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We report the construction of large new classes of models which break supersymmetry dynamically. We then
turn to model building. Two of the principal obstacles to constructing simple models of dynamical supersym-
metry breaking are the appearance of Fayet-IliopoulosD terms and difficulties in generating am term for the
Higgs fields. Among the new models are examples in which symmetries prevent the appearance of Fayet
Iliopoulos terms. A gauge singlet field, which may play a role in explaining the hierarchy in quark and lepton
parameters, can generate a suitablem term. The result is a comparatively simple model, with a low energy
structure similar to that of the MSSM, but with far fewer arbitrary parameters. We begin the study of the
phenomenology of these models.

PACS number~s!: 12.10.Dm, 11.30.Pb, 11.30.Qc, 12.60.Jv
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I. INTRODUCTION: SURVEY OF SCHEMES
FOR DYNAMICAL SUPERSYMMETRY BREAKING

If supersymmetry plays a role in low-energy physics, it
presumably dynamically broken. In this paper we greatly
tend the list of gauge theories which are known to dynam
cally break supersymmetry; readers who are only interes
in these new examples should just read Sec. II and the
pendix. In Sec. III we show how to build reasonably simp
realistic models, where supersymmetry is dynamically b
ken at low energies. These have the light particle conten
the usual minimal supersymmetric standard model but
much more predictive, with fewer necessary assumptions
Sec. IV we discuss the phenomenology of an example wh
all the masses of undiscovered particles lighter than a T
may be predicted in terms of just two new parameters.
Sec. V we remind the reader why the problem of Hig
doublet-triplet splitting in supersymmetric grand-unifie
theories is more easily solved with low-energy supersymm
try breaking. We review some cosmological issues in S
VI. In the remainder of this introduction we discuss som
problems of existing theories in which supersymmetry is d
namically broken, and how several new tools help us c
struct better theories.

There are various ways dynamical supersymmetry bre
ing might arise. In theories such as string theory, there
classically many flat directions in the potential. Such fl
directions are often lifted by nonperturbative effects@1#.
Typically the potentials which are generated in these flat
rections fall to zero for large values of the fields. The mo
familiar and notorious example of this kind is the dilaton
string theory, whose potential always tends to zero at w
coupling@2#. Such potentials might be stabilized by multip
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condensates@3#, or perhaps more plausibly by large correc-
tions to the Kahler potential in the strong-coupling region
@4#. It is fair to say that no very compelling model of the first
type exists. The second scheme is basically a hope; it
unlikely that any explicit computation will verify such a pic-
ture soon.

Even if such schemes are successful, there are many i
sues which such models have to face. Among these is th
question of flavor-changing neutral currents. Solving this
problem in the framework of supersymmetry requires eithe
a high degree of squark degeneracy or alignment of quar
and squark mass matrices@5#. Some suggestions for
achieving squark degeneracy in the string context exist@6,7#,
but they require that string theory be truly weakly coupled, in
the sense that perturbation theory should be good for th
Kahler potential. It is hard to see how this can be consisten
with the expected behavior of the dilation potential. Alterna-
tively, non-Abelian flavor symmetries may play some role
@8#. Other issues include a variety of cosmological problems
perhaps the most severe being the moduli problem@9#. One
solution to the latter problem is that the dilaton and modul
are stabilized by nonperturbative physics at high energie
and play no role in the breaking of supersymmetry@9#; an-
other possible solution is weak scale inflation@10,11#.

Alternatively, models are known in which supersymmetry
is broken without flat directions@1#. In such cases, one does
not require the intervention of complicated stabilization
mechanisms. As in the case of flat directions describe
above, one can imagine breaking supersymmetry at a sca
intermediate betweenMW andMp . This idea, however, turns
out to be fraught with difficulties, particularly with obtaining
appreciable gluino masses@1,9,12#. Alternatively, one can
imagine breaking supersymmetry at comparatively low ener
2658 © 1996 The American Physical Society
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gies, of order 10’s–1000’s of TeV. In this case, gauge inte
actions can serve as the ‘‘messengers’’ of supersymme
breaking. Apart from the fact that the physics of supe
symmetry breaking is potentially accessible, such a sche
has an immediate bonus: there is automatically sufficie
squark and slepton degeneracy to understand the absenc
flavor-changing neutral currents.

Early efforts to build models along these lines suffere
from a number of difficulties. The most severe of these we
that SU~3!C typically became strong a few decades above t
scale of supersymmetry breaking, and that the known mod
all possessed~astrophysically! dangerous light axions from a
spontaneously brokenR symmetry. Nelson and Seiberg
noted that dimension five operators expected from Plan
scale physics could explicitly break theR symmetry and give
the axion a sufficiently large mass so that it would not b
produced in stars@13# without restoring supersymmetry.
Bagger, Poppitz, and Randall pointed out that whenR sym-
metry and supersymmetry break at the same scale, cance
tion of the cosmological constant within the framework o
supergravity by adding a constant to the superpotential@14#
necessarily requires such explicitR symmetry breaking but
also does not restore supersymmetry. Solutions to the fi
problem were provided in@15,16#. Here it was suggested tha
a new gauge symmetry, referred to as the ‘‘messenge
gauge group, could play a crucial role. These models, wh
potentially realistic, were fairly complicated. In@16# the
messenger group was simply a U~1!m known as messenger
hypercharge. The appearance of Fayet-IliopoulosD terms for
U~1!m caused a number of problems, forcing several co
plings to be extremely small. Also, simple arguments su
gested that there could be nom term, and extra singlets ap-
peared in the low-energy theory, with carefully adjuste
couplings, in order to obtain suitable breaking of SU~2!
3U~1!.

In the present work, we report substantial progress
these issues. We present new models of dynamical supers
metry breaking~without flat directions!. These significantly
extend the known list of such theories, which previous
contained just five examples@1,17–19#. All of our examples
are ‘‘calculable’’@17#, in the sense that by reducing a param
eter in the superpotential the supersymmetry-breaking sc
may be tuned to be small compared with the scale of gau
dynamics and so the ground state may be systematic
studied. Using these models, we construct theories with
the appearance of messenger group Fayet-Iliopoulos te
and their associated problems. Then, building on an idea
Leurer, Nir, and Seiberg@20#, we explain how am term of
the correct order of magnitude can arise naturally. We fina
put these ideas together to construct a model of dynami
supersymmetry breaking which, at low energies, is a vers
of the minimal supersymmetric standard model~MSSM!
where, once theZ boson mass is fixed, there are only tw
undetermined parameters. This is in contrast to the us
treatment where, withoutad hocassumptions, there are o
order 102 unknown parameters. We begin the exploration
the parameter space of this theory, and find that there i
significant region which is presently consistent with all ex
periments.
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II. NEW MODELS WHICH EXHIBIT DYNAMICAL
SUPERSYMMETRY BREAKING

There is a simple criterion for models which exhibit dy-
namical supersymmetry breaking@1#. If a theory has no flat
directions, and it has a global symmetry which is spontane-
ously broken, then supersymmetry is spontaneously broken.
In this section, we describe two new sets of models which
satisfy this criterion. One set involves renormalizable inter-
actions only. A second involves nonrenormalizable interac-
tions as well.

