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Chiral Lagrangian for baryons in the 1/N. expansion
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A 1/N. expansion of the chiral Lagrangian for baryons is formulated and used to study the low-energy
dynamics of baryons interacting with the pion nongt K, 7, and ' in a combined expansion in chiral
symmetry breaking and M. StrongCP violation is included. The chiral Lagrangian correctly implements
nonet symmetry and contracted spin-flavor symmetry for baryons in the Nydienit. The implications of
nonet symmetry for low-energy baryon-pion interactions are described in detail. The procedure for calculating
nonanalytic pion-loop corrections to baryon amplitudes in thd, léxpansion for finiteN; is explained.
Flavor27 baryon mass splittings are calculated at leading order in chiral perturbation theory as an example.

PACS numbes): 11.15.Pg, 11.36:j, 12.38.Lg, 14.20-c

I. INTRODUCTION order 1N.. It is important to emphasize thét.1) is a sym-
metry of the planar approximation of QCD dynamics only
Although it is by now well established that the theory of andnot of the QCD Lagrangian itself. Consequences of pla-
the strong interactions is quantum chromodynamics, firshar flavor symmetry include Zweig’s rule and the formation
principles calculations of the spectrum and properties of hadof ideally mixed meson nonefin the SU3) flavor limit] at
rons are not possible because the theory is strongly coupledading order in M, [6]. Planar flavor symmetry is often
at low energies. A number of different methods have beergjied “nonet symmetry” in the literature for this reason.
used to extract low-energy consequences of QCD. One of the The combined use of chiral perturbation theory and the

oldest methods is chiral perturbation thed®] which ex- )\ expansion can constrain the low-energy interactions of
ploits the symmetry of the Q(_:D Lagrangian under(Sy hadrons with the pion nonet, K, 7, and 7' more effec-

|>.< f#@)RT( U(ld)V tr?jnsforrt'?]atllqnst ?r? ttr;ﬁ three l:lavors of tively than either method alone. An effective Lagrangian de-
Ight quarksu, d, andsn e fimit that the quark masses scribing the spectrum and self-interactions of the pion nonet
my, My, andms vanish. Chiral symmetry is spontaneously was constructed some time agb-9]. The derivation of this
broken to the vector subgroup &) > U(1)y by the QCD g./NC chiral Lagrangian led to a number of important theo-

vacuum, resulting in an octet of pseudoscalar Goldston tical it ing the OCD land t
bosons, the pions. A perturbative expansion in the pion moLcucal resulls concerning the QCD vacuum angjland to a

menta and the explicit chiral symmetry-breaking parameterSCnSiStent picture for phenomenology 10] associated with

m; over the scale parameter of chiral symmetry breakingn® resolution of the W) , problem[11,12. Two results de-
A, leads to flavor symmetry relations among hadronic amS€/ve special mention here. First, the phenomenological
plitudes which are valid to a given order in chiral symmetry@nalysis proved that the parameter is close to zero in QCD
breaking. [7,8]. Second, the analysis showed thatghwhich is pri-

A second method which has been important in the undermarily an SU3) flavor singlet(in violation of ideal mixing
standing of low-energy QCD hadron dynamics is thsl .1/ and which has a mass much larger than the pion octet is
expansion2]. This method promotes QCD to a S\J) non-  accommodated for reasonable values of paramgférdn-
Abelian gauge theory, wheté, is the number of colors. The derstanding these features of theéis nontrivial because the
1/N, expansion has been used primarily to derivél .1/ Phenomenology involves an interplay between effects sup-
power counting rules for hadronic amplitudes-4]. For fi- ~ pressed bym;/A, and 1N,.
nite and largeN,, planar diagrams dominate the dynamics. In this paper, a N. chiral Lagrangian for the lowest-
Each quark loop is suppressed by one factor ®f.1and  lying baryons is constructed. The Lagrangian describes the
nonplanar gluon exchange is suppressed by two factors dfteractions of the spig-baryon octet and the spkibaryon
1/N,. The suppression of quark loops in thé\l/expansion decuplet with the pion nonet. The formulation of théNd/
is particularly important for processes involving hadrons,paryon chiral Lagrangian relies upon recent developments in
since it implies that diagrams of leading order in th&ld/ the study of the spin-flavor structure of baryons in thi:1/
expansion contain no quark-antiquark pair creation and arexpansior[13—29. In the largeN, limit, the baryon sector

nihilation. Thus, planar QCD has a flavor symmesy of QCD possesses an exact contracted spin-flavor symmetry
algebra[13,30. For finite N., corrections to the larghk;
U(l)qi X U(1)c—]i (1.7 limit are parametrized by W.-suppressed operatdrk3,14.

Consistency conditions determine which operators are al-
which allows independent rotations on each quark flavor antbwed at any given order in the N/ expansion. Théspin
antiquark flavor and implies the separate conservation of the flavor) structure of the M. expansion for baryons is
number of each quark flavor and of each antiquark flavomanifest in the baryon chiral Lagrangian presented here. In
(light or heavy. The planar QCD flavor symmetr§l.1) is  addition, planar QCD flavor symmetry is implemented at
broken at first subleading order due to a single quark loop ofeading order in M., and violated at first subleading order.
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Planar QCD flavor symmetry leads to a number of new rethe QCD Lagrangian can rotate part or all of this angular
sults, such as the formation of flavor nonets among baryodependence among tt@‘:‘wéa/‘” term and the phase of the
flavor octet and singlet amplitudes at leading order inquark mass matrix. Let us adopt the convention in which all
1/N.. The consequences of planar QCD flavor symmetry ar@) dependence initially resides in the quark mass matrix.
examined in detail and are entirely new to this work. Planamyith this convention, the pion nonet chiral Lagrangian is
QCD flavor symmetry follows from the M expansion given by
alone, so the results of this symmetry for baryons do not

depend on the chiral Lagrangian framework and are valid in 2

general. StrongCP violation enters the baryon chiral La- &> 7 Saust_ 2|1 S _[nsTt ’
grangian in the same manner as earlier treatmi@tts 34. o=y | 19, 20"% NJZTr(mE In2")

Finally, the issue of nonanalytic meson-loop corrections to

baryons amplitudes is examined. A number of subtleties arise +bTH( # S+ 25T+ i(Tr§5 )24 ...

in the calculation of loop corrections at finité,. The pro- a d N¢ a '
cedure for computing loop calculations using operators at 2.2

finite N is explained. The group theoretic andNl/structure
of these corrections is explicit in this method. - [—
The paper is organized as follows. A presentation of thevhere./Z is the quark mass matrix ark=e“®"'= depends
pion nonet chiral Lagrangian is given in Sec. Il to set nota-nonlinearly on the pion nonet fiedb= m®\/2+ 5'1/\/6 di-
tion. Readers familiar with the i}, chiral Lagrangian for the vided by f.=93 MeV. TheA® are the eight Gell-Mann ma-
pseudo Goldstone bosons may skip directly to Sec. IIl andrices andl is the 33 unit matrix. Thus, the octet compo-
refer to Sec. Il only for definitions of the meson nonet field nent of® is given by
® and strongc P parameters. Section Il presents th&ll/
baryon chiral Lagrangian. The baryon chiral Lagrangian is
formulated for arbitrary finité\. in terms of the I, opera- — % —y at K+
tor expansion for baryons. Planar QCD flavor symmetry is V2 J6
imposed on the Lagrangian at leading order iNJl/ The
1/N. baryon chiral Lagrangian fdl.=3 is compared to the il T - — 'y KO
chiral Lagrangian for the spii-octet and spirg decuplet 2 V2 V6
baryons with no M, expansion. Section IV addresses the
computation of nonanalytic corrections using theN.Jl/ K~ KO -—9
baryon chiral Lagrangian. The flav@i# nonanalytic contri- V6
bution to baryon masses is computed to illustrate the method. (2.3
An understanding of the accuracy of the Gell-Mann—Okubo
formula for baryon octet masses is gained from this compuy,
tation. Section V considers the implications of2) planar
QCD flavor symmetry for S{B) breaking of the baryon
1/N. expansion. Conclusions are presented in Sec. VI.

2id/f

nder SU3), X SU(3)g transformationsy—L3R". Equa-
tion (2.2) is the most general Lagrangian consistent with chi-
ral and planar QCD flavor symmetry and violation, to second
order in the derivative expansion and to lowest nontrivial
order in. 74 and 1N.. The term proportional to the param-
Il. PION CHIRAL LAGRANGIAN eterb is the usual quark mass term of the pion Lagrangian
which explicitly breaks S(B), X SU3)g— SU(3). The a
term, the anomaly term, breakg1), and is explicitly order
1/N, since the anomaly involves a single quark loop. Bhe
term violates planar QCD flavor symmetry. Théerm splits

f, from f_. Thus, thec term violates planar QCD nonet

where the pion Lagrangian describes the self-interactions Q?grrpnrge;%’sgrvi Ifhs)z%lsltxgé?;:pwg% ggr?a:hggg nf(lja(\:/or

the pseudo Goldstone boson nonet. In order to calculate i . . .
i . o . mmetry. Th ramet n re dimensionfula i
chiral perturbation theory to nontrivial orders in theNl/ Ey etry. The parametess andb are dimensionfula is

expansion for baryons, it is necessary to understand the
1/N. chiral Lagrangian of the pion sector as well. This sec-
tion contains a presentation of the pion none¥l dthiral
Lagrangian, as originally derived by di Vecchia and Ven-
eziano[7] and Witten[8]. The inclusion of stron@P vio- %
lation in the baryon sector involves making the same trans- 32m*
formations on the baryon Lagrangian as on the pion

Lagrangian, so it is useful to present a self-contained derivan the QCD Lagrangian as well as the phase of the quark mass
tion. Readers already familiar with the piorNL/chiral La- ~ matrix, such thatf= 6,+arg(det/Z;). Under Ul), transforma-

The 1N, chiral Lagrangian describing the interactions of
baryons and low-momentum pions has the form

L= Zpion Zbaryon 2.9

IFor intermediate situationf32], 6 dependence appears in the
term

a ~ap,v ~a 1 apo
G2,G¥*, G2 =3¢,,,,G¥,

grangian may proceed directly to Sec. IlI. tionsR=L"=e'*"? for F light quark flavors,
It is well known thatCP violation enters the QCD La- bo— b+ Fa, Mq—e ' 7y,

grangian through the vacuum angle paramétewhich is a
physical observable of the theory(1), transformations on leaving @ invariant.
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O(A?) andb is O(A), whereA is a hadronic scale. The _ a
parametec is dimensionless. Finally note that the pion La- mei3|n¢i=N—< -2 ¢j)- (2.10
grangian(2.2) is of the form ¢ !

