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Improved lattice operators: Case of the topological charge density
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We analyze the properties of a class of improved lattice topological charge density operators, constructed
a smearinglike procedure. By optimizing the choice of the parameters introduced in their definition we fin
operators having~i! a better statistical behavior as estimators of the topological charge density on the lattice
i.e., less noisy,~ii ! a multiplicative renormalization much closer to one, and~iii ! a large suppression of the
perturbative tail~and other unphysical mixings! in the corresponding lattice topological susceptibility.

PACS number~s!: 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

In QCD an important role is played by topological prop
erties. By the axial anomaly, matrix elements or correlatio
functions involving the topological charge density operat
q(x) can be related to relevant quantities of hadronic ph
nomenology. We mention the topological susceptibilityx,
which is determinant in the explanation of the UA(1) prob-
lem @1#, and the on-shell nucleon matrix element ofq(x),
which can be related to the so-called spin content of t
nucleon@2#.

Lattice techniques represent our best source of nonper
bative calculations; however, investigating the topologic
properties of QCD on the lattice is a nontrivial task. In
lattice theory the field is defined on a discretized set a
therefore the associated topological properties are stric
trivial. One relies on the fact that the physical continuu
topological properties should be recovered in the continuu
limit.

From a field theoretical point of view, i.e., considering th
lattice as a regulator, difficulties may come from unphysic
divergences proportional to powers of the cutoff, which mu
be removed and therefore make the extraction of the phys
signal hard. In order to get reliable quantitative estimates
physical quantities, one should control the unphysical cuto
dependent corrections even when they disappear in the c
tinuum limit, given that numerical simulations are performe
at finite lattice spacings, i.e., at finite values of the cuto
Such corrections may be relevant, in that the typical valu
of the bare couplingg0

2 where simulations are usually per
formed are actually not small, butg0

2.1, thus few terms in
perturbation theory are not always reliable.

Considering a lattice version ofq(x), q
L
(x), the classical

continuum limit must be in general corrected by including
renormalization function. In pure QCD, whereq(x) is
renormalization-group invariant@3#,

q
L
~x!→a4Z~g0

2!q~x!1O~a6!, ~1!

where Z(g0
2) is a finite function of the bare couplingg0

2

going to one in the limitg0
2→0, but atg0

2.1 it may be very
different from one. The finite renormalization of the widel
used lattice operator@4#
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q
L
~x!52

1

29p2 (
mnrs561

64

emnrsTr@PmnPrs# ~2!

@Pmn(x) is the product of link variablesUm(x) around a
131 plaquette# is quite non-negligible: for SU~3!
Z(g0

251).0.18 @5#.
The relation of the zero-momentum correlation of two

q
L
(x) operators,

x
L
5(

x
^q

L
~x!q

L
~0!&, ~3!

with the topological susceptibilityx, is further complicated
by an unphysical background term, which eventually be
comes dominant in the continuum limit.~We recall that the
definition ofx requires also a prescription to define the prod
uct of operators@6#.! Indeed

x
L
~g0

2!5a4Z~g0
2!2x1M ~g0

2!. ~4!

Neglecting termsO(a6), the background termM (g0
2) can be

written in terms of mixings with the unity operator~so-called
perturbative tail scaling as;a0) and with the trace of the
energy-momentum~scaling as;a4). In the case of the op-
erator ~2! and for SU~3!, M (g0

2) is already dominant at
g0
2.1: it is about 85% ofx

L
at g0

251 @7#. As a consequence

the uncertainty onx can be hardly made smaller than
.10% by using the operator~2! and the heating method to
evaluateZ(g0

2) andM (g0
2) @8–10#.

Another problem, which has come up in some studie
concerning the lattice determination of the on-shell proto
matrix element ofq(x) @11,5#, is that the lattice operator~2!
is very noisy, requiring very accurate statistics and therefo
expensive simulations in order to get a reasonable unc
tainty on the final result. In view of a full QCD lattice cal-
culation the search for a better estimator appears a necess
step.