A. A renormalizable class of models

In @1#, an infinite set of models which break supersymme-
try was described. These were models with gauge group
SU~N14!, whereN was odd, and withN chiral fields,F̄a, in
the antifundamental representation and oneA in the antisym-
metric tensor representation. Adding the most general super-
potential

W5labAF̄
aF̄b ~2.1!

led to a model without flat directions and with a nonanoma-
lousR symmetry. One strategy for constructing generaliza-
tions of these models is to take a particular one, and simply
discard some of the gauge multiplets while keeping the chiral
multiplets. One might then add the most general superpoten-
tial allowed in the reduced theory. This procedure is guaran-
teed to yield chiral models which are free of anomalies. As
we will see, the resulting theories often possess nonanoma-
lousR symmetries, and also have no flat directions.

The simplest such model is given by the caseN51, i.e.,
an SU~5! theory with a5̄ and10. In this case, the superpo-
tential vanishes. One can now modify this theory by taking
the gauge group to be the SU~3!3SU~2! subgroup. Under
this group, the5̄ and10 decompose as a~3,2!, two ~3̄,1!’s,
and a~1,2!. If we add the most general superpotential, we
obtain the well-studied SU~3!c3SU~2!L ~3-2! model of dy-
namical supersymmetry breaking. We obtain something new
if we retain an SU~4!3U~1! subgroup, where the U~1! gen-
erator is

Y5diag~1,1,1,1,24!. ~2.2!

The10 and5̄ decompose as an antisymmetric tensor,A2 @the
subscript indicates the U~1! charge#, a fundamental,F23, an
antifundamentalF̄21, and a singlet,S4. The most general
allowed renormalizable superpotential is

W5lS4F̄21F23 . ~2.3!

With this superpotential, it is easy to show that there is no
flat direction. First note that the most general flat direction of
the SU~4! D term has the form

A5S as2 0

0 as2
D , F5F̄5S b

0
0
0
D , S5c. ~2.4!

The U~1! D term requires
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2ua2u14uc2u24ubu250. ~2.5!

But combined with the vanishing of theF terms, one finds
a5b5c50. In addition to the absence of flat directions, th
model also possesses a nonanomalousR symmetry. So one
expects that supersymmetry is broken.

To see this in detail, we can ask about the form of t
nonperturbative superpotential in the limit that the classi
superpotential vanishes. There is, in fact, a unique supe
tential consistent with the symmetries

Wnp5
L4
5

AO
,

O5F̄ iF
jAikAlme jklm . ~2.6!

Even in the presence of the classical superpotential~2.3!,
symmetry considerations, the known limitsW~l→0! and
W~L→0!, and analyticity inl @21,22# still constrain the dy-
namically generated superpotential to be of the form~2.6!.

To see how the term~2.6! is generated, consider first th
region of the classical moduli space whereb5c@a. In this
direction, SU~4!3U~1! is broken to SU~3!. In the low-energy
theory, apart from the single light modulus, there is one lig
3 and one3̄; i.e., one has supersymmetric QCD with on
flavor. In this theory, a superpotential is generated nonper
batively:

Wnp5
L3
4

Aqq̄
. ~2.7!

It is not hard to see that this corresponds precisely to
superpotential above. For example,L3

45L4
5/b, so that nu-

merically the superpotentials coincide. In addition, if th
U~1! coupling is small,l!g1!1, the low-energy theory has
approximate flat directions in which SU~3! is broken to
SU~2!; gluino condensation then generates the required
perpotential. Alternatively, one can consider the hierarc
ga!l!1. In this case, one expectsa@b. Then at the first
stage, the gauge symmetry is broken to Sp~4!'SO~5!, with
two 4’s. Again, the appropriate superpotential is genera
via gaugino condensation.

To determine the nature of supersymmetry breaking
can minimize the potential in various limits. The simple
case isl!g1!ga . Then one expects the minimum to lie i
the flat directions of the SU~4!3U~1! D terms. Rescaling
(a,b,c)5(L/l1/5)(a8,b8,c8), the scalar potential looks like

V5l6/5L4S U2b8c82
1

a8b82
U21ub8u41U 1

a84b82
U D .

~2.8!

The minimum is found at

~a,b,c!5
L

l1/5 ~1.27,0.97,0.33!, V53.331024l6/5L4.

~2.9!

We have also considered the case of smallg1. The result
above holds reasonably well up tol.g1. For larger values
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of l, there is no simple scaling describing the behavior of th
minimum as a function ofg1. Numerically, one finds
a;c@b.

B. Generalizations

There are a vast array of models one can construct in th
way. For example, there are a set of models with gaug
group SU(n)3U~1! ~n even!. Start with the theory with
gauge group SU~n11!, an antisymmetric tensor andn23
antifundamentals. Throw out those generators of SU~n11!
which do not lie in an SU(n)3U~1! subgroup, where the
U~1! generator is

T̃5diag~1,1,...,1,2n!. ~2.10!

The original chiral fields decompose as

A21F12n1~n23!F̄211~n23!Sn . ~2.11!

HereA is an antisymmetric tensor,F(F̄) is the ~anti!funda-
mental andS a singlet of the SU(n). At the classical level,
one can add to this model a superpotential

W5gabAF̄
aF̄b1labFF̄

aSb. ~2.12!

It is not hard to check that for general matricesg andl, there
are no flat directions; on the other hand, there is a nonanom
lousR symmetry, and supersymmetry is broken. To see tha
there are no flat directions, let us simplify things a bit by
taking lab diagonal.~i! Suppose first thatFÞ0. Then the
]W/]Sa equations requireF̄aF50. By SU(n) transforma-
tions, we can take

F5~a,0,...,0!, DF̄52diag~0,ub1u2,...,ubn23u2,0,0!,
~2.13!

whereDF̄ denotes the contribution to the SU(n) D term
from the F̄ ’s. But, since the eigenvalues of the contribution
to theD term from A are all positive, there is no way to
obtain a vanishingD term with aÞ0. So we must require
that the^F&50. ~ii ! Now suppose thatA is nonzero. By an
SU(n) transformation,

A5S a1s2

a2s2

•••

an/2s2

D . ~2.14!

This requires

DF̄52diag~ ub1u2,ub1u2,ub2u2,ub2u2,...!. ~2.15!

But the ]W/]Fa equations, for general couplings, require
that thebi ’s vanish.@To see this, take a special case: allgi j
vanish exceptg12,g23, . . . ,gn25,n24; this structure can be en-
forced by U~1! symmetries, for example.# ~iii ! Finally, one
can attempt to find a flat direction withF and F̄50. How-
ever, sinceA andSa have the samesignof the U~1! charge,
this is impossible.

We will later analyze a specific model, and see that thi
class of theories opens up new possibilities for supersymm
try model building.
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First, let us illustrate a few other possibilities. Conside
specific case: the SU~7! model with an antisymmetric tenso
and three 7̄’s Now reduce the gauge group to SU~5!3SU~2!
3U~1!, with the U~1! generator taken to be
T̃5diag~2,2,2,2,2,25,25!. The fields decompose as

A~10,1,4!1F~5,2,23!1S~1,1,210!13F̄a~ 5̄,1,22!

