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Chiral Lagrangian for baryons in the 1/Nc expansion
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A 1/Nc expansion of the chiral Lagrangian for baryons is formulated and used to study the low-energy
dynamics of baryons interacting with the pion nonetp, K, h, andh8 in a combined expansion in chiral
symmetry breaking and 1/Nc . StrongCP violation is included. The chiral Lagrangian correctly implements
nonet symmetry and contracted spin-flavor symmetry for baryons in the largeNc limit. The implications of
nonet symmetry for low-energy baryon-pion interactions are described in detail. The procedure for calculating
nonanalytic pion-loop corrections to baryon amplitudes in the 1/Nc expansion for finiteNc is explained.
Flavor-27 baryon mass splittings are calculated at leading order in chiral perturbation theory as an example.

PACS number~s!: 11.15.Pg, 11.30.2j, 12.38.Lg, 14.20.2c
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I. INTRODUCTION

Although it is by now well established that the theory o
the strong interactions is quantum chromodynamics, fi
principles calculations of the spectrum and properties of h
rons are not possible because the theory is strongly coup
at low energies. A number of different methods have be
used to extract low-energy consequences of QCD. One of
oldest methods is chiral perturbation theory@1# which ex-
ploits the symmetry of the QCD Lagrangian under SU~3! L
3SU~3!R3 U~1!V transformations on the three flavors o
light quarksu, d, ands in the limit that the quark masse
mu , md , andms vanish. Chiral symmetry is spontaneous
broken to the vector subgroup SU~3! 3 U~1!V by the QCD
vacuum, resulting in an octet of pseudoscalar Goldsto
bosons, the pions. A perturbative expansion in the pion m
menta and the explicit chiral symmetry-breaking paramet
mi over the scale parameter of chiral symmetry breaki
Lx leads to flavor symmetry relations among hadronic a
plitudes which are valid to a given order in chiral symmet
breaking.

A second method which has been important in the und
standing of low-energy QCD hadron dynamics is the 1/Nc
expansion@2#. This method promotes QCD to a SU(Nc) non-
Abelian gauge theory, whereNc is the number of colors. The
1/Nc expansion has been used primarily to derive 1/Nc
power counting rules for hadronic amplitudes@2–4#. For fi-
nite and largeNc , planar diagrams dominate the dynamic
Each quark loop is suppressed by one factor of 1/Nc and
nonplanar gluon exchange is suppressed by two factors
1/Nc . The suppression of quark loops in the 1/Nc expansion
is particularly important for processes involving hadron
since it implies that diagrams of leading order in the 1/Nc
expansion contain no quark-antiquark pair creation and
nihilation. Thus, planar QCD has a flavor symmetry@5#

U~1!qi3U~1! q̄i ~1.1!

which allows independent rotations on each quark flavor a
antiquark flavor and implies the separate conservation of
number of each quark flavor and of each antiquark flav
~light or heavy!. The planar QCD flavor symmetry~1.1! is
broken at first subleading order due to a single quark loop
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order 1/Nc . It is important to emphasize that~1.1! is a sym-
metry of the planar approximation of QCD dynamics only
andnot of the QCD Lagrangian itself. Consequences of pla-
nar flavor symmetry include Zweig’s rule and the formation
of ideally mixed meson nonets@in the SU~3! flavor limit# at
leading order in 1/Nc @6#. Planar flavor symmetry is often
called ‘‘nonet symmetry’’ in the literature for this reason.

The combined use of chiral perturbation theory and the
1/Nc expansion can constrain the low-energy interactions of
hadrons with the pion nonetp, K, h, andh8 more effec-
tively than either method alone. An effective Lagrangian de-
scribing the spectrum and self-interactions of the pion none
was constructed some time ago@7–9#. The derivation of this
1/Nc chiral Lagrangian led to a number of important theo-
retical results concerning the QCD vacuum angleu, and to a
consistent picture for phenomenology@7,10# associated with
the resolution of the U~1!A problem@11,12#. Two results de-
serve special mention here. First, the phenomenologica
analysis proved that theu parameter is close to zero in QCD
@7,8#. Second, the analysis showed that anh8 which is pri-
marily an SU~3! flavor singlet~in violation of ideal mixing!
and which has a mass much larger than the pion octet is
accommodated for reasonable values of parameters@7#. Un-
derstanding these features of theh8 is nontrivial because the
phenomenology involves an interplay between effects sup
pressed bymi /Lx and 1/Nc .

In this paper, a 1/Nc chiral Lagrangian for the lowest-
lying baryons is constructed. The Lagrangian describes the
interactions of the spin-12 baryon octet and the spin-

3
2 baryon

decuplet with the pion nonet. The formulation of the 1/Nc
baryon chiral Lagrangian relies upon recent developments in
the study of the spin-flavor structure of baryons in the 1/Nc
expansion@13–29#. In the large-Nc limit, the baryon sector
of QCD possesses an exact contracted spin-flavor symmetr
algebra@13,30#. For finite Nc , corrections to the large-Nc
limit are parametrized by 1/Nc-suppressed operators@13,14#.
Consistency conditions determine which operators are al
lowed at any given order in the 1/Nc expansion. The~spin
^ flavor! structure of the 1/Nc expansion for baryons is
manifest in the baryon chiral Lagrangian presented here. In
addition, planar QCD flavor symmetry is implemented at
leading order in 1/Nc , and violated at first subleading order.
2625 © 1996 The American Physical Society
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Planar QCD flavor symmetry leads to a number of new
sults, such as the formation of flavor nonets among bary
flavor octet and singlet amplitudes at leading order
1/Nc . The consequences of planar QCD flavor symmetry
examined in detail and are entirely new to this work. Plan
QCD flavor symmetry follows from the 1/Nc expansion
alone, so the results of this symmetry for baryons do n
depend on the chiral Lagrangian framework and are valid
general. StrongCP violation enters the baryon chiral La
grangian in the same manner as earlier treatments@31–34#.
Finally, the issue of nonanalytic meson-loop corrections
baryons amplitudes is examined. A number of subtleties a
in the calculation of loop corrections at finiteNc . The pro-
cedure for computing loop calculations using operators
finiteNc is explained. The group theoretic and 1/Nc structure
of these corrections is explicit in this method.

The paper is organized as follows. A presentation of t
pion nonet chiral Lagrangian is given in Sec. II to set no
tion. Readers familiar with the 1/Nc chiral Lagrangian for the
pseudo Goldstone bosons may skip directly to Sec. III a
refer to Sec. II only for definitions of the meson nonet fie
F and strong-CP parameters. Section III presents the 1/Nc
baryon chiral Lagrangian. The baryon chiral Lagrangian
formulated for arbitrary finiteNc in terms of the 1/Nc opera-
tor expansion for baryons. Planar QCD flavor symmetry
imposed on the Lagrangian at leading order in 1/Nc . The
1/Nc baryon chiral Lagrangian forNc53 is compared to the
chiral Lagrangian for the spin-12 octet and spin-32 decuplet
baryons with no 1/Nc expansion. Section IV addresses th
computation of nonanalytic corrections using the 1/Nc
baryon chiral Lagrangian. The flavor-27 nonanalytic contri-
bution to baryon masses is computed to illustrate the meth
An understanding of the accuracy of the Gell-Mann–Oku
formula for baryon octet masses is gained from this comp
tation. Section V considers the implications of U~2! planar
QCD flavor symmetry for SU~3! breaking of the baryon
1/Nc expansion. Conclusions are presented in Sec. VI.

II. PION CHIRAL LAGRANGIAN

The 1/Nc chiral Lagrangian describing the interactions
baryons and low-momentum pions has the form

L5Lpion1Lbaryon, ~2.1!

where the pion Lagrangian describes the self-interactions
the pseudo Goldstone boson nonet. In order to calculate
chiral perturbation theory to nontrivial orders in the 1/Nc
expansion for baryons, it is necessary to understand
1/Nc chiral Lagrangian of the pion sector as well. This se
tion contains a presentation of the pion nonet 1/Nc chiral
Lagrangian, as originally derived by di Vecchia and Ve
eziano@7# and Witten@8#. The inclusion of strong-CP vio-
lation in the baryon sector involves making the same tra
formations on the baryon Lagrangian as on the pi
Lagrangian, so it is useful to present a self-contained deri
tion. Readers already familiar with the pion 1/Nc chiral La-
grangian may proceed directly to Sec. III.

It is well known thatCP violation enters the QCD La-
grangian through the vacuum angle parameteru, which is a
physical observable of the theory. U~1!A transformations on
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the QCD Lagrangian can rotate part or all of this angular
dependence among theGmn

a G̃amn term and the phase of the
quark mass matrix. Let us adopt the convention in which all
u dependence initially resides in the quark mass matrix.1

With this convention, the pion nonet chiral Lagrangian is
given by

Lpion5
f p
2

4 FTr]mS̄]mS̄†2
a

Nc
F i2Tr~ lnS̄2 lnS̄†!G2

1bTr~MqS̄1Mq
†S̄†!1

c

Nc
~TrS̄†]mS̄!21••• G ,

~2.2!

whereMq is the quark mass matrix andS̄5e2iF/ fp depends
nonlinearly on the pion nonet fieldF5pala/21h8I /A6 di-
vided by f p593 MeV. Thela are the eight Gell-Mann ma-
trices andI is the 333 unit matrix. Thus, the octet compo-
nent ofF is given by

1

A2S 1

A2
p01

1

A6
h p1 K1

p2
2

1

A2
p01

1

A6
h K0

K2 K̄0 2
2

A6
h

D .

~2.3!

Under SU~3! L3 SU~3!R transformations,S̄→LS̄R†. Equa-
tion ~2.2! is the most general Lagrangian consistent with chi-
ral and planar QCD flavor symmetry and violation, to second
order in the derivative expansion and to lowest nontrivial
order inMq and 1/Nc . The term proportional to the param-
eterb is the usual quark mass term of the pion Lagrangian
which explicitly breaks SU~3! L3 SU~3!R→ SU~3!. The a
term, the anomaly term, breaks U~1!A and is explicitly order
1/Nc since the anomaly involves a single quark loop. Thea
term violates planar QCD flavor symmetry. Thec term splits
f h8 from f p . Thus, thec term violates planar QCD nonet
symmetry, and is explicitly order 1/Nc . Both thea and c
terms preserve the U~1!V subgroup of planar QCD flavor
symmetry. The parametersa and b are dimensionful:a is

1For intermediate situations@32#, u dependence appears in the
term

u0
32p2Gmn

a G̃amn, G̃mn
a [ 1

2emnrsG
ars,

in the QCD Lagrangian as well as the phase of the quark mass
matrix, such thatu5u01arg(detMq). Under U~1!A transforma-
tionsR5L†5eia/2I for F light quark flavors,

u0→u01Fa, Mq→e2 iaMq ,

leavingu invariant.
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O(L2) and b is O(L), whereL is a hadronic scale. The
parameterc is dimensionless. Finally note that the pion La
grangian~2.2! is of the form

NcLS F

ANc
D , ~2.4!

as required by large-Nc power counting rules for mesons
since f p;ANc. It will often be convenient to perform the
rescalingf p→ANcf to keep allNc-dependence manifest.