We study, within the field theoretical approach, the poss
bility of improving the lattice estimator ofq(x) with respect
to all the problems listed above, that is we look for loca
versions ofq(x) which are less noisy, have a multiplicative
renormalization closer to one, and whose correspondingx

L
is
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not dominated by the unphysical background signalM (g0
2)

in the regiong0
2.1. @Any x

L
defined from a localq

L
(x)

will eventually be dominated by its perturbative tail in th
continuum limit. For the purpose of evaluatingx it would
suffice to have a small tail atg0

2.1, which should be already
in the scaling region.#

II. IMPROVED TOPOLOGICAL CHARGE DENSITY
OPERATORS

Inspired by the widely used smearing techniques we c
sider the following set of operators defined in terms
smeared linksVm

( i )(x):

q
L

~ i !~x!52
1

29p2 (
mnrs561

64

emnrsTr@Pmn
~ i ! Prs

~ i ! #, ~5!

wherePmn
( i ) is the product of smeared linksVm

( i )(x) around a
131 plaquette. Such smeared links are constructed by
procedure

Vm
~0!~x![Um~x!,

V̂m
~ i !~x!5~12c!Vm

~ i21!~x!1
c

6 (
6n,nÞm

Vn
~ i21!~x!

3Vm
~ i21!~x1n!Vn

~ i21!~x1m!†,

Vm
~ i !~x!5

V̂m
~ i !~x!

F 1NTrV̂m
~ i !~x!†V̂m

~ i !~x!G1/2, ~6!

whereV2n
( i ) (x)5Vn

( i )(x2n)†. Vm
( i )(x) and thereforeq

L

( i )(x)

depend on the parameterc, which can be tuned to optimize
the properties ofq

L

( i )(x). All these operators have the corre

classical continuum limit, i.e., fora→0, q
L

( i )(x)→a4q(x).

Notice that the size ofq
L

( i )(x) increases with increasing

the integer parameteri . Neverthelessq
L

( i )(x) can be still con-

sidered as local operators when keepingi fixed while ap-
proaching the continuum limit. Also, as we shall see,
optimizing the choice of the parameterc, a good improve-
ment with respect toq

L

(0)(x)[q
L
(x) is already achieved for

small values ofi . For SU~2! the procedure~6! keeps the
smeared linksVm

( i )(x) belonging to the SU~2! group, and it is
equivalent to the smearing procedures proposed in Ref.@12#.
For N>3 the smeared links no longer belong to the SU(N)
group.

The procedure~6! may be used to improve any local op
erator involving link variables. Smearing methods to im
prove lattice estimators have been already widely employ
in the study of long-distance correlations, such as large W
son loops and hadron source operators.

One often adopts an equivalent ‘‘Schro¨dinger picture’’ of
smearing, whereby lattice operators retain their original de
nition, while all links in the configuration undergo transfo
mation ~6!. Full consistency of this picture would then re
quire thatVm

( i )(x) be unitary.@As it stands,Vm
( i )(x) is only

unitary in the case of SU~2!.# Projecting a matrix V onto
e
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-
-
ed
il-

fi-
r-
-

SU(N) amounts to findingXPSU(N) which minimizes
Tr@(X†2V†)(X2V)#, or equivalently maximizes
Tr(X†V1V†X). The solution is given by

X5 iaV211~V†V2a2I !1/2V21, ~7!

wherea is the real root of the equation:

)
i
„~di

22a2!1/21 ia…5 detV ~8!

anddi>0 are the eigenvalues of (V†V)1/2. It can be verified
that the lower loop results forZ(g0

2) and the perturbative tail
P(g0

2) ~see Sec. III! are not modified by renderingVm
( i )(x)

unitary as above. It is worth mentioning at this point that
abrupt cooling leads to exactly the same unitary linksX, for
c51. Indeed, cooling reassigns to each link a new value,
Xm(x) in a way as to minimize the action, i.e., maximize:
Tr@Xm(x)Vm

( i )(x)†1Xm(x)
†Vm

( i )(x)# at c51, which coincides
with Eq. ~7!.

For N>3, instead of projecting back onto the SU(N)
group we propose last step of the procedure~6!, which is
simpler and should retain most of the advantages of the stan-
dard smearing procedure.

III. PERTURBATIVE ANALYSIS

We have calculatedZ(1)(g0
2) to one loop for the once-

smeared operatorq
L

(1)(x) with the Wilson action. To carry

out this calculation,qL
(1)(x) is expanded in a Taylor series in

the gauge fieldAm(x), whereUm(x)5exp@ig0Am(x)#. In Fig.
1 we show the three diagrams contributing toZ(1). We find

Z~1!511z1g0
21O~g0

4!,

z15NF 1

4N2 2
1

8
2

1

2p2 2I 01cS 0.677892 0.24677

N2 D
1c2S 20.484361

0.03991

N2 D G , ~9!

whereI 050.15493. Atc50 we recover the nonsmeared re-
sults @3#:

Z5120.5362g0
21O~g0

4! for N52 ,

Z5120.9084g0
21O~g0

4! for N53 , ~10!

