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We report the construction of large new classes of models which break supersymmetry dynamically. We then
turn to model building. Two of the principal obstacles to constructing simple models of dynamical supersym-
metry breaking are the appearance of Fayet-lliopollaerms and difficulties in generatinggaterm for the
Higgs fields. Among the new models are examples in which symmetries prevent the appearance of Fayet-
lliopoulos terms. A gauge singlet field, which may play a role in explaining the hierarchy in quark and lepton
parameters, can generate a suitableerm. The result is a comparatively simple model, with a low energy
structure similar to that of the MSSM, but with far fewer arbitrary parameters. We begin the study of the
phenomenology of these models.

PACS numbsgs): 12.10.Dm, 11.30.Pb, 11.30.Qc, 12.60.Jv

[. INTRODUCTION: SURVEY OF SCHEMES condensatef3], or perhaps more plausibly by large correc-

FOR DYNAMICAL SUPERSYMMETRY BREAKING tions to the Kahler potential in the strong-coupling region

[4]. It is fair to say that no very compelling model of the first

If supersymmetry plays a role in low-energy physics, it istype exists. The second scheme is basically a hope; it is
presumably dynamically broken. In this paper we greatly ex-unlikely that any explicit computation will verify such a pic-
tend the list of gauge theories which are known to dynamiture soon.
cally break supersymmetry; readers who are only interested Even if such schemes are successful, there are many is-
in these new examples should just read Sec. Il and the Apsues which such models have to face. Among these is the
pendix. In Sec. lll we show how to build reasonably simplequestion of flavor-changing neutral currents. Solving this
realistic models, where supersymmetry is dynamically broproblem in the framework of supersymmetry requires either
ken at low energies. These have the light particle content o& high degree of squark degeneracy or alignment of quark
the usual minimal supersymmetric standard model but arand squark mass matricelb]. Some suggestions for
much more predictive, with fewer necessary assumptions. Iachieving squark degeneracy in the string context ¢gisf,

Sec. IV we discuss the phenomenology of an example wherBut they require that string theory be truly weakly coupled, in
all the masses of undiscovered patrticles lighter than a Tethe sense that perturbation theory should be good for the
may be predicted in terms of just two new parameters. IrKahler potential. It is hard to see how this can be consistent
Sec. V we remind the reader why the problem of Higgswith the expected behavior of the dilation potential. Alterna-
doublet-triplet splitting in supersymmetric grand-unified tively, non-Abelian flavor symmetries may play some role
theories is more easily solved with low-energy supersymmef8]. Other issues include a variety of cosmological problems,
try breaking. We review some cosmological issues in Secperhaps the most severe being the moduli profl@mOne

VI. In the remainder of this introduction we discuss somesolution to the latter problem is that the dilaton and moduli
problems of existing theories in which supersymmetry is dy-are stabilized by nonperturbative physics at high energies
namically broken, and how several new tools help us conand play no role in the breaking of supersymmd®y, an-
struct better theories. other possible solution is weak scale inflatid®,11].

There are various ways dynamical supersymmetry break- Alternatively, models are known in which supersymmetry
ing might arise. In theories such as string theory, there ares broken without flat directionl]. In such cases, one does
classically many flat directions in the potential. Such flatnot require the intervention of complicated stabilization
directions are often lifted by nonperturbative effe¢ts. mechanisms. As in the case of flat directions described
Typically the potentials which are generated in these flat diabove, one can imagine breaking supersymmetry at a scale
rections fall to zero for large values of the fields. The mostintermediate betweeM,, andM,, . This idea, however, turns
familiar and notorious example of this kind is the dilaton of out to be fraught with difficulties, particularly with obtaining
string theory, whose potential always tends to zero at weakppreciable gluino mass¢4,9,13. Alternatively, one can
coupling[2]. Such potentials might be stabilized by multiple imagine breaking supersymmetry at comparatively low ener-
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gies, of order 10’s—1000’s of TeV. In this case, gauge inter-  Il. NEW MODELS WHICH EXHIBIT DYNAMICAL
actions can serve as the “messengers” of supersymmetry SUPERSYMMETRY BREAKING

breaking. Apart from the fact that the physics of super- There is a simple criterion for models which exhibit dy-

symmetry breaking is potentially accessible, such a schemg, nica| supersymmetry breakifi]. If a theory has no flat

has an immediate bonus: there is automatically SUﬁ'C'e”Hirections, and it has a global symmetry which is spontane-

squark and slepton degeneracy to understand the absencefsy hroken, then supersymmetry is spontaneously broken.

flavor-changing neutral currents. In this section, we describe two new sets of models which
Early efforts to build models along these lines sufferedsatisfy this criterion. One set involves renormalizable inter-

from a number of difficulties. The most severe of these werections only. A second involves nonrenormalizable interac-

that SU3) typically became strong a few decades above thejons as well.

scale of supersymmetry breaking, and that the known models

all possessethstrophysically dangerous light axions from a A. A renormalizable class of models

spontaneously brokerR symmetry. Nelson and Seiber
P y y y 9 Kk I [1], an infinite set of models which break supersymme-

noted that dimension five operators expected from Planctry was described. These were models with gauge group
scale physics could explicitly break tlRResymmetry and give SU(N-+4), whereN was odd, and withN chiral fields,F2, in

the axion a sufficiently large mass so that it would not be : . ; .
i i ; the antifundamental representation and Ana the antisym-
produced in stard13] without restoring supersymmetry.