The solution of Eq.(2.10 for a given 6 determines the

N X 24 angles¢; as a function ofd. Solutions of Eq.(2.10 for
=~ N,/ (2.4 different values off are discussed in detail in Ref,8].
¢ It is more physical to reexpress the Lagrangian in terms of
as required by largét, power counting rules for mesons, @ = field with vacuum expectation valugX)=I; this
since f N\/N—c- It will often be convenient to perform the vacuum realignment is performed by making the substitution
rescalingf ,— N.f to keep allN.-dependence manifest. = (33 2.10)

Recall that alld dependence of the theory presently re-
sides in the quark mass matrix/,, so #=arg(det7,). By  in Eq.(2.7), so that
performing SU3) X SU(3) g transformations, the mass ma- )

trix can be written in the form fo

, a
Lpion= | Tra, 3T ==

C

i 2
_
6+ 5Tr(In3.— InET))
M=, (2.5
where.7=diag(m, ,mq,m) is real, since all terms in La- '
grangian(2.2) are invariant under S@3) X SU(3) trans-
formations except for the quark mass terms which violate (212

_ __ C
HOTH S+ T8N + (o (Tr819,5)%+ -
c

chiral symmetry explicitly. Now remove the phase by \yhere
performing a W1) , transformation:
S e 05y, 2.6 =.7(3) = diag me?) (2.13

: . . . and
All terms are invariant under this transformation except for

the a term and terms containing the quark mass matrix, so _
the Lagrangian becomes 0=( 0—2 d)i). (2.19
f2 —_ _ a i 2 Usi L .
& _.m oSt 4 ! T aST sing the minimization equatiof2.10, the mass can be
Z pion Z Tro, 2o"% N, 0+ 2Tr(|n2 Inx") rewritten as
S +5T 1+ S (15T 392 e w2l L
O Z(Z4EN]+ - (TrE19, %)%+ -+ |, M= 2O +ig (2.19
c c
27 where
where the# dependence of the Lagrangian is now manifest. () =diag m;cos,). (2.16

Lagrangian(2.7) is the chiral Lagrangian with the conven-

tion that no# dependence resides in the quark mass matrixJsing Eq.(2.15 one obtains the final version of the pion
The %, field spontaneously breaks the &Jchiral sym-  Lagrangian:

metry down to its diagonal subgroup. The vacuum expecta-

tion value ofZ is determined by minimization of the poten-

tial of the pion Lagrangian. The potentisl(3) is given by

minus the nonderivative terms in the Lagrangian. Since the

real mass matrix# is diagonal, the minimum ok is also T Z(0)(S+3T-2)]+ i(TrETa )2

diagonal, so one looks for a solution of the form N¢ a

2

w

4

a (i 2
Trg, S+ — N—<§Tr(ln2 - InET))

c

Z pion—

< af
(e 0 0 i [ETHE 5N = Tr(InE —InEH]+- |,
(3)=| 0 €% o0 | 2.8 c
0 0 e (217
where a constant term has been dropped relative to Eq.
The potential as a function of thg, is (2.12.

The observed spectrum and mixing of the pion nonet can
2 be understood using Lagrangiéhl?) if the parameters sat-

> ¢’i) } sty [7]
(2.9

f2 a
V()= 77| =2 2bm cospi+ -

a
bm,,bmy<bmy<—. (2.18
Minimization of the potential leads to the equations ! Nc
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FIG. 1. SU(F) spin-flavor representation for ground-state 1 2 1
baryons. The Young tableau hils boxes.

In theuu, dd, andss basis, the neutral meson mass matrix is
given by 1 2 2 2 2 1

m,COSpy 0 0 a 111 1 2 2 2 2 2 2 1
b 0 MgCOShy 0 +N—c 11 1}, T 2 2 2 2 2 2 2 1
0 0 MCOShs 1 11
(2.19 1 2 2 2 2 2 2 2 2 1

to leading order in explicit chiral symmetry breaking and
1/N,. In the chiral limitm,—0, the ' is a massive S(B) FIG. 3. Weight diagram for the SB) flavor representation of
singlet with massrn2,= Fa/N., and the octet mesons are tlhe spin% baryons. The long side of the weight diagram contains

exact massless Goldstone bosfTis Evgléﬁtsl) weights. The numbers denote the multiplicity of the

Ill. BARYON CHIRAL LAGRANGIAN 1

. . . , Caco=2 Cinygi=1Cn» 3.1
This section formulates a M{ baryon chiral Lagrangian n Ne
for N, large, finite, and odd. The Lagrangian is first pre-
sented in the flavor symmetry limit. Explicit flavor symmetry where the operator basis, consists of polynomials in the
breaking terms involving the quark mass matrix are therspin-flavor generatorsi, T2 andG'?. The operator coeffi-
added to the Lagrangian. Stro@ violation enters the cientsc,(1/N;) have power series expansions itNd/be-
baryon chiral Lagrangian through these terms. The baryoginning at order unity.

chiral Lagrangian is written in terms of theNy/ (spin ® The problem of finding a complete and independent set of
flavor) operator expansion for baryons. The structure of thisoperators for any spin-flavor representation was solved in
operator expansion is reviewed below. Ref.[17]. The basic building blocks of the expansion are the

The (spin® flavor) 1/N, expansion for baryons organizes zero-body SU(E) identity operatorl and the one-body op-
the lowest-lying baryon states into the completely symmetrieerators)', T2, andG'? which satisfy the SU(E) commuta-
SU(2F) representation shown in Fig. 1. Under @J ® tion relations. Because antisymmetric products of these op-
SU(F) symmetry, this representation decomposes into @rators can be reduced using the commutation relations, one
tower of baryon states with spirs ... ,N./2 in the flavor only needs to consider operator products which are com-
representations displayed in Fig. 2. The weight diagrams ofletely symmetric in noncommuting operators. In addition, it
the flavor representations of the sgimnd spin3 baryons for  suffices to keep polynomials through ordir for the lowest-
F=3 are given in Figs. 3 and 4, respectively. Rég=3,
these flavor multiplets reduce to the baryon octet and de-
cuplet, but for N.>3, the multiplets contain additional
baryon states which do not exist fol,=3. Because of the
complexity of the flavor representations fer-2, it is easier 1 2 2 2 1
to focus on the operators than the states.

Any QCD operator transforming according to a given
SU(2) X SU(F) representation has an expansion in terms of 1 2 3 4 3 2 1
n-body operators of the form

FIG. 2. SUF) flavor representations for the tower of baryon
states withJ=3, 3, ..., N/2. Each Young tableau ha§ boxes.

FIG. 4. Weight diagram for the SB) flavor representation of
the spin% baryons. The long side of the weight diagram contains
2The effects of higher order terms on a leading order bound on thg(N.—1) weights. The numbers denote the multiplicity of the
mass ration/ ' [35] have been considered recently in R&6]. weights.
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lying baryons. There are a number of identities among the o , _ O)\a )
polynomials of order less than or equalNg which further veE={.7'|| gy >4 2, (3.9
reduce the operator basis. The complete set of identities were QcD
derived in Ref[17] using ‘quark operators while the flavor singlet pion combination
. s
J=q' §®I)q (1,0, 21
Tr| 70— (3.7
\® V6
a_ ~t _
T=q (I® 2 )q (0.8), (32 couples to the flavor singlet baryon charge
O_i a |
ia_ ot | = p
G"%=q (?(X)? qg (L8). V0=<.ﬁ (qyoﬁq) ﬁ> (3.8
QCD
This paper also uses the quark representation of thig 1/
operator expansion for baryons. Equivalent results can b&h€ baryon vector charges equal
obtained in the Skyrme representation. V02—, 0Ta_Ta
A. Lagrangian in the flavor symmetry limit 1 1
L VO0=p%—N.=—=N, (3.9
In the largeN, limit, baryons have masses of ordid, /6 /6

and become very heavy relative to mesons with masses of

order 1. The M. baryon chiral Lagrangian is formulated to all orders in the M, expansion. The’=1 flavor octet

treating baryons as heavy static fields with fixed velocityaxial vector pion combination couples to the flavor octet
v# [37-39. The 1N, expansion provides a systematic ex- haryon axial vector current

pansion parameter for this procedure. The followin®l 1/
_ A%
PN
QcCD!

chiral Lagrangian is written in the rest frame of the baryon, i .
which is the natural frame for théspin ® flavor) operator A= T

whereas the flavor singlet axial pion combination couples to
the flavor singlet baryon axial vector current

ﬁ> , (3.10
expansion. The generalization to an arbitrary velocity frame
is straightforward.

The 1N, baryon chiral Lagrangian for arbitrafy, is of

the form

;,%baryon: |go_ M hypen‘ine+ Tr(./Zi)\a)Aia Ai ={ % a,yl ,ysl_q V2w (311)

V6
21 QCD
+Tr| A — A+, (3.3 . ) ) . )
6 The ellipses in Eq(3.3) denotes higher partial wave pion
_ couplings which occur at subleading orders in the 1éx-

with pansion forN.>3. At leading order in the N, expansion,

0= 01+ Tr(77 O\ Ta+ LTr( 701 )N, 1. (3.4 'lt\r:e[i)l?(jn couplings of baryons are purglywave for any

c .