FIG. 1. One-loop diagrams contributing to the multiplicative
renormalization ofq

L

( i )(x).
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which do not lead to a reliable estimate ofZ(g0
2.1). As c

varies, the following extreme values ofZ are obtained:

Z5120.1360g0
21O~g0

4! ~c50.6495!, N52 ,
~11!

Z5120.2472g0
21O~g0

4! ~c50.6774!, N53 .

In both cases,Z is quite close to unity for typical values o
g0
2 , making the one loop estimate more reliable. It is no
worthy that the last step in the smearing procedure~6! turns
out to be essential to makeZ approach one forc>0.

For q
L

(1)(x) we have also calculated the lowest perturb
tive contribution to the mixing with the unity operato
P(g0

2), which is the dominant part of the background ter
M (g0

2) in the continuum limit. The corresponding diagram
shown in Fig. 2 and leads to the result

P~g0
2!5g0

6 3N~N221!

128p4 p~c!1O~g0
8!,

p~c!50.00286720.017685c10.048665c220.075362c3

10.068526c420.034433c510.007445c6. ~12!

The minimum of this everywhere-concave polynomial
p(c50.872)51.431025. Thus, for allN, the leading order
of P(g0

2) diminishes by more than 2 orders of magnitu
compared to its nonsmeared value (c50).

In the presence of dynamical fermions one should ta
into account the fact that, unlike pure gauge theory, the
pological charge density mixes under renormalization w
]m j m

5 , where j m
5 is the singlet axial vector current. The non

renormalizability property of the anomaly in the modifie
minimal subtraction (MS) scheme means that the anoma
equation should take exactly the same form in terms of b
or renormalized quantities. However the renormalization
]m j m

5 (x) andq(x) is nontrivial@13#. A renormalization-group
analysis leads to the following relation valid for all matr
elements of a lattice versionq

L
(x) of q(x) in the chiral limit

@14#:

^ i2NfqL&5Y~g0
2!^R&, ~13!

whereY(g0
2) is a finite function ofg0

2 , and

FIG. 2. Diagram contributing to the lowest order term of th
perturbative tail.
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^R&[^]m j m
5 ~x!RMS&expEg~m!

0 ḡ~ g̃!

b
MS

~ g̃!
dg̃ ~14!

is a renormalization-group invariant quantity;]m j m
5 (x)RMS in-

dicates the operator]m j m
5 (x) renormalized in theMS

scheme, and the functionḡ(g) is related to the anomalous
dimension of the continuum operatorsq(x), ]m j m

5 (x) in the
MS scheme:ḡ(g)5(1/16p4)(3c

F
/2)Nfg

41O(g6). Notice

that ^R& is what can be naturally extracted also from experi-
mental data.

In perturbation theory one finds Y(g0
2)51

1(z11y1)g0
21O(g0

4), where z1 is the coefficient of the
O(g0

2) term of the finite renormalization ofq
L
in the pure

gauge theory@cf. Eq. ~9!#, and y1 turns out to be a small
number:y1520.0486 forN53 andNf54 @14#.

IV. NONPERTURBATIVE ANALYSIS
BY THE HEATING METHOD

Estimates of the multiplicative renormalizations of the op-
eratorsq

L

( i )(x) and of the background term in the correspond-

ing x
L
can be obtained using the numerical heating method

@8,9#, without any recourse to perturbation theory. This
method relies on the idea that the multiplicative renormaliza
tion Z(g0

2) and the background termM (g0
2) is produced by

short-ranged fluctuations at the scale of the cutoffa. There-
fore, when using a standard local algorithm~for example,
Metropolis or heat bath! to reach statistical equilibrium, the
modes contributing toZ andM should not suffer from criti-
cal slowing down, unlike global quantities, such as the topo
logical charge, which should experience a severe form o
critical slowing @10#.

We applied the heating method to the operatorsq
L

( i )(x) for

i51,2 and for a number of values ofc in the region
0<c<1. We restricted our analysis to the SU~2! pure gauge
theory, expecting no substantial differences forN53. The
measurements were performed atb52.6 (g0

251.5384. . . ),
which is a typical value for the SU~2! simulations with the
Wilson action. The local updating was performed using the
heat-bath algorithm.

An estimate ofZ can be obtained by heating a configura-
tion C 0 which is an approximate minimum of the lattice
action and carries a definite topological chargeQL,0 . Such a
configuration has been constructed by discretizing an instan
ton solution in the singular gauge

Am~x!5
r2

x21r2
i

2
~sm

†sn2sm
†sm!

xn

x2
, ~15!

where s451 and sk5 isk , and exponentiating it to define
link variablesUm(x)5exp@iAm(x)#. Then a few cooling steps
~about 5! were performed to make the configuration
smoother. On a lattice 144 and choosingr56 we obtained
an instantonlike configuration carrying a topological charge
QL,0.0.96 ~all improved operators we considered gave ap-
proximately the same value forC 0).