13fa~1,2,5!. ~2.16!

@a is a flavor index, and we suppress SU~2! and SU~5! indi-
ces.# Take, for the superpotential

W5gAF̄1F̄21hSf1f21laFF̄F̄
afa. ~2.17!

To see that there are no flat directions, we can proceed a
the SU(n)3U~1! example. First assumeFÞ0. Reasoning as
above, this can be shown to be inconsistent. One then sh
thatA andF̄a must be zero. Finally, one must check thatfa

andS vanish. If somefa is nonzero, thenSmust be nonzero
in order to insure vanishing of the U~1! D term. The
F-flatness condition,]W/]f1,250, requires bothf1 andf2 to
be zero. However, if bothf1 andf2 vanish, the SU~2! D
term cannot vanish. Again, this model has a nonanomalouR
symmetry and supersymmetry is broken.

Clearly this construction can be generalized in ma
ways, e.g., by reducing the SU~2n11! theory with antisym-
metric tensor and 2n23 antifundamentals to SU~2n21!
3SU~2!3U~1!. Further examples are given in the Append

C. A nonrenormalizable class of models

Here we discuss a class of calculable models where
persymmetry breaking occurs along aD flat direction which
is stabilized by a nonrenormalizable term in the superpot
tial. A simple model in which flat directions are lifted b
nonrenormalizable terms has gauge group SU~6!3U~1!
3U~1!m , where U~1!m is irrelevant for supersymmetry
breaking but could play the role of messenger hypercha
with D term automatically vanishing. The model posses
chiral superfields with the quantum numbers

A~15,1,0!, F̄6~ 6̄,22,61!, S0~1,3,0!, S6~1,3,62!.
~2.18!

The gauge symmetries forbid a cubic superpotential in
model. At the level of dimension five terms, the unique
lowed superpotential is

W5
l

M
AF̄1F̄2S0. ~2.19!

At this level, if one ignores the U~1!m symmetry, the model
has a global SU~2! symmetry@under which the U~1!m vector
multiplet transforms like theT3 generator#.

To analyze the model, consider first the theory in the
sence of the superpotential. There are then flat direction
the form
r a
r
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A5S as2

0
0

0
bs2

0

0
0
bs2

D , F̄5S c
0
0
0
0
0

0
c
0
0
0
0

D , S05d,

S65e6. ~2.20!

Here

2uau22ucu252ubu2, ~2.21!

2uau224ucu214ubu213udu213ue1u213ue2u250.
~2.22!

The first of these conditions is required by vanishing of t
SU~6! D term, the second by the U~1! D term. The U~1!m D
term vanishes fore15e2.

The gauge symmetry is broken to Sp~4! in this direction.
Gluino condensation in Sp~4! leads to a nonperturbative su
perpotential. The form of this superpotential follow
uniquely from symmetry considerations alone:

Wnp5
L5

O 1/3,

O5F̄ i
1F̄ j

2Ai j eklmnopA
klAmnAop. ~2.23!

Turning on the nonrenormalizable superpotential lifts t
flat directions. We can ask how the vacuum expectation v
ues~VEV’s! of the fields scale with the large scale,M . We
will assume thata;b;c;d, and study of the potentia
shows thate650, so that messenger hypercharge is unb
ken. Rescaling (a,b,c,d)5M1/6L5/6(a8,b8,c8,d8), the po-
tential has the form

V5
L5

M
f ~a8,b8,c8,d8!. ~2.24!

In other words, the order of the VEV’s, the energy at t
minimumV0 and the Goldstino decay constantFG are

a,b,c,d;L5/6M1/6, V0;
L5

M
, FG;

L5/2

M1/2. ~2.25!

At the minimum of the potential, we expect that the e
pectation values of the auxiliaryD fields are of orderFG . As
a result, there is a nonsupersymmetric contribution to
masses of the light fieldsS6. Loop contributions involving
messenger hypercharge bosons and theS6 fields will lead to
soft supersymmetry-~SUSY-! breaking masses for ordinar
fields ~along lines discussed in the next section!. L, in this
case, will be 102–103 times larger than in the renormalizabl
case.

This model can be generalized to SU(N)3U~1! with
N.4 as follows. Take chiral matter superfields which tran
form under the gauge group plus a global SU~N24! as

~A,N24,1!, @F,2~N22!,N24#, ~1,N,Sab!,
~2.26!
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whereS is a symmetric tensor of the global group. To stab
lize the flat directions, the global SU~N24! must be explic-
itly broken down to a subgroup by the superpotential, bu
is convenient to label fields by their SU~N24! content. One
can gauge an anomaly-free subgroup of this group@e.g.,
SU~N/222! for N even# to play the role of the messenge
group. With a suitable superpotential,W;AF̄F̄S, there are
no flat directions. Again, there is a nonanomalousR symme-
try, and supersymmetry is broken.

In this paper we will not explicitly construct any realisti
models with a nonrenormalizable supersymmetry-break
sector. However, this should be a straightforward exerc
One feature of such a model would be that the scale oR
symmetry breaking is much higher than the scale of sup
symmetry breaking, and so the properties of theR axion are
quite different. It might even be possible in some model
arrange for theR symmetry to be explicitly broken only by
the QCD anomaly and for theR axion to be a phenomeno
logically acceptable QCD axion which solves the strongCP
problem. ~The superpotential would still have to be fine
tuned to make the cosmological constant zero, but perh
this tuning does not require explicitR symmetry violation.!

D. A model with vanishing D term

One of the main difficulties in the work of@16# was the
appearance of a Fayet-IliopoulosD term for messenger hy
percharge. ThisD term led to an undesirable pattern of sym
metry breaking unless certain couplings were taken to
very small. Among the models we have developed here
some with discrete symmetries which, if unbroken, forbid
D term. This permits the construction of a much more co
pelling set of models.

An example of this phenomenon is provided by the ren
malizable SU~6!3U~1!3U~1!m model. @The U~1!m symme-
try plays the role of messenger hypercharge.# This model
consists of the representations

A12,0, F25,0, F̄21,61
6 , F̄21,0

0 , S16,61
6 , S16,0

0 .
~2.27!

@A515,F56, F̄56̄, andS51 of SU~6!.# For the superpoten-
tial we take

W5lAF̄1F̄21gF~ F̄1S21F̄2S1!1hFF̄0S0.
~2.28!

Here we have imposed a discrete symmetry

A→A, F→1 iF ,

F̄6→2 i F̄7, F̄0→2 i F̄ 0,

S6→S7, S0→S0, ~2.29!

under which the U~1!m gauge fields change sign.
The following is a flat direction forl50:
i-

t it
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to
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-
be
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A5S v

&

s2

0

0

D , F̄25S v
0
0
0
0
0

D , F̄15S 0
v
0
0
0
0

D .

~2.30!

In this flat direction, the original SU~6!3U~1!3U~1! is bro-
ken to SU~4!3U~1!3U~1!. The low-energy content of this
model is exactly that of the SU~4!3U~1! model, plus three
additional fields neutral under SU~4! and the first U~1!.
Among these are two fields carrying messenger hypercharg
These originate from the first two components ofF̄0, and we
denote them byx1 andx2.