The notation of Eqs(3.3) and(3.4) is very compact: each The baryon chiral Lagrangian describes the interactions of

term involves a baryon operator. The baryon kinetic energyl® Pions and baryons in terms of QCD baryon operators.
term is proportional to the spin-flavor identity eleménthe  cach of these operators has an expansionhy af the form

hyperfine baryon mass operator describes the spin splitting%q' (3.). .
of the baryon tower. Pion fields appear in the chiral Lagrang- " the limit of exact SU3) flavor symmetry, the baryon
ian through the vector and axial vector combinations mass operator is defined by

770=3(£°¢"+ £'9%9), M=(7"| #qcol

2, (3.12

i 4 toi where . 7ocp is the QCD Hamiltonian in the chiral limit
A =5(EVIE-EV'Y, (3.5  m—0. The baryon mass operator transforms as a (0,1) un-
der SU2) X SU(3) symmetry. The M, expansion for a

which depend nonlinearly on the field=€'®f=. The vector (0,1) QCD operator is of the fori4,15,20,22

pion combinations couple to baryon vector charges: the fla- N1 1
vor octet pion combination couples to the flavor octet baryon 0.1 0,1 n

1 + | Rl — . .
chargd M =m Nl n:§2’4 M) NQ‘lJ (3.13

The coefficients m?,’& are dimensionful parameters of
3The subscript QCD is used to emphasize that the quark fields a®(A). The first term in expansiof8.13), the overall spin-
QCD quark fields, not the quark creation and annihilation operatoréndependent mass of the baryon multiplet, is removed from
of the quark representation. the chiral Lagrangian by the heavy baryon field redefinition
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[37]. The spin-dependent terms in Ed3.13 define

Miyperiines Which appears explicitly in the Lagrangian. The
hyperfine mass expansion reduces to a single opdrbdor
1 2
M= m(z) N, —J°, (3.19

FIG. 5. Planar QCD flavor breaking at ordeNl/due to a single

for N.=3. . ~ quark loop.
The 1N, expansions for the baryon flavor octet and sin-

glet axial currents were derived in R¢fL7]. The 1N, ex-

i X R where the symmetry of the baryon flavor tensors is dictated
pansion for the (1,8) baryon axial current is given by

by the Young tableaux of Fig. 2. The pion combinati¢8%5)

N, 1 N, are unaffected by vacuum realignmegtll), so the SU3)-
Ald— gl8gia L iay oia symmetric baryon chiral Lagrangian contains no str@g
LES 2 oG ND~ N 2 C“‘ INDTET violation.
(3.195 Planar QCD flavor symmetry further constrains the pa-

rameters of the N. baryon chiral Lagrangian. In the next
where thef"’1 are diagonal operators, with nonzero matrix subsection, pIanar QCD flavor symmetry is imposed on the
elements onIy between states with the same spin, and thgaryon chiral Lagrangian. In the following subsection, the
n 2 are purely off-diagonal operators, with nonzero matrixchiral Lagrangian for the baryon octet and decuplet is com-
eleme_nts only between states with different spin. The opergpared with the M, baryon chiral Lagrangian &= 3.
tors /% and }* are defined in Ref[17]. Equation(3.15

reduces to 1. Planar QCD flavor symmetry
1 Planar QCD flavor symmetry implies that the baryon
Aiaza(lf)‘eihr b(l2 — 1y b<3) Z{Ji,{Ji,GJ’a}} 1/N. chiral Lagrangian possesses a SU$2)(3) (spin ®
"Ne Ne flavor) symmetry at leading order in theNl/ expansion. The

1 symmetry is broken at first subleading order by diagrams
+C(135)3N {32 Gla}_ {J' {JI GJa}} (3.16 with a single quark loop, as shown in F|g. 5.

c Planar QCD flavor symmetry constraifg, .y, by form-
ing a nonet baryon axial vector current out of the singlet and
octet baryon axial vector currents at leading order in the
1/N, expansiorf

for N;=3. The 1N, expansion for the (1,1) baryon axial
current is given by

A= E b<n>Nn n: (3.17 A=A+ O(LIN,). (3.29

where; =J' and 7, , ,={J%,&.}. Equation(3.17 reduces  This constraint relates the coefficients of teexpansion to
to those of theA'? expansion in the limiN.— . The easiest
way to impose Eq(3.2]) is to replace the operator coeffi-

cients of the singlet axial vector expansion E8.17) b
Al=blly +b<3)7{J2J} (3.18 g P E817 by

1

for Nc:3- b(n) b(n)+ N—b(ln%, (3-22

Lagrangian“p,nyoniS the most general Lagrangian invari- ¢
ant under SIB) | X SU(3)gX U(1)yX U(1) 5 chiral symme-
try and contracted spin-flavor symmetry. The form of theWhere the coefficients with an overscore are determined by
Lagrangian factorizes baryon invariants from pion invariants€Xact nonet symmetry, and the remainders are unconstrained
explicitly, which is necessary because baryons transform ur@nd violate nonet symmetry at first subleading ordeéd.1/
der a larger symmetry than mesons in the laxgdimit. The ~ For arbitraryN., nonet symmetry implies
Lagrangian correctly relates baryon-multipion vertices using
chiral symmetry. Under chiral transformations,

— 1
blil=—(a} %), (3.23
§—LEUT=UERT, (3.19 N ).
whereU is a vector SIB)X U(1) transformation defined by
Eqg. (3.19. The flavor representations of the baryon spin —1,1:i 8 pL8).
tower transform asN.-index tensor representations under 3) \/g <3> <4>
U!
Ba1 - an -aNC_>E u“rBer ) “ay, (3.20 “The baryon vector current’® andV® form a flavor nonet to all

%, orders in the M. expansion.



1,8 1,8
bizj= \/5(2b<5)+ bis))

where the relative factor of {6 occurs because the ninth
flavor components oB'? andT? are related td' andN_1 by

i9_ ~T _i I_ =1 |
G"™=q ®\/—5 q \/—5‘] (1,3),
\/_6 \/—6 ‘ o .

Notice that the coefficients of the diagonal operatetsin

the singlet expansion do not depend on the coefficiei;lg

of the off-diagonal operators,* in the octet expansion. For
N.= 3, the nonet symmetry condltlons reduce to

S [<2b<3)) (329

where the second condition is modified because the four

body operator corresponding tql4) does not occur in the
operator basis foN,= 3.

It is important to stress that the nonet symmetry constraint
Eq. (3.2]) leads to a condition for each operator coefficient
in the singlet expansion since this constraint must be satisfied

for all spin states of the baryon towgrot just the states with
spins of order unity The fact that Eq(3.2]) is satisfied
operator by operator in the barydspin ® flavor) operator

expansion is consistent with the violation of planar QCD
flavor symmetry by single quark loop diagrams Fig. 5, since

this breaking is decoupled from the baryorNl/operator
expansion.

The final version of the N; baryon chiral Lagrangian
can be obtained by rewritingy,ayonin @ form which imple-
ments the constraints of planar QCD symmetry explicitly:

Zharyor™ 70 ~ Muypertingt Tr(-Z'\ A
+iTr fziﬂ Al+ (3.26
Ne V6
with
FO=31+Tr(70\HT?, (3.27)
wherea=1,...,9,\%=21/\/6, and the baryon one-body

operatorsT® andG'® are defined in Eq(3.24). Nonet flavor
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2. Comparison with octet and decuplet chiral Lagrangian

It is instructive to compare the N chiral Lagrangian at
N.=3 with the chiral Lagrangian for the baryon octet and
decuplet without a N. expansion. The flavor octet pion
couplings of the octet and decuplet are described by the chi-
ral Lagrangiar37]:

Fhayor=i TIBy (v 2)B, —iTH(v- AT, ,+ATET,,

+2DTrB, §4. 7, ,B,} + 2FTrB, . %, ,B, ]

+ (T By + By 2, T + 2T 4T

(3.28

whereD, F, 7, and.7 are the baryon-pion couplings and
A=m;—mg is the decuplet-octet mass difference. The octet
massmg has been removed from the Lagrangian by the
heavy baryon field redefinition. Flavor singlet barygh-
couplings can be incorporated into the chiral Lagrangian by
adding two terms:

2SgTr.7,TB, B, —25Tr. 2, Th 5T, .,  (3.29
where Sz and Sy are the singlet axial vector coupling con-
stants of the octet and decuplet, respectively.

There is a one-to-one correspondence between the param-
eters of the octet and decuplet chiral Lagrangian and the
coefficients of the M. baryon chiral Lagrangian dti.=3.

The mass parameters are related to thé, Ithass coeffl—
cients by

3m(0)+ m(z),

T=3mM0g+ F M), (330
so that

A= m(z) (3.3)

The flavor octet baryon-pion couplings are related to the co-
efficients of the 1N, expansion aN.=3 by

1,18

D=3zai,+5 b(3),

118

F=3a(1)+ b3+ sb(3),

r=—aq - (3.32

1.18
50(3) )

o= _ 3,18
7= —Fag)— b5~ 35 -

Notice that the purely off-diagonal operator coefficie@f;
contributes only to the octet-decuplet-pion coupling constant
¢, and that the diagonal operator coefficiebts contribute

only to the diagonal coupling®, F, and.7. In addition,

symmetry of the baryon-pion axial vector couplings is bro- b(2) is pure F, and does not contribute tD. The flavor
ken by the last term, which gives a nonet symmetry-breakinginglet baryon-pion couplings are related to the coefficients

contribution to the singlet current at relative ordeNJ/

of the 1N, expansion alN.=3 by
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The generalization of Eq3.37) to arbitrary N, for the

1
SBzT(b(li§+ i), spin- baryons also is of interest. Refererid®] defined the
6 pion octet couplings# and. /" of the spins baryons in

terms of the largeéN; baryon tensor with one upper index and
S, =~ (bLL+ Shid) (3.33 v=(N;—1)/2 lower indices. The Iegson of(B) symmetry is_
J6 (1) 7 6%(3)/r : that the use of baryon tensors with antisymmetric indices
lowered by the flavore symbol is to be avoided in the
The factor of 3 in the second relation occurs because th&/N. expansion; for generaN;, one should work exclu-
decuplet spin operator in E¢3.29 acts only on the spinor sively with N.-index baryon flavor tensors. It is straightfor-
portion of the spin3 Rarita-Schwinger field37]. The metric ~ ward to rewrite these invariants using thg-index flavor
of the spin-one portion of the spiield T cancels the tensor
minus sign of the decuplet term in E@.29.
Relations(3.30—(3.33 are valid forN,, set equal to three.
For arbitraryN,, the 1N expansions for baryons with spins
of order unity can be truncated:

Bailazasl---[an —1an ] (3.38

for the spins baryons. Planar QCD flavor symmetry relates
the singlet invariant of the spifibaryons to the octet invari-

) , ts:
M =miNcL, ants
1 S —1(// 20)+0 1) (3.39
. . . =—(_2—2./) —, .
AR=aliGia+ b(lé?—NcJ' e, (3.39 Y23 N