Recall that allu dependence of the theory presently re
sides in the quark mass matrixMq , sou5arg(detMq). By
performing SU~3! L3 SU~3!R transformations, the mass ma
trix can be written in the form

Mq5Meiu/3, ~2.5!

whereM5diag(mu ,md ,ms) is real, since all terms in La-
grangian~2.2! are invariant under SU~3! L3 SU~3!R trans-
formations except for the quark mass terms which viola
chiral symmetry explicitly. Now remove the phase inMq by
performing a U~1!A transformation:

S̄→e2 iu/3S̄. ~2.6!

All terms are invariant under this transformation except f
the a term and terms containing the quark mass matrix,
the Lagrangian becomes

Lpion5
f p
2

4 FTr]mS̄]mS̄†2
a

Nc
Fu1

i

2
Tr~ lnS̄2 lnS̄†!G2

1bTr@M~S̄1S̄†!#1
c

Nc
~TrS̄†]mS̄!21••• G ,

~2.7!

where theu dependence of the Lagrangian is now manifes
Lagrangian~2.7! is the chiral Lagrangian with the conven
tion that nou dependence resides in the quark mass matr

The S̄ field spontaneously breaks the SU~3! chiral sym-
metry down to its diagonal subgroup. The vacuum expec
tion value ofS̄ is determined by minimization of the poten
tial of the pion Lagrangian. The potentialV(S̄) is given by
minus the nonderivative terms in the Lagrangian. Since t
real mass matrixM is diagonal, the minimum ofS̄ is also
diagonal, so one looks for a solution of the form

^S̄&5S eifu 0 0

0 eifd 0

0 0 eifs

D . ~2.8!

The potential as a function of thef i is

V~f i !5
f p
2

4 F2(
i
2bmi cosf i1

a

Nc
S u2(

i
f i D 2G .

~2.9!

Minimization of the potential leads to the equations
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2bmisinf i5
a

Nc
S u2(

j
f j D . ~2.10!

The solution of Eq.~2.10! for a given u determines the
anglesf i as a function ofu. Solutions of Eq.~2.10! for
different values ofu are discussed in detail in Refs.@7,8#.

It is more physical to reexpress the Lagrangian in terms o
a S field with vacuum expectation valuêS&5I ; this
vacuum realignment is performed by making the substitution

S̄5^S̄&S ~2.11!

in Eq. ~2.7!, so that

Lpion5
f p
2

4 FTr]mS]mS†2
a

Nc
S u1

i

2
Tr~ lnS2 lnS†! D 2

1bTr~M
—

S1M
— †S†!1

c

Nc
~TrS†]mS!21••• G ,

~2.12!

where

M
—

5M^S̄&5diag~mie
f i ! ~2.13!

and

u5S u2(
i

f i D . ~2.14!

Using the minimization equation~2.10!, the mass can be
rewritten as

M
—

5M~u!1 i
au

2b

1

Nc
I , ~2.15!

where

M~u!5diag~micosf i !. ~2.16!

Using Eq. ~2.15! one obtains the final version of the pion
Lagrangian:

Lpion5
f p
2

4 FTr]mS]mS†2
a

Nc
S i2Tr~ lnS2 lnS†! D 2

1bTr@M~u!~S1S†22!#1
c

Nc
~TrS†]mS!2

1 i
au

Nc
@ 1
2 Tr~S2S†!2Tr~ lnS2 lnS†!#1•••G ,

~2.17!

where a constant term has been dropped relative to E
~2.12!.

The observed spectrum and mixing of the pion nonet ca
be understood using Lagrangian~2.17! if the parameters sat-
isfy @7#

bmu ,bmd!bms,
a

Nc
. ~2.18!
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In the ūu, d̄d, ands̄s basis, the neutral meson mass matrix
given by

bS mucosfu 0 0

0 mdcosfd 0

0 0 mscosfs

D 1
a

Nc
S 1 1 1

1 1 1

1 1 1
D ,

~2.19!

to leading order in explicit chiral symmetry breaking an2

1/Nc. In the chiral limitmi→0, theh8 is a massive SU~3!
singlet with massmh8

2
5Fa/Nc , and the octet mesons ar

exact massless Goldstone bosons@7#.

III. BARYON CHIRAL LAGRANGIAN

This section formulates a 1/Nc baryon chiral Lagrangian
for Nc large, finite, and odd. The Lagrangian is first pr
sented in the flavor symmetry limit. Explicit flavor symmetr
breaking terms involving the quark mass matrix are th
added to the Lagrangian. Strong-CP violation enters the
baryon chiral Lagrangian through these terms. The bary
chiral Lagrangian is written in terms of the 1/Nc ~spin ^

flavor! operator expansion for baryons. The structure of t
operator expansion is reviewed below.

The ~spin^ flavor! 1/Nc expansion for baryons organize
the lowest-lying baryon states into the completely symmet
SU(2F) representation shown in Fig. 1. Under SU~2! ^

SU(F) symmetry, this representation decomposes into
tower of baryon states with spins12 , . . . ,Nc/2 in the flavor
representations displayed in Fig. 2. The weight diagrams
the flavor representations of the spin-1

2 and spin-
3
2 baryons for

F53 are given in Figs. 3 and 4, respectively. ForNc53,
these flavor multiplets reduce to the baryon octet and
cuplet, but for Nc.3, the multiplets contain additiona
baryon states which do not exist forNc53. Because of the
complexity of the flavor representations forF.2, it is easier
to focus on the operators than the states.

Any QCD operator transforming according to a give
SU~2! 3 SU(F) representation has an expansion in terms
n-body operators of the form

FIG. 1. SU(2F) spin-flavor representation for ground-sta
baryons. The Young tableau hasNc boxes.

FIG. 2. SU(F) flavor representations for the tower of baryo
states withJ5

1
2,

3
2, . . . , Nc/2. Each Young tableau hasNc boxes.

2The effects of higher order terms on a leading order bound on
mass ratioh/h8 @35# have been considered recently in Ref.@36#.
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c~n!

1

Nc
n21O n , ~3.1!

where the operator basisO n consists of polynomials in the
spin-flavor generatorsJi , Ta, andGia. The operator coeffi-
cientsc(n)(1/Nc) have power series expansions in 1/Nc be-
ginning at order unity.

The problem of finding a complete and independent set of
operators for any spin-flavor representation was solved in
Ref. @17#. The basic building blocks of the expansion are the
zero-body SU(2F) identity operator1 and the one-body op-
eratorsJi , Ta, andGia which satisfy the SU(2F) commuta-
tion relations. Because antisymmetric products of these op
erators can be reduced using the commutation relations, on
only needs to consider operator products which are com
pletely symmetric in noncommuting operators. In addition, it
suffices to keep polynomials through orderNc for the lowest-

e

n

the

FIG. 3. Weight diagram for the SU~3! flavor representation of
the spin-12 baryons. The long side of the weight diagram contains
1
2 (Nc11) weights. The numbers denote the multiplicity of the
weights.

FIG. 4. Weight diagram for the SU~3! flavor representation of
the spin-32 baryons. The long side of the weight diagram contains
1
2 (Nc21) weights. The numbers denote the multiplicity of the
weights.
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lying baryons. There are a number of identities among
polynomials of order less than or equal toNc which further
reduce the operator basis. The complete set of identities w
derived in Ref.@17# using quark operators

Ji5q†S s i

2
^ I Dq ~1,1!,

Ta5q†S I ^
la

2 Dq ~0,8!, ~3.2!

Gia5q†S s i

2
^

la

2 Dq ~1,8!.

This paper also uses the quark representation of the 1Nc
operator expansion for baryons. Equivalent results can
obtained in the Skyrme representation.

A. Lagrangian in the flavor symmetry limit

In the large-Nc limit, baryons have masses of orderNc
and become very heavy relative to mesons with masse
order 1. The 1/Nc baryon chiral Lagrangian is formulated
treating baryons as heavy static fields with fixed veloc
vm @37–39#. The 1/Nc expansion provides a systematic e
pansion parameter for this procedure. The following 1/Nc
chiral Lagrangian is written in the rest frame of the baryo
which is the natural frame for the~spin ^ flavor! operator
expansion. The generalization to an arbitrary velocity fram
is straightforward.

The 1/Nc baryon chiral Lagrangian for arbitraryNc is of
the form

Lbaryon5 iD 02Mhyperfine1Tr~Aila!Aia

1TrSAi
2I

A6DAi1•••, ~3.3!

with

D 05]011Tr~V 0la!Ta1 1
3 Tr~V

0I !Nc1. ~3.4!

The notation of Eqs.~3.3! and~3.4! is very compact: each
term involves a baryon operator. The baryon kinetic ene
term is proportional to the spin-flavor identity element1. The
hyperfine baryon mass operator describes the spin splitti
of the baryon tower. Pion fields appear in the chiral Lagran
ian through the vector and axial vector combinations

V 05 1
2 ~j]0j†1j†]0j!,

Ai5
i

2
~j¹ ij†2j†¹ ij!, ~3.5!

which depend nonlinearly on the fieldj5eiF/ fp. The vector
pion combinations couple to baryon vector charges: the
vor octet pion combination couples to the flavor octet bary
charge3

3The subscript QCD is used to emphasize that the quark fields
QCD quark fields, not the quark creation and annihilation operat
of the quark representation.
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V0a5KB8US q̄g0
la

2
qD

QCD

UBL , ~3.6!

while the flavor singlet pion combination

TrS V 0
2I

A6D ~3.7!

couples to the flavor singlet baryon charge

V05KB8US q̄g0
I

A6
qD

QCD

UBL . ~3.8!

The baryon vector charges equal

V0a5v0Ta5Ta,

V05v0
1

A6
Nc15

1

A6
Nc1, ~3.9!

to all orders in the 1/Nc expansion. Thel 51 flavor octet
axial vector pion combination couples to the flavor octe
baryon axial vector current

Aia5KB8US q̄g ig5

la

2
qD

QCD

UBL , ~3.10!

whereas the flavor singlet axial pion combination couples
the flavor singlet baryon axial vector current

Ai5KB8US q̄g ig5

I

A6
qD

QCD

UBL . ~3.11!

The ellipses in Eq.~3.3! denotes higher partial wave pion
couplings which occur at subleading orders in the 1/Nc ex-
pansion forNc.3. At leading order in the 1/Nc expansion,
the pion couplings of baryons are purelyp wave for any
Nc @17#.

The baryon chiral Lagrangian describes the interactions
the pions and baryons in terms of QCD baryon operator
Each of these operators has an expansion in 1/Nc of the form
Eq. ~3.1!.

In the limit of exact SU~3! flavor symmetry, the baryon
mass operator is defined by

M5^B8uHQCDuB&, ~3.12!

whereHQCD is the QCD Hamiltonian in the chiral limit
mi→0. The baryon mass operator transforms as a (0,1) u
der SU~2! 3 SU~3! symmetry. The 1/Nc expansion for a
(0,1) QCD operator is of the form@14,15,20,22#

M5m~0!
0,1Nc11 (

n52,4

Nc21

m~n!
0,1 1

Nc
n21 J

n. ~3.13!

