LnRf1

21 t̄LtRf2
0!1l2~ t̄ LtRf2

0*

2 t̄ LbRf1
12b̄LtRf2

21b̄LbRf1
0*1 n̄LnRf2

0*

2 n̄LtRf1
12 t̄LnRf2

21 t̄LtRf1
0* !1H.c. ~23!

Then writing

x5S xu x0

xd x2D ~24!

I find that the nonelectroweak Yukawa Lagrangian is
ss
r

h

LYuk5n~N̄LtRxu†1N̄LbRxd†1N̄LtRx11N̄LsRx0* !1H.c.,
~25!

wherexu andxd are 133 row matrices denoting the three
colour components of these fields.

I now describe the gastronomy of the model. The field
xu is eaten by theX boson, whilexd is a physical color
triplet Higgs boson. In the limit thatv@u1 ,u2 , the field
x2 is eaten byWR

2 , while

g2[cosvf1
22sinvf2

2 , ~26!

where tanv[u2 /u1 is eaten byWL
2 . The orthogonal field

H2[sinvf1
21cosvf2

2 ~27!

is a physical charged Higgs boson. For the case where spon-
taneousCP violation does not occur, the real components of
f1
0 , f2

0 andx0 mix to yield three physical fields. Two of the
imaginary components are eaten by theZ8 andZ. In the limit
v@u1 ,u2 , the imaginary component ofx0 is eaten by the
Z8, while A2@cosv Im(f1

0)1sinv Im(f2
0)# is eaten by the

Z, leaving the orthogonal field as a physicalCP odd neutral
Higgs boson. I will need the interaction Lagrangian between
g2, H2 and the fermions. It is
LYuk
1 5agt̄LbRg

11bgb̄LtRg
21agcosun̄tLtRg

11agsinu s̄LtRg
11bgt̄LsRg

21aHt̄LbRH
11bHb̄LtRH

2

1aHcosun̄tLtRH
11aHsinu s̄LtRH

11bHt̄LsRH
21H.c., ~28!
where

ag[2
m

Au121u2
2
, bg[

mt

Au121u2
2
,

aH[
1

cos2v

mt2m sin2v

Au121u2
2

,

bH[
1

cos2v

mtsin2v2m

Au121u2
2

, ~29!

as can be easily seen from Eq.~23!. The quantitym is the
common tree-level mass forb andt.

The primary task now is to discuss how radiative effec
modify the tree-level relationmb5mt . Before doing so, I
will make a brief comment about a cosmological implicatio
of the model. Because the unbroken symmetry group c
tains no U~1! factors while the broken group does, mon
poles will be created during theGPS symmetry breaking
phase transition in the early universe. However, a sim
calculation shows that monopoles produced at a tempera
of 1000 TeV are cosmologically innocuous@10#. The number
density of monopolesnM in the visible universe today de
pends on how many causally disconnected regions
T51000 TeV made up the spacetime that subseque
evolved into the present day visible universe. A rough ord
ts
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of magnitude estimate shows thatnM /s;(1000
TeV/MPlanck!

3 wheres is entropy density at the time of mono-
pole creation. If there is negligible monopole annihilation
then this ratio should remain roughly constant. Using this to
calculate the fraction of critical density existing as mono-
poles I findrM /rcr;1014(nM /s)(mM/10

3 TeV! wheremM is
the monopole mass and is roughly 1000 TeV. Because 1000
TeV is much smaller thanMPlanck;1016 TeV, I find that
rM /rcr;10226. I conclude that relic monopoles do not pose
a problem for low-scale Pati-Salam models.

B. Renormalization andmb /mt

The tree-level relationmb /mt51 holds at the Pati-Salam
symmetry breaking scale, which I will take to be about
1000 TeV. If radiative corrections due to threshold effects at
either the high symmetry breaking scale or the low elec-
troweak scale are ignored, then the change in this ratio can
be summarized by renormalization group evolution. This
means that the renormalization group equations are inte-
grated from 1000 TeV to theb and t mass scale of a few
GeV @11# using the boundary conditionmb5mt at 1000 TeV.
The result of this evolution is that

mb~mb!54.11GeV ~30!

having chosenmt to come out correctly.~A top mass of 174
GeV was used to derive this.! This would be a very pleasing
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2686 53R. R. VOLKAS
result if it could be believed. It would mean that Pati-Sala
theory predicts the correctb mass provided the symmetry
breaking scale is not too different from 1000 TeV. Scale
lower than 1000 TeV are phenomenologically disallowe
and they seemingly predict too small a value formb anyway.

FIG. 1. Feynman graphs contributing tomt2mb which involve
the photong, the Z, Z8 and X bosons and the gluonsG. The
logarithmic divergences of the individual self energies cancel
mt2mb between these graphs. The external fermion line is eith
t or b for the g, Z, Z8, andX graphs, while the external fermion
for the gluon graph isb only. The internal fermion for theg, Z, and
Z8 graphs is the same as the external fermion. For theX graph, the
internal fermion is at(b) if the external fermion is ab(t). The
internal fermion for the gluon graph is ab. In Sec. A 1 of the
Appendix, I calculatemt2mb under the approximation that
mZ50. This allows a change from the (g,Z) basis to the (W0,B)
basis. TheW0 boson graph does not contribute tomt2mb because
W0 couples universally tob andt. In the text I therefore actually
calculate the four diagrams involving a masslessB boson, theZ8
andX bosons, and the gluons.

FIG. 2. Feynman graphs involving the physical charged Hig
bosonH2. The individual divergences cancel inmt2mb between
these graphs.
m

s
d,

Scales much higher than 1000 TeV generate an overweig
bottom. Therefore the theory would predict that observatio
of the rare decaysKL

0→m6e7 should occur in the not too
distant future, as it is precisely these decays that set the low
limit of about 1000 TeV onmX @4#. Furthermore, these de-
cays seem to be the most sensitive probe of the Pati-Sal
model, so no other rare decays should be observed dur
this same time scale. The model could therefore either
ruled out, or dramatic evidence gathered in its favor.