Recalling the dynamics of the SU~4!3U~1! theory, we
expect the VEV’s of the fields to have the form

A5S v

&

s2

as2

as2

D , S05c,

F̄25S v
0
0
0
0
0

D , F̄15S 0
v
0
0
0
0

D , F̄05S x1

x2

b
0
0
0

D , F05S 0
0
b
0
0
0

D ,

~2.31!

and all other VEV’s vanish.
We first ask whether messenger hypercharge is broke

i.e., whether the fieldsx6 have nonvanishing expectation
values. To analyze this problem, we consider the effectiv
action at scales well belowv. Integrating out the massive
fields does not lead to superpotential couplings of thex fields
to the fields in the SU~4!3U~1! sector. On the other hand,
integrating out massive gauge bosons at tree level leads
terms in the effective action of the form

Lx52
1

v2 E d4u~x1†x11x2†x2!Z†Z, ~2.32!

whereZ denotes some field with a nonzeroF component,
such as the 4, 4 and antisymmetric tensor,A, of the low-
energy SU~4! theory. Replacing these fields by their expec-
tation values yields mass terms for the scalar components
x6. There are actually two types of gauge fields which con
tribute to these terms, in the limit that the U~1! couplings are
small compared tog, the SU~6! coupling. These are associ-
ated with the broken generators

T̃5
1

A24
diag~2,2,21,21,21,21!, ~2.33!
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and two sets of generators transforming in the4 and 4̄ of1

SU~4!. The masses of these fields are, respectively,~1/2!g2v2

and ~3/4!g2v2. After a simple computation one obtains

Lx52
1

v2 E d4u~x1†x11x2†x2!S 16 A†A1
2

3
4̄†4̄D .

~2.34!

This gives rise to apositivemass squared for the scalarx6

fields, so the symmetry is unbroken. Masses for the ferm
onic components of these multiplets are generated at
loop.

We wish to show that this vacuum leaves over a discr
symmetry under which the ‘‘messenger hypercharge’’ gau
boson is odd. Consider the transformation~2.29!. This is, of
course, not an invariance of the vacuum. However a com
nation of ~2.29! with the SU~6! transformation,

U5S 2 is1

0
0

0
2 is3

0

0
0

2 is1

D , ~2.35!

is unbroken. So there can be noD term.

III. MODEL BUILDING

A. The role of messenger hypercharge

Our basic strategy for building models is close to that
@16#. We will take one of the supersymmetry-breaking mo
els described in the previous section, and gauge a glo
symmetry. This gauge interaction will serve as the messen
of supersymmetry breaking. It is tempting to take as mess
ger SU~3!3SU~2!3U~1!, but in all known cases, this re
quires a very large supersymmetry-breaking group and yie
a theory in which SU~3! is not asymptotically free~we will
comment on the possibility of exploiting recent develo
ments to circumvent this problem in the conclusions!. In-
stead, we will simply gauge a U~1!. It would be simplest to
identify this U~1! with ordinary hypercharge, or with anothe
symmetry such asB2L carried by ordinary particles. Again
however, there is a fundamental difficulty. Squarks and sl
tons could all get mass squared at two loops in this mod
and the ‘‘B-ino’’ could get a mass at one loop. Howeve
mass for the gluino would arise only at three loop order, a
thus would beextremelysmall.

Instead, the messenger can be a U~1! carried by hidden
sector fields and some other, new fields. These new fields
in vectorlike representations of the standard model gro
The SUSY-breaking dynamics gives rise to multi-Te
masses for these fields, and also substantial splittings wi
the supermultiplets. Radiative corrections then lead
masses for squarks, sleptons, and gauginos of a compar
order of magnitude.

Let us describe a particular model in some detail. We ta
for the hidden sector, the SU~6!3U~1! model of the previous

1The reader trying to reproduce this computation may find it he
ful to note that the model, as it stands, possesses an approxim
unbroken SU~2! global symmetry which can be used to classify th
generators.
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section. We take for the messenger group the U~1!m de-
scribed there which has vanishingD term. In addition to
these fields and the fields of the MSSM we include a sing
X, two fieldsf1 andf2 with charge61, and an additional
vectorlike quark and lepton fields,q, q̄, l , and l̄ . For this set
of fields we take the superpotential to be

WX5k1f
1f2X1

1

3
lX31k3Xl̄l1k4Xq̄q. ~3.1!

At two loops, the scalar components off1 and f2 gain
mass. The required calculation is quite straightforward, a
very similar to that of the squark and slepton masses of@15#.
For a range of parameters, this mass squared is negative

mf
252

1

2 S am

p D 2mx
2ln~L6

2/mx
2!. ~3.2!

HereL6 is the scale of the SU~6! theory; it is roughly the
scale where thex mass is determined.

As a result, the effective potential forf6 andX has the
form, ignoring for a moment the terms involvingq and q̄,

mf
2 ~ uf1u21uf2u2!1uk1Xf1u21uk1Xf2u2

1uk1f1f21lX2u2. ~3.3!

At the minimum of this potential,f1, f2, X, andFX have
nonzero VEV’s. For sufficiently smalll, this point is a mini-
mum with zero VEV’s for the fieldsq, q̄, l , and l̄ . Note that
had there been a Fayet-Iliopoulos term at one loop
U~1!m , FX would not have obtained a VEV. This VEV is
crucial to what follows.

We can now consider loop contributions to the masses
squarks, sleptons, and gauginos. These arise when we
grate out the fieldsq, q̄, l , andl̄ . At one loop, for smalll, we
obtain ~majorana! masses for the SU~3!, SU~2!, and U~1!
gauginos to lowest order inFX :

ml i
5ci

a i

4p
L, ~3.4!

wherec155/3, c25c351, and the parameterL,

L5
FX

X
, ~3.5!

sets the scale forall of the soft breakings in the low-energy
theory. Masses for the squarks and sleptons appear du
gauge interactions at two loops. They are given by

m̃252L2FC3S a3

4p D 21C2S a2

4p D 21 5

3 SY2 D 2S a1

4p D 2G .
~3.6!

HereC354/3 for color triplets and zero for singlets;C253/4
for weak doublets and zero for singlets, andY is the ordinary
hypercharge.

Note the structure of the theory at this level. Squarks a
the most massive scalar fields, by roughly a factor of 3 co
pared to slepton and Higgs doublets. Slepton singlets are
lightest scalar fields, by still another factor of order 3. Glu
nos have masses comparable to squarks, while the Majo
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2664 53DINE, NELSON, NIR, AND SHIRMAN
component of the wino mass matrix is comparable to tha
the doublets. Note also that the strict degeneracy of squ
and of sleptons of the same gauge quantum numbers is
broken by effects of order quark or lepton Yukawa couplin
We will see that experimental constraints give masses
squarks and gluinos in the 200–300 GeV range. This me
thatL;10 TeV. This is the scale ofX physics. The scale of
the hidden sector SU~6!3U~1! physics is larger by a facto
of order ~4p!2Al/amk1

2, about 103 TeV for coupling
constants of order 1. Note that this corresponds to a ra
large value of the gravitino mass~of order 1 keV!, which is
marginally consistent with the upper bounds on the energy
the universe@23#. If the gravitino mass comes out too larg
a period of late inflation might solve this and other problem
~see Sec. VI!.