R where S, is the generalization of; for largeN. flavor
A'=bp)J, representations. Th®(1/N.) correction to Eq(3.39 is due
to violation of planar QCD flavor symmetfyReferencd15]

where Eqgs.(3.34) are valid up to terms of relative order proved that the ratio

O(1/N§) everywheran the flavor weight diagrams. The pa-

rameterb(s] produces deviations from 8) symmetry. In A1« 1
the limit N.— 3, Egs.(3.34) lead to the parameter relations A §+ N_c+o N_g , (340
Mg =M, where .7 and ./ are bothO(N,). Substitution into Eq.
_ 3.39 shows that the leading term cancels, so that
#=-2D, 7=3D-OF, 33y %9 g
1 2o 2 o2 (3.41)
Se= 55T 7~ 3N, ClNg) '

The implementation of flavor nonet symmetry on the axial 2 )
vector baryon-pion couplings raises an interesting subtletyVhere theO(1/Ng) correction depends on nonet symmetry

The spin3 baryon SU3) field with mixed symmetry is writ- Violation and on theD(1/N2) contribution ta./ 7. #. Refer-
ten as a tensor with an upper index and a lower index bygnce[17] showed that

using the flavor SI(B) e-tensor to replace two antisymmetric

. i . X ) 3 bl,8
upper indices by a single lower index: a=— 5( 1+ (fg) (3.42)
@ o (D
Bj=€g,sB°7°L. (3.36

N ) so Eq.(3.41) implies that the singlet axial vector current is
The octet tensoBy transforms in the same manner as thegrder 1N, relative to the octet current and that the normal-

three-index tenSdB”‘[Vﬁ] under SLQS) tranSformationS, since ization depends on the ratio b[léfi to a%ie) at |eading order.
the e-tensor is an invariant tensor under @Utransforma-

tions. The e-tensor, however, is not invariant undery
transformations, so replacirg®l”®! by Bj is not legitimate o ] _
when U3) flavor symmetry is present. Nonet flavor symme-  EXplicit flavor symmetry breaking enters the baryon chi-

try cannot be imposed on the baryon chiral Lagrangiarf@l Lagrangian through terms containing powers of the quark
(3.28 by simply promoting7’, and.Z, to nonet matrices Mass matrix. The leading Lagrangian with a single insertion
since the Lagrangian is written in terms Bf;. It is not of the quark mass matrix is presented in this subsection. The

difficult to work out the condition of nonet symmetry for the Singlét and octet components of these linear terms form a
baryon axial vector couplings usirgfl”): nonet at leading order in theN{ expansion due to planar
' QCD flavor symmetry. Vacuum realignment generates

Ss—3(3F—D), strongC P violating terms, which also form a nonet at lead-
ing order in the 1. expansion. Section Ill B 1 compares the

B. Lagrangian with quark mass flavor breaking

1
Sr—— 7. (3.37)

SThe invariant.s;, is O(1) even though# and./" are both
The consistency of Eq3.37) with Eq. (3.25 can be checked O(N,), so the correction to Eq3.39 is both of relative and abso-
using Egs(3.32 and(3.33. lute order 1N,.
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1/N. Lagrangian terms with one insertion of the quark mass

matrix to the octet and decuplet Lagrangian with ndl1/

expansion. Section Il B 2 discusses the implications of

nonet symmetry for the proton matrix elemép{mgss|p).

The leading Lagrangian with one power of the quark mass

matrix is given by

/baryon Tr((///E'F //TET)7) a0

+Tr

- _ _ a3
AW A )?) 3

+Tr

_ . _ 8
(g.//zg+§T.//zT§T)%).7/8, (3.43

where the singlet perturbation to the Hamiltonian

1 _
'7/0:\/€<'%W|(qQ)QCD|'%j>: (3.49
and the octea= 3,8 Hamiltonian perturbations
_A®
.%a=<.%” (q;q) %’> (3.45
QcD
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(ENE+ENEY= (e (0)E+E 7T(0)ET
af 1 .
_H%N_(E 20, (3.49

where. 7( ) and @ are defined in Sec. Il. The term propor-
tional to 6 violates strongCP.

Planar QCD flavor symmetry constrains the coefficients
of . Yba on- At leading order in the N, expansion, the co-
efﬂments of the singlet perturbation are related to the
a= 3,8 octet coefficients:

— 1
01_ 08

(O \/6

= (2b(2>+ 2b(3))

%

The normalization of the singlet perturbation deviates from
nonet symmetry at relative orderNy/.

The final version of the leading N/ chiral Lagrangian
containing explicit symmetry breaking is as follows. The La-
grangian

(3.50

/baryon Tr([fv/f(e)f-l-g ///T(e)flr]_)

Note that terms containing the pseudoscalar mass combina-

tion (&.#&— &7 #/T€M) are subleading in the M, expansion

and have been neglected. These terms are suppressed by one

factor of 1N. relative to the terms involving

(e.76+ € 7€) since baryon matrix elements of the

pseudoscalar QCD quark operators @el/N.).

The explicit symmetry breaking perturbations to the

baryon Hamiltonian have expansions ilN1/ The general

expansion of the singlet perturbation has the same form as

Eq. (3.13 and reduces to

T 0=b{5NC1+ b(z)N (3.46

+ 17
N—CI’

[L2(0)S+ 7 9)2*]%) 0

(3.5)

for a=3,8,9, respectCP. The strongEP violating La-
grangian is given by

61
/baryon_ 2b N o Ir (2 ET)_ Nz

° (352

‘af 1 s st |
+|%N—§Tr( - )%

for N.=3. The general expansion for the (0,8) perturbation

was derived in Ref[17],

N¢

1
3 _E bn)Nn 1~/n’ (3'47)

where 72=T?3, 22={J,G'3} and 7,2 ,={J? Z}. Equa-
tion (3.47) reduces to

Z/a—b(l)Ta+b(2)N {7, G'a}+b(3) 2{J2,Ta}
C
(3.48

for N.=3.

Vacuum realignment affects the quark mass terms, result-

ing in baryon-pion couplings which violate stron@P.
Equationg2.11) and(2.13 imply that the mass combination
appearing in Eq(3.43 is replaced by32]

for a=3,8,9. Both of these Lagrangians exhibit nonet sym-
metry at leading order in the M expansion. The second
terms in Eqs(3.51) and(3.52 represent planar QCD flavor
breaking of relative order W, for the singlet perturbation.

1. Comparison with octet and decuplet chiral Lagrangian

The quark mass terms of theNl/baryon chiral Lagrang-
ian can be compared to the quark mass terms of the octet and
decuplet chiral Lagrangian with noN{ expansion. Strong
CP violation is neglected in the following comparison.

To first order in the quark mass matrix, the chiral La-
grangian for the octet and decuplet baryons is given by

G = T (S + 3] Tr(BB) — & T Z(3 + ET)]TMT
+ b TrB{(ET ZET+ & 7€) B} +be TrB[ (& 7&T

+ENE) BI+CTHE ZE+ EnE)T,, (3.53
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wheres ando are the singlet quark mass parameters of theThe correction to this relation is orderN@'. Equation(3.61)

octet and decuplet, respectively. The paramegrand b is in excellent agreement with the experimental values

describe the flavor octet quark mass splittings of the baryo,m,~30MeV, bem,~—95MeV, and Zmy/3~150MeV

octet, whereas the parameterdescribes the flavor octet extracted in Ref.[42].

qguark mass splittings of the baryon decuplet. Planar QCD flavor symmetry relates the singlet quark
There is a one-to-one correspondence between the parammass parameters to the octet mass parameters:

eters of the octet and decuplet chiral Lagrangian and the

coeffiqients of the M, baryon chiral Lagrangian ati.= 3. o—1(3bg—bp), o——tc. (3.62

The singlet quark mass parameters are related to tNg 1/

singlet coefficients by The consistency 0f3.62 with Eq. (3.50 can be checked

using Egs(3.54 and(3.55.

o Lo, _
\/— 2. The proton matrix elementp|mgss|p)
1 Nonet symmetry among the linear quark mass splittings
o= 3p%ly = b ) (3.54) of the baryons has implications for the analysis of the proton
\/E © 2 matrix element(p|msss|p). The analysis of the linear in

mg contribution to this matrix element is discussed in this
The octet quark mass parameters are related to fiedbtet  subsection. The affect of contributions to the proton mass

coefficients by which are nonlinear in quark masses can be computed using
1,08 the methods of Sec. IV.
bp=3b), The proton matrix element of the strange quark mass op-
L .08 erator is obtained by differentiation of the proton mass with
be=3bi+ 5b0s) + 1005, (859 respect tom:

—3b0i— b3 — 2be3) -

_ am,
. . . . p|msss|p)=ms——. (3.63
Notice that the leading octet coefficieb;} is pureF and (plmsssi ® oms

does not contribute tby .
Relations(3.54 and (3.59 are valid forN; set equal to The standard chiral Lagrangian expansion of the proton mass
three. For arbitranN., the 1N, expansions of the singlet to linear order in the quark masses is
and octet perturbations can be truncated for baryons with
spins of order unity. The leading singlet truncation m,=mg— 20(M,+ My+mg) + 2(bg—bp)mg