However, radiative corrections due to threshold effec
can be extremely importantfor a reason I now discuss.~This
class of radiative correction is not taken care of throug
renormalization group evolution.! The point is that some of
the threshold corrections tomt2mb can be proportional to a
large mass in the theory, rather thanmb or mt itself. In the
present theory, the top quark and the heavy neutrino ma
eigenstates are all very massive particles. It will turn out th
charged Higgs boson graphs produce a high mass sc
threshold correction in this theory that is proportional to th
top quark mass. Note that a top quark mass of, say, 180 G
will completely counteract the 1/16p2 loop suppression fac-
tor.

I now identify those one-loop self-energy graphs that con
tribute tomb2mt . These are displayed in Figs. 1–7. Figure
1 shows the contributions from the neutral gauge bosons
the model~the photon, the gluons, theZ, and theZ8) to-
gether with that due to the colored gauge particleX. Figures
2 and 3 display the contributions due to the electrowea
charged Higgs bosonsH2 and g2 ~I will work in an un-
physical gauge!. Figures 4 and 5 contain the graphs involv
ing the chargedW bosons in both the left- and right-handed
sectors, while Fig. 6 features graphs containing componen
of x. Lastly, Fig. 7 assembles all the graphs that aris
through mixing between the light and heavy sectors of th
theory.

in
er

gs

FIG. 3. Feynman graphs involving the unphysical charged Gol
stone bosong2. The individual divergences cancel inmt2mb be-
tween these graphs.
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It is sensible to group the graphs in the above man
because of the way the divergences cancel to give a fi
mt2mb . All of the individual graphs in Figs. 1–6 are loga
rithmically divergent,3 but these divergences cancel withi
each class of diagrams depicted in the separate figures.
graphs in Fig. 7 are all separately finite.

The quantitymb2mt will now be calculated using these
graphs. The charged Higgs boson graphs of Fig. 2 will be
most interest. However, I will first discuss the evaluation
the set of graphs in Fig. 1 in detail, since this will illuminat
how threshold corrections and large logarithmic correctio
associated with the renormalization group coexist. This c
culation will also demonstrate the relative unimportance
threshold corrections that are not proportional to a lar
mass. Following this, I evaluate the important threshold c
rections arising from Fig. 2. The Appendix provides full de
tails of these evaluations, together with a summary of
contributions from Figs. 3–7.

The result for Fig. 1 is given by Eq.~A18! of the Appen-
dix which I reproduce here for convenience:

mt2mbuG.2m
as

16p S 32mZ8
2

15mX
2

mZ8
2 ln

mZ8
2

m2 112 ln
mX
2

mZ8
2

1
3

2

2mZ8
2

15mX
2

mZ8
2 D . ~31!

This expression contains both a large logarithm ln(mZ8
2 /m2),

which depends on the hierarchy between the Pati-Salam
electroweak breaking scales, and additional pieces which
pend only on mass ratios involving the high mass sector. T
large logarithm is associated with those radiative correctio
which can be accounted for using the renormalization gro
The additional terms are the sought after threshold corr
tions.

Let me discuss this distinction a little further: The set
graphs in Fig. 1 produce a finite correction tomt2mb ; the
logarithmic divergences of the individual graphs exactly ca
cel between the graphs. Since the cancellation occurs
tween graphs containing light gauge bosons and those c
taining heavy gauge bosons, there emerges by necess
large logarithm. If only the light gauge bosons of the S
were included, thenmt2mb would diverge. However, be-
cause the heavy sector of the theory ‘‘knows’’ about t
physics which is trying to maintainmt5mb , the heavy
gauge boson graphs effectively act as an ultraviolet regula
for the logarithmic divergence produced by the light gau
boson graphs. The logarithmic divergence is turned into
large logarithm. The presence of this large dimensionl
quantity calls into question the usefulness of one-loop p
turbation theory, because the effective expansion param
is not the square of a coupling constant but rather the squ
of a coupling constant multiplied by the large logarithm. Th
means that higher order graphs may well provide nume
cally important corrections to the one-loop expression. T
task of calculating these corrections can, fortunately, be

3Actually they are superficially linearly divergent, but the line
part is zero.
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egantly performed by solving the renormalization group
equations, a process that is tantamount to summing these
large logarithms to all orders.

I therefore simply omit the large logarithmic term ob-
tained from Fig. 1, knowing that its effects will be incorpo-
rated by solving the renormalization group equations. The
remaining terms, however, cannot be accounted for in this
manner. These threshold corrections, so called because the
depend on heavy mass ratios only, can be viewed as setting
up the boundary condition onmt2mb at the Pati-Salam
breaking scale that one must use to solve the renormalization
group equations.

Note that there is an ambiguity in how to separate the
large logarithmic term from the threshold corrections. Should
the large mass in the logarithm bemZ8 as shown above, or
mX instead? In other words, should the running start from the
massmZ8 or the massmX? This ambiguity will not be nu-
merically important in this paper, because the large threshold
corrections I will obtain from Fig. 2 will not need to be
separated from a large logarithmic term.

Let us now obtain a numerical estimate for the size of the
threshold corrections. They depend through the heavy mass
ratios on the coupling constants of SU~3! c and SU~2!R ~the
VEV of x cancels out!. Renormalization group evolution for
as shows that

as~L!5
as~mZ!

11~7/2p!as~mZ!ln~L/mZ!
. ~32!

Inputtingas(mZ)50.118 produces

as~1000 TeV!50.053. ~33!

The right-handed SU~2! coupling constant is given by

ar

FIG. 4. Feynman graphs involving the left-sector gauge boson
WL

2 . The individual divergences cancel inmt2mb between these
graphs.

FIG. 5. Feynman graphs involving the right-sector gauge boson
WR

2 . The divergences cancel inmt2mb between these two graphs.
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1

aR
5

1

aY
2

2

3a3
, ~34!

and renormalization group evolution implies that

aR~L!5
3aY~mZ!as~mZ!