; ) metric tensor representation. Adding the m neral r-
Bagger, Poppitz, and Randall pointed out that wResym- etric tensor representation. Adding the most general supe

potential
metry and supersymmetry break at the same scale, cancella-

tion of the cosmological constant within the framework of W=)\abAIEaI;b (2.
supergravity by adding a constant to the superpotémhtial

necessarily requires such expli&tsymmetry breaking but |ed to a model without flat directions and with a nonanoma-
also does not restore supersymmetry. Solutions to the firgbus R symmetry. One strategy for constructing generaliza-
problem were provided ifil5,16. Here it was suggested that tions of these models is to take a particular one, and simply
a new gauge symmetry, referred to as the “messengertliscard some of the gauge multiplets while keeping the chiral
gauge group, could play a crucial role. These models, whilenultiplets. One might then add the most general superpoten-
potentially realistic, were fairly complicated. If16] the tial allowed in the reduced theory. This procedure is guaran-
messenger group was Simp|y 6(1% known as messenger teed to y|6|d chiral models which are free of anomalies. As
hypercharge_ The appearance of Fayet_”iopomderms for we will see, the resulting theories often possess nonanoma-
U(]_)m caused a number of pr0b|ems' forcing several CoulOUSR SymmetrieS, and also have no flat directions.

plings to be extremely small. Also, simple arguments sug- 1 he Simplest such model is given by the casel, i.e.,
gested that there could be poterm, and extra singlets ap- an SUS) theory with a5 and 10. In this case, the superpo-

peared in the low-energy theory, with carefully adjustedtential vanishes. One can now modify this theory by taking

: : . - : the gauge group to be the 8YXSU(2) subgroup._Under
c;(oLtJJ(pllgngs, in order to obtain suitable breaking of (8U this group, the and 10 decompose as .2, wo (3,1)'s,
In t'he resent work, we report substantial progress or?md a(1,2. It we add the most general superpotential, we
b ' P brog bbtain the well-studied S@),xSU(2), (3-2) model of dy-

'Ramical supersymmetry breaking. We obtain something new
metry breaking(without flat directiong These significantly if we retainpan él(ﬂ)xL}/(l) subgrgoup where the (@) ger?—
extend the known list of such theories, which previouslyg 4ior is ’

contained just five examplé¢4,17—19. All of our examples

are “calculable”[17], in the sense that by reducing a param- Y=diag1,1,1,1-4). (2.2
eter in the superpotential the supersymmetry-breaking scale

may be tuned to be small compared with the scale of gaugghe 10 and5 decompose as an antisymmetric tenggr{the
dynamics and so the ground state may be systematicallyubscript indicates the (W) chargd, a fundamentalf _, an
studied. Using these models, we construct theories withouintifundamentaF _,, and a singletS,. The most general
the appearance of messenger group Fayet-lliopoulos ternslowed renormalizable superpotential is

and their associated problems. Then, building on an idea of _

Leurer, Nir, and Seiber{20], we explain how gu term of W=\S,F_F_3. (2.3

the correct order of magnitude can arise naturally. We finally

put these ideas together to construct a model of dynamicalith this superpotential, it is easy to show that there is no
supersymmetry breaking which, at low energies, is a versiofiat direction. First note that the most general flat direction of
of the minimal supersymmetric standard moddSSM)  the SU4) D term has the form

where, once th& boson mass is fixed, there are only two

undetermined parameters. This is in contrast to the usual b
treatment where, withouad hocassumptions, there are of _ 202 0 _=_|0 _
. . = , F=F= , S=c. (249
order 16 unknown parameters. We begin the exploration of 0 aoy 0
0

the parameter space of this theory, and find that there is a
significant region which is presently consistent with all ex-
periments. The U1) D term requires
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2|a2| +4|C2| —4|b|2=0. (2.5 of A, there is no simple scaling describing the behavior of the
minimum as a function ofg;. Numerically, one finds
But combined with the vanishing of tHe terms, one finds a~c>b.
a=b=c=0. In addition to the absence of flat directions, this
model also possesses a nonanomaRus/mmetry. So one B. Generalizations
exq_icgseteh?rt]izui%eése{g}r“xgyéznbrggf r;bout the form of the There are a vast array of models one can construct in this

nonperturbative superpotential in the limit that the classicavvr?ﬁ ngz))(i%?lle)' (t:eé\e/ egres?arste\t/vi(t); r:;]%d?:]se(\)/\rnthwﬁauge
superpotential vanishes. There is, in fact, a unique superp au % roup S+1), an aﬁtis mmetric tensor ar):uj—3
tential consistent with the symmetries ge group ' y

antifundamentals. Throw out those generators ofrStl)
which do not lie in an SUf) XU(1) subgroup, where the

W”p:j_é\’ U(1) generator is
. T=diag1,1,...,1-n). (2.10
o= I;i':ink'A‘m‘fiklm- (2.6 The original chiral fields decompose as
Even in the presence of the classical superpotei(#is), A,+F, o+ (N—3)F_,+(n—3)S,. (2.11

symmetry considerations, the known limi&/(A\—0) and _

W(A—0), and analyticity in\ [21,22 still constrain the dy- HereA is an antisymmetric tensoF,(F) is the (ant)funda-

namically generated superpotential to be of the f¢PnG). mental andS a singlet of the SU{). At the classical level,
To see how the ternf2.6) is generated, consider first the one can add to this model a superpotential

region of the classical moduli space whére c>a. In this - _ _

direction, SW4)xU(1) is broken to SB). In the low-energy W= y,pAFAFP+ \ o FF2SP. (2.12

theory, apart from the single light modulus, there is one light .

3 and one3; i.e., one has supersymmetric QCD with one Itis not hard to check that for general matrieeand\, there

flavor. In this theory, a superpotential is generated nonpertui2r€ nO flat directions; on the other hand, there is a nonanoma-
lous R symmetry, and supersymmetry is broken. To see that

batively: . h y st : ¢
there are no flat directions, let us simplify things a bit by
Al taking \,, diagonal.(i) Suppose first thaF#0. Then the
Wnp=—3—- (2.77  dWI9S® equations requird=*F=0. By SU(n) transforma-
Vaq tions, we can take

It is not hard to see that this corresponds precisely to the F=(a,0,...,0, Dg=—diag0,b,|?...|b,_5/%0,0,
superpotential above. For exampléj=A3/b, so that nu- 2.
merically the superpotentials coincide. In addition, if the
U(2) coupling is smallx<g,;<1, the low-energy theory has
approximate flat directions in which $8) is broken to

13

where Dz_denotes the contribution to the StY( D term
from the F’s. But, since the eigenvalues of the contribution

SU(2); gluino condensation then generates the required s the D term from A are all positive, there is no way to

perpotential. Alternatively, one can consider the hierarch)})btaln a vanlshlpgD term with a=0. Sc_> we must require
0,<<A<1. In this case, one expects>b. Then at the first that the(F)=0. ("). Now suppose thah is nonzero. By an
stage, the gauge symmetry is broken td4%SQ(5), with SU(n) transformation,
two 4's. Again, the appropriate superpotential is generated
via gaugino condensation.