7 °=b5Ncl (3.5 —2(bg+bp)m,+ nonlinear, (3.64

implies the parameter relation which implies that

o=0 (3.57 _
(p|mgss|p)=2(— o+ bg—bp)mg+ nonlinear.
up to a correction of relative orderN?. For thea=8 per- (3.69
turbation, the leading truncation is
Substitution of the nonet symmetry relation E§.62) leads
T 8= b(l) (358  to an exact cancellation of thy- term in the nonet symmetry
limit.
up to a correction of order B, since _t?e mass splittings | js instructive to study this cancellation in theNl/ex-
produced by the opera_ltor‘és and{J',G"} are both order ,angion, Expanding the proton mass to linear order in quark
unity in the 1N, expansiorj18]. Equation(3.58 leads to the i a5ses using the N chiral Lagrangian, and differentiation

parameter relations with respect tamg leads to
bF:_%CI bD:01 (359

which are valid at order unity in the N expansion. The ®A similar analysis applies for th&S=1 weak Lagrangian which
subleading truncation is responsible for hyperon nonleptonic decay. The octet and de-
cuplet AS=1 weak Lagrangian involves three parametéss,
0.8+8 i ~ig he , andh¢ which are in one-to-one correspondence with the three
=b T8+ by N, {‘] G} (3.60  coefficients of the M, expansion for7Z2532 [17]. The analogues

of Egs.(3.59 and(3.6]) for hp, hg, andh. are obtained. Equation
is valid up to a correction of order f . One linear combi-  (3.59 for hyperon nonleptonic decay was originally predicted in the

nation of the two parameter relations H8.59 survives at  chiral quark mode[43]. The experimental values of these param-
this order: eters extracted from the-wave decays at one-loop order in chiral

perturbation theory40,41] are consistent with these parameter re-
(bp+bp)=—3c. (3.61) lations.
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flavor 27 nonanalytic contribution to the baryon masses is
Ncb?i? presented in detail to illustrate the technique.
The Feynman rules for baryon-pion couplings can be ob-
tained from the M. chiral Lagrangian “p,ne, and
m+ nonlinear, ,z;,gﬁyon. The baryon propagator is given by inversion of the
quadratic terms in the Lagrangian. This inversion is compli-
(3.66 cated by the presence of the hyperfine and quark mass split-
tings. In the chiral limitm;—0, the baryon propagator is
diagonal in spin, and can be written as

1
mg+ §

where the relations

1
T8= " (Ng—3Ny), 17
2\/5( ) (kO_AJ)v (4-1)

. 1 A whereZ, is a spin projection operator for spi=j and

G'8=—=(J'-33y), 3.6 !
2\/5( s) ( 7) A _ B
1= M hypen‘infl\]zzj(] +1) M hyperfinelJz:Jext(J extt1) (4.2
have been used to evaluate proton matrix elements. The ) ) - .
nonet symmetry conditions E¢.50) result in an exact can- 'S the difference of the hyperfine mass spllttmg .fof spin
cellation among the singlet and octet quark mass contribu‘i:_J af‘d thbe external baryon. Fe-wave pion emission,
tions. Thus, the linear contribution tp|mss|p) is pro- ) 1S given by
duced entirely by violation of nonet symmetry at order 1
1/N. in the 1N, expansion, NG mf’él), Jex=1— 1,
C

+nonlinear, (3.68 A= 0, Jext=1: 4.3

_ 1

(plmsss|p)=0| <~

N. 1

_ —2im%, Jex=1+1,
where theO(1/N.) term represents W-breaking of nonet N¢

symmetry in the singlet channel. The above remarks gener- . . . . .
alize to arbitraryN, if the proton is identified with the at leading order N, in the 1N, expansion, with subleading

strangeness-zero baryon of the spitargeN, flavor repre- f[erms_begmnlng a_t order mﬁ _Eq_ugUon (4.1 sol\_/es th_e
sentation. The N, suppression of Eq3.68 occurs because inversion problem in the chiral limit in terms of spin projec-

the proton contains no strange quarks, so that the leadin n opera.tors. . : :
contribution to (p|mSs|p) comes from diagrams with a For arbitrary finiteN., the baryon tower consists of spins

single quark loop(Fig. 5) [23] in violation of planar QCD J=3.3, ... Nc/2. Each spin projection operator must sat-
flavor symmetry. isfy
It is conventional to rewrite Eq(3.69 in terms of the
sigma term =7,
o n="(p|uu+dd|p) Sy ?4=00 17, 44
=—2m(20+bp+bg)+nonlinear, (3.69 by definition. An explicit realization of these conditions is
given by
so that )
T3P
_ 1/mg , e e e (4.9
(pImsss|p)=mg(3be—bp) + 5 E)UWNJrnonlmear. e (37 =970

(3.70  where the projection operator for spi) is given by the

roduct over allJ,,=3%,2, ... N2 not equal toJ,. For
P J c )

Nonet symmetry among the linear quark couplings implies
y y g d Ping P gxample, the spig-and 2 projectors are given by

significant cancellation between the first term and the sigm

term. This cancellation explains sensitivity of central value
) : 15 35 N¢ [ N
of the proton matrix element to the precise valuesgy . J2— 7T J2— 7T Jo— > 7+1
Pl= ,
IV. NONANALYTIC CORRECTIONS 2 (3 153 35 3_NeNe .
4 4)\4 4 14 0212
The procedure for calculating nonanalytic pion-loop cor-
_rectio_ns u§ing thg N, baryon chiral _Lagrangian is exam- , 3)(., 35 , Ne(Ng
ined in this section. Aspects of this problem have been J 7 J 7 J 5 7+1
treated previously in Ref§13—15,19,22,24 The calculation Pz =
of nonanalytic corrections to baryon amplitudes in thi 1/ > [15 3)(/15 35 5 NefNe
expansion at finiteN introduces a number of issues which 4 4)\4 4] 14 212

have not been addressed before. A sample calculation of the (4.6
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Each of the projection operators Ed.5) is a polynomial of
degree N.—1)/2 in J2.

For N.= 3, there are only two spins in the baryon tower.

The spin projectors reduce to

PA==5E-%),
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is the T® quark mass difference of the propagating baryon
and the external baryon. Equati¢h1]) solves the inversion
problem in terms of strange quark projection operators.

The spinJ=j largeN. flavor representation contains
baryons with Ng=0,1,...,(N.+2j)/2 strange quarks.
Strange-quark number projection operators can be defined
for the spinj flavor representation in analogy to the spin

73=3(3-1), (4.7)  projection operators,
and the baryon propagator has the form EQl) with Hnéﬂs(Ns— ng) @13
I())=————, 4.1
0, Jex=1 s Hné;ﬁns(ns_ns)
Al= ©
2 —A, Jex=3, where the projection operator for, strange quarks is given
by the product over ah/=0,1, ... ,(N.+2))/2 not equal to
A, Jot, ns. For example, the zero and one strange quark projection
As= , 4.9 operators for the spip-baryons are given by
0, Jex=12,
N:.+2)
where (Ns=1)(Ns=2)- - INs— | —
— 0,1 — — R
A= N—Cm(z). (49) 2
Away from the chiral limit, quark mass splittings must be N (N—2)- - -[N _ ( Ne+2) ”
considered in the inversion of the baryon quadratic terms. P ss S 2 it
Baryon mass splittings which are comparable to the pion 71(1)= N1 2] (4.14
octet masses are to be retained in the baryon propagator. For (D=1 1= —

largeN, baryons, the leading hyperfine baryon mass splitting

is orderA/N. whereas the leading quark mass splittings are\ote that the projectors are different for each flavor repre-

order m;. For QCD withN.=3, these splittings satisfy the sentation with a definite spii=), since the allowed

hierarchy strangeness sectors of a lafgg-flavor representation de-
pends on its spin. Each strange-quark number projection op-

(4.10 erator for spinJ= is a polynomial of degreeN.+2j)/2 in

A
my ,Myg<<mg<—.

N s-
_ o ' For N.= 3, the spin; flavor representation contains bary-
OOHE!Y the leading quark mass splittings proportional toons with 0, 1, and 2 strange quarks, while the sitavor
bgi)Ts and the hyperfine mass splitting are comparable to theepresentation contains baryons with 0, 1, 2, and 3 strange
pion octet masses in QCD. Keeping these two splitting$yarks. Thes=1 strange quark projection operators reduce
amounts to the neglect of isospin-breaking quark mass splltt-0
tings and subleading quark mass splittings of onaefN, .
The T8 operator leads to spin-independent baryon mass split-
tings which are linear in the number of strange quarks. The
baryon propagator is diagonal in spin and strange quark

number and is given by

1
To(2)= 5 (Ns=1)(Ns—2),

71(3)= =Ny(Ne=2), @19
1770 (1)) 4.1 !
(K=4,-4,)" @ 72(3)= 5 Ns(Ns— 1),

where.%s(J) is theNg= ng strange quark projection operator

of the spinj flavor representation, angheglecting strong-
CP violation)

whereas thel=2 strange quark projection operators reduce
to

(4.12 Fo(2)=—%(Ng—1)(Ng—2)(Ng—3),

Ans: %b?i?(mu+ md_zms)(ns_ Ng ext)a
;’7)1(%): %NS(NS_ 2)(Ns—3),

"The leadingO(N,) terms in the quark mass perturbation&?,
a=0,3,8 are proportional to the baryon identity operat@nd do
not result in baryon mass splittings. AW(N;) mass terms must be
removed from the Lagrangian by the heavy field redefinition.

75(3)= = Ng(Ns—1)(Ns—3), (4.19

7)3(3) = %NS(NS_ 1)(Ns—2).
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3

/ . F(m)= g7 (4.19
FIG. 6. Feynman diagram responsible for fla2drbaryon mass ~ The flavor27 combination of this function,

splittings at leading order in the flavor breaking antl 1£xpan-

sions. [3F(m)—3F(K)+F(7)], (4.20

The baryon propagator has the form Hdg.11) with A, is highly suppressed relative to the singlet and octet combi-

given by plus and minus °  nations, and is numerically very small, of the order 4 MeV.
For comparison, the flavor singlet combination of this func-

Ag=3b05(my+mg—2my) (4.17)  tion is about 126 MeV, while the flavor octet combination is

about— 38 MeV. This suppression of the flav@i# combina-

for AS==1 transitions. tion is generic in chiral perturbation theory. It explains the

The generalization of the baryon propagator #g11) to  small violation of the Gell-Mann—Okubo formula for baryon
include all subleading quark mass splittings is provided inmasses, which 6.5 MeV, as well as the small flav@?