3as~mZ!22aY~mZ!2~35/2p!aY~mZ!as~mZ!ln~L/mZ!
. ~35!

FIG. 6. Feynman graphs involving compo-
nents ofx. The divergences cancel inmt2mb

between these two graphs.
-
k
ent
h
ful
ing
re

ot
ncel

ld
UsingaY(mZ)50.0101 yields

aR~1000 TeV!50.013. ~36!

Inputting these values into the last two terms of Eq.~31!
shows that the threshold corrections producemt2mb.10’s
of MeV. Since renormalization group evolution alters th
quantity by a few GeV, these threshold terms can be sa
neglected.

However, the graphs of Fig. 2 produce much larg
threshold corrections due to the presence of the top quar
the loop and the top quark mass in the vertices involving
physical charged Higgs boson. Note first of all that it is na
ral to take the massmH of H2 to be of the order of the
Pati-Salam breaking scale. The point is that the linear co
is
fely

er
k in
the
tu-

m-

bination that containsH2 of the two SU~2! L doublets em-
bedded inF has zero VEV. This linear combination there
fore plays no role in setting the scale of electrowea
symmetry breakdown, and the masses of the compon
fields may take on ‘‘natural’’ values of the order of the hig
symmetry breaking scale. This is phenomenologically use
because it means that the effective neutral flavor-chang
effects thatH2 produces at one-loop order and above a
very suppressed@12#. Furthermore, it is clear that no large
logarithm will arise for these graphs because they do n
separate into a SM subset and a Pati-Salam subset that ca
each others logarithmic divergences.

The physical charged Higgs boson graphs in Fig. 2 yie
mt2mbuH.2
1

16p2

ms
22mt

2

mH
2 2ms

2

mt~mt2m sin2v!~mtsin2v2m!

~u1
21u2

2!cos22v
lnS ms

2

mH
2 D ~37!
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in the limit thatms ,mH@mt . I have also assumed in th
approximate expression given above that there is no accid
tal cancellation betweenmtsin2v andm. This threshold cor-
rection can clearly produce a mass difference betweenmt

andmb of the order of a GeV, provided this accidental ca
cellation does not occur.4 The ‘‘common’’ massm of t and
b at the Pati-Salam breaking scale must be about the sam
the measuredmt , namely about 1.8 GeV, becausemt does
not evolve strongly under the renormalization group. T
above threshold effect can therefore alter the initial ra
mb /mt by up to 50%. This correction is thus as numerica
significant as those incorporated through the renormalizat
group. The sign of the correction depends on the unkno

4Note that this correction does not vanish ifm50. The reason for
this is that the charged Higgs boson interactions of Eq.~28! explic-
itly break the global chiral symmetry obtained by settingm50
@15#.
en-
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parameterv, and therefore cannot be predicted. It can eithe
raise or lower the mass ratio by up to 50%. Interestingly, the
sign does not depend on which ofms andmH is larger~al-
though the magnitude of the correction is strongly dependen
on these masses!.

C. Discussion

The calculation demonstrates that generally speaking on
must take care in the use of renormalization group evolutio
to predict low energy masses. It is quite possible for low
energy masses to be very sensitive to unknown details su
rounding the high symmetry breaking sector, through thresh
old corrections that are enhanced by a large mass. In th
particular model I analyzed, the large threshold correction
were produced by graphs involving the physical charged
Higgs boson only. It is possible that most models lacking
such a particle will also lack large threshold corrections. Fo
instance, one may choose to gauge only the U~1! subgroup of
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FIG. 7. The first two Feynman graphs contrib-
ute to mt2mb when WL

22WR
2 mixing is

switched on. The third graph contributes when
Z2Z8 mixing is included. The fourth graph de-
notes the fact that the Goldstone bosons absorbed
by WR

2 andWL
2 are actually linear combinations

of x2 andg2.
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SU~2!R rather than whole right-handed weak-isospin gro
One could then try to construct a model with a single el
troweak Higgs doublet rather than the two doublets that
effectively contained withinF. A physical charged Higgs
boson would then be absent, and perhaps also large thre
effects.

It is interesting that the sign of the large threshold corr
tion depends crucially onv which in turn depends on th
relative sign between the two electroweak VEV’su1 and
u2 . If the correction producesmb.mt at 1000 TeV, then
renormalization group evolution will produce on overly ma
sive bottom quark. This would necessitate that the accide
cancellation betweenmtsin2v andm occur to some extent. I
the correction producesmb,mt , then the masses will nee
to be evolved for a longer period in order to produce a p
nomenologically acceptable outcome. This would mean
the Pati-Salam breaking scale should be higher than
nominal value of 1000 TeV that I have been considering

It would be interesting to extend this analysis to a th
generation model. Are radiative corrections in the three g
eration of the model able to accomodates-m andd-e mass
splitting? This may be possible, given enough freedom
combine renormalization group evolution and potentia
large threshold corrections. It is, however, not obvious t
this will work because one would generically expect Hig
boson effects to be less important for lower generations.

However, it is perhaps more worthwhile to think of som
horizontal structure that may increase the predictivity of
model. A question in this context is whether or not it wou
be interesting to invoke a Georgi-Jarlskog texture via
(15,2,2) Higgs boson@16#, or whether such a tree-level te
ture would be wiped out by radiative corrections. The imp
tant issue of predictivity also raises the question of how
reduce the freedom one has in moulding the size of thres
corrections by unknown details of the heavy sector of
theory. It would clearly be interesting to construct the hea
sector in the simplest possible manner in order to reduce
number of experimentally unknowable parameters.

III. TOWARDS t-b-t UNIFICATION

As mentioned in the previous section, if the electrowe
bidoubletF is chosen to be real then mass equality betw
isospin partners occurs at tree level. WithF5Fc we have
that
p.
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F5S f0 2f1

f2 f0* D ~38!

and the Yukawa Lagrangian

LYuk5l Tr~ f̄ LF f R!1H.c. ~39!

produces

mt5mb5mt5mn
Dirac5lu, ~40!

having used

^F&5S u 0

0 uD . ~41!