To determine the nature of supersymmetry breaking we 8503
can minimize the potential in various limits. The simplest A= : (214
case isA<<g;<<g,. Then one expects the minimum to lie in

a107

the flat directions of the Si4)xU(1) D terms. Rescaling Bnv272
(a’blc):(A/)\l’S)(a’,b’,c’), the scalar potential looks like This requires
2 _ .
V:)\6/5A4< Zb'C,_a’brz +|b,|4+ a'%p’2 ) DF:_dlaQ|bl|21|b1|21|b2|21|b2|2’"')' (2.15

(2.9 But the dW/9F? equations, for general couplings, require
that theb;'s vanish.[To see this, take a special case: gl
The minimum is found at vanish except,,¥3, - - - ¥n—sn-4; this structure can be en-
forced by Ul) symmetries, for examplE(iii) Finally, one
A 465 d can attempt to find a flat direction with and F=0. How-
(a,b,c)= 175 (1.27,0.97,0.38  V=3.3x10 "A""A% ever, sinceA andS? have the samsign of the U(1) charge,
(2.9  this is impossible.
We will later analyze a specific model, and see that this
We have also considered the case of sngall The result class of theories opens up new possibilities for supersymme-
above holds reasonably well up ke=g,. For larger values try model building.
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First, let us illustrate a few other possibilities. Consider a c 0
specific case: the S@) model with an antisymmetric tensor 0 ¢
and three 8 Now reduce the gauge group to SUXSU(2) ac, O 0 _lo o
XU(1), with the U1) generator taken to be A= 0 bo, 0 |, F= 0 ol L=,
T=diag2,2,2,2,2;-5,—5). The fields decompose as 0 0 bo, 0 0
- — 0 0
A(10,1,4+F(5,2,—-3)+5(1,1,— 10+ 3F?3(5,1,—-2)
St=e". (2.20
+3¢%1,2,5. (2.16
Here
[a is a flavor index, and we suppress @Wand SU5) indi- 2|al?—|c|?=2|b?, (2.21)

ces] Take, for the superpotential
2|a|?—4|c|?+4|b|?+3|d|?+3|e*|?+3|e”|?=0.
W= yAFIF2+ pSplg?+ N FFFAg2.  (2.17) (222
The first of these conditions is required by vanishing of the

To see that there are no flat directions, we can proceed as BU(6) D term, the second by the(l) D term. The W1),, D
the SUM) XU(1) example. First assunfé+0. Reasoning as term vanishes foe* =e™.
above, this can be shown to be inconsistent. One then shows The gauge symmetry is broken to(8pin this direction.
that A andF? must be zero. Finally, one must check tiifit  Gluino condensation in $f) leads to a nonperturbative su-
andS vanish. If somep® is nonzero, thei® must be nonzero perpotential. The form of this superpotential follows

in order to insure vanishing of the () D term. The uniquely from symmetry considerations alone:
F-flatness conditiongW/a¢?=0, requires bothp' and ¢ to

be zero. However, if bothp* and ¢° vanish, the S(2) D A
term cannot vanish. Again, this model has a nonanomd®us Wnp_(:ﬁ'”'
symmetry and supersymmetry is broken.
Clearly this construction can be generalized in many (= Ei+ EfAij6k|mnop°~k'Am”A°p- (2.23
ways, e.g., by reducing the $2h+1) theory with antisym-
metric tensor and 2—3 antifundamentals to S@n—1) Turning on the nonrenormalizable superpotential lifts the

X SU(2)xXU(1). Further examples are given in the Appendix. flat directions. We can ask how the vacuum expectation val-

ues(VEV's) of the fields scale with the large scaM, We

will assume thata~b~c~d, and study of the potential

shows thate™=0, so that messenger hypercharge is unbro-
Here we discuss a class of calculable models where sien. Rescaling 4,b,c,d)=MYA%%a’ b’ ,c’,d"), the po-

persymmetry breaking occurs alondaflat direction which  tential has the form

is stabilized by a nonrenormalizable term in the superpoten-

tial. A simple model in which flat directions are lifted by S

nonrenormalizable terms has gauge group(8KU(1) V= f(a',b’,c’.d"). (2.24

XU, where Ul),, is irrelevant for supersymmetry

breaking but could play the role of messenger hyperchargen other words, the order of the VEV's, the energy at the

with D term automatically vanishing. The model possesseginimum V, and the Goldstino decay constdfy are
chiral superfields with the quantum numbers

C. A nonrenormalizable class of models

5

_ A5 A5/2
A(15,1,0, F*(6,—2,+1), $%1,3,0, S"(1,3,+2). a,b,c,d~A%6M Y6, Vo~ Fe~ym: (229

(2.18

At the minimum of the potential, we expect that the ex-
The gauge symmetries forbid a cubic superpotential in th@ectation values of the auxiliay fields are of ordeF . As
model. At the level of dimension five terms, the unique al-a result, there is a nonsupersymmetric contribution to the
lowed superpotential is masses of the light fieldS™. Loop contributions involving
messenger hypercharge bosons andXhéields will lead to
N - soft supersymmetrytSUSY-) breaking masses for ordinary
W= — AFTF~ <0, (2.19 fields (along lines discussed in the next secjiof, in this
case, will be 16-1C® times larger than in the renormalizable
case.
At this level, if one ignores the (1),, symmetry, the model This model can be generalized to SYXU(1) with
has a global S(2) symmetry{under which the (1), vector = N>4 as follows. Take chiral matter superfields which trans-
multiplet transforms like thd ; generato}. form under the gauge group plus a global(8J-4) as
To analyze the model, consider first the theory in the ab- _
sence of the superpotential. There are then flat directions of (A,N—4,1), [F,—(N—2),N—4], (1N,S,),
the form (2.26
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whereS is a symmetric tensor of the global group. To stabi-

lize the flat directions, the global $N—4) must be explic- v

itly broken down to a subgroup by the superpotential, but it E 02
is convenient to label fields by their $¥—4) content. One A= F=
can gauge an anomaly-free subgroup of this grpey., 0

SU(N/2—2) for N ever to play the role of the messenger 0

group. With a suitable superpotentigl/~AFFS, there are

no flat directions. Again, there is a nonanomal&usymme- (2.30

try, and supersymmetry is broken.