Appendix A for completeness. mixing of the vector mesongt4]. The suppression mecha-
nism also applies to other meson-loop corrections involving
A. Flavor-27 baryon mass splittings I12°, such as flavoR7 chiral logarithmic corrections to ver-
) I~ tices with
Flavor singlet and octet baryon mass splittings are preseni
in the 1N, baryon chiral Lagrangian. The flav@i# mass m2 m2
splittings of the octet and decuplet are calculable and F(m)= —zzm(—z)- (4.29
nonanalytic in the quark masses and baryon hyperfine mass 24w\

splitting at leading order in chiral perturbation theory. This
mass splitting arises from the Feynman diagram Fig. 6. Th
computation of the flavoP-7 component of Fig. 6 for finite
N¢, N.=3, is presented in detail in this section. Computa-
tions at largerN, are less interesting physically and more
complicated to extrapo_late tcNC_=3 becaus_e unphy_sical %mz—;—‘mﬁerZ:O. (4.22
baryons participate as intermediate states in loop diagrams 7 K

[13,14), and there are higher partial wave meson-baryon cou-

plings which occur at subleading ordgas’]. o the inclusion of baryon mass splittings in the baryon propa-
The loop diagram F,|g. 6 involves, K, andz emission  gaior |n this case, the Feynman integral is a nonanalytic
and reabsorption. Thg’ meson is not included in the 100p fnction of the baryon mass splittin as well as the meson

since it is not soft relative to the baryons in QCD. For de- 545 squared. The functidh(m,A) is defined by the inte-
generate heavy hadrons interacting with mesons, the diagraa}m ’

Fig. 6 depends on a functioR(m) of the meson masm,

which is obtained by performing the Feynman loop integra- B 11 d% i2(kh(—k))
tion. Neglecting isospin breaking, i.e., then{—m,) quark i6"F(m,A)= 2] Zm)? (R=m?) (K= A)
mass difference, the diagram depends on the fundtign) m
for three meson mass valué,m), F(K), andF(#), where 1o precise formula foF(m,A) is given in Appendix B.

the meson mass is denoted by its particle label. Any mesofye compytation of Fig. 6 is performed in this section using
loop integral with thg exchange of a single meson, in _vvh|chthe baryon propagator E¢4.1), which neglects baryon fla-

a meson of flavor is emitted and a meson of flaveris |5 mass splittings, since the generalization to the propagator
reabsorbed, can be written as a symmetric tensor with tw%q. (4.1 can be obtained immediately from this formula.

adjoint (octed indicesa andb. This symmetric tensor de- With baryon propagator Eq4.1), the flavor27 component
composes into flavor singlet, adjoirB)(andss (27) repre- ¢ the meson tensor is given by

he flavor27 chiral logarithm is numerically 0.035. Note

at theu dependence of the chiral logarithm cancels at lead-
ing order in the27 combination using the Gell-Mann—Okubo
formula for meson mass¢45,46

The computation of Fig. 6 is complicated significantly by

. (4.23

sentations:
ab_ 8 b8 _ 1 cab_ 3 4ab8~488
12— 1[3F () + 4F (K)+ F ()] 6% [57= (907 =5 50— 5d™ ™ (m K, m.4), 4.2
23
+Tf[%F<w)—F<K>—%F<n>]dab8 where
_ri _4

H[AF(m)— 2R (K)+F ()] (7, K,n,A)=[35F(m,A) 3F(K,A)+F(7],A)].(4 -

X (878508~ § 530 — 2(2"8(I888), (4.18
where the flavor singlet, octet, ara¥ tensors in Eq(4.18 8This suppression mechanism was originally noted in the study of
are proportional to flavor singlet, octet a@d linear combi-  the octet and decuplet masgdg], neglecting the pion mass. The
nations ofF (), F(K) andF (7). suppression of the flavdt7 combination is more significant when

For the Feynman diagram Fig. 6 with propagaittk®, the pion mass is retained.
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Neglect of theT® quark mass splitting\ affects only the Evaluation of the baryon operators yields
kaon loop graphs which involvAS==*1 transitions. The

generalization ofl(m,K,7,A) to I(mK,7,A,A) is ob- FA+33—3(N+E)

tained by the replacement

1 12+31 b+91b2+31 "
F(K,A)—=3[F(K,A+A)+F(K,A-Ag]  (4.26 NG| | 16T g N P2 T 1 N2 P2 T g N2 s
in Eq. (4.25. 1.,
The diagram Fig. 6 is given by the product of a baryon *t27 mbzbsﬁL Embs 1(0)
operator times the pion flavor tensor. Using the baryon ¢ ¢
propagator Eq(4.1), Fig. 6 is given by 1, 91 811 ,
1 | | + §a1+§N—galc3+ 3_2N_§C3 1(A)], (4.33
> (A2 AP)IEE(A ), (4.27)
Ne*y and
for arbitraryN, where the baryon axial vector current opera- 4Ny SS* 4 2Ex_3()
tor A'"* has a 1N, expansion Eq(3.15. The explicit factor 7 7 =7
of 1/N. occurs from the rescaling,,—>\/N_cf. Equation 1[(5 , 151 451 , 751
(4.27 reduces to =N, gat N_Ca1b2+ ) N_§b2+ T N_galb3
1 4 A A
8 1 pi8 8 73 A8 2251 11251
c 4 N; 8 N
for N.=3, whereA'® has the I, expansion Eq(3.16 and 1 91
the baryon operator is understood to be a7, so that - Za§+zmalc3+ TGWC%)I(_A) , (4.39
[ Cc

subtraction of flavor singlet and octet components of the

baryon operator is implicit in the present notation. The func- .

tion 1(m,K,7,A,) is abbreviated as(A ) in Eq. (4.28. Wherea_l, b,, bs, andc; are _the coefficients of the N/
The evaluation of Eq(4.28 raises an important issue. €Xpansion for the baryon axial vector current E.16).

The baryon operator product of the two axial currents genEduations(4.33 and (4.34 can be compared with the ex-

eratesn-body operators witm>N. which are not operators pressions o_bta|ned in chiral perturbation theory with no

in the operator basis at finifd. . In order to make sense of 1IN, expansior{42]:

this operator product, all of these higher body operators must 3 o . Lo

be rewritten as linear combinations of operators in the opera- [—3(D*=3F)I1(0)+57 “1(A)] (4.39

tor basis withn<N;. Since the operator basis is complete

and independenitl7], this reduction is always possible. In and

practice, however, this operator reduction is formidable even _ _

for the product of two axial vector currents. The problem is [S721(0)—3721(—A)], (4.39

solved in this work using spin projection operators. The in-

troduction of spin projection operators makes operator reduGespectively, where the functio(A)=1(A)/N, is propor-

tion tractable and straightforward. The details are presentegnal to 1f2 rather than 2. Equations(4.33 and (4.34

in Appendix B. o agree with these expressions fég= 3, using the identifica-
There are two flavo27 combinations of baryon masses, tions Eq.(3.32.

the Gell-Mann—Okubo combination of octet baryon masses Reference[18] showed that the two flave27 baryon

SA+LIS_L(N+E), 4.29 mass splittings are described by th&llbperators
and the decuplet equal spacing rule combinafitsl, 1 1 i i
plet equal spacing Hes BN T Tl R (TG, (43D

—JA+ES*+2E* 20, (4.30

so that one of the flavad27 mass splittings is order NI in

the 1N, expansion, whereas the other is ordeﬂ&lf:lj This
27,0

Violation of the Gell-Mann—Okubo formula is given by

1 o A8t A8 o AiBps AIB behavior is most easily seen far=0, where thec(;;” mass
N_C['/)EA AN 0) + AT ATTEN(A) ], combination is given by
(4.3)
S[$A+33—3(N+E)]—(—3A+33*+2E* - 20
whereas violation of the flava?7 equal spacing rule is given LeA+az—a( N=(=7a47 ! )
by 1
:EN—Ca§|(w,K,n,0)+o W) (4.39
Cc

1 ) ) . .
7 8 8 [ 8 8 —
N[ 73AC /A E731(0)+ /3 AR LA 731 (- )],
(4.32  while thecf};’ mass combination is given by
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—2[3A+ 33— 3(N+E)]+(—FA+33*+2E*—-2Q) [48] for the remainingA masse$ yields Ap=1231.3-1.1
MeV. Evaluation of the flavoR7 equal spacing rule mass
splitting usingA, and Particle Data Group values for the

1 S . .
9 , (4.39 remaining decuplet masses gives 6.75 MeV, with an uncer-

=——a,b,l(7,K,70+0|—3
4 Ng Ne tainty of 0.004 MeV.
The theoretical formulas depend on the two mass split-
so that tings A andA,, and the flavor symmetric baryon-pion cou-
plingsa;, b,, bs, andcs (or equivalently,D, F, %, and
c(227)'°= ta?l(7,K,7,0+0 W) 7). The mass splittings can be defined precigé§:
Cc
A=35(400+335+2E5+Q)—5(2No+33 0+ A+2E,)
1 4.4
e=tand(n K 0 +0[ | a0 @49
¢ and
Notice that there is n@;b, contribution to the two-body . e 1 . _
flavor-27 coefficient and n@? contribution to the three-body ~ As=i6(A0— 255 —32) —5(6Ng—32 o+ A —45),
coefficient forA=0. For nonvanishind\, it is still true that (4.44

the first flavor27 mass splitting is order W, while the

second is order Ng. The 1N. counting is not explicit,
however, sinc&\ is implicitly order 1N.. The expressions
for the coefficients forA #0 are more complicated:

where the zero subscripts refer to the 0 mass combina-
tions defined in Ref[18]. Evaluation of the mass splittings
yields A=230.7-0.1 MeV andA =225.7-0.03 MeV. The
baryon axial couplings were extracted from experiment in
1 Ref. [19]. The Gell-Mann—Okubo mass combination de-
—2) pends primarily on the coefficien;, and b,, which are
NG fairly well determined. The flavo? equal spacing rule mass
combination, however, is sensitive to the valuebgfwhich

c’=3aZ[— £1(0)+31(A)+I(—A)]+O

cZ3%=4Ncai[21(0)— 1(A) = 1(—A)]+3a,b,1 (0) is difficult to extract from experimerif This sensitivity is
1 due to the large numerical constants of theterms appear-
+0 _> (4.4  ingin Eqg.(4.34), which in turn is a reflection of the fact that
N¢ the spin3 flavor representation is at the top of the baryon

icier2’ tower for N.=3 so the presumption)/N.~O(1/N;) is
As before, the coefficiert(,;” does not depend amb,. The breaking down.

coefficient 0(237)'0, however, now appears to have an order |n addition to the uncertainty of the baryon axial vector