The full power ofGPS to relate masses is thus evident. A
useful way to view the above phenomenon is that custodia
SU~2! has been gauged and upgraded to an exact symmetr
of the Lagrangian by its identification with SU~2!R .

I have demonstrated that radiative corrections can alte
mass ratios dramatically. However, the measured ratio
mt /mt is about 100 and thus threshold corrections cannot
plausibly be used to fix upmt5mt , unless the large mass
used to enhance the correction is very much larger thanmt
@13#. One may speculate that the neutrino sector of a theory
may produce such an effect, although this did not happen in
the Pati-Salam model considered in the previous section.

The obvious alternative is to use some form of seesaw
mechanism to depressmt andmb relative tomt , just as one
may do in the neutrino sector. In other words, mixing effects
rather than radiative corrections can be relied upon to explain
why mnt

!mt,b!mt , while radiative corrections only are

used to accommodate the ratiomb /mt .
It is therefore rather interesting to observe that the10 of

SU~4! has the branching rule

10→6~2/3! %3~22/3! %1~22! ~42!

to SU~3!^U~1!B2L . The color triplet component has elec-
tric charge21/3, while the color singlet has electric charge
21. Within this one irredicible representation lie the correct
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states that can mix withb and t in a seesaw manner. Fur-
thermore, the electric charge12/3 state is absent. One can
therefore arrange formb andmt to be lowered with respect
to mt . In addition, a fermion in the (10,1,1) representatio
of GPScan mix with f R via Yukawa coupling withx. All the
ingredients are there within the group theory of SU~4! to do
exactly what I want to do. I find this to be a rather strikin
fact.

So, I write down a new Pati-Salam model that contain
the fermions

f L;~4,2,1!, f R;~4,1,2!, FL;~10,1,1!,

FR;~10,1,1!, NL;~1,1,1! ~43!

and the Higgs bosons

F5Fc;~1,2,2! and x;~4,1,2!. ~44!

The full Yukawa Lagrangian is

LYuk5l Tr~ f̄ LF f R!1hTr~ F̄Lx
Ti t2f R!1nN̄LTr~x†f R!

1MFTr~ F̄LFR!1H.c., ~45!

whereFL,R have been written as symmetric 434 matrices
which undergo the SU~4! transformationFL,R→U4FL,RU4

T .
In component form,

F5S S
B

A2

BT

A2
E
D , ~46!

whereS is a 333 symmetric matrix representing the colo
sextet,B is a 331 column matrix representing the colo
triplet andE is the color singlet. TheA2 in this equation is
required in order to normalize the kinetic energy terms f
B andE consistently.

The top and Dirac neutrino masses are simply

mt5mn
Dirac5lu. ~47!

However, bottom andt now have 232 mass matrices given
by

Lb5~ b̄L B̄L!S mt 0

mB MF
D S bRBR

D 1H.c. ~48!

and

Lt5~ t̄L ĒL!S mt 0

A2mB MF
D S tR

ER
D 1H.c., ~49!

wheremB[hv/A2. The A2 in the t mass matrix comes
from theA2 in Eq. ~46!.

Sincev@u, we expect thatmB@mt , unless the Yukawa
coupling constanth is very small. One large eigenvalue an
one small eigenvalue is thus expected from each mass
trix, provided the bare massMF is not too large. In fact, if
MF!mB ~but not necessarily small compared tomt) the
n

g

s

r
r

or

d
ma-

smallest eigenvalues are roughlyA2mtMF /mB for theb sys-
tem, andmtMF /mB for thet system. This shows that mixing
betweenf andF can indeed suppressmb andmt with re-
spect tomt . So, the small eigenvalues are identified with
mb andmt , while I will call the large eigenvaluesmb8 and
mt8.

The two mass matrices produce four eigenvalues in term
of three parameters. This means there is one relation co
necting them. The relation can be written most usefully in
the form

mb

mt
5F 22~mt

2/mb8
2

!2~mt
2/mb8

2
!

11~mt
2/mt

2!22~mt
2/mb8

2
!
G 1/2, ~50!

where I have chosenmt rather thanmt8 as one of the mass
parameters on the right-hand side.~Note that
mt85mb8mb /mt .) Sincemt!mt ,mb8 is required,

mb

mt
.A22

mt
2

mb8
2 ~51!

must hold so thatmb→A2mt asmb8→`.
For the interesting case wheremt!MF!mB , the light

mass eigenstate fieldsb̃ and t̃ are

b̃L.bL2
mt

mB
BL , b̃R.BR2

MF

mB
bR ~52!

and

t̃L.tL2
mt

A2mB

EL , t̃R.ER2
MF

A2mB

tR . ~53!

Thus the left-handed mass eigenstatesb andt are predomi-
nantly in f L , while their right-handed projections are mostly
in FR . This is important because it means the light mass
eigenstates will feel the standard left-handed weak interac
tions to a higher degree of accuracy, as is phenomenolog
cally required. The right-handed states will, however, have
their couplings to right-sector weak bosons suppressed b
MF /mB . This behavior is similar to Ma’s alternative formu-
lation of left-right symmetry@14#. Becausemb!MF ,mB is
phenomenologiclly necessary,mb.A2mt must hold to a
good level of approximation at tree level.

So, I have shown that mixing effects can induce the pat
tern mnt

50!mb ,mt!mt provided MF is not too large.
~The neutrino sector here is identical to that of the Sec. II.! It
remains to be seen whether or not radiative effects can pro
vide a successful value formb /mt . The explicit calculation
of the necessary diagrams is beyond the scope of this pap
although experience with the previous model suggests th
there may be large threshold corrections due to Higgs boso
graphs that can be arranged to produce a phenomenologic
successful mass pattern for the third family, particularly
given the involvement of the heavy fermions in some rel-
evant diagrams. It may be that the additional factor of
roughlyA2 in the tree-level value ofmb /mt can be negated
by a threshold correction, with the ensuing boundary condi
tion mt.mb at 1000 TeV then producing successful low
energy values.
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IV. CONCLUSION

The idea that Pati-Salam SU~4! might be broken at a rela
tively low energy such as 1000 TeV is a very appealing o
I have shown in this work how the model ought to be co
structed in order to achieve this in a way consistent with
big bang cosmology and particle phenomenology. I poin
out that a different and simpler Higgs sector to that usu
employed to break SU~4! is required. The simplest version o
this model predicts massless neutrinos, although mas
neutrinos are not difficult to incorporate.