We are particularly interested in the potential for th
Higgs field. In the next section, we will explain how
mHUHD term in the superpotential can be naturally gen
ated in this framework. Here we note, first, that a coupling
the superpotential:

WXH5l8XHUHD ~3.7!

leads to a soft-breaking termm12
2 HUHD in the potential.

Herel8 must be rather small, since these masses should
roughly of order~a2/p!2. This smallness is natural, in th
sense of ’t Hooft, in that it can arise due to approxima
discrete or continuous symmetries. Note that the correspo
ing contribution to them term, however, isextremelysmall,
far too small to be of phenomenological significance. Fina
a negative mass forHU arises from loops with top squarks
This contribution, although of three-loop order, is somewh
larger than the two-loop contributions because it is prop
tional to the top squark mass squared. We obtain

mHU

D 2mHD

2 52
3

4p2 yt
2m̃t

2U lnS a3

p D U, ~3.8!

whereyt5mt/v2 and, from Eq.~3.6!,

mHD

2 '
3

2 S a2

4p D 2L2. ~3.9!

The argument of the logarithm is the ratio of the high-ener
scale, roughly of orderL, to the stop mass.

To summarize, at energies well below the scaleL, the
theory looks like the usual MSSM, but with well-define
predictions for the soft-breaking terms. Indeed, all of the s
breakings among the light states are determined in term
three parameters:L, m, andm12

2 ~we view thet quark mass
as known, and for definiteness takemt5175 GeV. In a future
analysis we will allow for a range oft-quark mass values!.
Other supersymmetry-breaking terms, such as trilinear sc
couplings, are also generated but are small. In the next
tion, we will discuss the superparticle spectrum in this p
rameter space. Here we note that for a broad range of pa
eters, all of the current phenomenological constraints
satisfied. If one imposes some modest fine-tuning c
straints, however, much of the remaining parameter sp
will be explored at the CERNe1e2 collider at LEP II.
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B. The m term

At first sight, it seems unnatural in the present context
have am term in the low-energy theory. After all, the scale o
the supersymmetry breaking is determined dynamically, a
it would seem odd that the scale of them term and that of the
weak scale should coincide. Moreover, the various mec
nisms which have been suggested for generating am term in
the standard supergravity framework are not available he
since the supersymmetry-breakingF components are not ter-
ribly large. As a result, in@16#, models with a low-energy
structure more complicated than that of the MSSM were co
sidered. It appears to be natural and possible to const
models along these lines, but they require not only additio
singlet fields but also additional vectorlike quark and lept
fields. Moreover, these models introduce several new a
trary coupling constants which affect the weak scale sp
trum.

However, Leureret al., in a different context, have sug
gested am-term generation mechanism which can be re
evant here as well@20#. Suppose that, in addition to the usua
MSSM fields, there is another singlet,S. As a consequence
of discrete symmetries, the couplingSHUHD is forbidden.
Instead, theS superpotential has the form

1

Mn S
n11HUHD1

1

Mm Sm13. ~3.10!

In models with supergravity as the messenger of supersy
metry breaking, there is also a soft-breaking mass term foS
of orderm3/2

2 . If this term is negative, then

^S&'M Sm3/2

M D 1/~m11!

. ~3.11!

This gives am term:

m'm3/2
~n11!/~m11!M ~m2n!/~m11!. ~3.12!

So, for example, ifn5m, m is of orderm3/2. In other words,
for any discrete symmetry under whichHUHD carries the
same charge asS2, the m term is of the correct order of
magnitude.

In the present context, this mechanism has to be modifi
somewhat. There are a variety of possible contributions
the potential forS. These include various higher dimensio
couplings which can drivêS&. In particular, consider terms
in the effective Lagrangian of the form

1

Mp
2 E d4u X†XS†S1E d2uS 1

Mp
p XS

21p1
1

Mp
m Sm13

1
1

Mp
n S

n11HUHDD . ~3.13!

The first and second terms can contribute effective nega
curvature terms to theS potential. For example, ifp52,
m52, andn51, then them term is of orderAFX times pow-
ers of coupling constants.

Besides generating am term, this mechanism can als
generate a ‘‘B term,’’ i.e., the soft-supersymmetry-breakin
termm12

2 HuHd in the Higgs potential. However, examina
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53 2665NEW TOOLS FOR LOW ENERGY DYNAMICAL SUPERSYMMETRY . . .
tion of the potential resulting from Eq.~3.13! shows that, in
this example, the resultingB term is much too small, and so
we must rely on the mechanism of the previous section
generate theB term.

These various structures of theS superpotential can be
enforced by discrete symmetries. We have not explored
full space of all possible couplings. The main lesson we w
to draw is that it is indeed possible to arrange am term of the
correct order in these models. The price is a light field in t
low-energy theory~e.g., in our example above, the mass is
order 1025 GeV!. This field is very weakly coupled to ordi
nary matter, but could play a significant role in cosmolog
We will not fully explore the cosmological implications o
such a field in this paper, but will save a few remarks for S
VI.

The natural candidate for a symmetry that gives theS
superpotential of the form~3.10! is a discrete Abelian sym-
metry,Zm13, with S carrying charge21, andHUHD carry-
ing chargen2m22. Note that this discrete symmetry cou
be a horizontal symmetry and play a role in explaining t
smallness and hierarchy in the fermion parameters. The r
of scales,e;^S&/Mp , would be the small breaking param
eter of the horizontal symmetry. Various fermion paramet
depend on different powers ofe and the hierarchy is natu
rally induced. Alternatively, the horizontal symmetry cou
be of the formZm1

3Zm2
, where each of the factorsZmi

is
broken by a different singletSi and e;^S1&/^S2&. Realistic
examples of both types~in the sense that the small paramet
is of the order of the Cabibbo angle! were constructed in
@20,24#. An area for future exploration is whether a simila
discrete symmetry can predictm andB terms of the correct
order of magnitude and explain the structure of the quark
lepton mass matrices in the case of low-energy supersym
try breaking.

IV. SOFT-BREAKING PHENOMENOLOGY

Let us consider the low-energy spectrum of the model
have constructed in previous sections in more detail. As
have already mentioned, its particle content at low energ
is exactly that of the MSSM. However there are addition
restrictions. There are only three free parameters:m, m12

2 ,
andL. We can trade the latter two formZ

2 and tanb5v2/v1 .
After mZ

2 has been fixed to its physical value, all masses c
be expressed in terms of two parameters. The tree-le
Higgs potential has the form2

V5m1
2Hd

i*Hd
i 1m2

2Hu
i*Hu

i 2m12
2 ~e i j Hd

i Hu
j 1H.c.!

1
1

8
~g21g82!~Hd

i*Hd
i 2Hu

i*Hu
i !21

1

2
g2uHu

i*Hd
i u2,

~4.1!

where, in the present case,

m1
25mHD

2 1umu2, m2
25mHU

2 1umu2, ~4.2!