The coefficients m(n)
0,1 are dimensionful parameters of

O(L). The first term in expansion~3.13!, the overall spin-
independent mass of the baryon multiplet, is removed fro
the chiral Lagrangian by the heavy baryon field redefinitio

are
ors
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@37#. The spin-dependent terms in Eq.~3.13! define
Mhyperfine, which appears explicitly in the Lagrangian. Th
hyperfine mass expansion reduces to a single operator@14#

M5m~2!
0,1 1

Nc
J2, ~3.14!

for Nc53.
The 1/Nc expansions for the baryon flavor octet and si

glet axial currents were derived in Ref.@17#. The 1/Nc ex-
pansion for the (1,8) baryon axial current is given by

Aia5a~1!
1,8Gia1 (

n52,3

Nc

b~n!
1,8 1

Nc
n21Dn

ia1 (
n53,5

Nc

c~n!
1,8 1

Nc
n21O n

ia ,

~3.15!

where theDn
ia are diagonal operators, with nonzero matr

elements only between states with the same spin, and
O n
ia are purely off-diagonal operators, with nonzero matr

elements only between states with different spin. The ope
tors Dn

ia andO n
ia are defined in Ref.@17#. Equation~3.15!

reduces to

Aia5a~1!
1,8Gia1b~2!

1,8 1

Nc
JiTa1b~3!

1,8 1

Nc
2 $Ji ,$Jj ,Gja%%

1c~3!
1,8 1

Nc
2 S $J2,Gia%2

1

2
$Ji ,$Jj ,Gja%% D ~3.16!

for Nc53. The 1/Nc expansion for the (1,1) baryon axia
current is given by

Ai5 (
n51,3

Nc

b~n!
1,1 1

Nc
n21Dn

i , ~3.17!

whereD1
i5Ji andDn12

i 5$J2,Dn
i%. Equation~3.17! reduces

to

Ai5b~1!
1,1Ji1b~3!

1,1 1

Nc
2 $J2,Ji%, ~3.18!

for Nc53.
LagrangianLbaryonis the most general Lagrangian invar

ant under SU~3! L3 SU~3!R3 U~1!V3 U~1!A chiral symme-
try and contracted spin-flavor symmetry. The form of th
Lagrangian factorizes baryon invariants from pion invarian
explicitly, which is necessary because baryons transform
der a larger symmetry than mesons in the large-Nc limit. The
Lagrangian correctly relates baryon-multipion vertices usi
chiral symmetry. Under chiral transformations,

j→LjU†5UjR†, ~3.19!

whereU is a vector SU~3!3U~1! transformation defined by
Eq. ~3.19!. The flavor representations of the baryon sp
tower transform asNc-index tensor representations und
U,

Ba1•••an•••aNc→(
n

U
a
n8

anBa1•••an8•••aNc, ~3.20!
e

n-

ix
the
ix
ra-

l

i-

e
ts
un-

ng

in
er

where the symmetry of the baryon flavor tensors is dictated
by the Young tableaux of Fig. 2. The pion combinations~3.5!
are unaffected by vacuum realignment~2.11!, so the SU~3!-
symmetric baryon chiral Lagrangian contains no strongCP
violation.

Planar QCD flavor symmetry further constrains the pa-
rameters of the 1/Nc baryon chiral Lagrangian. In the next
subsection, planar QCD flavor symmetry is imposed on the
baryon chiral Lagrangian. In the following subsection, the
chiral Lagrangian for the baryon octet and decuplet is com-
pared with the 1/Nc baryon chiral Lagrangian atNc53.

1. Planar QCD flavor symmetry

Planar QCD flavor symmetry implies that the baryon
1/Nc chiral Lagrangian possesses a SU(2)^U(3) ~spin ^

flavor! symmetry at leading order in the 1/Nc expansion. The
symmetry is broken at first subleading order by diagrams
with a single quark loop, as shown in Fig. 5.

Planar QCD flavor symmetry constrainsLbaryonby form-
ing a nonet baryon axial vector current out of the singlet and
octet baryon axial vector currents at leading order in the
1/Nc expansion:

4

Ai5Ai91O~1/Nc!. ~3.21!

This constraint relates the coefficients of theAi expansion to
those of theAia expansion in the limitNc→`. The easiest
way to impose Eq.~3.21! is to replace the operator coeffi-
cients of the singlet axial vector expansion Eq.~3.17! by

b~n!
1,1→b̄~n!

1,11
1

Nc
b~n!
1,1 , ~3.22!

where the coefficients with an overscore are determined by
exact nonet symmetry, and the remainders are unconstraine
and violate nonet symmetry at first subleading order 1/Nc .
For arbitraryNc , nonet symmetry implies

b̄~1!
1,15

1

A6
~a~1!

1,81b~2!
1,8!, ~3.23!

b̄~3!
1,15

1

A6
~2b~3!

1,81b~4!
1,8!,

4The baryon vector currentsV0a andV0 form a flavor nonet to all
orders in the 1/Nc expansion.

FIG. 5. Planar QCD flavor breaking at order 1/Nc due to a single
quark loop.
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b̄~5!
1,15

1

A6
~2b~5!

1,81b~6!
1,8!,

. . . ,

where the relative factor of 1/A6 occurs because the nint
flavor components ofGia andTa are related toJi andNc1 by

Gi95q†S s i

2
^

I

A6D q5
1

A6
Ji ~1,1!,

T95q†S I ^
I

A6D q5
1

A6
Nc1 ~0,1!. ~3.24!

Notice that the coefficients of the diagonal operatorsDn
i in

the singlet expansion do not depend on the coefficientsc(n)
1,8

of the off-diagonal operatorsO n
ia in the octet expansion. Fo

Nc53, the nonet symmetry conditions reduce to

b̄~1!
1,15

1

A6
~a~1!

1,81b~2!
1,8!,

b̄~3!
1,15

1

A6
~2b~3!

1,8!, ~3.25!

where the second condition is modified because the fo
body operator corresponding tob(4)

1,8 does not occur in the
operator basis forNc53.

It is important to stress that the nonet symmetry constra
Eq. ~3.21! leads to a condition for each operator coefficie
in the singlet expansion since this constraint must be satis
for all spin states of the baryon tower~not just the states with
spins of order unity!. The fact that Eq.~3.21! is satisfied
operator by operator in the baryon~spin ^ flavor! operator
expansion is consistent with the violation of planar QC
flavor symmetry by single quark loop diagrams Fig. 5, sin
this breaking is decoupled from the baryon 1/Nc operator
expansion.

The final version of the 1/Nc baryon chiral Lagrangian
can be obtained by rewritingLbaryon in a form which imple-
ments the constraints of planar QCD symmetry explicitly

Lbaryon5 iD 02Mhyperfine1Tr~Aila!Aia

1
1

Nc
TrSAi

2I

A6DAi1•••, ~3.26!

with

D 05]011Tr~V 0la!Ta, ~3.27!

where a51, . . . ,9, l9[2I /A6, and the baryon one-bod
operatorsT9 andGi9 are defined in Eq.~3.24!. Nonet flavor
symmetry of the baryon-pion axial vector couplings is br
ken by the last term, which gives a nonet symmetry-break
contribution to the singlet current at relative order 1/Nc .
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2. Comparison with octet and decuplet chiral Lagrangian

It is instructive to compare the 1/Nc chiral Lagrangian at
Nc53 with the chiral Lagrangian for the baryon octet and
decuplet without a 1/Nc expansion. The flavor octet pion
couplings of the octet and decuplet are described by the ch
ral Lagrangian@37#:

Lbaryon5 iTrB̄v~v•D !Bv2 i T̄v
m~v•D !Tvm1DT̄v

mTvm

12DTrB̄vSv
m$Am ,Bv%12FTrB̄vSv

m@Am ,Bv#

1C ~ T̄v
m
AmBv1B̄vAmTv

m!12HT̄v
mSv

n
AnTvm ,

~3.28!

whereD, F, C , andH are the baryon-pion couplings and
D5mT2mB is the decuplet-octet mass difference. The octe
massmB has been removed from the Lagrangian by the
heavy baryon field redefinition. Flavor singlet baryon-h8
couplings can be incorporated into the chiral Lagrangian by
adding two terms:

2SBTrAmTrB̄vSv
mBv22STTrAnT̄v

mSv
nTvm , ~3.29!

whereSB andST are the singlet axial vector coupling con-
stants of the octet and decuplet, respectively.

There is a one-to-one correspondence between the param
eters of the octet and decuplet chiral Lagrangian and th
coefficients of the 1/Nc baryon chiral Lagrangian atNc53.
The mass parameters are related to the 1/Nc mass coeffi-
cients by

mB53m~0!
0,11 1

4m~2!
0,1 ,

mT53m~0!
0,11 5

4m~2!
0,1 , ~3.30!

so that

D5m~2!
0,1 . ~3.31!

The flavor octet baryon-pion couplings are related to the co
efficients of the 1/Nc expansion atNc53 by

D5 1
2a~1!

1,81 1
6b~3!

1,8 ,

F5 1
3a~1!

1,81 1
6b~2!

1,81 1
9b~3!

1,8 ,

C52a~1!
1,82 1

2c~3!
1,8 , ~3.32!

H52 3
2a~1!

1,82 3
2b~2!

1,82 5
2b~3!

1,8 .

Notice that the purely off-diagonal operator coefficientc(3)
1,8

contributes only to the octet-decuplet-pion coupling constan
C , and that the diagonal operator coefficientsb(n)

1,8 contribute
only to the diagonal couplingsD, F, andH. In addition,
b(2)
1,8 is pure F, and does not contribute toD. The flavor
singlet baryon-pion couplings are related to the coefficients
of the 1/Nc expansion atNc53 by
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SB5
1

A6
~b~1!

1,11 1
6b~3!

1,1!,

ST5
3

A6
~b~1!

1,11 5
6b~3!

1,1!. ~3.33!

The factor of 3 in the second relation occurs because
decuplet spin operator in Eq.~3.29! acts only on the spinor
portion of the spin-32 Rarita-Schwinger field@37#. The metric
of the spin-one portion of the spin-3

2 field Tv
m cancels the

minus sign of the decuplet term in Eq.~3.29!.
Relations~3.30!–~3.33! are valid forNc set equal to three.

For arbitraryNc , the 1/Nc expansions for baryons with spin
of order unity can be truncated:

M5m~0!
0,1Nc1,

Aia5a~1!
1,8Gia1b~2!

1,8 1

Nc
JiTa, ~3.34!

Ai5b~1!
1,1Ji ,

where Eqs.~3.34! are valid up to terms of relative orde
O(1/Nc

2) everywherein the flavor weight diagrams. The pa
rameterb(2)

1,8 produces deviations from SU~6! symmetry. In
the limit Nc→3, Eqs.~3.34! lead to the parameter relations

mB5mT ,

C522D, H53D29F, ~3.35!

SB5 1
3ST .

The implementation of flavor nonet symmetry on the ax
vector baryon-pion couplings raises an interesting subtle
The spin-12 baryon SU~3! field with mixed symmetry is writ-
ten as a tensor with an upper index and a lower index
using the flavor SU~3! e-tensor to replace two antisymmetri
upper indices by a single lower index:

Bb
a5ebgdB

a@gd#. ~3.36!