The core of the paper was then a calculation of the ra
tive corrections to the tree-level mass relationmb5mt in-
duced by mass thresholds. I found that the set of gra
involving the charged Higgs boson produces a generic
large correction, enhanced bymt /mt . This can alter the ratio
mb /mt by up to about 50%. Whether this correction i
creases or decreases the ratio depends on the relative
between the two VEV’s that break the electroweak group
the ratio is increased, then the combined effect of the thr
old correction and renormalization group evolution tends
produce an overly massive bottom quark. If the ratio is
creased, then the scale of Pati-Salam symmetry brea
needs to be raised in order to allow the masses to run
longer under the renormalization group. In either case,
generically large threshold correction can be reduced b
fine-tuning of parameters.

It was then demonstrated that the identification
SU~2!R with custodial SU~2! can yield t-b-t unification at
tree level when combined with Pati-Salam SU~4!. I showed
how the hierarchymnt

!mb,t!mt can arise due to two dif

ferent seesaw mechanisms, and I conjectured that theb-t
splitting can possibly be accommodated within the theor

I am therefore able to reach the important conclusion
the observed mass pattern of the third generation of qu
and leptons can be reproduced by a Pati-Salam SU~4! theory
far below a hypothetical GUT scale. This scale could be
above the current lower bound of about 1000 TeV. Howe
one must be mindful that large threshold corrections be
corporated~or cancelled off as the case might be!, as well as
renormalization group effects. This motivates that an on
ing search for rare processes such asKL

0→m6e7 be main-
tained. The detection of such a process may provide the
experimental clue to the physics behind the fermion m
problem and the relationship between quarks and lepton

Note added.After these calculations were substantia
complete, a somewhat similar model was considered in@17#.
It was shown here that threshold corrections can induce m
corrections of the order of several GeV, which lends furt
support to the idea that a combination of renormalizat
group evolution and large threshold corrections may be
teresting for the fermion mass problem in theories with n
physics far below 1016 GeV. Although this paper explicitly
considers a GUT-scale theory, the effects found can also
cur in lower scale physics, as was noted in the manuscr
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APPENDIX

In this appendix I will calculate the graphs displayed in
Figs. 1–7, working in Feynman gauge for all of the gauge
interactions. A highly nontrivial consistency check on the
calculation will be that all of the divergences should cance
in mt2mb .

A pragmatic approach to the regularization of the various
integrals will be adopted, employing either dimensional
regularization or Pauli-Villars regularization depending on
what happens to be convenient. Since I am calculating
finite quantity, no inconsistency is introduced by employing
two different regularization procedures.

1. Graphs in Fig. 1

In this first subsection I will calculate the contribution of
the diagrams in Fig. 1 To simplify the task, the mass of the
Z boson will be set to zero, thus making it degenerate with
the photon. Everything can then be rewritten in terms ofB
and WL

0 , the latter being the neutral gauge boson of
SU~2! L . But then theWL

0 boson graph need not be consid-
ered, since it couples universally tob and t. Since I am
interested in threshold corrections due to heavy secto
masses, my neglect ofmZ will be of no numerical signifi-
cance.

It is useful to first consider a general gauge interaction o
the form

L~x,y!5 f̄ 1g
m~x1yg5! f 2Am , ~A1!

where f 1,2 both have massm, A has mass M and wheref 1
and f 2 may be the same field. The one-loop self-energy gen
erated byL(x,y) is

2 iSF52E d4k

~2p!4
gm~x1yg5!~ p̂1 k̂1m!gm~x1yg5!

@~k1p!22m2#~k22M2!
,

~A2!

where the symbolk̂ meansgmkm .
These terms contain both wave-function renormalization

constants as well as mass shifts, and I seek only the latter.
general fermion self-energyS may be written in the form

S5A~ p̂2m!1B~ p̂2m!g51Cg5~ p̂2m!1dm, ~A3!

whereA, B, andC contribute to wave-function renormaliza-
tion while dm is the mass shift. Theg5 dependence shown
above is required because of the complication that the gaug
interactions I consider are chiral. It is important to realize
that the coefficient ofg5 in the self-energy contributes only
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to wave-function renormalization. One might fear that th
cannot be the case because in generalS should have a term
of the form dmg5 , which looks like a peculiar
g5-dependent contribution to the mass. However, the iden

g552
~ p̂2m!g51g5~ p̂2m!

2m
~A4!

shows that such a term can always be subsumed into thB
andC terms in Eq.~A3!. Since these terms cannot shift th
pole away fromp̂5m, they do not contribute to mass reno
malization. In practice then, the mass shift is isolated
settingp̂5m, p25m2 and dropping the contribution propor
tional tog5 .

To proceed I first regularize the divergent integrals
continuing ton-dimensions. Althoughmt2mb will be a fi-
nite quantity, it is the sum of integrals that are separat
divergent. In order to be certain that no errors are introduc
by a naive cancellation of infinite quantities, I feel it prude
to regularize the integrals first.5 This may seem like pedantry
is

ity

e
e
-
by

y

ly
ed
t

because the answer turns out to be identical to that obtained
by just such a naive cancellation. However, I view the can-
cellation of regularized divergences as a justification for ve-
racity of the naive method.

To avoid n-dimensionalg matrix algebra involvingg5 ,
the positions of all theg-matrices in the numerator are fro-
zen. Since the integral is now finite, all ordinary manipula-
tions except for Dirac algebra can be performed. Equations
~20! and ~21! are now used in conjunction with the familiar
gluon interaction with quarks to obtain thex and y param-
eters for each diagram. The contributions are then summed
with the appropriate color factors for theX boson and gluon
graphs inserted.