2We do not consider radiative corrections to the Higgs poten
here because the most severe constraints come not from ne
Higgs boson masses but from the lightest slepton masses.
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with mHD

2 andmHU

2 as in Eqs.~3.8! and ~3.9!. At the mini-

mum,

m1
25m12

2 tanb2
1

2
mZ
2cos~2b!,

m2
25m12

2 cotb1
1

2
mZ
2cos~2b!,

mA
25m12

2 ~ tanb1cotb!. ~4.3!

It is conventional in MSSM to express all Higgs boso
masses in terms ofmA

2 and tanb. In our case we can rewrite
all masses in terms ofm and tanb. Using minimization con-
ditions and the fact that all scalar masses~including negative
contribution of the top squark to the up-type Higgs boso
mass@Eq. ~3.8!#! depend on one parameter only, we find

mA
25

2cm22mZ
2cos~2b!~12c!

cos~2b!~12c!1c
, ~4.4!

where

c[
mHD

2 2mHU

2

2mH
D
2

5
2

3p2 S a3

a2
D 2yt2lnUS a3

p D U. ~4.5!

Note thatyt here is determined in terms ofmt and tanb.
We can now use experimental bounds on the masses

the lightest Higgs boson and sleptons to constrain values
the parameters. Of these, the SU~2!-singlet sleptons provide
the most severe constraint. Another stringent limit aris
from considering bounds on charged Higgs boson mass fr
the rate ofb→sg @25#. There is no appreciable cancellation
of the charged Higgs contribution by chargino loops. Exam
ining the results of@25#, one finds that the charged Higgs
boson must be rather massive and, correspondingly, in th
modelsm>150 GeV. To restrict them range from above we
impose a fine-tuning condition along the lines of@26#:

U m

mZ
2

]mZ
2

]m U<D. ~4.6!

If we allow fine-tuning of no more than 1 part in 10~D510!
then m<200 GeV. ForD5100, m<600 GeV. These con-
straints~without inclusion of radiative corrections! are sum-
marized in Fig. 1.

If we now take into account constraints from the neu
tralino sector~the lightest neutralino should be heavier tha
25 GeV!, m>200 GeV, if positive, or tanb must be large~10
or larger!. No additional restrictions for negative values ofm
arise.

For reasonable values ofm and tanb, the masses of the
SU~2! singlet sleptons tend to lie between 50 and 65 GeV,
these particles should be discovered at LEP II. The lighte
chargino has mass in the 50–85 GeV range. Gluino mas
tend to run from 225 to 300 GeV, with squark masses som
what larger. The lightest neutralino is in the range from 45
57 GeV. So, unless one allows significant fine-tuning, all
the masses tend to be on the small side.

tial
utral
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FIG. 1. Experimental con-
straints exclude regions below cor-
responding lines, fine-tuning con-
straints exclude regions above
corresponding lines. The solid line
corresponds to light neutral Higgs
boson mass~at tree level! of 65
GeV, the dotted line corresponds
to charged Higgs boson mass of
200 GeV, the long-dashed line cor-
responds to the selectron mass of
50 GeV, the short-dashed line
shows region which will be cov-
ered by LEP 2~selectron mass up
to 80 GeV!. The dash-dotted lines
represent fine-tuning constraints of
10% ~lower line! and 5% ~upper
line!.
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These constraints will be relaxed in a nonminimal versi
of the model, with additional singlets as in@16#. Still, the
minimal version is particularly simple and predictive.

V. UNIFICATION AND THE SLIDING SINGLET

One interesting feature of low-energy supersymme
breaking concerns the question of unification. The mod
we have described here are perturbatively unifiable@as far as
SU~3!3SU~2!3U~1! is concerned#. In particular, all the
fields we have added fall in complete SU~5! multiplets. By
itself, this is not particularly exciting. However, the mo
serious problem of conventional grand-unified models
readily overcome in this frame-work: one can easily arran
that Higgs doublets are light while colored triplet fields a
heavy. Most efforts to solve this problem use versions of
‘‘missing partner mechanism’’ or similar group theoret
gymnastics. The resulting models typically involve eno
mous numbers of fields, and in some cases still suffer fr
potential fine-tuning difficulties. An alternative approac
due to Witten@27#, involves coupling a singlet field,S, to the
Higgs field. If one simply examines the superpotential co
plings, and studies the equation

]W

]HU
5~S1m!HD50 ~5.1!

one seems to learn that either the doublet or the triplet fie
are massless~herem is a matrix with different entries for the
doublets and triplets, typically due to the couplings to
adjoint field!. In conventional SUSY-breaking scheme
however, this mechanism is completely destroyed by ter
in the Kahler potential which give rise to large tadpoles f
S, of orderm3/2

2 Mp @28#. In contrast, in the present case
mass terms and tadpoles forS are all of the order of the
superpotential terms, and the mechanism can work@29#. The
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superpotential of the singlet can be flat enough if, for ex-
ample, there is a discreteR symmetry under whichS is neu-
tral. The presence of the singlet introduces some of the com
plications discussed in@16,30#, and probably requires
additional fields. Still, this is possibly the most economical
proposal within conventional grand unification for under-
standing this problem.

VI. SOME COSMOLOGICAL CONCERNS

There are many cosmological issues raised by models o
this type. We will not try and decide here whether a plausible
model with acceptable cosmology exists. We would argue
that the situation is similar to that of other supersymmetry
and superstring cosmologies, where there are potentially s
rious problems and where solutions of varying degrees o
plausibility have been suggested. Here, we will enumerat
some of these issues.

~1! Light gravitinos. In these models, the gravitino is
light. Depending on how many couplings are required to
communicate supersymmetry breaking to the ordinary secto
and how large the coupling constants are, the gravitino mas
ranges from less than an eV to over 10 keV. The longitudina
component is the Goldstino, with an interaction strength
about a million times smaller than ordinary weak interac-
tions. If Goldstinos are present at nucleosynthesis with
thermal density, they act as an additional neutrino specie
This seems unacceptable~nucleosynthesis is currently in
some trouble even with three light neutrinos!. However, our
gravitinos decouple in the early universe somewhat earlie
than neutrinos do, before many particle species have de
cayed, and their abundance is diluted relative to the neutrin
abundance by a factor of up to;100, and so a mass as large
as 10 keV is acceptable@23#. For higher masses, a period of
late inflation could sufficiently dilute the gravitinos.



g
k

i

o
r
a
e
i
c

e

a

o

e

h

a

b
n

i
r

n-
ore
of
te

ted
try

ss.
heo-
ies

we
ny

ries
, of
o-

rgy
ng
ver,
with
e
els:
es-

isa
er-
.S.
2-
e
the
art
ion
by

g
A

s
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~2! Domain walls. As has been discussed in@15,16#, there
are typically discrete symmetries in these models, which c
give rise to domain walls. One solution to this problem, su
gested there, is that the discrete symmetries might be bro
by dimension-five operators, leading to collapse of the d
main walls. Another solution is to find models where all th
discrete symmetries have non-Abelian gauge anomalies@31#.
If the discrete symmetries are subgroups of spontaneou
broken continuous symmetries, a remnant network of cosm
logical strings may remove the domain walls@32#. Still an-
other alternative is that the domain walls might be dilute
during a late period of inflation. Remember that the scal
associated with the hidden sector are of order 105–107 GeV
or larger, i.e., high compared to the weak scale. Finally, w
may be able to find models with no discrete symmetries.