The octet tensorBb
a transforms in the same manner as th

three-index tensorBa@gd# under SU~3! transformations, since
the e-tensor is an invariant tensor under SU~3! transforma-
tions. The e-tensor, however, is not invariant under U~1!
transformations, so replacingBa@gd# by Bb

a is not legitimate
when U~3! flavor symmetry is present. Nonet flavor symm
try cannot be imposed on the baryon chiral Lagrangi
~3.28! by simply promotingV m andAm to nonet matrices
since the Lagrangian is written in terms ofBb

a . It is not
difficult to work out the condition of nonet symmetry for th
baryon axial vector couplings usingBa@gd#:

SB→ 1
3 ~3F2D !,

ST→2
1

3
H. ~3.37!

The consistency of Eq.~3.37! with Eq. ~3.25! can be checked
using Eqs.~3.32! and ~3.33!.
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The generalization of Eq.~3.37! to arbitraryNc for the
spin-12 baryons also is of interest. Reference@15# defined the
pion octet couplingsM and N of the spin-12 baryons in
terms of the large-Nc baryon tensor with one upper index and
n5(Nc21)/2 lower indices. The lesson of U~3! symmetry is
that the use of baryon tensors with antisymmetric indices
lowered by the flavore symbol is to be avoided in the
1/Nc expansion; for generalNc , one should work exclu-
sively with Nc-index baryon flavor tensors. It is straightfor-
ward to rewrite these invariants using theNc-index flavor
tensor

Ba1@a2a3#•••@aNc21aNc
# ~3.38!

for the spin-12 baryons. Planar QCD flavor symmetry relates
the singlet invariant of the spin-12 baryons to the octet invari-
ants:

S1/25
1

3
~M22N !1OS 1Nc

D , ~3.39!

where S1/2 is the generalization ofSB for large-Nc flavor
representations. TheO(1/Nc) correction to Eq.~3.39! is due
to violation of planar QCD flavor symmetry.5 Reference@15#
proved that the ratio

N

M
5
1

2
1

a

Nc
1OS 1

Nc
2D , ~3.40!

whereM and N are bothO(Nc). Substitution into Eq.
~3.39! shows that the leading term cancels, so that

S1/2
M

52
2

3

a

Nc
1OS 1

Nc
2D , ~3.41!

where theO(1/Nc
2) correction depends on nonet symmetry

violation and on theO(1/Nc
2) contribution toN /M. Refer-

ence@17# showed that

a52
3

2 S 11
b~2!
1,8

a~1!
1,8D , ~3.42!

so Eq.~3.41! implies that the singlet axial vector current is
order 1/Nc relative to the octet current and that the normal-
ization depends on the ratio ofb(2)

1,8 to a(1)
1,8 at leading order.

B. Lagrangian with quark mass flavor breaking

Explicit flavor symmetry breaking enters the baryon chi-
ral Lagrangian through terms containing powers of the quark
mass matrix. The leading Lagrangian with a single insertion
of the quark mass matrix is presented in this subsection. Th
singlet and octet components of these linear terms form
nonet at leading order in the 1/Nc expansion due to planar
QCD flavor symmetry. Vacuum realignment generates
strong-CP violating terms, which also form a nonet at lead-
ing order in the 1/Nc expansion. Section III B 1 compares the

5The invariantS1/2 is O(1) even thoughM and N are both
O(Nc), so the correction to Eq.~3.39! is both of relative and abso-
lute order 1/Nc .
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1/Nc Lagrangian terms with one insertion of the quark mas
matrix to the octet and decuplet Lagrangian with no 1/Nc
expansion. Section III B 2 discusses the implications o
nonet symmetry for the proton matrix element^pumss̄sup&.

The leading Lagrangian with one power of the quark ma
matrix is given by

Lbaryon
M 5TrS ~MS̄1M†S̄†!

I

A6DH0

1TrS ~ j̄M j̄1 j̄†M†j̄†!
l3

2 DH 3

1TrS ~ j̄M j̄1 j̄†M†j̄†!
l8

2 DH 8, ~3.43!

where the singlet perturbation to the Hamiltonian

H05
1

A6
^B8u~ q̄q!QCDuB&, ~3.44!

and the octeta53,8 Hamiltonian perturbations

Ha5KB8US q̄ la

2
qD

QCD

UBL . ~3.45!

Note that terms containing the pseudoscalar mass combi
tion (j̄M j̄2 j̄†M†j̄†) are subleading in the 1/Nc expansion
and have been neglected. These terms are suppressed by
factor of 1/Nc relative to the terms involving
( j̄M j̄1 j̄†M†j̄†) since baryon matrix elements of the
pseudoscalar QCD quark operators areO(1/Nc).

The explicit symmetry breaking perturbations to th
baryon Hamiltonian have expansions in 1/Nc . The general
expansion of the singlet perturbation has the same form
Eq. ~3.13! and reduces to

H 05b~0!
0,1Nc11b~2!

0,1 1

Nc
J2 ~3.46!

for Nc53. The general expansion for the (0,8) perturbatio
was derived in Ref.@17#,

H a5 (
n51

Nc

b~n!
0,8 1

Nc
n21Dn

a , ~3.47!

whereD1
a5Ta, D2

a5$Ji ,Gia% andDn12
a 5$J2,Dn

a%. Equa-
tion ~3.47! reduces to

H a5b~1!
0,8Ta1b~2!

0,8 1

Nc
$Ji ,Gia%1b~3!

0,8 1

Nc
2 $J2,Ta%

~3.48!

for Nc53.
Vacuum realignment affects the quark mass terms, resu

ing in baryon-pion couplings which violate strongCP.
Equations~2.11! and~2.13! imply that the mass combination
appearing in Eq.~3.43! is replaced by@32#
s

f

s

a-

one

as

n

lt-

~jM
—

j1j†M
— †j†!5~jM~u!j1j†M†~u!j†!

1 i
au

2b

1

Nc
~S2S†!, ~3.49!

whereM(u) andu are defined in Sec. II. The term propor-
tional to u violates strongCP.

Planar QCD flavor symmetry constrains the coefficients
of Lbaryon

M . At leading order in the 1/Nc expansion, the co-
efficients of the singlet perturbation are related to the
a53,8 octet coefficients:

b̄~0!
0,15

1

A6
b~1!
0,8 ,

b̄~2!
0,15

1

A6
~2b~2!

0,812b~3!
0,8!. ~3.50!

The normalization of the singlet perturbation deviates from
nonet symmetry at relative order 1/Nc .

The final version of the leading 1/Nc chiral Lagrangian
containing explicit symmetry breaking is as follows. The La-
grangian

Lbaryon
M 5TrS @jM~u!j1j†M†~u!j†#

la

2 DHa

1
1

Nc
TrS @M~u!S1M†~u!S†#

I

A6DH0

~3.51!

for a53,8,9, respectsCP. The strong-CP violating La-
grangian is given by

Lbaryon
ū 5 i

au

2b

1

Nc
TrS ~S2S†!

la

2 DHa

1 i
au

2b

1

Nc
2TrS ~S2S†!

I

A6DH0 ~3.52!

for a53,8,9. Both of these Lagrangians exhibit nonet sym-
metry at leading order in the 1/Nc expansion. The second
terms in Eqs.~3.51! and ~3.52! represent planar QCD flavor
breaking of relative order 1/Nc for the singlet perturbation.

1. Comparison with octet and decuplet chiral Lagrangian

The quark mass terms of the 1/Nc baryon chiral Lagrang-
ian can be compared to the quark mass terms of the octet an
decuplet chiral Lagrangian with no 1/Nc expansion. Strong
CP violation is neglected in the following comparison.

To first order in the quark mass matrix, the chiral La-
grangian for the octet and decuplet baryons is given by

LM5sTr@M~S1S†!#Tr~B̄B!2s̃Tr@M~S1S†!#T̄mTm

1bDTrB̄$~j†Mj†1jMj!,B%1bFTrB̄@~j†Mj†

1jMj!,B#1cT̄m~j†Mj†1jMj!Tm , ~3.53!
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wheres and s̃ are the singlet quark mass parameters of
octet and decuplet, respectively. The parametersbD andbF
describe the flavor octet quark mass splittings of the bar
octet, whereas the parameterc describes the flavor octe
quark mass splittings of the baryon decuplet.

There is a one-to-one correspondence between the pa
eters of the octet and decuplet chiral Lagrangian and
coefficients of the 1/Nc baryon chiral Lagrangian atNc53.
The singlet quark mass parameters are related to the 1Nc
singlet coefficients by

s5
1

A6
S 3b~0!

0,11
1

4
b~2!
0,1D ,

s̃5
1

A6
S 3b~0!

0,11
5

4
b~2!
0,1D . ~3.54!

The octet quark mass parameters are related to the 1/Nc octet
coefficients by

bD5 1
4b~2!

0,8 ,

bF5 1
2b~1!

0,81 1
6b~2!

0,81 1
12b~3!

0,8 , ~3.55!

c52 3
2b~1!

0,82 5
4b~2!

0,82 5
4b~3!

0,8 .

Notice that the leading octet coefficientb(1)
0,8 is pureF and

does not contribute tobD .
Relations~3.54! and ~3.55! are valid forNc set equal to

three. For arbitraryNc , the 1/Nc expansions of the single
and octet perturbations can be truncated for baryons w
spins of order unity. The leading singlet truncation

H 05b~0!
0,1Nc1 ~3.56!

implies the parameter relation

s5s̃ ~3.57!

up to a correction of relative order 1/Nc
2 . For thea58 per-

turbation, the leading truncation is

H 85b~1!
0,8T8, ~3.58!

up to a correction of order 1/Nc since the mass splittings
produced by the operatorsT8 and $Ji ,Gi8% are both order
unity in the 1/Nc expansion@18#. Equation~3.58! leads to the
parameter relations

bF52 1
3c, bD50, ~3.59!

which are valid at order unity in the 1/Nc expansion. The
subleading truncation

H 85b~1!
0,8T81b~2!

0,8 1

Nc
$Ji ,Gi8% ~3.60!

is valid up to a correction of order 1/Nc
2 . One linear combi-

nation of the two parameter relations Eq.~3.59! survives at
this order:

~bD1bF!52 1
3c. ~3.61!
the
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The correction to this relation is order 1/Nc
2 . Equation~3.61!

is in excellent agreement with the experimental values
bDms;30MeV, bFms;295MeV, and 2cms/3;150MeV
extracted6 in Ref. @42#.

Planar QCD flavor symmetry relates the singlet quark
mass parameters to the octet mass parameters:

s→ 1
3 ~3bF2bD!, s̃→2 1

3c. ~3.62!

The consistency of~3.62! with Eq. ~3.50! can be checked
using Eqs.~3.54! and ~3.55!.

2. The proton matrix elementŠpzmss̄szp‹

Nonet symmetry among the linear quark mass splittings
of the baryons has implications for the analysis of the proton
matrix element^pumss̄sup&. The analysis of the linear in
ms contribution to this matrix element is discussed in this
subsection. The affect of contributions to the proton mass
which are nonlinear in quark masses can be computed usin
the methods of Sec. IV.

The proton matrix element of the strange quark mass op
erator is obtained by differentiation of the proton mass with
respect toms :

^pumss̄sup&5ms

]mp

]ms
. ~3.63!

The standard chiral Lagrangian expansion of the proton mas
to linear order in the quark masses is

mp5mB22s~mu1md1ms!12~bF2bD!ms

22~bF1bD!mu1 nonlinear, ~3.64!

which implies that

^pumss̄sup&52~2s1bF2bD!ms1nonlinear.
~3.65!

Substitution of the nonet symmetry relation Eq.~3.62! leads
to an exact cancellation of thebF term in the nonet symmetry
limit.

It is instructive to study this cancellation in the 1/Nc ex-
pansion. Expanding the proton mass to linear order in quark
masses using the 1/Nc chiral Lagrangian, and differentiation
with respect toms leads to

6A similar analysis applies for theDS51 weak Lagrangian which
is responsible for hyperon nonleptonic decay. The octet and de
cuplet DS51 weak Lagrangian involves three parametershD ,
hF , andhC which are in one-to-one correspondence with the three
coefficients of the 1/Nc expansion forHweak

DS51 @17#. The analogues
of Eqs.~3.59! and~3.61! for hD , hF , andhC are obtained. Equation
~3.59! for hyperon nonleptonic decay was originally predicted in the
chiral quark model@43#. The experimental values of these param-
eters extracted from thes-wave decays at one-loop order in chiral
perturbation theory@40,41# are consistent with these parameter re-
lations.
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^pumss̄sup&52
2

A6
SNcb~0!