The self-energies fort andb are

2 iS~ f !52E dnk

~2p!n
N~ f !

~k1p!22m2 , ~A5!

where f5t,b and
Dirac

the
N~t!5
3

8

gR
2gs

2

gR
21

3

2
gs
2

gm~11PR!~ p̂1 k̂1m!gm~11PR!

k2
1

1

16

1

gR
21

3

2
gs
2

gm~3gs
222gR

2PR!~ p̂1 k̂1m!gm~3gs
222gR

2PR!

k22mZ8
2

1
3gs

2

2

gm~ p̂1 k̂1m!gm

k22mX
2 . ~A6!

The three terms in this equation come from theB graph, theZ8 graph and theX graph, respectively. The corresponding
expression forb is

N~b!5
1

24

gR
2gs

2

gR
21

3

2
gs
2

gm~123PR!~ p̂1 k̂1m!gm~123PR!

k2
1

1

16

1

gR
21

3

2
gs
2

gm~gs
212gR

2PR!~ p̂1 k̂1m!gm~gs
212gR

2PR!

k22mZ8
2

1
gs
2

2

gm~ p̂1 k̂1m!gm

k22mX
2 1

4gs
2

3

gm~ p̂1 k̂1m!gm

k2
, ~A7!

where the fourth term is due to the gluon graph. Expanding the numerators above, without commuting any of the
matrices through each other, and subtracting theb term from thet term I find that

2 i ~St2Sb!52
1

gR
21

3

2
gs
2
E dnk

~2p!n
N

~k1p!22m2 , ~A8!

where

5By ‘‘naive’’ I mean the combining of the integrands of Feynman integrals using a common denominator after having simplified
numerators using four-dimensional Dirac algebra.
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N5

gR
2gs

2F13 gm~ p̂1 k̂1m!gm1
1

2
gmPR~ p̂1 k̂1m!gm1

1

2
gm~ p̂1 k̂1m!gmPRG

k2

1

gs
2F12 gs2gm~ p̂1 k̂1m!gm2

1

2
gR
2gmPR~ p̂1 k̂1m!gm2

1

2
gR
2gm~ p̂1 k̂1m!gmPRG

k22mZ8
2

1

gs
2S gR21

3

2
gs
2Dgm~ p̂1 k̂1m!gm

k22mX
2 2

4

3
gs
2S gR21

3

2
gs
2Dgm~ p̂1 k̂1m!gm

k2
. ~A9!
The cancellation of the divergences is evident in this expr
sion. The individually divergent pieces may be isolated
temporarily settingmZ85mX50. The terms containingPR
cancel between theB andZ8 graphs, while all four graphs
are required to see the cancellation in thePR-independent
terms. Since2 i (St2Sb) is finite, the integral can now be
continued back to four-dimensions and Dirac algebra use

This result illustrates the general phenomenon that
heavy particles act effectively as ultraviolet cutoffs for th
self-energy graphs involving SM particles only. If only th
B boson and gluon graphs are included, then2 i (St2Sb) is
divergent. This is as expected because the low energy ef
tive theory is the SM which requires a counterterm to abso
such a divergence. When all four graphs are included,
full SU~4! symmetry of the underlying Lagrangian is felt b
2 i (St2Sb) and it is revealed as a finite quantity.

Equation~A8! may be rewritten more compactly as

2 i ~St2Sb!5
gs
2

2
~9mX

222mZ8
2

!E d4k

~2p!4
p̂1 k̂22m

D

2
gs
2

2
mX
2~5mX

212mZ8
2

!E d4k

~2p!4
p̂1 k̂22m

Dk2

1~g5 term!, ~A10!

where

D[@~k1p!22m2#~k22mZ8
2

!~k22mX
2 !. ~A11!

The g5 term is now dropped, and the remaining integra
have to be evaluated further to isolate the mass shift.

The required integrals are

I 35E d4k

~2p!4
1

D
, I 45E d4k

~2p!4
1

Dk2
, ~A12!

and
es-
by

d.
the
e
e

fec-
rb
the
y

ls

Î 35E d4k

~2p!4
k̂

D
, Î 45E d4k

~2p!4
k̂

Dk2
. ~A13!

I now approximately evaluate these integrals withp25m2

under the condition thatmX
2;mZ8

2
@m2.

The results are

I 3.
i

16p2

1

mZ8
2

2mX
2 lnS mX

2

mZ8
2 D , ~A14!

I 4.
i

16p2

1

mX
2 F 1

mZ8
2 lnSmZ8

2

m2 D 1
1

mZ8
2 ~A15!

1
1

mZ8
2

2mX
2 lnS mX

2

mZ8
2 D G , Î 3.2

p̂

2
I 3 ,

~A16!

Î 4.
i

32p2

p̂

mX
2 F2

1

mZ8
2 lnSmZ8

2

m2 D 1
1

2mZ8
2

1
1

mX
22mZ8

2 lnS mX
2

mZ8
2 D G . ~A17!

Note thatI 4 and Î 4 contain the large logarithms associated
with the renormalization group.

Substituting these expressions into Eq.~A10! and replac-
ing p̂ by m to extract the mass shift part only, I find that

mt2mbuG.2m
as

16p S 32mZ8
2

15mX
2

mZ8
2 ln

mZ8
2

m2 112 ln
mX
2

mZ8
2

1
3

2

2mZ8
2

15mX
2

mZ8
2 D , ~A18!

where I have kept only the large logarithmic terms followed
by the largest threshold corrections.
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2. Graphs in Fig. 2

By contrast with the previous subsection, I will not em
ploy dimensional regularization but rather Pauli-Villars regu
larization in this subsection. This is convenient because all
the graphs in Fig. 2 have the same bosonH2 in the loop, and
so the Pauli-Villars cutoffL is necessarily the same for al
the graphs. In Fig. 1 all of the bosons are different and the
fore in principle one could employ different cutoff masse
for each of the bosons. This would cloud the issue of dive
gence cancellation between the graphs, although it could s
-
-
of

l
re-
s
r-
till

be demonstrated in the limit that all of the regulating mass
were simultaneously large. Furthermore, once the Pa
Villars regulator is introduced for the graphs in Fig. 2 I am
free to use four-dimensional Dirac algebra immediately. Th
is very convenient.6

Please be aware that I will calculate the graphs in Fi
2–6 with the neglect of mixing between the heavy and lig
sectors. I will comment in Sec. A 7 of this appendix on th
additional contributions due to mixing.