In this paper we will not explicitly construct any realistic In this flat direction, the original S@)<U(1)xU(1) is bro-
models with a nonrenormalizable supersymmetry-breakingen to SUW4)>xU(1)xU(1). The low-energy content of this
sector. However, this should be a straightforward exercisemodel is exactly that of the S¥)xU(1) model, plus three
One feature of such a model would be that the scal® of additional fields neutral under $4) and the first W1).
symmetry breaking is much higher than the scale of superAmong these are two fields carrying messenger hypercharge.
symmetry breaking, and so the properties of Bhaxion are  These originate from the first two componentd=0f and we
quite different. It might even be possible in some model todenote them by* and y .
arrange for theR symmetry to be explicitly broken only by Recalling the dynamics of the $#xU(1) theory, we
the QCD anomaly and for thR axion to be a phenomeno- expect the VEV's of the fields to have the form
logically acceptable QCD axion which solves the str@g
problem. (The superpotential would still have to be fine-
tuned to make the cosmological constant zero, but perhaps 2
this tuning does not require explidk symmetry violation). V2

OO oOoOoc
OO oOooc< o

D. A model with vanishing D term

One of the main difficulties in the work dfL6] was the
appearance of a Fayet-lliopoul®s term for messenger hy-
percharge. Thi® term led to an undesirable pattern of sym-
metry breaking unless certain couplings were taken to be
very small. Among the models we have developed here arg - _
some with discrete symmetries which, if unbroken, forbid a
D term. This permits the construction of a much more com-
pelling set of models.

An example of this phenomenon is provided by the renor-
malizable SW6)xU(1)*xU(1),, model.[The U1),, symme-
try plays the role of messenger hyperchalgehis model  5nq all other VEV's vanish.

consists of the representations We first ask whether messenger hypercharge is broken,

A = Fr = - 0 i.e., whether the fieldsy™ have nonvanishing expectation
+200 T =500 T -lxlr T o100 SH6xls +620'27) values. To analyze this problem, we consider the effective

' action at scales well below. Integrating out the massive

o fields does not lead to superpotential couplings ofytfiields

[A=15,F =6, F=6, andS=1 of SU(6).] For the superpoten- to the fields in the SUY)XU(1) sector. On the other hand,

tial we take integrating out massive gauge bosons at tree level leads to
terms in the effective action of the form

Oo0oo0ooc
cooco<c o
Noooooo

—~

W=AAF"F ™+ yF(F*S +F~S")+ yFF°S". L
(2.28 T%X:_FfdAH(X+TX++X_TX_)ZTZ’ (2.32

Here we have imposed a discrete symmetry _ _
where Z denotes some field with a nonzeFo component,

_ such as the 4, 4 and antisymmetric tengwr,of the low-
A—A, F—+iF, energy SW4) theory. Replacing these fields by their expec-
tation values yields mass terms for the scalar components of
— = = X" - There are actually two types of gauge fields which con-

* F 0 =0
FromiFn, Fm ik, tribute to these terms, in the limit that thé ) couplings are
small compared tg, the SU6) coupling. These are associ-
S*5%, P, (2.29 ated with the broken generators
under which the 1), gauge fields change sign. T= 1 diag2,2,~1,~1,—1,~1), (2.33

The following is a flat direction fon=0: V24
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and two sets of generators transforming in thand4 of'  section. We take for the messenger group th@)\ de-
SU(4). The masses of these fields are, respectivél)g’v?  scribed there which has vanishiiy term. In addition to

and (3/4)g?v?. After a simple computation one obtains these fields and the fields of the MSSM we include a singlet
X, two fields¢™ and ¢~ with charge=1, and an additional
\ 1 1 2 vectorlike quark and lepton fieldg, g, |, andl. For this set
& — _ 40,1+ -ty Z At —gf b
T2 J' d*o(x X"t x x| g AAT 44)' of fields we take the superpotential to be
(2.39

1 _
N IV =
This gives rise to gositivemass squared for the scalgr Wx=ki¢p™ ¢~ X+ 3 AX*+kaXIT+KeXaa. (3.1

fields, so the symmetry is unbroken. Masses for the fermi-
onic components of these multiplets are generated at on@t two loops, the scalar components ¢f and ¢ gain
loop. mass. The required calculation is quite straightforward, and
We wish to show that this vacuum leaves over a discretgery similar to that of the squark and slepton massd4 5f
symmetry under which the “messenger hypercharge” gaugéor a range of parameters, this mass squared is negative:
boson is odd. Consider the transformati@®9. This is, of

2
course, not an invariance of the vacuum. However a combi- 2 1 “m> 2 22
Lo : . mi,=— = | —| miIin(Ag/m?). 3.2
nation of (2.29 with the SU6) transformation, 0= 5 | 5 | MN(AGM) 3.2
—ioy 0 0 Here Ag is the scale of the S@8) theory; it is roughly the
u=| o —ios 0 (2.35 scale where thgg mass is determined.
0 0 Lo ' ' As a result, the effective potential fa~ and X has the
! form, ignoring for a moment the terms involvirggandq,
is unbroken. So there can be Boterm. _ _
mi( ¢ 12 +[73) + kXt [+ [k X~ |?
Ill. MODEL BUILDING +lkipt d™+AX32 (3.3