0,11
3

4

1

Nc
b~2!
0,1Dms1

1

3 SNcb~1!
0,8

1
3

2

1

Nc
b~2!
0,81

3

2

1

Nc
b~3!
0,8Dms1nonlinear,

~3.66!

where the relations

T85
1

2A3
~Nc23Ns!,

Gi85
1

2A3 ~Ji23Js
i !, ~3.67!

have been used to evaluate proton matrix elements. T
nonet symmetry conditions Eq.~3.50! result in an exact can-
cellation among the singlet and octet quark mass contrib
tions. Thus, the linear contribution tôpumss̄sup& is pro-
duced entirely by violation of nonet symmetry at orde
1/Nc in the 1/Nc expansion,

^pumss̄sup&5OS 1Nc
D1nonlinear, ~3.68!

where theO(1/Nc) term represents 1/Nc-breaking of nonet
symmetry in the singlet channel. The above remarks gen
alize to arbitraryNc if the proton is identified with the
strangeness-zero baryon of the spin-1

2 large-Nc flavor repre-
sentation. The 1/Nc suppression of Eq.~3.68! occurs because
the proton contains no strange quarks, so that the lead
contribution to ^pumss̄sup& comes from diagrams with a
single quark loop~Fig. 5! @23# in violation of planar QCD
flavor symmetry.

It is conventional to rewrite Eq.~3.65! in terms of the
sigma term

spN[m̂^puūu1d̄dup&

522m̂~2s1bD1bF!1nonlinear, ~3.69!

so that

^pumss̄sup&5ms~3bF2bD!1
1

2 Sms

m̂ DspN1nonlinear.

~3.70!

Nonet symmetry among the linear quark couplings implies
significant cancellation between the first term and the sigm
term. This cancellation explains sensitivity of central valu
of the proton matrix element to the precise value ofspN .

IV. NONANALYTIC CORRECTIONS

The procedure for calculating nonanalytic pion-loop co
rections using the 1/Nc baryon chiral Lagrangian is exam-
ined in this section. Aspects of this problem have be
treated previously in Refs.@13–15,19,22,24#. The calculation
of nonanalytic corrections to baryon amplitudes in the 1/Nc
expansion at finiteNc introduces a number of issues which
have not been addressed before. A sample calculation of
he
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flavor 27 nonanalytic contribution to the baryon masses is
presented in detail to illustrate the technique.

The Feynman rules for baryon-pion couplings can be ob
tained from the 1/Nc chiral Lagrangian Lbaryon and
Lbaryon

M . The baryon propagator is given by inversion of the
quadratic terms in the Lagrangian. This inversion is compli-
cated by the presence of the hyperfine and quark mass spl
tings. In the chiral limitmi→0, the baryon propagator is
diagonal in spin, and can be written as

iP ê

~k02Dê!
, ~4.1!

whereP ê is a spin projection operator for spinJ5ê and

Dê5MhyperfineuJ25ê~ê11!2MhyperfineuJ25êext~ê ext11! ~4.2!

is the difference of the hyperfine mass splitting for spin
J5ê and the external baryon. Forp-wave pion emission,
Dê is given by

Dê55
1

Nc
2êm~2!

0,1 , êext5ê21,

0, êext5ê,

2
1

Nc
2êm~2!

0,1 , êext5ê11,

~4.3!

at leading order 1/Nc in the 1/Nc expansion, with subleading
terms beginning at order 1/Nc

3 . Equation ~4.1! solves the
inversion problem in the chiral limit in terms of spin projec-
tion operators.

For arbitrary finiteNc , the baryon tower consists of spins

J5 1
2 ,

3
2 , . . . ,Nc/2. Each spin projection operator must sat-

isfy

P ê
25P ê ,

P ê8P ê50, ê8Þê, ~4.4!

by definition. An explicit realization of these conditions is
given by

P ê5
Pê8Þê~J

22Jê8
2

!

Pê8Þê~Jê
22Jê8

2
!
, ~4.5!

where the projection operator for spinJê is given by the

product over allJê85
1
2 ,

3
2 , . . . ,Nc/2 not equal toJê . For

example, the spin-12 and
3
2 projectors are given by

P 1
2
5

S J22 15

4 D S J22 35

4 D . . . FJ22 Nc

2 SNc

2
11D G

S 342
15

4 D S 342
35

4 D . . . F342
Nc

2 SNc

2
11D G ,

P 3
2
5

S J22 3

4D S J22 35

4 D . . . FJ22 Nc

2 SNc

2
11D G

S 154 2
3

4D S 154 2
35

4 D . . . F154 2
Nc

2 SNc

2
11D G .

~4.6!
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Each of the projection operators Eq.~4.5! is a polynomial of
degree (Nc21)/2 in J2.

For Nc53, there are only two spins in the baryon towe
The spin projectors reduce to

P 1
2
52 1

3 ~J22 15
4 !,

P 3
2
5 1

3 ~J22 3
4 !, ~4.7!

and the baryon propagator has the form Eq.~4.1! with

D 1
2
5H 0, êext5 1

2 ,

2D, êext5 3
2 ,

D 3
2
5H D, êext5 1

2 ,

0, êext5 3
2 ,

~4.8!

where

D5
3

Nc
m~2!
0,1 . ~4.9!

Away from the chiral limit, quark mass splittings must b
considered in the inversion of the baryon quadratic term
Baryon mass splittings which are comparable to the p
octet masses are to be retained in the baryon propagator
large-Nc baryons, the leading hyperfine baryon mass splitt
is orderL/Nc whereas the leading quark mass splittings a
order7 mi . For QCD withNc53, these splittings satisfy the
hierarchy

mu ,md!ms,
L

Nc
. ~4.10!

Only the leading quark mass splittings proportional
b(1)
0,8T8 and the hyperfine mass splitting are comparable to
pion octet masses in QCD. Keeping these two splittin
amounts to the neglect of isospin-breaking quark mass s
tings and subleading quark mass splittings of ordermi /Nc .
TheT8 operator leads to spin-independent baryon mass s
tings which are linear in the number of strange quarks. T
baryon propagator is diagonal in spin and strange qu
number and is given by

iP êP ns
~ê !P ê

~k02Dê2Dns
!
, ~4.11!

whereP ns
(ê) is theNs5ns strange quark projection operato

of the spin-ê flavor representation, and~neglecting strong-
CP violation!

Dns
5 1

2b~1!
0,8~mu1md22ms!~ns2ns ext !, ~4.12!

7The leadingO(Nc) terms in the quark mass perturbationsHa,
a50,3,8 are proportional to the baryon identity operator1 and do
not result in baryon mass splittings. AllO(Nc) mass terms must be
removed from the Lagrangian by the heavy field redefinition.
r.

e
s.

ion
. For
ing
re

to
the
gs
plit-

plit-
he
ark

r

is the T8 quark mass difference of the propagating baryon
and the external baryon. Equation~4.11! solves the inversion
problem in terms of strange quark projection operators.

The spin J5ê large-Nc flavor representation contains
baryons with Ns50,1, . . . ,(Nc12ê)/2 strange quarks.
Strange-quark number projection operators can be defined
for the spin-ê flavor representation in analogy to the spin
projection operators,

P ns
~ê !5

Pn
s8Þns

~Ns2ns8!

Pn
s8Þns

~ns2ns8!
, ~4.13!

where the projection operator forns strange quarks is given
by the product over allns850,1, . . . ,(Nc12ê)/2 not equal to
ns . For example, the zero and one strange quark projection
operators for the spin-ê baryons are given by

P 0~ê !5

~Ns21!~Ns22!•••FNs2SNc12ê
2 D G

~21!~22!•••F2SNc12ê
2 D G ,

P 1~ê !5

Ns~Ns22!•••FNs2SNc12ê
2 D G

~1!~21!•••F12SNc12ê
2 D G . ~4.14!

Note that the projectors are different for each flavor repre-
sentation with a definite spinJ5ê, since the allowed
strangeness sectors of a large-Nc flavor representation de-
pends on its spin. Each strange-quark number projection op
erator for spinJ5ê is a polynomial of degree (Nc12ê)/2 in
Ns .

ForNc53, the spin-12 flavor representation contains bary-
ons with 0, 1, and 2 strange quarks, while the spin-3

2 flavor
representation contains baryons with 0, 1, 2, and 3 strange

quarks. TheJ5 1
2 strange quark projection operators reduce

to

P 0~
1
2 !5

1

2
~Ns21!~Ns22!,

P 1~
1
2 !52Ns~Ns22!, ~4.15!

P 2~
1
2 !5

1

2
Ns~Ns21!,

whereas theJ5 3
2 strange quark projection operators reduce

to

P 0~
3
2 !52 1

6 ~Ns21!~Ns22!~Ns23!,

P 1~
3
2 !5 1

2Ns~Ns22!~Ns23!,

P 2~
3
2 !52 1

2Ns~Ns21!~Ns23!, ~4.16!

P 3~
3
2 !5 1

6Ns~Ns21!~Ns22!.
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The baryon propagator has the form Eq.~4.11! with Dns
given by plus and minus

Ds5
1
2b~1!

0,8~mu1md22ms! ~4.17!

for DS561 transitions.
The generalization of the baryon propagator Eq.~4.11! to

include all subleading quark mass splittings is provided
Appendix A for completeness.

A. Flavor-27 baryon mass splittings

Flavor singlet and octet baryon mass splittings are pre
in the 1/Nc baryon chiral Lagrangian. The flavor-27 mass
splittings of the octet and decuplet are calculable
nonanalytic in the quark masses and baryon hyperfine
splitting at leading order in chiral perturbation theory. T
mass splitting arises from the Feynman diagram Fig. 6.
computation of the flavor-27 component of Fig. 6 for finite
Nc , Nc53, is presented in detail in this section. Compu
tions at largerNc are less interesting physically and mo
complicated to extrapolate toNc53 because unphysic
baryons participate as intermediate states in loop diag
@13,14#, and there are higher partial wave meson-baryon
plings which occur at subleading orders@17#.

The loop diagram Fig. 6 involvesp, K, andh emission
and reabsorption. Theh8 meson is not included in the loo
since it is not soft relative to the baryons in QCD. For
generate heavy hadrons interacting with mesons, the dia
Fig. 6 depends on a functionF(m) of the meson massm,
which is obtained by performing the Feynman loop integ
tion. Neglecting isospin breaking, i.e., the (md2mu) quark
mass difference, the diagram depends on the functionF(m)
for three meson mass values,F(p), F(K), andF(h), where
the meson mass is denoted by its particle label. Any m
loop integral with the exchange of a single meson, in wh
a meson of flavora is emitted and a meson of flavorb is
reabsorbed, can be written as a symmetric tensor with
adjoint ~octet! indicesa and b. This symmetric tensor de
composes into flavor singlet, adjoint (8) and s̄s (27) repre-
sentations:

Pab5 1
8 @3F~p!14F~K !1F~h!#dab

1
2A3
5

@ 3
2F~p!2F~K !2 1

2F~h!#dab8

1@ 1
3F~p!2 4

3F~K !1F~h!#

3~da8db82 1
8dab2 3

5d
ab8d888!, ~4.18!

where the flavor singlet, octet, and27 tensors in Eq.~4.18!
are proportional to flavor singlet, octet and27 linear combi-
nations ofF(p), F(K) andF(h).