The three graphs in Fig. 2 combine to yield
e three
2 i ~St2Sb!uH5E d4k

~2p!4 F ~aHsinuPR1bHPL!~ p̂1 k̂1ms!~aHsinuPL1bHPR!

~k1p!22ms
2 1

aH
2 cos2uPR~ p̂1 k̂!PL

~k1p!2

2
~aHPR1bHPL!~ p̂1 k̂1mt!~aHPL1bHPR!

~k1p!22mt
2 G S 1

k22mH
2 2

1

k22L2D . ~A19!

Each of the three terms in this expression are finite because of the Pauli-Villars regularization.
Inspection of this equation reveals that the potentially divergent part has an integrand proportional to divH where

divH5@aH
2 sin2u~ p̂1 k̂!PL1bH

2PR1mssinuaHbH#1@aH
2 cos2u~ p̂1 k̂!PL#2@aH

2 ~ p̂1 k̂!PL1bH
2PR1mtaHbH#. ~A20!

Dirac algebra has been used to simplify this expression, and the three terms in square brackets above correspond to th
integrals in Eq.~A19!. Usingmssinu5mt we see that divH50.

TakingL→` now that the divergences have disappeared, and isolating theg5 part, I find that

2 i ~St2Sb!uH5M2E d4k

~2p!4

1
2 bH

2 k̂1mtaHbH

@~k2p!22mH
2 #~k22ms

2!~k22mt
2!

1
1

2
mt
2M2aH

2 E d4k

~2p!4
k̂

@~k2p!22mH
2 #k2~k22ms

2!~k22mt
2!

1~g5 part!. ~A21!
I

e

Integration variables have also been changed in this exp
sion.

The integrals required above are the same asI 3 , Î 3 and
I 4 introduced in the Sec. A 1 but withp̂→2 p̂. They ap-
proximately evaluate to

I 3.
i

16p2

1

mH
2 2ms

2 lnS ms
2

mH
2 D , ~A22!

Î 3.
i

32p2

p̂

ms
22mH

2 F11
ms
2

mH
2 2ms

2 lnS ms
2

mH
2 D G , ~A23!

Î 4.
1

ms
2 Î 3 , ~A24!

under the condition thatmH
2;ms

2@mt
2@p25m2.
res- The contributions to Eq.~A21! involving Î 3 and Î 4 will
generically be much smaller than that involvingI 3 . The k̂ in
the integrand produces ap̂ after integration which in turn
becomes anm after the mass shift part is isolated. This over-
all factor ofm is not cancelled off, as is evident from the
integral evaluations above, so this suppresses theÎ terms
relative to theM2mtaHbHI 3 term. It is possible to cancel the
generically dominant term ifmtsin2v.m.

Assuming this accidental cancellation does not occur,
find that

6In fact, the calculations show that you cannot demonstrate th
cancellation of the divergences for Fig. 2 without having to pass a
g5 through agm . This is curiously different from the situation in
Fig. 1.
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mt2mbuH.2
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2!cos22v
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mH
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3. Graphs in Fig. 3

Using Pauli-Villars regularization and working in Feynman gauge, the graphs of Fig. 3 yield

2 i ~St2Sb!5E d4k
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2 2L2
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2PL!1agbgmt

~k1p!22ms
2 G , ~A26!

where the three terms above correspond to the three graphs. Dirac algebra simplification andmt5mssinu have been used here.
The potentially divergent piece has an integrand proportional to divg where

divg5@2~ k̂1 p̂!~ag
2PR1bg

2PL!2agbgmt#1@~ k̂1 p̂!ag
2cos2uPR#1@~ k̂1 p̂!~ag

2sin2uPR1bg
2PL!1agbgmt#. ~A27!

The three terms in square brackets correspond to the three graphs. Note that the divergences cancel.
Taking the cutoff to infinity, discarding theg5 term and changing integration variables reveals that

2 i ~St2Sb!5M2E d4k

~2p!4

1

2
bg
2k̂1agbgmt

@~k2p!22mWL

2 #~k22mt
2!~k22ms
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2M2E d4k

~2p!4
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@~k2p!22mWL

2 #k2~k22mt
2!~k22ms
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c

r

From the experience gained with the explicit evaluation
Figs. 1 and 2 the qualitative behavior of this expression
now be ascertained without explicit computation.

In the limit M2→`, the first term above gives a larg
logarithm while the second does not. The first term thus c
tributes to renormalization group running~plus residual
threshold effects! while the second term contains thresho
effects only. By contrast with Figs. 1 and 2, however, t
threshold effects will involve the mass ratios ofWL and t
which are relatively light particles.

None of these threshold terms are enhanced bymt , how-
ever. The potentialmt

3 term disappears because of the chi
of
an

e
on-

ld
he

al

structure of the graphs. To obtain such a term, amtbg
2 piece

in the integrand would be needed. There is no such term
because it is proportional toPRPL50. The potentially enor-
mousmsmt

2 term is zero for the same reason. I conclude
therefore, that the low mass scale threshold corrections from
Fig. 3 are numerically small compared to themt enhanced
effects from Fig. 2.