A. The role of messenger hypercharge At the minimum of this potentialg®, ¢, X, andFy have

Our basic strategy for building models is close to that ofnonzero VEV's. For sufficiently smaN, this point is a mini-
[16]. We will take one of the supersymmetry-breaking mod-mum with zero VEV's for the fields), g, |, andl. Note that
els described in the previous section, and gauge a globdlad there been a Fayet-lliopoulos term at one loop for
symmetry. This gauge interaction will serve as the messengé#(1),,, Fx would not have obtained a VEV. This VEV is
of supersymmetry breaking. It is tempting to take as messersrucial to what follows.
ger SU3)xXSU(2)XU(1), but in all known cases, this re- We can now consider loop contributions to the masses of
quires a very large supersymmetry-breaking group and yieldsquarks, sleptons, and gauginos. These arise when we inte-
a theory in which S(B) is not asymptotically freéwe will grate out the fields, g, |, andl. At one loop, for smalk, we
comment on the possibility of exploiting recent develop-obtain (majorana masses for the S@), SU(2), and U1)
ments to circumvent this problem in the conclusioris- gauginos to lowest order iRy :
stead, we will simply gauge a(W). It would be simplest to
identify this U(1) with ordinary hypercharge, or with another m =c. il A (3.4)
symmetry such aB—L carried by ordinary particles. Again, N g '
however, there is a fundamental difficulty. Squarks and slep-
tons could all get mass squared at two loops in this modeivherec;=5/3, c,=c3=1, and the paramete,
and the ‘B-ino” could get a mass at one loop. However,
. : Fx
mass for the gluino would arise only at three loop order, and A=—, (3.5
thus would beextremelysmall. X
Instead, the messenger can be @)tarried by hidden
sector fields and some other, new fields. These new fields fat
in vectorlike representations of the standard model group. : ; .
The SUSY-breaking dynamics gives rise to multi-TeV gauge interactions at two loops. They are given by
masses for these fields, and also substantial splittings within Y\2( ay |2
the supermultiplets. Radiative corrections then lead to m?=2A? E) (4—) .
masses for squarks, sleptons, and gauginos of a comparable .
order of magnitude.
Let us describe a particular model in some detail. We takeyjere C,=4/3 for color triplets and zero for singlet§,=3/4
for the hidden sector, the $6)xU(1) model of the previous  for weak doublets and zero for singlets, ands the ordinary
hypercharge.
Note the structure of the theory at this level. Squarks are
IThe reader trying to reproduce this computation may find it help-the most massive scalar fields, by roughly a factor of 3 com-
ful to note that the model, as it stands, possesses an approximafé@red to slepton and Higgs doublets. Slepton singlets are the
unbroken S2) global symmetry which can be used to classify the lightest scalar fields, by still another factor of order 3. Glui-
generators. nos have masses comparable to squarks, while the Majorana

ets the scale faall of the soft breakings in the low-energy
eory. Masses for the squarks and sleptons appear due to

2
+C,

2 5

ag
_|__
3

Cs(n
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component of the wino mass matrix is comparable to that of B. The u term

the doublets. Note also that the strict degeneracy of squarks a¢ first sight, it seems unnatural in the present context to

and of sleptons of the same gauge quantum numbers is ONfyaye a,, term in the low-energy theory. After all, the scale of

broken by effects of order quark or lepton Yukawa couplingSthe supersymmetry breaking is determined dynamically, and
We will see tha.t exp_erlmental constraints give masses fog would seem odd that the scale of theerm and that of the
squarks and gluinos in the 200-300 GeV range. This meangeak scale should coincide. Moreover, the various mecha-
that A~10 TeV. This is the scale of physics. The scale of - higmg which have been suggested for generatipgterm in
the hidden sec;tor S(B)?U(l) physics is larger by a factor he standard supergravity framework are not available here,
of order (4m)?Naypk?, about 18 TeV for coupling  since the supersymmetry-breakiRigcomponents are not ter-
constants of order 1. Note that this corresponds to a rathqrb|y large. As a result, if[16], models with a low-energy
large value of the gravitino massf order 1 keVj, which is  strycture more complicated than that of the MSSM were con-
marginally consistent with the upper bounds on the energy o§idered. It appears to be natural and possible to construct
the univers¢23]. If the gravitino mass comes out too large, models along these lines, but they require not only additional
a period of late inflation might solve this and other problemssjnget fields but also additional vectorlike quark and lepton
(see Sec. I . . _ fields. Moreover, these models introduce several new arbi-
We are particularly interested in the potential for thetrary coupling constants which affect the weak scale spec-
Higgs field. In the next section, we will explain how a tym.
uHyHp term in the superpotential can be naturally gener-  However, Leureret al, in a different context, have sug-
ated in this framework. Here we note, first, that a coupling ingested au-term generation mechanism which can be rel-
the superpotential: evant here as we[R0]. Suppose that, in addition to the usual
MSSM fields, there is another singl&, As a consequence
Wyn=N"XHyHp (3.7 of discrete symmetries, the coupli®@H,Hp is forbidden.
Instead, thes superpotential has the form
leads to a soft-breaking term2,H Hp in the potential
Here\’ must be rather small, since these masses should be
roughly of order(a,/7)% This smallness is natural, in the
sense of 't Hooft, in that it can arise due to approximate
discrete or continuous symmetries. Note that the correspondn models with supergravity as the messenger of supersym-
ing contribution to theu term, however, iextremelysmall,  metry breaking, there is also a soft-breaking mass ternsfor
far too small to be of phenomenological significance. Finally,0f orderm3,. If this term is negative, then
a negative mass fdd, arises from loops with top squarks.

1 1
WS”+1HUHD+WSm+3. (3.10

This contribution, although of three-loop order, is somewhat (S)~ M(m_slz) Hm) (3.10)
larger than the two-loop contributions because it is propor- M '
tional to the top squark mass squared. We obtain
This gives au term:
w8, = i 2] @9 pemiy DI (31
So, for example, ih=m, w is of ordermy,. In other words,
wherey;=m/v, and, from Eq.(3.6), for any discrete symmetry under whidh,Hp carries the
5 same charge aS? the u term is of the correct order of
m? ~ 3 (2 A2 3.9 magnitude. _ _ 3
o 2 \4m In the present context, this mechanism has to be modified

somewhat. There are a variety of possible contributions to
The argument of the logarithm is the ratio of the high-energythe potential forS. These include various higher dimension
scale, roughly of ordeA, to the stop mass. _couplmgs w_hlch can drl\_/éS). In particular, consider terms
To summarize, at energies well below the scalethe N the effective Lagrangian of the form

theory looks like the usual MSSM, but with well-defined
predictions for the soft-breaking terms. Indeed, all of the soft i
breakings among the light states are determined in terms of Mf,
three parameterss, u, andm?, (we view thet quark mass
as known, and for definiteness takg=175 GeV. In a future + i S"IH, H