For the Feynman diagram Fig. 6 with propagatori /k0,

FIG. 6. Feynman diagram responsible for flavor-27baryon mass
splittings at leading order in the flavor breaking and 1/Nc expan-
sions.
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F~m!5
m3

24p f p
2 . ~4.19!

The flavor-27 combination of this function,

@ 1
3F~p!2 4

3F~K !1F~h!#, ~4.20!

is highly suppressed relative to the singlet and octet combi-
nations, and is numerically very small, of the order 4 MeV.
For comparison, the flavor singlet combination of this func-
tion is about 126 MeV, while the flavor octet combination is
about238 MeV. This suppression of the flavor-27 combina-
tion is generic in chiral perturbation theory. It explains the
small violation of the Gell-Mann–Okubo formula for baryon
masses, which is8 6.5 MeV, as well as the small flavor-27
mixing of the vector mesons@44#. The suppression mecha-
nism also applies to other meson-loop corrections involving
Pab, such as flavor-27 chiral logarithmic corrections to ver-
tices with

F~m!5
m2

24p2f p
2 lnSm2

m2D . ~4.21!

The flavor-27 chiral logarithm is numerically 0.035. Note
that them dependence of the chiral logarithm cancels at lead-
ing order in the27combination using the Gell-Mann–Okubo
formula for meson masses@45,46#

1
3mp

22 4
3mK

21mh
250. ~4.22!

The computation of Fig. 6 is complicated significantly by
the inclusion of baryon mass splittings in the baryon propa-
gator. In this case, the Feynman integral is a nonanalytic
function of the baryon mass splittingD as well as the meson
mass squared. The functionF(m,D) is defined by the inte-
gral

id i j F~m,D!5
1

f 2E d4k

~2p!4
i 2~k i !~2k j !

~k22m2!~k02D!
. ~4.23!

The precise formula forF(m,D) is given in Appendix B.
The computation of Fig. 6 is performed in this section using
the baryon propagator Eq.~4.1!, which neglects baryon fla-
vor mass splittings, since the generalization to the propagato
Eq. ~4.11! can be obtained immediately from this formula.
With baryon propagator Eq.~4.1!, the flavor-27 component
of the meson tensor is given by

P27
ab5~da8db82 1

8dab2 3
5d

ab8d888!I ~p,K,h,D!,
~4.24!

where

I ~p,K,h,D!5@ 1
3F~p,D!2 4

3F~K,D!1F~h,D!#.
~4.25!

8This suppression mechanism was originally noted in the study of
the octet and decuplet masses@42#, neglecting the pion mass. The
suppression of the flavor27 combination is more significant when
the pion mass is retained.
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Neglect of theT8 quark mass splittingDs affects only the
kaon loop graphs which involveDS561 transitions. The
generalization ofI (p,K,h,D) to I (p,K,h,D,Ds) is ob-
tained by the replacement

F~K,D!→ 1
2 @F~K,D1Ds!1F~K,D2Ds!# ~4.26!

in Eq. ~4.25!.
The diagram Fig. 6 is given by the product of a bary

operator times the pion flavor tensor. Using the bary
propagator Eq.~4.1!, Fig. 6 is given by

1

Nc
(

ê
~AiaP êA

ib!P27
ab~Dê!, ~4.27!

for arbitraryNc where the baryon axial vector current oper
tor Aia has a 1/Nc expansion Eq.~3.15!. The explicit factor
of 1/Nc occurs from the rescalingf p→ANcf . Equation
~4.27! reduces to

1

Nc
@Ai8P 1

2
Ai8I ~D 1

2
!1Ai8P 3

2
Ai8I ~D 3

2
!# ~4.28!

for Nc53, whereAi8 has the 1/Nc expansion Eq.~3.16! and
the baryon operator is understood to be a (0,27), so that
subtraction of flavor singlet and octet components of
baryon operator is implicit in the present notation. The fun
tion I (p,K,h,Dê) is abbreviated asI (Dê) in Eq. ~4.28!.

The evaluation of Eq.~4.28! raises an important issue
The baryon operator product of the two axial currents g
eratesn-body operators withn.Nc which are not operators
in the operator basis at finiteNc . In order to make sense o
this operator product, all of these higher body operators m
be rewritten as linear combinations of operators in the ope
tor basis withn<Nc . Since the operator basis is comple
and independent@17#, this reduction is always possible. I
practice, however, this operator reduction is formidable ev
for the product of two axial vector currents. The problem
solved in this work using spin projection operators. The
troduction of spin projection operators makes operator red
tion tractable and straightforward. The details are presen
in Appendix B.

There are two flavor-27 combinations of baryon masse
the Gell-Mann–Okubo combination of octet baryon mass

3
4L1 1

4S2 1
2 ~N1J!, ~4.29!

and the decuplet equal spacing rule combination@18#,

2 4
7D1 5

7S*1 2
7J*2 3

7V. ~4.30!

Violation of the Gell-Mann–Okubo formula is given by

1

Nc
@P 1

2
Ai8P 1

2
Ai8P 1

2
I ~0!1P 1

2
Ai8P 3

2
Ai8P 1

2
I ~D!#,

~4.31!

whereas violation of the flavor-27equal spacing rule is given
by

1

Nc
@P 3

2
Ai8P 3

2
Ai8P 3

2
I ~0!1P 3

2
Ai8P 1

2
Ai8P 3

2
I ~2D!#.

~4.32!
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Evaluation of the baryon operators yields

3
4L1 1

4S2 1
2 ~N1J!

5
1

Nc
F S 116a121 3

4

1

Nc
a1b21

9

16

1

Nc
2b2

21
3

8

1

Nc
2a1b3

1
9

4

1

Nc
3b2b31

9

16

1

Nc
4b3

2D I ~0!

1S 18 a121 9

8

1

Nc
2a1c31

81

32

1

Nc
4 c3

2D I ~D!G , ~4.33!

and

2 4
7D1 5

7S*1 2
7J*2 3

7V

5
1

Nc
F S 58 a121 15

4

1

Nc
a1b21

45

8

1

Nc
2b2

21
75

4

1

Nc
2a1b3

1
225

4

1

Nc
3b2b31

1125

8

1

Nc
4b3

2D I ~0!

2S 14 a121 9

4

1

Nc
2a1c31

81

16

1

Nc
4 c3

2D I ~2D!G , ~4.34!

wherea1 , b2 , b3 , and c3 are the coefficients of the 1/Nc
expansion for the baryon axial vector current Eq.~3.16!.
Equations~4.33! and ~4.34! can be compared with the ex-
pressions obtained in chiral perturbation theory with no
1/Nc expansion@42#:

@2 3
4 ~D223F2! Ī ~0!1 1

8C
2Ī ~D!# ~4.35!

and

@ 5
18H

2Ī ~0!2 1
4C

2Ī ~2D!#, ~4.36!

respectively, where the functionĪ (D)5I (D)/Nc is propor-
tional to 1/f p

2 rather than 1/f 2. Equations~4.33! and ~4.34!
agree with these expressions forNc53, using the identifica-
tions Eq.~3.32!.

Reference@18# showed that the two flavor-27 baryon
mass splittings are described by the 1/Nc operators

c~2!
27,0 1

Nc
$T8,T8%1c~3!

27,0 1

Nc
2 $T8,$Ji ,Gi8%%, ~4.37!

so that one of the flavor-27mass splittings is order 1/Nc in
the 1/Nc expansion, whereas the other is order 1/Nc

2 . This
behavior is most easily seen forD50, where thec(2)

27,0 mass
combination is given by

5@ 3
4L1 1

4S2 1
2 ~N1J!#2~2 4

7D1 5
7S*1 2

7J*2 3
7V!

5
9

16

1

Nc
a1
2I ~p,K,h,0!1OS 1

Nc
3D , ~4.38!

while thec(3)
27,0 mass combination is given by
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22@ 3
4L1 1

4S2 1
2 ~N1J!#1~2 4

7D1 5
7S*1 2

7J*2 3
7V!

5
9

4

1

Nc
2a1b2I ~p,K,h,0!1OS 1

Nc
3D , ~4.39!

so that

c~2!
27,05 1

8a1
2I ~p,K,h,0!1OS 1

Nc
2D ,

c~3!
27,05 1

2a1b2I ~p,K,h,0!1OS 1Nc
D . ~4.40!

Notice that there is noa1b2 contribution to the two-body
flavor-27coefficient and noa1

2 contribution to the three-body
coefficient forD50. For nonvanishingD, it is still true that
the first flavor-27 mass splitting is order 1/Nc , while the
second is order 1/Nc

2 . The 1/Nc counting is not explicit,
however, sinceD is implicitly order 1/Nc . The expressions
for the coefficients forDÞ0 are more complicated:

c~2!
27,05 1

3a1
2@2 5

24 I ~0!1 5
12 I ~D!1 1

6 I ~2D!#1OS 1

Nc
2D ,

c~3!
27,05 1

18Nca1
2@2I ~0!2I ~D!2I ~2D!#1 1

2a1b2I ~0!

1OS 1Nc
D . ~4.41!

As before, the coefficientc(2)
27,0does not depend ona1b2 . The

coefficient c(3)
27,0, however, now appears to have an ord

Nc contribution proportional toa1
2 which changes the 1/Nc

counting for this mass splitting. This appearance is illuso
Recall that the functionI (p,K,h,D) depends on the the me
son masses andD through the functionF(m,D) defined in
Appendix B. For uDu<m, the linear combination
2F(m,0)2F(m,D)2F(m,2D) is order 1/Nc

2 , so the term
proportional toa1

2 is O(1/Nc) and can be neglected relativ
to leadinga1b2 term. ForuDu.m, the same linear combina
tion reduces to 2F(m,0), which is smaller than an effect o
order 1/Nc

3 since, by assumption,m3,D3. Thus, the three-
body coefficient reduces to the expression given in Eq.~4.40!
even for nonvanishingD.

The theoretical calculation of the flavor-27mass splittings
can be compared with experiment. The experimental valu
the Gell-Mann–Okubo mass splitting is 6.53 MeV with ne
ligible uncertainty. The flavor-27 equal spacing rule mas
splitting depends on the unmeasuredD2 mass which enters
the isospin zero massD0[(D111D11D01D2)/4. The
D2 mass can be determined from the mass relation

D1123D113D02D250, ~4.42!

which is satisfied to order 1/Nc
2 in the 1/Nc expansion and to

second order in isospin-breaking parameters@18#. Numeri-
cally, the I53 mass difference of theD is at most of order
1023 MeV, so neglect of this mass difference introduces n
ligible error in the determination ofD2. Using the value for
D2 extracted with Eq.~4.42! and Particle Data Group value
er

ry.
-

e
-
f

e of
g-
s

eg-

s

@48# for the remainingD masses9 yields D051231.361.1
MeV. Evaluation of the flavor-27 equal spacing rule mass
splitting usingD0 and Particle Data Group values for the
remaining decuplet masses gives 6.75 MeV, with an unce
tainty of 0.004 MeV.