4. Graphs in Fig. 4

The three graphs in Fig. 4 imply that
bove
2 i ~St2Sb!uWL
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2 E d4k

~2p!4
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2 2L2

~k22L2!~k22mWL

2 !
Fcos2ugm~ k̂1 p̂!gmPL

~k1p!2
1
sin2ugm~ k̂1 p̂!gmPL

~k1p!22ms
2 2

gm~ k̂1 p̂!gmPL
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2 G
~A29!

where again Pauli-Villars regularization has been used, followed by Dirac algebra simplification. The three terms a
correspond to the three graphs in Fig. 4.

It is easy to see by inspection that the potential divergence cancels, giving that

2 i ~St2Sb!uWL
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mt
2M2E d4k

~2p!4
gmk̂gmPL
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2 #k2~k22ms
2!~k22mt
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. ~A30!

The cutoff has been taken to infinity and integration variables changed to obtain this expression. AsM2→`, this contribution
remains finite. Therefore it does not generate a large logarithm; it is purely a~light mass scale! threshold effect. The physical
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reason for this is that the divergence cancellation cannot fail when thenR state is removed from the physical spectrum by
takingM2→`. The left-sectorW bosons couple tonL , so the absence ofnR does not affect the cancellation of divergences
There is also no enhancement due tomt , because themt term in the numerator disappears throughPLPR50 and because the
vertices are not proportional tomt .

5. Graphs in Fig. 5

The two graphs involving theWR boson lead to

2 i ~St2Sb!uWR
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2 E d4k

~2p!4

mWR

2 2L2

~k22L2!~k22mWR
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~k1p!22mt
2 G ~A31!

where, again, Pauli-Villars regularisation and Dirac algebra simplification have been used.
It is obvious that the potential divergence cancels between the two graphs. Therefore it is clear that
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52
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The cutoff has been taken to infinity and a change of integration variables has been performed.
As the Pati-Salam breaking scale is taken to infinity, bothM andmWR

go to infinity. In this limit then,

2 i ~St2Sb!uWR
→2

gR
2

2

1

mWR

2 E d4k

~2p!4
gmk̂gm

k22mt
2 ~A33!

which integrates to zero because the integrand tends to an odd function ofk. Therefore no large logarithms are generated by
separating the two symmetry breaking scales and the terms that remain nonzero for large but finite high scale masses ar

6. Graphs in Fig. 6

I now turn to the diagrams involving the heavy Higgs bosonsx. I will again be able to demonstrate that the divergence
cancel without having to rearrange the Dirac matrices, so I work inn dimensions from the start. The contribution of the
unphysical Higgs bosonx2 is

2 iStux25n2E dnk

~2p!n
1

k22mWR

2 Fsin2uPL~ p̂1 k̂!PR

~k1p!2
1
cos2uPL~ p̂1 k̂!PR

~k1p!22ms
2 G , ~A34!

where then-dimensional resultPLPR50 has been used.
The colored bosonxd on the other hand has a contribution given by

2 iSbuxd5n2E dnk
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k22mxd
2 Fsin2uPL~ p̂1 k̂!PR

~k1p!2
1
cos2uPL~ p̂1 k̂!PR

~k1p!22ms
2 G , ~A35!

where againPLPR50 has been used and nothing more.
It is clear that the divergences cancel when theb contribution is subtracted from thet contribution. Deleting theg5 part I

find that

2 i ~St2Sb!ux5
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2
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2 2mxd
2
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2

!@~k1p!22ms
2#G . ~A36!

It is clear by inspection that these graphs produce high mass scale threshold corrections, and that they are not enha
mt .

7. Graphs in Fig. 7

All of the graphs in Fig. 7 arise from mixing between the bosons of the heavy sector with those of the light sector. The
all individually finite. A general argument shows that they cannot contribute unsuppressed large logarithmic terms becaus
are proportional to mixing angles between the heavy and light sectors.
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Consider, for instance, a general Yukawa interaction of the form

L5l1F̄ fS11l2 f̄ FS21H.c. ~A37!

If the scalar bosonsS1 andS2 do not mix, then they each contribute separately to fermion self-energies via the individually
divergent diagrams I have been considering. However, if they mix with a mixing anglez, then

L5l1F̄ f ~coszS181sinzS28!1l2 f̄ F~2sinzS181coszS2!1H.c., ~A38!

where the primed fields denote the new mass eigenstates. This gives rise to a new contribution proportional to the mix
parameters.7 For instance, the self-energy off receives an additional finite contribution given by

2 iS f52l1l2sinzcoszE d4k
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2!@~k1p!22mF
2 #
, ~A39!

wherem1,2 is the mass ofS1,28 , andmF is the mass ofF. Suppose the heavy scalar to beS28 . In the limit thatm2→`,

2 iS f→2l1l2sinzcoszE d4k

~2p!4
k̂1 p̂1mF

~k22m1
2!@~k1p!22mF
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. ~A40!
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The integral above is logarithmically divergent and th
there will be a large logarithm in the heavy massm2 . How-
ever, the self-energy is also proportional to sinzcosz, which
goes to zero as the heavy scale is taken to infinity. Gen
cally, mixing angles between heavy and light scalars go a
mostmlight /mheavyas the heavy mass goes to infinity. Ther
fore the large logarithm above will always be suppressed
m1 /m2 and thus it will be ineffective.

Note that the statement that the mixing angle will gene

7Note that when mixing is considered the graphs I have alrea
calculated which do not require mixing to exist will be multiplie
by cos2z.1 factors.
s

ri-
at
-
by

ri-

cally go asmlight /mheavy is not the same as the statement th
we always want one light eigenstate and one heavy eig
state. For instance, a ‘‘democratic’’ 232 mass matrix~which
has each entry as 1! will yield one zero and one nonzero
eigenvalue but with a mixing angle ofp/4. However, in this
case there is no clear separation of the unmixed fields int
heavy and a light sector. One must make sure that the mo
does not produce this type of situation. This means tha
scalar mass hierarchy must be put into the theory by ha
and then preserved to all orders of perturbation theory~at
least!. This is of course just a manifestation of the gaug
hierarchy problem for scalar bosons.

The argument above may be easily repeated for grap
dependent on gauge boson mixing instead of scalar bo
mixing.
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