~3! Stable particles. The model we have presented pred
certain stable states~e.g.,q, q̄, l , and l̄ ! which are potential
dark matter candidates, since the remnant mass abundanc
states with multi-TeV masses is typically comparable to cl
sure density@33#. However, the existence of dark matter ca
rying standard model gauge quantum numbers is problem
@34#. The problem is worse if asymmetries in these particl
are produced in the early universe. The most natural solut
to these possible problems is that the heavy particles de
through higher dimension operators.

~4! The moduli problem. If the underlying theory is a
string theory, there could be moduli with very small masse
Some aspects of this situation have already been discusse
@9,11#.

~5! Some of the fields we have introduced themselv
behave in a manner similar to moduli. For example, the fie
S which gave rise to them term is very weakly coupled.
However, the characteristic energy contained in this field
not necessarily so large on cosmic scales. Its ultimate f
could well be tied with other moduli.

To summarize, we do not want to claim that the cosm
logical picture is rosy, but we see no insoluble cosmologic
problems.

VII. CONCLUSIONS,
OR WHERE DO WE GO FROM HERE

Low-energy supersymmetry breaking has, in principl
several attractive features when compared with more co
ventional supergravity-based models.

~1! The hierarchy is readily explained in this framework
~2! It is highly predictive. Rather than involving 100 new

parameters, typical models contain only a handful. In t
models presented here, all of the soft-breakings relevant
the MSSM were described in terms of two parameters.

~3! Dangerous flavor-changing processes are autom
cally suppressed.

~4! There is new physics~beyond that expected in the
MSSM! at energy scales which might some day be acce
sible.

Here we have described models which achieve all of the
goals. They are still somewhat complicated, but it is pro
ably fair to say that they are not more complicated than a
viable hidden sector supergravity model. More importan
their complication no longer appears fundamental. No s
nificant fine-tuning is required in their construction. They a
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completely compatible with all phenomenological co
straints. It seems reasonable to hope that, with a little m
model building ingenuity, a more streamlined version
these ideas will emerge. Models without the intermedia
stage of symmetry breaking connected with messenger U~1!
would be quite attractive. The tools which we have presen
here, new theories exhibiting dynamical supersymme
breaking, techniques for generating am term and eliminating
Fayet-Iliopoulos terms, should be helpful in this proce
Moreover, as Seiberg has suggested, it is possible that t
ries with difficulties such as Landau poles at low energ
might be dual to theories without such problems3 @35#. Al-
ready, however, we believe that the low-energy structure
have studied here is generic, and is likely to be true of a
more ‘‘streamlined’’ model.

As we have discussed, the cosmology of these theo
poses numerous challenges. This is also true, however
models based on intermediate scale breaking. At the m
ment, only rather vague ideas exist as to how low-ene
supersymmetry breaking might be compatible with stri
theory or some other more fundamental structure. Howe
current string-based ideas also have serious problems
dilaton stability and the cosmological constant. Finally, w
stress one of the great virtues of low-energy based mod
because they are predictive, experiment can definitively
tablish whether they are true.
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APPENDIX: MORE MODELS OF DYNAMICAL
SUPERSYMMETRY BREAKING

1. SU„N…3SU„2… generalizations of the SU„3…3SU„2… model

The SU~3!3SU~2! model of @1# can be generalized in
several ways. An obvious generalization is to SU(N)
3SU~2!, N odd, with chiral matter superfields transformin
as (N,2)12(N̄,1)1~1,2! and the analogous superpotential.
slightly less obvious generalization still hasN odd but takes
for the matter sector

A;~A,1!, N;~N,2!, N̄i;~N̄,1!, D;~1,2!,
~A1!

wherei51,...,N22 is a flavor index. The superpotential i

W5 (
i , j51

N23

g i j AN̄i N̄j1lN̄N22ND1~1/M ! (
i , j51

N23

a i j NNN̄iN̄j ,

~A2!

3We thank Leigh and Strassler for a discussion of this point.
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where it is important thatai j andgi j are general matrices no
proportional to each other.~ForN55, the nonrenormalizable
term is not necessary.! It is simplest to analyze this model b
using the following gauge-invariant chiral polynomials to p
rametrize theD-flat directions~see@1# for some information
on this technique!:

Xi j5AN̄iN̄j , Yi5N̄iND, D i j5NNN̄iN̄j ,

V5A~n21!/2ND, Zi5A~n21!/2N2N̄i . ~A3!

In the case ofN.5, the nonrenormalizable term is necessa
to eliminate the classically flat directions involvingZ andD.
To see that this model has no flat directions, note that
equation]W/]NN2250 forcesYi andV to be zero, while
]W/]D50 setsZN22 to 0. Then the set of equations]W/]A
50, ]W/]N50, and]W/]Ni50, i51,...,N23, can in gen-
eral only be simultaneously solved ifZi50, i51,...,N23,
Xi j50, andDi j50. Thus in all of these cases, there are no fl
directions. There is anR symmetry and the SU(N) dynami-
cally generates a superpotential so supersymmetry is pres
ably broken.

2. A nonrenormalizable SU„N…3Sp„M … generalization
of the SU„3…3SU„2… model

A rather clumsy generalization of the SU~3!3SU~2!
model has gauge group SU(N)3Sp(M ), N odd, M even,
andN.M . Again this model has anR symmetry and SU(N)
dynamically generates a superpotential, so supersymmet
broken if there are no flat directions. The matter fields ar

Q;~N,M !, Q̄i;~N̄,1!, M;~1,M !, ~A4!

wherei51,...,M is a flavor index. The superpotential is

W5lQ̄M21QM1 (
i , j51

M22

g i j QQQ̄iQ̄j . ~A5!

To demonstrate the absence of flat directions, note tha
M is non zero, the Sp(M ) D terms require thatQ is nonzero,
and the condition]W/]QM2150 must be violated. Hence
M50 classically, and the Sp(M ) D terms requireQ to be of
even rank. Now if someQa is nonzero, SU(N) D term can-
cellation requires someQ̄i to also be nonzero. Then the con
ditions ]W/]Qi50 (i51,...,M22) imply that the nonzero
Q̄i can only beQ̄M21 or Q̄M . The condition]W/]M50
@combined with the SU(N) D term condition# forbids Q̄M21
t

a-

ry

the

at

um-

ry is
e

t, if

-

to be nonzero. Since we need an even number of theQ̄i to be
nonzero, they must all be zero. Hence there are no classi
flat directions. In these models it is possible to chooseW to
preserve a global Sp~M22! of which a subgroup may be
gauged as messenger group.