The theoretical formulas depend on the two mass spl
tingsD andDs , and the flavor symmetric baryon-pion cou-
plings a1 , b2 , b3 , and c3 ~or equivalently,D, F, C , and
H). The mass splittings can be defined precisely@18#:

D5 1
10 ~4D013S0*12J0*1V!2 1

8 ~2N013S01L12J0!
~4.43!

and

Ds5
1
10 ~D02

1
2J0*2 1

2V!2 1
8 ~6N023S01L24J0!,

~4.44!

where the zero subscripts refer to theI50 mass combina-
tions defined in Ref.@18#. Evaluation of the mass splittings
yieldsD5230.760.1 MeV andDs5225.760.03 MeV. The
baryon axial couplings were extracted from experiment i
Ref. @19#. The Gell-Mann–Okubo mass combination de
pends primarily on the coefficientsa1 and b2 , which are
fairly well determined. The flavor-27equal spacing rule mass
combination, however, is sensitive to the value ofb3 which
is difficult to extract from experiment.10 This sensitivity is
due to the large numerical constants of theb3 terms appear-
ing in Eq.~4.34!, which in turn is a reflection of the fact that
the spin-32 flavor representation is at the top of the baryo
tower for Nc53 so the presumptionJ/Nc;O(1/Nc) is
breaking down.

In addition to the uncertainty of the baryon axial vecto
couplings, numerical evaluation of the theoretical formula
for the flavor-27mass splittings is further complicated by the
sensitivity of the numerics to the precise formulas which ar
used. For example, imposition of the Gell-Mann–Okubo for
mula for the meson masses changes the numerical value
the functionI (p,K,h,D) considerably. In addition, the gen-
eralization of the theoretical formulas to includeDs through
Eq. ~4.26! changes the numerics significantly. Note that fo
nonvanishingDs , the functionI (D) depends onDs through
Eq. ~4.26! even forD50. Although them dependence of the
flavor-27 combination ofF(m,D,m) cancels at leading order
using the Gell-Mann–Okubo formula for the meson mass
if Ds50, there is additionalm dependence from the term
DDs

2lnmK
2/m2 whenDsÞ0 andDÞ0. Thism dependence is

canceled by a finite counterterm proportional toDDs
2 . At

leading order in chiral perturbation theory, it is possible t
drop theDDs

2lnmK
2/m2 chiral logarithm from the functionI to

obtain am-independent quantity. It is also possible to drop

9There are three different measurements listed forD11 andD0.
These measurements are averaged with errors added in quadra
10Because of this uncertainty one could consider the alternative

extracting the baryon axial couplings from the flavor-27mass split-
tings, as suggested recently in Ref.@45#. However, the theoretical
formula receives sizable~unknown! corrections at higher orders in
chiral perturbation theory, so error bars on the extracted couplin
are significant.
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the finiteDDs
2 andDsm

2 terms in I . Note thatDs still ap-
pears in the last term of Eq.~B1!.

The mass combination in Eq.~4.39! does not depend sen
sitively on c3 or on them-dependence of theDDs

2 chiral
logarithm. Numerical evaluation of Eq.~4.39! using
a152(0.79160.007) andb256(20.05860.011), as ex-
tracted in Ref.@19#, yields25.3 MeV, whereas the experi
mental value is26.2 MeV. The agreement is consistent wit
a correction of relative order 1/Nc .

V. PLANAR QCD FLAVOR SYMMETRY AND SU „3…
FLAVOR SYMMETRY BREAKING

The two-flavor version of planar QCD flavor symmetr
has implications for the structure of SU~3! symmetry break-
ing at leading order in 1/Nc . Planar QCD for three light
flavors exhibits an approximate U~3! flavor symmetry, which
is broken explicitly by the quark mass matrix. In the plan
limit, the flavor symmetry breaking due to the quark ma
matrix transforms as thea53,8,9 components of a none
Neglecting isospin breaking, there is an unbroken U~2! flavor
symmetry, which includes the diagonal generatorss3 and I
in the 232 subspace. This residual U~2! flavor symmetry
can constrain the form of SU~3! breaking in the 1/Nc expan-
sion. The constraints must be satisfied at each and ev
order in SU~3! flavor symmetry breaking.

The relevance of U~2! symmetry for SU~3! breaking is
illustrated by the baryon axial vector currents. TheF52
version of planar QCD flavor symmetry constrains the lea
ing coefficients of the isosinglet axial vector currentAi rela-
tive to the coefficients of the isovector axial vector curre
Aia,a51,2,3:

b̄~1!
1,15 1

2 ~a~1!
1,31b~2!

1,3!,

b̄~3!
1,15 1

2 ~2b~3!
1,3!. ~5.1!

Equation~5.1! is the two-flavor analogue of Eq.~3.25!. The
isosinglet and isovector axial currents couple to the pi
quartetF5pasa/21h̃I /2, whereh̃ is an admixture ofh
andh8. Theh (h8) couplings of baryons with zero strange
ness are each proportional to theh̃ couplings. Thus, theh
(h8) couplings of strangeness-zero baryons are normali
relative to the pion couplings in the presence of SU~3! break-
ing by Eq.~5.1! at leading order in 1/Nc .

Reference@17# derived the flavor-octet baryon axial vec
tor current to linear order in SU~3! symmetry breakinge and
leading order in 1/Nc . The first constraint of Eq.~5.1! can be
imposed on this current in the strangeness-zero sector.
strangeness-zero baryons, the 1/Nc expansion of the baryon
axial vector current to linear order in SU~3! symmetry break-
ing reduces to

Aia1dAia5S aGia1b
1

Nc
JiTaD

1edab8S c1Gib1c2
1

Nc
JiTbD1ec6d

a8Ji ,

~5.2!

up to terms of relative order 1/Nc
2 . Note that the coefficients

a and b contain contributions of ordere and reduce toa1
-

-
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and b2 only in the absence of SU~3! breaking. The coeffi-
cientsa andb automatically satisfy the first constraint of Eq
~5.1! due to the SU~3! symmetry of their operators. The re
maining terms contribute the following to the coefficients
the F52 isosinglet and isovector 1/Nc expansions when
evaluated for strangeness-zero baryons:

db~1!
1,15A3e@2 1

6 ~c11c2!1c6#,

da~1!
1,35

1

A3
ec1 , ~5.3!

db~2!
1,35

1

A3
ec2 .

The factor ofA3 in the first equation occurs becauseh̃ is
proportional toh/A3. The first quartet symmetry constrain
of Eq. ~5.1! implies that

c̄65
1
3 ~c11c2!, ~5.4!

up to a correction of relative order 1/Nc . This is the same
constraint onc6 obtained in Ref.@17#. The above derivation
shows that this constraint follows fromF52 planar QCD
flavor symmetry.

The second constraint in Eq.~5.1! applies to spin-diagonal
order 1/Nc

2 terms which have not been included in Eq.~5.2!.
These neglected terms reduce to

b8
1

Nc
2 $Ji ,$Jj ,Gja%%1edab8d1

1

Nc
2 $Ji ,$Jj ,Gjb%%

1ec7d
a8

1

Nc
2 $J2,Ji%, ~5.5!

in the strangeness-zero sector, where the coefficientb8 is
equal tob3 in the SU~3! flavor symmetry limit, but contains
a contribution of ordere at linear order in SU~3! breaking.
The coefficientb8 automatically satisfies the second con
straint of Eq.~5.1! due to the SU~3! symmetry of the opera-
tor. The remaining terms are constrained to satisfy

c̄75
2
3d1 ~5.6!

up to a correction of relative order 1/Nc .
The above analysis shows that SU~3! flavor symmetry

breaking does not alter the relationship between pion andh
couplings of strangeness-zero baryons from exact SU~3! fla-
vor symmetry to leading order in 1/Nc . Any violation of this
SU~3! normalization requires SU~3! flavor symmetry break-
ing in a 1/Nc-suppressed quark loop. This result was orig
nally reported in Ref.@17#.

VI. CONCLUSIONS

A 1/Nc chiral Lagrangian for baryons is formulated whic
correctly implements planar QCD flavor symmetry an
(spin̂ flavor) symmetry for baryons. The constraints of pl
nar QCD flavor symmetry on the baryon 1/Nc expansion
have not been realized previously, and are presented in d
in this work. These constraints are valid to leading order
the 1/Nc expansion operator by operator in the baryon 1/Nc
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expansion. Thus, planar QCD flavor symmetry constrains
operator coefficients at leading order in 1/Nc . The symmetry
implies that baryon flavor octet and singlet amplitudes fo
nonets at leading order in 1/Nc . Specific examples of none
symmetry include the formation of a flavor nonet axial ve
tor current from the flavor singlet and flavor octet axial ve
tor baryon currents at leading order in 1/Nc , as well as the
formation of a nonet among the flavor singlet and oc
baryon mass terms with linear dependence on the qu
massesmi .

The formulation of the baryon chiral Lagrangian in term
of operators with definite 1/Nc dependence enables one
study the precise 1/Nc structure of the chiral expansion. In
specific instances, such as the proton matrix elem
^pumss̄sup&, the leading 1/Nc terms cancel exactly, so the
1/Nc expansion explains the suppression of the quantity.

The calculation of nonanalytic meson-loop corrections
1/Nc baryon chiral perturbation theory at finiteNc is ad-
dressed. The 1/Nc and group theoretic structure of the loo
corrections is manifest using the method described in t
work. The introduction of spin projection operators simp
fies the formidable problem of operator reduction, maki
calculations tractable. A specific example of the flavor-27
meson-loop contribution to the baryon mass splittings is p
sented in detail. The 1/Nc computation provided in this work
generalizes the formulas obtained previously in ordina
baryon chiral perturbation theory withNc53 to include the
leading flavor octet mass splittingDs of the baryons. The
1/Nc formulae reveal the 1/Nc and flavor-breaking structure
of the flavor-27 baryon mass splittings at leading order
chiral perturbation theory.
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APPENDIX A: BARYON PROPAGATOR

The generalization of the baryon propagator Eq.~4.11! to
include all subleading quark mass splittings is provided
this appendix for completeness. Isospin-breaking quark m
splittings are neglected in the discussion for simplici
These splittings can be included at the expense of introd
ing additional projection operators.

Including all hyperfine anda50,8 quark mass splittings
the baryon propagator is given by

iP êP ns
~ê !P ı~ê,ns!P ns

~ê !P ê

~k02Dê2D02D8!
, ~A1!

whereP ı(ê,ns) is the projection operator for isospinI5ı in
theNs5ns strange quark sector of the spinJ5ê flavor rep-
resentation, andD0 and D8 are thea50 anda58 quark
mass splittings of the propagating baryon relative to the
ternal baryon. Thea50 baryon quark mass operator
the

rm
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M052
2

A6
~mu1md1ms!H

0 ~A2!

depends only on polynomials ofJ2, so

D05M0uJ25ê~ê11!2M0uJ25êext~êext11! ~A3!

is already diagonalized by the spin projection operators. T
a58 baryon quark mass operator

M852
1

A3
~mu1md22ms!H

8 ~A4!

involves two operator series, generated byT8 and $Ji ,Gi8%
times polynomials inJ2. The operator series involvingT8

times polynomials inJ2 is diagonalized by the spin and
strange quark number projection operators. The operator
ries involving $Ji ,Gi8% requires the introduction of isospin
projection operators.