N, contribution proportional t@f which changes the &,  couplings, numerical evaluation of the theoretical formulas
counting for this mass splitting. This appearance is illusoryfor the flavor27 mass splittings is further complicated by the
Recall that the functiom(,K, 7,A) depends on the the me- sensitivity of the numerics to the precise formulas which are
son masses anfl through the functior-(m,A) defined in  used. For example, imposition of the Gell-Mann—Okubo for-
Appendix B. For |A|<m, the linear combination mula for the meson masses changes the numerical value of
2F(m,0)—F(m,A)—F(m,—A) is order 1N?, so the term the functionl (r,K,7,A) considerably. In addition, the gen-
proportional toai is O(1/N,) and can be neglected relative eralization of the theoretical formulas to includg through
to leadinga; b, term. For|A|>m, the same linear combina- EQ. (4.26 changes the numerics significantly. Note that for
tion reduces to B(m,0), which is smaller than an effect of nonvanishingA, the functionl (A) depends om\g through
order 1N? since, by assumptiomn®<AS. Thus, the three- Ed.(4.26 even forA=0. Although theu dependence of the
body coefficient reduces to the expression given in(Be0  flavor-27 combination of=(m,A, 1) cancels at leading order
even for nonvanishing. using the Gell-Mann—Okubo formula for the meson masses
The theoretical calculation of the flavazmass splittings  if As=0, there is additional. dependence from the term
can be compared with experiment. The experimental value ohAZINng/u? whenA#0 andA#0. This » dependence is
the Gell-Mann—Okubo mass splitting is 6.53 MeV with neg- canceled by a finite counterterm proportional A&d2. At
ligible uncertainty. The flavo27 equal spacing rule mass leading order in chiral perturbation theory, it is possible to
splitting depends on the unmeasured mass which enters drop theA A2Inmé/u? chiral logarithm from the functio to
the isospin zero masd,=(A*"+A"+A%+A7)/4. The obtain au-independent quantity. It is also possible to drop
A~ mass can be determined from the mass relation

ATT—3AT+3A°-A" =0, (4.42 *There are three different measurements listedAfor and A°.

These measurements are averaged with errors added in quadrature.
which is satisfied to order M in the 1N, expansion and to  1%Because of this uncertainty one could consider the alternative of
second order in isospin-breaking parame{di8]. Numeri-  extracting the baryon axial couplings from the fla@rmass split-
cally, thel =3 mass difference of thA is at most of order tings, as suggested recently in RE5]. However, the theoretical
103 MeV, so neglect of this mass difference introduces negformula receives sizableinknown corrections at higher orders in
ligible error in the determination ok ~. Using the value for chiral perturbation theory, so error bars on the extracted couplings
A~ extracted with Eq(4.42 and Particle Data Group values are significant.
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the finite AAZ and Aqm? terms inl. Note thatA still ap-  and b, only in the absence of S8) breaking. The coeffi-

pears in the last term of E¢B1). cientsa andb automatically satisfy the first constraint of Eq.
The mass combination in E¢.39 does not depend sen- (5.1) due to the SIB) symmetry of their operators. The re-

sitively on c; or on the u-dependence of thdAZ chiral ~ maining terms contribute the following to the coefficients of

logarithm. Numerical evaluation of Eq(4.39 using the F=2 isosinglet and isovector N{ expansions when

a;=2(0.791-0.007) andb,=6(—0.058+0.011), as ex- evaluated for strangeness-zero baryons:

tracted in Ref[19], yields —5.3 MeV, whereas the experi- 11 .

mental value is- 6.2 MeV. The agreement is consistent with b= V3e[ —§(c1+Cy) +Cgl,

a correction of relative order M.

sajy=—=ecy, (5.3
V. PLANAR QCD FLAVOR SYMMETRY AND SU (3) \/§
FLAVOR SYMMETRY BREAKING
1
The two-flavor version of planar QCD flavor symmetry 5b(1§=—sc2.
has implications for the structure of 88) symmetry break- \/§

ing at leading order in N.. Planar QCD for three light . , . -
flagvors exhibi?s an approxircnate(B) flavor symmetry, Whi%h The fagtor of V3 in the f|r§t equation occurs becauses-
is broken explicitly by the quark mass matrix. In the planarProportional toy/ V3. The first quartet symmetry constraint
limit, the flavor symmetry breaking due to the quark massof Ed. (5.1) implies that

matrix transforms as tha=3,8,9 components of a nonet. -

Neglecting isospin breaking, there is an unbrokég)flavor Ce=3(C1tCo), 5.4
symmetry, which includes the diagonal generatotsand| up to a correction of relative orderN{. This is the same

in the 2x2 subspace. This residual(2) flavor symmetry  cqnsiraint orc, obtained in Ref[17]. The above derivation
can constrain the form of S8) breaking in the M. expan-  shows that this constraint follows froi=2 planar QCD
sion. The constraints must be satisfied at each and evefy, o symmetry.

order in SU3) flavor symmetry breaking. The second constraint in E€5.1) applies to spin-diagonal

The relevance of () symmetry for SU3) breaking is order 1N§ terms which have not been included in E§.2).

illustrated by the baryon axial vector currents. The=2 1 oo neglected terms reduce to
version of planar QCD flavor symmetry constrains the lead-
ing coefficients of the isosinglet axial vector currétrela- ,i i 11 ~ja abs i i 11i jb
tive to the coefficients of the isovector axial vector current b Ng{‘] A3, G+ ed™d, Nﬁ{‘] {31,GPH
A'? a=1,2,3:

1 _
_ 8 ~ [12 qi
bii)=3(afi)+bi3), ter (I 69

bsy=3(2b(3)). (5.1 in the strangeness-zero sector, where the coeffidinis
equal tob; in the SUS3) flavor symmetry limit, but contains
a contribution of ordek at linear order in S(B) breaking.
“rhe coefficientb’ automatically satisfies the second con-
straint of Eq.(5.1) due to the SIB) symmetry of the opera-
tor. The remaining terms are constrained to satisfy

Equation(5.1) is the two-flavor analogue of E§3.25. The
isosinglet and isovector axial currents couple to the pio
quartet®= 72c?/2+ 31/2, wherey is an admixture ofy
andn’. Then (#') couplings of baryons with zero strange-
ness are each proportional to thecouplings. Thus, thep

(n") couplings of strangeness-zero baryons are normalized c,=2d, (5.6)
relative to the pion couplings in the presence of $Ubreak-
ing by Eqg.(5.1) at leading order in N.. up to a correction of relative orderN{.

Referencd 17] derived the flavor-octet baryon axial vec-  The above analysis shows that @V flavor symmetry
tor current to linear order in S8) symmetry breaking and  breaking does not alter the relationship between pion#and
leading order in M, . The first constraint of E¢5.1) can be  couplings of strangeness-zero baryons from exadB5ilh-
imposed on this current in the strangeness-zero sector. Fgbr symmetry to leading order inl{ . Any violation of this
strangeness-zero baryons, théldexpansion of the baryon SU(3) normalization requires S@) flavor symmetry break-
axial vector current to linear order in $8) symmetry break- ing in a 1N -suppressed quark loop. This result was origi-
ing reduces to nally reported in Ref[17].

A2+ 5AI2 =

_ 1

aG"?+ b—J'Ta) VI. CONCLUSIONS
C

A 1/N. chiral Lagrangian for baryons is formulated which

+ eCg %8 correctly implements planar QCD flavor symmetry and
’ (spin@flavor) symmetry for baryons. The constraints of pla-
(5.2 nar QCD flavor symmetry on the baryonNL/ expansion
have not been realized previously, and are presented in detail
up to terms of relative order I1I/§. Note that the coefficients in this work. These constraints are valid to leading order in
a andb contain contributions of orde¢ and reduce t@;  the 1N, expansion operator by operator in the baryoN.1/

) 1 .
+ edabs( c,GP+c,—J'TP
N¢
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expansion. Thus, planar QCD flavor symmetry constrains the 2
operator coefficients at leading order ilN1/ The symmetry MO= — — (m,+ my+ my).77° (A2)
implies that baryon flavor octet and singlet amplitudes form V6
nonets at leading order inN/. Specific examples of nonet
symmetry include the formation of a flavor nonet axial vec-depends only on polynomials df, so
tor current from the flavor singlet and flavor octet axial vec-
tor bar_yon currents at leading order irNL/, as well as the A0:M0|JZZJ(J+1)_MO|JZZJ Gat D) (A3)
formation of a nonet among the flavor singlet and octet et
baryon mass terms with linear dependence on the quark . . . o
massesn, . is already diagonalized by the spin projection operators. The

The formulation of the baryon chiral Lagrangian in terms&=8 baryon quark mass operator
of operators with definite N, dependence enables one to
study the precise N, structure of the chiral expansion. In 1
specific instances, such as the proton matrix element M8=— ﬁ(mﬁ mg—2m). 7 (Ad)
(p|mgss|p), the leading I, terms cancel exactly, so the
1/N. expansion explains the suppression of the quantity. ) -

The calculation of nonanalytic meson-loop corrections iniNvolves two operator series, generated'l[fyar!d {J':Q'B}
1/N, baryon chiral perturbation theory at finifd, is ad- times polynomials '_nJZ- The operator series '”V0|V!”@8
dressed. The I, and group theoretic structure of the loop times polynomials inJ? is diagonalized by the spin and
corrections is manifest using the method described in thi§trange quark number projection operators. The operator se-
work. The introduction of spin projection operators simpli- fies involving {J',G'®} requires the introduction of isospin
fies the formidable problem of operator reduction, makingProjection operators.
calculations tractable. A specific example of the flagar- For arbitraryN., the structure of the baryon multiplets is
meson-loop contribution to the baryon mass splittings is presuch that(i) the isospin of a baryon is equal to the total
sented in detail. The I, computation provided in this work angular momentum(spin) of the up and down quarks,
generalizes the formulas obtained previously in ordinary =Jua and (i) the total angular momenturtspin) of the
baryon chiral perturbation theory witk,=3 to include the Strange quarks is equal to one-half the number of strange
leading flavor octet mass splittinggs of the baryons. The guarks, Js=N¢/2. Since J=J,q+Js, it therefore follows
1/N, formulae reveal the N, and flavor-breaking structure that —spiny  baryons can only have isospins

of the flavor27 baryon mass splittings at leading order in ! =[Ns/2+j,INg/2+y[=1,... [NJ2—|, where all pos-
chiral perturbation theory. sible isospins are allowed forpZ N =<(N.—2j)/2, but only

a subset of the isospins are allowed fosN <2; and
(Nc—23)/2<Ng=(N.t2j)/2. For Ng=0, only the largest
ACKNOWLEDGMENTS isospin is allowed. FoN,=1, only the two largest isospins
| am grateful to A. Manohar for useful discussions. This&® allowed. This pattern of one additional allowed isospin as

s increases by one unit continues for the interval
V(\;I?;r(]twl\?g_ SSS%?&Z%?%OEE 42222’“?;”&]?NEYr}eE)églgg,le’glsNS<21_ until the full set of isospins is allowed for
through Grant No. PHY-9457911 from the National Sciencel\s~2J- Similarly, for Ns=(N+25)/2, only the smallest