. . n uttp
analysis we will allow for a range dfquark mass valugs M
Other supersymmetry-breaking terms, such as trilinear scalar
couplings, are also generated but are small. In the next sedhe first and second terms can contribute effective negative
tion, we will discuss the superparticle spectrum in this pacurvature terms to th& potential. For example, ip=2,
rameter space. Here we note that for a broad range of pararm=2, andn=1, then theu term is of order\/F_X times pow-
eters, all of the current phenomenological constraints arers of coupling constants.
satisfied. If one imposes some modest fine-tuning con- Besides generating a term, this mechanism can also
straints, however, much of the remaining parameter spacgenerate a B term,” i.e., the soft-supersymmetry-breaking
will be explored at the CERN" e~ collider at LEP II. term m2,H H, in the Higgs potential. However, examina-

1 1
f d*e xszTs+f dza(M—B XSPHP+ M—? gm+3

. (3.13
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tion of the potential resulting from Eq3.13 shows that, in  with m3_andm? as in Egs.(3.8) and (3.9). At the mini-
this example, the resulting term is much too small, and so mum, P v
we must rely on the mechanism of the previous section to
generate th@® term. 1
These various structures of tt& superpotential can be m3=m3,tang— > m3cog2/3),
enforced by discrete symmetries. We have not explored the
full space of all possible couplings. The main lesson we wish
to draw is that_ it is indeed possible to arrange germ _of the mgz mfzcot,8+ 1 m%cos(Z,B),
correct order in these models. The price is a light field in the 2
low-energy theorye.g., in our example above, the mass is of
order 10° GeV). This field is very weakly coupled to ordi- ma = mi,(tan3+ cotB). 4.3
nary matter, but could play a significant role in cosmology.
We will not fully explore the cosmological implications of It is conventional in MSSM to express all Higgs boson
such a field in this paper, but will save a few remarks for Secmasses in terms oh% and tans. In our case we can rewrite
VI. all masses in terms qgf and tanB. Using minimization con-
The natural candidate for a symmetry that gives $e ditions and the fact that all scalar masg@sluding negative
superpotential of the forni8.10 is a discrete Abelian sym- contribution of the top squark to the up-type Higgs boson
metry, Z . 3, With S carrying charge-1, andH Hp carry-  mass[Eq. (3.8)]) depend on one parameter only, we find
ing chargen—m—2. Note that this discrete symmetry could
be a horizontal symmetry and play a role in explaining the ) 20,u2—m§cos{2,8)(1—c)
smallness and hierarchy in the fermion parameters. The ratio Ma= cog2B8)(1-c)+c ' (4.4
of scales,e~(S)/M, would be the small breaking param-
eter of the horizontal symmetry. Various fermion parametersyhere
depend on different powers efand the hierarchy is natu-

rally induced. Alternatively, the horizontal symmetry could m2_—m3 > a2 o
be of the formZ, XZ, , where each of the facto®, is c=— =5 (_3) y2In (_3 (4.5
broken by a different single®, and e~(S,)/(S,). Realistic 2My2 3m° | ™

examples of both type@n the sense that the small parameter ) ) )

is of the order of the Cabibbo anglevere constructed in Note thaty, here is determined in terms af; and tang.

[20,24. An area for future exploration is whether a similar We can now use experimental bounds on the masses of
discrete symmetry can predipt and B terms of the correct the lightest Higgs boson and sleptpns to constrain valyes of
order of magnitude and explain the structure of the quark anéhe parameters. Of these, the @singlet sleptons provide
|ept0n mass matrices in the case of |0W_energy Supersymm@]e most severe constraint. Another Stringent limit arises

try breaking. from considering bounds on charged Higgs boson mass from
the rate ofb— sy [25]. There is no appreciable cancellation
IV. SOFT-BREAKING PHENOMENOLOGY of the charged Higgs contribution by chargino loops. Exam-

ining the results of 25], one finds that the charged Higgs
Let us consider the low-energy spectrum of the model webhoson must be rather massive and, correspondingly, in these
have constructed in previous sections in more detail. As wenodelsu=150 GeV. To restrict the. range from above we
have already mentioned, its particle content at low energienpose a fine-tuning condition along the lines[26]:
is exactly that of the MSSM. However there are additional

restrictions. There are only three free parametgrsm?,, o am%
andA. We can trade the latter two fon2 and tanB=v,/v; . 2 om <A. (4.9
z

After m2 has been fixed to its physical value, all masses can
be expressed in terms of two parameters. The tree-levenl

Higgs potential has the form we allow fine-tuning of no more than 1 part in 18=10)

then u<200 GeV. ForA=100, ©u<600 GeV. These con-
V=m2H HL 4+ m2H I HE - m2y( EinidequH.C.) strai_ntsévyitthut ilnclusion of radiative correctionsre sum-
marized in Fig. 1.
1 o ikui R N T If we now take into account constraints from the neu-
+5 (079 )(HTHg—HIHY + 5 g [H Hgl?, tralino sector(the lightest neutralino should be heavier than
25 GeV), u=200 GeV, if positive, or taA must be largg10
4.9 or large). No additional restrictions for negative valuesof

. arise.
where, in the present case, For reasonable values @f and tarB, the masses of the
m2=m? +[ul2, mi=m2 +|ul? (4.2) SU(2) singlet sleptons tend to lie between 50 and 65 GeV, so
1~ "Hp 2 Hy

these particles should be discovered at LEP II. The lightest
chargino has mass in the 50—85 GeV range. Gluino masses
tend to run from 225 to 300 GeV, with squark masses some-
2We do not consider radiative corrections to the Higgs potentiawhat larger. The lightest neutralino is in the range from 45 to
here because the most severe constraints come not from neutfal GeV. So, unless one allows significant fine-tuning, all of
Higgs boson masses but from the lightest slepton masses. the masses tend to be on the small side.
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300
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N U FIG. 1. Experimental con-
250 . straints exclude regions below cor-
\ responding lines, fine-tuning con-
\ straints exclude regions above
\ corresponding lines. The solid line
200 corresponds to light neutral Higgs