For arbitraryNc , the structure of the baryon multiplets is
such that~i! the isospin of a baryon is equal to the tota
angular momentum~spin! of the up and down quarks,
I5Jud and ~ii ! the total angular momentum~spin! of the
strange quarks is equal to one-half the number of stran
quarks, Js5Ns/2. Since J5Jud1Js , it therefore follows
that spin-ê baryons can only have isospins
I5uNs/21êu,uNs/21êu21, . . . ,uNs/22êu, where all pos-
sible isospins are allowed for 2ê<Ns<(Nc22ê)/2, but only
a subset of the isospins are allowed for 0<Ns,2ê and
(Nc22ê)/2,Ns<(Nc12ê)/2. For Ns50, only the largest
isospin is allowed. ForNs51, only the two largest isospins
are allowed. This pattern of one additional allowed isospin
Ns increases by one unit continues for the interv
0<Ns,2ê until the full set of isospins is allowed for
Ns52ê. Similarly, for Ns5(Nc12ê)/2, only the smallest
isospin is allowed. ForNs5(Nc12ê)/221, only the two
smallest isospins are allowed. This pattern of one addition
allowed isospin asNs decreases by one unit continues fo
(Nc22ê)/2,Ns<(Nc12ê)/2 until the full set of isospins is
allowed forNs5(Nc22ê)/2.

It is easier to digest this pattern of isospins if one specia
izes to the spin-12 and spin-32 flavor representations with the
weight diagrams displayed in Figs. 3 and 4. ForJ5 1

2, there
are two allowed isospinsI5(Ns11)/2 andI5(Ns21)/2 for
1<Ns<(Nc21)/2. BothNs50 andNs5(Nc11)/2 are ex-
ceptions: for Ns50, I5 1

2, whereas forNs5(Nc11)/2,
I5(Nc21)/4. For J5 3

2, there are four allowed isospins
I5(Ns13)/2,(Ns11)/2,(Ns21)/2,(Ns23)/2 for 3<Ns
<(Nc23)/2. The three smallest and largest strangeness s
tors Ns50,1,2 and Ns5(Nc21)/2, (Nc11)/2 and
(Nc13)/2 are special cases: forNs50, there is one allowed
isospin I5 3

2; for Ns51, there are two allowed isospins
I52 and I51; for Ns52, there are three allowed isospin
I5 5

2,
3
2, and

1
2; while for Ns5(Nc21)/2, there are three al-

lowed isospins,I5(Nc27)/4, (Nc23)/4, and (Nc11)/4;
for Ns5(Nc11)/2, there are two allowed isospins
I5(Nc25)/4 and (Nc21)/4; and forNs5(Nc13)/2, there
is one allowed isospinI5(Nc23)/4.
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The remaining components of the baryon propagator
~A1! can now be defined. Isospin projection operators for
spin-ê baryons withns strange quarks are given by

P ı~ê,ns!5
P ı8Þı~ I

22I ı8
2

!

P ı8Þı~ I ı
22I ı8

2
!
, ~A5!

where the projection operator for isospinI ı is given by the
product over all I ı8 not equal to I ı. For
2ê<ns<(Nc22ê)/2, I ı85u(ns12ê)/2u, u(ns12ê)/2u21,
. . . u(ns22ê)/2u. The allowed isospins for the smallest an
largestns values of the spin-ê flavor representations vary
according to the pattern described above. The oper
series involving $Ji ,Gi8% depends on the operato

J•Js5
1
2 (J

21Js
22I 2), which in turn depends on isospin. It i

easy to evaluateJ•Js for each of the allowed isomultiplets o
the spin-ê flavor representation. For example, for the sp
Eq.
the

d

ator
r

s
f
in-

1
2 representation,J•Js is equal to2Ns/4 for isomultiplets
with I5(Ns11)/2, and (Ns12)/4 for isomultiplets with
I5(Ns21)/2. For spin-32, J•Js equals 23Ns/4,
2(Ns26)/4, (Ns18)/4 and 3(Ns12)/4 for the
I5(Ns13)/2, (Ns11)/2, (Ns21)/2 and (Ns23)/2 isomul-
tiplets, respectively. Thus, the baryon mass difference

D85M8uê,ns ,ı2M8uêext ,nsext ,ıext ~A6!

is diagonalized by the spin, strange quark number, and isos
pin projection operators.

APPENDIX B: FLAVOR-27 NONANALYTIC MASS
SPLITTINGS

This appendix provides additional formulae for the calcu-
lation of the flavor-27 baryon mass splittings from Fig. 6.
The functionF(m,D) defined in Eq.~4.23! is given by@47#
ra-

ediately
24p2f 2F~m,D,m!55 DS D22
3

2
m2D lnm2

m2 2
8

3
D32

7

2
Dm212~m22D2!3/2Fp

2
2 arctanS D

Am22D2D G , uDu<m,

DS D22
3

2
m2D lnm2

m2 2
8

3
D32

7

2
Dm22~D22m2!3/2lnS D2AD22m2

D1AD22m2D , uDu.m ,

~B1!

where finite terms with mass dependenceD3 andm2D have been retained. ForDsÞ0, there is a chiral logarithmic contribution
to the flavor-27 combination proportional toDDs

2 , as well as a finite term. ForD50, the function reduces to

F~m,0!5
m3

24p f 2
. ~B2!

The remainder of the Appendix is devoted to evaluating the flavor-27 baryon operator

1

Nc
@Ai8P 1

2
Ai8I ~D 1

2
!1Ai8P 3

2
Ai8I ~D 3

2
!#, ~B3!

using spin projection operators.
For Nc53, the baryon axial currentAi8 has a 1/Nc expansion in terms of the four operators of Eq.~3.16!. The flavor-27

baryon operator product containsn-body operators,n.Nc , which are complicated anticommutators of the one-body ope
tors. Each of these operators contains two flavor octet one-body operators, which each may be eitherT8 or Gi8; all remaining
one-body operators in the operator product are spin operators. Operator reduction of these spin operators is imm
possible using spin projection operators. The following observations facilitate this reduction:~i! Ai8P êA

i8 is purely diagonal;
~ii ! Ji is purely diagonal;~iii ! $Ji ,Gi8% is purely diagonal, and$Ji ,Gi8%52JiGi852Gi8Ji since @Ji ,Gi8#50; and ~iv!

($J2,Gi8%2 1
2 $Ji ,$Jj ,Gj8%%) is purely off-diagonal, since the second term subtracts off the diagonal component of$J2,Gi8%.

Thus, this operator reduces toP 1
2
$J2,Gi8%P 3

2
1P 3

2
$J2,Gi8%P 1

2
, which can be replaced by92 (P 1

2
Gi8P 3

2
1P 3

2
Gi8P 1

2
).

Using the above observations, it is straightforward to show that

1

Nc
Ai8P 1

2
Ai85

1

Nc
P 1

2
Gi8P 1

2
Gi8P 1

2 S a1216
1

Nc
2a1b319

1

Nc
4b3

2D
1

1

Nc
P 3

2
Gi8P 1

2
Gi8P 3

2 Fa1219
1

Nc
2a1c31S 92D 2 1

Nc
4 c3

2G1
1

Nc
P 1

2
T8P 1

2
T8P 1

2 S 34 1

Nc
2b2

2D
1

1

Nc
2 ~P 1

2
Gi8P 1

2
JiT8P 1

2
1P 1

2
JiT8P 1

2
Gi8P 1

2
!S a1b213

1

Nc
2b2b3D ~B4!

and
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1

Nc
Ai8P 3

2
Ai85

1

Nc
P 3

2
Gi8P 3

2
Gi8P 3

2 S a12130
1

Nc
2a1b31225

1

Nc
4b3

2D
1

1

Nc
P 1

2
Gi8P 3

2
Gi8P 1

2 Fa1219
1

Nc
2a1c31S 92D 2 1

Nc
4 c3

2G1
1

Nc
P 3

2
T8P 3

2
T8P 3

2 S 154 1

Nc
2b2

2D
1

1

Nc
2 ~P 3

2
Gi8P 3

2
JiT8P 3

2
1P 3

2
JiT8P 3

2
Gi8P 3

2
!S a1b2115

1

Nc
2b2b3D . ~B5!
o

t

s

p

The flavor-27 mass combinations, the Gell-Mann–Okub
combination of spin-12 octet baryons,

3
4L1 1

4S2 1
2 ~N1J! ~B6!

and the equal spacing rule of the spin-3
2 baryons,

2 4
7D1 5

7S*1 2
7J*2 3

7V ~B7!

are given by

2
1

Nc
@P 1

2
Ai8P 1

2
Ai8P 1

2
I ~0!1P 1

2
Ai8P 3

2
Ai8P 1

2
I ~D!#

~B8!

and

2
1

Nc
@P 3

2
Ai8P 3

2
Ai8P 3

2
I ~0!1P 3

2
Ai8P 1

2
Ai8P 3

2
I ~2D!#,

~B9!

respectively, where the overall minus signs occur because
baryon mass term in the Lagrangian is negative. Each of
baryon operators appearing in Eqs.~B8! and ~B9! can be
obtained from Eqs.~B4! and ~B5!.

The (0,27) operator basis consists of two operator
$T8,T8% and$T8,$Ji ,Gi8%%. The above reduction has left one
additional operator structure, the product of twoGi8’s. The
flavor-27mass splittings are evaluated using the relations E
~3.67! for T8 andGi8. For the spin-12 baryons,

P 1
2
$T8,T8%P 1

2
52 3

2 ,

P 1
2
$T8,$Ji ,Gi8%%P 1

2
52 3

2 , ~B10!

on the Gell-Mann–Okubo combination. The product of tw
Gi8’s with an intermediate spin-12 baryon,

P 1
2
Gi8P 1

2
Gi8P 1

2
52 1

16 , ~B11!

is obtained by evaluating the operator

P 1
2
JiGi8P 1

2
JjGj8P 1

2
5 3

4P
1
2
Gi8P 1

2
Gi8P 1

2
~B12!

on the Gell-Mann–Okubo combination. The remaining o
erator, the product of twoGi8’s with an intermediate spin-32
baryon is readily obtained using the (0,27) operator identity
@17#

$Gi8,Gi8%5 1
4 $T8,T8%, ~B13!

which implies that
the
he

,

q.

o

-

P 1
2
Gi8P 1

2
Gi8P 1

2
1P 1

2
Gi8P 3

2
Gi8P 1

2
5 1

4P
1
2
T8T8P 1

2
.

~B14!

Thus,

P 1
2
Gi8P 3

2
Gi8P 1

2
52 1

8 . ~B15!

Using these matrix elements, one obtains the nonanalytic
contribution to the Gell-Mann–Okubo mass splitting, Eq.
~4.33!.

The evaluation of the operator products for the spin-3
2

baryons is similar. For the spin-3
2 baryons,

P 3
2
$T8,T8%P 3

2
523,

P 3
2
$T8,$Ji ,Gi8%%P 3

2
52 15

2 , ~B16!

on the equal spacing rule flavor-27 combination. The matrix
element

P 3
2
Gi8P 3

2
Gi8P 3

2
52 5

8 , ~B17!

follows from the evaluation of

P 3
2
JiGi8P 3

2
JjGj8P 3

2
5 15

4 P
3
2
Gi8P 3

2
Gi8P 3

2
~B18!

on the equal spacing rule mass combination. The remaining
operator is determined using the identity

P 3
2
Gi8P 3

2
Gi8P 3

2
1P 3

2
Gi8P 1

2
Gi8P 3

2
5 1

4P
3
2
T8T8P 3

2
,

~B19!

to be

P 3
2
Gi8P 1

2
Gi8P 3

2
5 1

4 . ~B20!

Using these matrix elements, one obtains the nonanalytic
contribution to the flavor-27 equal spacing rule mass split-
ting, Eq. ~4.34!.
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