3. Another class of nonrenormalizable SU„N…3U„1… models

Another infinite set of nonrenormalizable theories can b
constructed as follows. Take the gauge group to be SU(N)
3U~1!, with N.3. We have the option of preserving a globa
SU~N23! symmetry, although this is not necessary, and fo
convenience we group our superfields into SU~N23! multip-
lets. Our chiral superfields and their transformation prope
ties under SU(N)3U~1!3SU~N23! are

A;~A,22N,1!, N;~N,1,1!, N̄i;~N̄,N21,N23!,

Si;~1,2N,N23!, Si j;~1,2N,A!, ~A6!

where A stands for antisymmetric tensor andi , j51,...,N
23. We take for the superpotential

W5l i N̄iNSi1g i j AN̄i N̄jSi j . ~A7!

Note that forN54, Si j does not exist and this is just the
SU~4!3U~1! model.

It is not difficult to see that there is no flat direction here
DiagonalizeA†A. The eigenvalues of this matrix are paired
For N even, to obtain zero SU(N) D term withNaÞ0, one
needs someN̄ i

aÞ0. This is forbidden by the]W/]Si50
equation, soN50. The SU(N) D term conditions then re-
quire the rank of theN̄ i

a matrix to be even and, when com-
bined with the]W/]Si j50 equations, require all theN̄ terms
to vanish. TheF terms and SU(N) D terms allow onlyA, Si ,
andSi j to be nonvanishing. However, withN and N̄i zero,
the U~1! D term can only vanish ifA, Si , andSi j are also
zero, so there is no flat direction. ForN odd, one can also
show thatNaÞ0 requires someN̄ i

aÞ0, violating theSi F
term conditions. WithN̄ i

a50, one can chooseA andN to
make the SU(N) D terms vanish, but then the U~1! D terms
cannot be made to vanish. Hence there are no flat directio
for N odd either.

These theories all possess a nonanomalous U~1!R symme-
try and a nonperturbatively generated effective superpote
tial, as in the SU~4!3U~1! model, and so supersymmetry is
expected to be broken.
.

@1# I. Affleck, M. Dine, and N. Seiberg, Nucl. Phys.B256, 557
~1985!.

@2# M. Dine and N. Seiberg, Phys. Lett.162B, 299 ~1985!.
@3# N. V. Krasnikov, Phys. Lett. B193, 37 ~1987!.
@4# T. Banks and M. Dine, Phys. Rev. D50, 7454~1994!.
@5# Y. Nir and N. Seiberg, Phys. Lett. B309, 337 ~1993!.
@6# L. E. Ibanez and D. Lust, Nucl. Phys.B382, 305 ~1992!.
@7# V. S. Kaplunovsky and J. Louis, Phys. Lett. B306, 269~1993!;

R. Barbieri, J. Louis, and M. Moretti,ibid. 312, 451 ~1993!.
@8# P. Pouliot and N. Seiberg, Phys. Lett. B318, 169~1993!; D. B.
Kaplan and M. Schmaltz, Phys. Rev. D49, 3741 ~1994!; M.
Dine, A. Kagan, and R. Leigh,ibid. 48, 4269~1993!.

@9# T. Banks, D. B. Kaplan, and A. E. Nelson, Phys. Rev. D49,
779 ~1994!; B. De Carlos, J. A. Casas, F. Quevedo, and E
Roulet, Phys. Lett. B318, 447 ~1993!.

@10# L. Randall and S. Thomas, Nucl. Phys.B449, 229 ~1995!.
@11# T. Banks, M. Berkooz, and P. J. Steinhardt, Phys. Rev. D52,

705 ~1995!; T. Banks, M. Berkooz, S. H. Shenker, G. Moore,
and P. J. Steinhardt,ibid. 52, 3548~1995!.

@12# M. Dine and D. MacIntire, Phys. Rev. D46, 2594~1992!.



53 2669NEW TOOLS FOR LOW ENERGY DYNAMICAL SUPERSYMMETRY . . .
@13# A. E. Nelson and N. Seiberg, Nucl. Phys.B416, 46 ~1994!.
@14# J. Bagger, E. Poppitz, and L. Randall, Nucl. Phys.B426, 3

~1994!.
@15# M. Dine and A. E. Nelson, Phys. Rev. D48, 1277~1993!.
@16# M. Dine, A. E. Nelson, and Y. Shirman, Phys. Rev. D51, 1362

~1995!.
@17# I. Affleck, M. Dine, and N. Seiberg, Phys. Rev. Lett.52, 1677

~1984!.
@18# D. Amati, K. Konishi, Y. Meurice, G. C. Rossi, and G. Ven

eziano, Phys. Rep.162, 169 ~1988!.
@19# K. Intriligator, N. Seiberg, and S. H. Shenker, Phys. Lett.

342, 152 ~1995!.
@20# M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys.B420, 468

~1994!.
@21# N. Seiberg, Phys. Lett. B318, 469 ~1993!.
@22# K. Intriligator, R. G. Leigh, and N. Seiberg, Phys. Rev. D50,

1092 ~1994!.
@23# H. Pagels and J. R. Primack, Phys. Rev. Lett.48, 223 ~1982!.
@24# T. Banks, Y. Grossman, E. Nardi, and Y. Nir, Phys. Rev. D52,

5319 ~1995!.
@25# A. J. Buras and S. Pokorski, Nucl. Phys.B424, 374 ~1994!.
@26# R. Barbieri and G. F. Giudice, Nucl. Phys.B306, 63 ~1988!.
@27# E. Witten, Phys. Lett.105B, 267 ~1982!.
-

B

@28# J. Polchinski and L. Susskind, Phys. Rev. D26, 2661~1982!;
M. Dine ~unpublished!; T. Banks and V. Kaplunovsky, Nucl.
Phys.B206, 45 ~1982!; H. P. Nilles, M. Srednicki, and D.
Wyler, Phys. Lett.124B, 337 ~1982!; A. B. Lahanas,ibid.
124B, 341 ~1982!.

@29# D. Nemeschansky, Nucl. Phys.B234, 379 ~1984!.
@30# J. Bagnasco, Ph.D. thesis~unpublished!.
@31# J. Preskill, S. P. Trivedi, F. Wilczek, and M. B. Wise, Nucl.

Phys.B363, 207 ~1991!.
@32# T. W. B. Kibble, G. Lazarides, and Q. Shafi, Phys. Rev. D26,

435 ~1982!; A. Vilenkin, Phys. Rep.121, 263 ~1985!, and ref-
erences therein.

@33# S. Dimopoulos, N. Tetradis, R. Esmailzadeh, and L. J. Hall,
Nucl. Phys.B349, 714 ~1991!, and references therein;B357,
308~E! ~1991!.

@34# S. Dimopoulos, D. Eichler, R. Esmailzadeh, and G. D. Stark-
man, Phys. Rev. D41, 2388 ~1990!; A. De Rujula, S. L.
Glashow, and U. Sarid, Nucl. Phys.B333, 173 ~1990!. A.
Gould, B. T. Draine, R. W. Romani, and S. Nussinov, Phys.
Lett. B 238, 337 ~1990!; J. L. Basdevant, R. Mochkovitch, J.
Rich, M. Spiro, and A. Vidal-Madjar,ibid. 234, 395~1990!; E.
Nardi and E. Roulet,ibid. 245, 105 ~1990!.

@35# N. Seiberg, Nucl. Phys.B435, 129 ~1995!.