Foundation, and by the Alfred P. Sloan Foundation. ISoSpin 1S alloyved. FO'NS:(Nc+?J)/2_1’ only the two
smallest isospins are allowed. This pattern of one additional

allowed isospin ad\g decreases by one unit continues for
APPENDIX A: BARYON PROPAGATOR (Ne—23)/2<Ng=<(N;+23)/2 until the full set of isospins is
L allowed forNg=(N;—2j)/2.
_ The generalization of the baryon propagator Bgl) to ¢ 5 easier to digest this pattern of isospins if one special-
include all subleading quark mass splittings is provided inag i the spirk and spiné flavor representations with the
this appendix for completeness. Isospin-breaking quark MasFeight diagrams displayed in Figs. 3 and 4. Berl, there
splittings are neglected in the discussion for simplicity. 516 two allowed isospins= (Ng+1)/2 andl = (Ny— 1)/2 for
These splittings can be included at the expense of i”trOdu‘ists(Nc— 1)/2. BothN.=0 andN,=(N.+1)/2 are ex-

ing additi_onal projecti(_)n operators. - ceptions: for Ng=0, I=3, whereas forNg=(N.+1)/2,
Including all hyperfine ané=0,8 quark mass splittings, | _(\_—1)/4. For J=2, there are four allowed isospins
the baryon propagator is given by I =(Ne+3)/2,(Ne+1)/2,(No— 1)/2,(No—3)/2 for 3<N,
<(N.—3)/2. The three smallest and largest strangeness sec-
1770 (NN 70 (1) 7 tors Ng=0,1,2 and N¢=(N.—1)/2, (N.+1)/2 and

(A1) (N.+3)/2 are special cases: fbl;=0, there is one allowed
isospin | =%; for N,=1, there are two allowed isospins,
=2 andl=1; for Ng=2, there are three allowed isospins

whereZ,(,n,) is the projection operator for isospir=1in  1=3,3, and3; while for Ng=(N.—1)/2, there are three al-

the Ng=ng strange quark sector of the spir= flavor rep-  lowed isospins| =(N.—7)/4, (N.—3)/4, and (.+1)/4;
resentation, and\, and Ag are thea=0 anda=8 quark for Ng=(N.+1)/2, there are two allowed isospins
mass splittings of the propagating baryon relative to the ext=(N.—5)/4 and N.—1)/4; and forN;=(N;+3)/2, there
ternal baryon. Th@=0 baryon quark mass operator is one allowed isospih=(N.—3)/4.

(K=3,~Bo—Ag)
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The remaining components of the baryon propagator Eq; representation))-J, is equal to—N¢/4 for isomultiplets

(Al) can now be defined. Isospin projection operators for thevith | =(Ns+1)/2, and Ns+2)/4 for isomultiplets with

sping baryons withng strange quarks are given by I=(Ng—1)/2. For spin3, J-J; equals —3Ng4,

—(Ng—6)/4, (Ng+8)/4 and 3(;+2)/4 for the

I ,(12=17) I =(Ng+3)/2, (Ns+1)/2, (Ng—1)/2 and (Ns— 3)/2 isomul-
m tiplets, respectively. Thus, the baryon mass difference

(A6)

Z(3.ng)= (AS)

where the projection operator for isosgdinis given by the Ag= M8|Jv“s"_ M8|Jext'nse><t"e><t
product over all I, not equal to I,. For
21=sngs<=(N.—2))/2, 1,=|(ng+2))/2|, |(ns+2)/2|—1,
..|(ng—23)/2|. The allowed isospins for the smallest and
largestng values of the spin- flavor representations vary
according to the pattern described above. The operator

series involving {J',G'®} depends on the operator
J-J¢=3%(3%2+32-1?), which in turn depends on isospin. Itis  This appendix provides additional formulae for the calcu-
easy to evaluaté- J, for each of the allowed isomultiplets of lation of the flavor27 baryon mass splittings from Fig. 6.
the spiny flavor representation. For example, for the spin-The functionF(m,A) defined in Eq(4.23 is given by[47]

is diagonalized by the spin, strange quark number, and isos-
pin projection operators.

APPENDIX B: FLAVOR-27 NONANALYTIC MASS
SPLITTINGS

3 m? 8 7
A(Az—zm InM———AS—EAm2+2(m A2)3’2——arctar( )] [Al<m,
24m%F2F(m,A, p) = )
” 3 m- 8 7 - -m
2_ 2 A3 _ _ 2__ 2_m2\3/2 A>m,
A(A Z M Iz = g A% S Am? - (A%—m?) '”(—Mm)’ A

(B1)

where finite terms with mass dependedceandm?A have been retained. Far,# 0, there is a chiral logarithmic contribution
to the flavor27 combination proportional td A2, as well as a finite term. Fak=0, the function reduces to

3

m
F(m,O)ZW. (B2
The remainder of the Appendix is devoted to evaluating the fl@vdsaryon operator
1 i pis 183 A8
N_C[A ZLAPI(AL)+ARZSATI(AZ)], (B3)

using spin projection operators. _
For N.= 3, the baryon axial currer&'® has a 1N, expansion in terms of the four operators of E8,.16). The flavor27
baryon operator product containsbody operatorsh>N,, which are complicated anticommutators of the one-body opera-
tors. Each of these operators contains two flavor octet one-body operators, which each may B¢ eit&F; all remaining
one-body operators in the operator product are spin operators. Operator reduction of these spin operators is immediately
possible using spin projection operators. The following observations facilitate this redl(c)uaﬁ‘/) A% is purely diagonal;
(i) J' is purely diagonali(iii) {J',G'®} is purely diagonal, andJ',G'8}=2J'G"®=2G'8J' smce[J' G'®]=0; and (iv)
({3%,G'8 — {31 {J1,G'8}}) is purely off-diagonal, since the second term subtracts off the diagonal compongHt &f}.
Thus, this operator reduces t6{J? G'®}.72 + 72{J%,G'®}’L, which can be replaced b(71G'87% + 72G'871).
Using the above observations, it is straightforward to show that

iAiffy'—nAis—i@lG‘B%G% +61 bs+ 95z b2
Ng NN 2 PR 7a13

+i«¢seis¢lei8¢3 as+9 . a,Cs+| = 2—02 +i¢lT8’/PlT8?l 31 b3
N 2 727 72| TP INZIS T o) NAVS TN 2 T2 T2 4 N2
+ ﬁg(;;’%)%G'g.%%J'TB%% +7LT7LG L) | arb,+ ?Wf b2b3) (B4)

and
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1 . 1 : :
8. 8_ ' 8. 8,
_NCAI ,/)gAI —Nc,f%G' ,/gG' /)%

2 1 1 2
aj+30—a.bs;+225—bs
Ng N¢

+i@1c3i8@3c3‘8?1 2+9 ! +| 5 L +i¢3T8y—>3T8¢3 1 b3
N 2> 722 75|t Izdile T 5| N3t TN g N2
1 03 i8/ 3 iT8, 3 03 iT8, 3 i8 3 1
+N—§(.%§G 73T+ 730 T873G878) | arb,+ 15N—§b2b3 : (B5)

The flavor27 mass combinations, the Gell-Mann—Okubo !fy)%ei%o/%(;isgf%+!7J%Gi8;o/>§ei8;7)%:%‘zy)%TSTSg)%_

combination of spins octet baryons, (B14)
A+ —3(N+E) (B6)
Thus,
and the equal spacing rule of the sgitparyons,
—JA+33*+2E* 30 (B7) LG8 7EG L=~ 3. (B15)
are given by
Using these matrix elements, one obtains the nonanalytic
1 . . . . ibuti - - itti
-2 [;’P%A'B;’/)%A'B;’/)%I(O)+.{?%A'8.€?%A'8.€?%I(A)] z:z)gtgbutmn to the Gell-Mann—-Okubo mass splitting, Eq.
¢ (B8) The evaluation of the operator products for the shin-
q baryons is similar. For the spihbaryons,
an

3 T8 T8 3 — —
- i[.?éAiB.@zAiB.@zl(0)+;;?§Ai8;;¢;Ai8;;¢§|(—A)], THT T 75 =3
NC 2 2 2 2 2 2
B o
(89 7T .G =P, (B16)
respectively, where the overall minus signs occur because the
baryon mass term in the Lagrangian is negative. Each of the . o ]
baryon operators appearing in Eq&8) and (B9) can be 0N the equal spacing rule flav@# combination. The matrix
obtained from Eqs(B4) and (B5). element
The (027) operator basis consists of two operators,
{T8 T8 and{T8,{J",G'®}}. The above reduction has left one

! 73GI8 BG83 =—23
additional operator structure, the product of t@5’s. The 7REEAGS 8 (B17)
flavor-27 mass splittings are evaluated using the relations Eq.
(3.67 for T® andG'®. For the spin; baryons, follows from the evaluation of

FUT T 7 =3, o o
73) G r3)GI 2 =R 73G%2G% 78 (B1Y)

ZHTE{I .G 7L =—3, (B10)
on the Gell-Mann—Okubo combination. The product of twoon the equal spacing rule mass combination. The remaining
G'®s with an intermediate spig-baryon, operator is determined using the identity
LGB 7L1G L= — 1, (B11)

73G873G 878+ 783G 871G 82 = 13T T8 8
is obtained by evaluating the operator 2 2 22 2 2 2 2

(B19
7LIGB LG L =3 716G 71G% 7L (B12) o
o be
on the Gell-Mann—Okubo combination. The remaining op-
erator, the product of tw&'®’s with an intermediate spig- o
Ff;]yon is readily obtained using the 28) operator identity 753G /LG 8 =1. (B20)
{G'8,G'8 =2{T8,T8}, (B13) Using these matrix elements, one obtains the nonanalytic

contribution to the flavo27 equal spacing rule mass split-
which implies that ting, Eq. (4.39.
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