™ boson masgat tree level of 65
GeV, the dotted line corresponds
to charged Higgs boson mass of
200 GeV, the long-dashed line cor-
responds to the selectron mass of
50 GeV, the short-dashed line
shows region which will be cov-
ered by LEP Zselectron mass up
to 80 Ge\}. The dash-dotted lines
represent fine-tuning constraints of
10% (lower line) and 5% (upper
line).
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These constraints will be relaxed in a nonminimal versionsuperpotential of the singlet can be flat enough if, for ex-
of the model, with additional singlets as [d6]. Still, the

ample, there is a discreR symmetry under whicl$ is neu-
minimal version is particularly simple and predictive.

tral. The presence of the singlet introduces some of the com-
plications discussed 16,30, and probably requires

V. UNIEICATION AND THE SLIDING SINGLET additional fields. Still, this is possibly the most economical

. i proposal within conventional grand unification for under-
One interesting feature of low-energy supersymmetrsianding this problem.

breaking concerns the question of unification. The models
we have described here are perturbatively unifi@agefar as
SUR)XSU(2)xU(1) is concernedl In particular, all the V1. SOME COSMOLOGICAL CONCERNS
fields we have added fall in complete &)Y multiplets. By

itself, this is not particularly exciting. However, the most ~ There are many cosmological issues raised by models of
serious problem of conventional grand-unified models ighis type. We will not try and decide here whether a plausible
readily overcome in this frame-work: one can easily arrangégnodel with acceptable cosmology exists. We would argue
that Higgs doublets are light while colored triplet fields arethat the situation is similar to that of other supersymmetry
heavy. Most efforts to solve this problem use versions of theéind superstring cosmologies, where there are potentially se-
“missing partner mechanism” or similar group theoretic rious problems and where solutions of varying degrees of

gymnastics. The resulting models typically involve enor-plausibility have been suggested. Here, we will enumerate
mous numbers of fields, and in some cases still suffer fronsome of these issues.
potential fine-tuning difficulties. An alternative approach,

(1) Light gravitinos. In these models, the gravitino is
due to Witten 27], involves coupling a singlet fiel®, to the

light. Depending on how many couplings are required to
Higgs field. If one simply examines the superpotential coucommunicate supersymmetry breaking to the ordinary sector

plings, and studies the equation and how large the coupling constants are, the gravitino mass

ranges from less than an eV to over 10 keV. The longitudinal
_ _ component is the Goldstino, with an interaction strength
aHy =(S+u)Hp=0 (5.3) about a million times smaller than ordinary weak interac-

tions. If Goldstinos are present at nucleosynthesis with a
one seems to learn that either the doublet or the triplet fieldthermal density, they act as an additional neutrino species.

are masslesthereu is a matrix with different entries for the This seems unacceptabl@ucleosynthesis is currently in
doublets and triplets, typically due to the couplings to ansome trouble even with three light neutrifnoklowever, our
adjoint field. In conventional SUSY-breaking schemes, gravitinos decouple in the early universe somewhat earlier
however, this mechanism is completely destroyed by termthan neutrinos do, before many particle species have de-
in the Kahler potential which give rise to large tadpoles forcayed, and their abundance is diluted relative to the neutrino
S, of order m%,sz [28]. In contrast, in the present case, abundance by a factor of up t0100, and so a mass as large
mass terms and tadpoles f8rare all of the order of the as 10 keV is acceptab[@3]. For higher masses, a period of
superpotential terms, and the mechanism can W28k The late inflation could sufficiently dilute the gravitinos.
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(2) Domain walls. As has been discussed1s,16], there  completely compatible with all phenomenological con-
are typically discrete symmetries in these models, which castraints. It seems reasonable to hope that, with a little more
give rise to domain walls. One solution to this problem, sug-model building ingenuity, a more streamlined version of
gested there, is that the discrete symmetries might be brokehese ideas will emerge. Models without the intermediate
by dimension-five operators, leading to collapse of the dostage of symmetry breaking connected with messengér U
main walls. Another solution is to find models where all thewould be quite attractive. The tools which we have presented
discrete symmetries have non-Abelian gauge anomi@i§s  here, new theories exhibiting dynamical supersymmetry
If the discrete symmetries are subgroups of spontaneouslyreaking, techniques for generatingederm and eliminating
broken continuous symmetries, a remnant network of cosmd-ayet-lliopoulos terms, should be helpful in this process.
logical strings may remove the domain walB2]. Still an-  Moreover, as Seiberg has suggested, it is possible that theo-
other alternative is that the domain walls might be dilutedries with difficulties such as Landau poles at low energies
during a late period of inflation. Remember that the scalesnight be dual to theories without such problém35]. Al-
associated with the hidden sector are of orde+-10' GeV  ready, however, we believe that the low-energy structure we
or larger, i.e., high compared to the weak scale. Finally, wehave studied here is generic, and is likely to be true of any
may be able to find models with no discrete symmetries. more “streamlined” model.

(3) Stable particles. The model we have presented predicts As we have discussed, the cosmology of these theories
certain stable state®.g.,q, g, |, andl) which are potential poses numerous challenges. This is also true, however, of
dark matter candidates, since the remnant mass abundancembdels based on intermediate scale breaking. At the mo-
states with multi-TeV masses is typically comparable to clo-ment, only rather vague ideas exist as to how low-energy
sure density33]. However, the existence of dark matter car- supersymmetry breaking might be compatible with string
rying standard model gauge quantum numbers is problematibeory or some other more fundamental structure. However,
[34]. The problem is worse if asymmetries in these particlecurrent string-based ideas also have serious problems with
are produced in the early universe. The most natural solutiodilaton stability and the cosmological constant. Finally, we
to these possible problems is that the heavy particles decastress one of the great virtues of low-energy based models:
through higher dimension operators. because they are predictive, experiment can definitively es-

(4) The moduli problem. If the underlying theory is a tablish whether they are true.
string theory, there could be moduli with very small masses.

Some aspects of this situation have already been discussed in ACKNOWLEDGMENTS
[9,11].

(5) Some of the fields we have introduced themselve
behave in a manner similar to moduli. For example, the fiel
S which gave rise to theu term is very weakly coupled.
However, the characteristic energy contained in this field
not necessarily so large on cosmic scales. Its ultimate fat
could well be tied with other moduli.

To summarize, we do not want to claim that the cosmo-
logical picture is rosy, but we see no insoluble cosmologica
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VII. CONCLUSIONS, APPENDIX: MORE MODELS OF DYNAMICAL
OR WHERE DO WE GO FROM HERE SUPERSYMMETRY BREAKING

Low-energy supersymmetry breaking has, in principle, 1. SU(N) XSU(2) generalizations of the SW3)xSU(2) model
several attractive features when compared with more con- The SU3)XSU(2) model of [1] can be generalized in
ventional supergravity-based models. several ways. An obvious generalization is to SQJ(

(1) The hierarchy is readily explained in this framework. xSU(2), N odd, with chiral matter superfields transforming

(2) It is highly predictive. Rather than involving 100 new as (N,2)+2(N,1)+(1,2 and the analogous superpotential. A
parameters, typical models contain only a handful. In theslightly less obvious generalization still hBlsodd but takes
models presented here, all of the soft-breakings relevant tfpr the matter sector
the MSSM were described in terms of two parameters. _ _

(3) Dangerous flavor-changing processes are automati- A~(A,1), N~(N,2), N;~(N,1), D~(1,2,
cally suppressed. (A1)

(4) There is new physicgbeyond that expected in the o : o
MSSM) at energy scales which might some day be aCCes\{vhere| 1,...N—2 is a flavor index. The superpotential is

sible. N-3 N-3
Here we have described models which achieve all of theséV= 2 'y”AN N; +)\NN OND+(1/M) E ajj NNN N
goals. They are still somewhat complicated, but it is prob- hi=1 hi=1

ably fair to say that they are not more complicated than any (A2)

viable hidden sector supergravity model. More important,
their complication no longer appears fundamental. No sig-
nificant fine-tuning is required in their construction. They are 3we thank Leigh and Strassler for a discussion of this point.
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where it is important that;; and y; are general matrices not to be nonzero. Since we need an even number oQitte be
proportional to each otheffFor N=5, the nonrenormalizable nonzero, they must all be zero. Hence there are no classical
term is not necessaiylt is simplest to analyze this model by flat directions. In these models it is possible to chodséo
using the following gauge-invariant chiral polynomials to pa-preserve a global $p —2) of which a subgroup may be
rametrize theD-flat directions(see[ 1] for some information gauged as messenger group.

on this technique

Xy =ANN,, Y,=N,;ND, A,;=NNNN,, 3. Another .cla.ss', of nonrenormalizable S.l(JN) xU(1) m.odels

Another infinite set of nonrenormalizable theories can be
v=AM-D2ND, zi:A(”*l)/ZNZNi ) (A3)  constructed as follows. Take the gauge group to beNgU(
X U(1), with N>3. We have the option of preserving a global

In the case oN>5, the nonrenormalizable term is necessarySU(N—3) symmetry, although this is not necessary, and for

to eliminate the classically flat directions involvidgandA. convenience we group our superfields into(8Y-3) multip-

To see that this model has no flat directions, note that théets. Our chiral superfields and their transformation proper-

equationdW/JdNy_,=0 forcesY; andV to be zero, while ties under SUJ) X U(1) X SU(N—3) are

dW/ 9D =0 setsZy_, to 0. Then the set of equatiodsV/dA - N

=0, IW/IN=0, anddW/dN;=0,i=1,... N—3, can in gen- A~(A,2—-N,1), N~(N,1,1), N;~(N,N—1N-3),

eral only be simultaneously solved & =0, i=1,... N—3,

Xi;=0, andA;;=0. Thus in all of these cases, there are no flat S~(1,—N,N-3), S§;~(1,—N,A), (AB6)

directions. There is aR symmetry and the SUN) dynami-

cally generates a superpotential so supersymmetry is presunvhere A stands for antisymmetric tensor ang=1,... N

ably broken. —3. We take for the superpotential

2. A nonrenormalizable SUN) xSp(M) generalization W=\; Ni NS+ yijANi Nij . (A7)
of the SU(3)xSU(2) model

A rather clumsy generalization of the YXSU(2)
model has gauge group SNJXSp(M), N odd, M even,
andN>M. Again this model has aR symmetry and SUY)
dynamically generates a superpotential, so supersymmetry
broken if there are no flat directions. The matter fields are

Note that forN=4, S; does not exist and this is just the
SU(4)xU(1) model.

It is not difficult to see that there is no flat direction here.
%iagonalizeATA. The eigenvalues of this matrix are paired.
For N even, to obtain zero SB) D term with N®#0, one
needs someN{#0. This is forbidden by the’W/3S =0

Q~(N,M), Q~(N,1), M~(1M), (A4)  equation, sdN=0. The SUN) D term conditions then re-

quire the rank of theN? matrix to be even and, when com-
wherei=1,... M is a flavor index. The superpotential is bined with thedW/dS;; =0 equations, require all th¢ terms
to vanish. Thd terms and SU{) D terms allow onlyA, S;,
— — = and S;; to be nonvanishing. However, with andN; zero,
W:)‘QMleMJFiJZfl 7jQQQIQ; - (A5 the ijl) D term can only vanish ifA, S;, andS; alre also

' zero, so there is no flat direction. Fbr odd, one can also

To demonstrate the absence of flat directions, note that, how thatN®#0 requires someé\ ?+0, violating theS, F
M is non zero, the Sp) D terms require tha® is nonzero, term conditions. WithN =0, one can choos& andN to
and the conditiorvW/9Q,,_,=0 must be violated. Hence make the SU{) D terms vanish, but then the(l) D terms
M =0 classically, and the SM) D terms requireQ to be of  cannot be made to vanish. Hence there are no flat directions
even rank. Now if som&? is nonzero, SU{) D term can- for N odd either.
cellation requires som@; to also be nonzero. Then the con-  These theories all possess a nonanomalddgilbymme-
ditions oW/9Q;=0 (i=1,...M—2) imply that the nonzero try and a nonperturbatively generated effective superpoten-
Q; can only beQy_; or Q). The conditiondW/dM=0 tial, as in the S)XU(1) model, and so supersymmetry is
[combined with the SU{) D term conditiod forbidsQ,,_;  expected to be broken.
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