One then constructs ensemblesC n of many independent
configurations obtained by heatingC 0 for the same number

e
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n of updating steps, averagingQL
( i )5(xqL

( i )(x) over C n at

fixed n. Let us defineQL,n
( i ) [^QL

( i )&C n
, i.e., the average o

the ensembleC n . Fluctuations of lengthl.a contributing to
Z should rapidly thermalize, while the topological structu
of the initial configuration is left~approximately! unchanged
for a long time. After a few heating steps where the sh
ranged modes contributing toZ get thermalized,QL,n should
show a plateau approximately atZQL,0 . The estimates o
Z( i )(b52.6) from the plateaus observed in the heating p
cedure are reported in Table I, and should be compared
the valueZ(b52.6)50.25(2) for the standard operator~2!
@10#. The plateaus formed by the ratiosQL,n

( i ) /QL,0
( i ) starting

from n.6 are clearly observed in Fig. 3, where data
i51,2 andc50.8 are plotted versusn. Checks of the stabil
ity of the background topological structure of the initial co
figuration were performed atn58,10, by cooling back the
configurations ~locally minimizing the action! finding
QL.QL,0 after few cooling steps.

This analysis confirms the one-loop perturbative calcu
tions, that is the improved operators we considered ha

TABLE I. We presentZ( i )(b52.6) for i51,2 and various value
of c, as obtained by the heating method for a number of.750
trajectories. The errors displayed include both a statistical error~de-
termined by the typical errors of data in the plateau! and a system-
atic error related to the stability of the background configurat
The numbers in this table should be compared with the va
Z(b52.6)50.25(2) for the standard operator~2! @10#.

i c50.6 c50.8 c51.0

1 0.52~2! 0.57~2! 0.54~2!

2 0.68~2! 0.75~2! 0.68~2!
re

rt-

ro-
with

or

n-

la-
e a

multiplicative renormalization closer to one than that of the
initial operatorq

L
(x). FromZ(b52.6).0.25 ofq

L
(x), we

pass, by roughly optimizing with respect to the paramete
c, to Z(1)(c50.8,b52.6).0.57 by one improving step, and
Z(2)(c50.8,b52.6).0.75 by two improving steps. For
largeri we expect to getZ( i ) closer and closer to one, as also
suggested from the results of the cooling method@15#. On
the other hand we should not forget that increasing the num
ber of improving steps the size of the operatorq

L

( i )(x) in-
creases. One should find a reasonable compromise takin
into account the size of the lattice one can afford in the
simulations.

A comparison of the above results fori51 with the one-
loop calculation~9! shows that the contribution of the higher
perturbative orders is still non-negligible, but not so relevan
as in the case of the operator without improving.

Another important property of the improved operators we
can infer from the heating method results is that they ar
much less noisy thanq

L
(x) at fixed background. In other

words, in the Monte Carlo determinations of the matrix ele-
ments ofq(x) the contribution of short-ranged fluctuations to
the error is largely suppressed. A quantitative idea of this fac
may come from the quantitye( i )[DZ( i )/Z( i ), whereDZ( i ) is
the typical error of the data in the plateau during the heatin
procedure described above. We indeed found forc.1.0 and
for an equal number of measurements

e~0!

e~1! .6 ,
e~0!

e~2! .15 . ~16!

An estimate of the background signalM (g0
2) can be ob-

tained by measuringxL,n5^QL
2&En /V on ensembles of con-

figurationsEn constructed by heating the flat configuration

on.
lue
FIG. 3. QL,n /QL,0 versusn in the heating procedure of an instanton configuration. Data fori51,2 atc50.8 are shown. For comparison
the solid line represents the estimate ofZ for the standard operator~2!.
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for the same numbern of updating steps@9,10#. Measure-
ments were performed on a 124 lattice. The plateau showed
after few heating steps (n.14 in this case! by the data
of xL,n

( i ) should be placed approximately at the value
M ( i )(g0

2), since no topological activity is detected there, i.
the background is still flat~this is checked by cooling back
the heated configurations!, while the other modes contribut
ing to M (g0

2) should be already approximately thermalize
~for a discussion of this issue see@10#!. The estimates of
M ( i )(b52.6) from the plateaus observed during heating
given in Table II, and should be compared with the val
M (b52.6)52.10(5)31025 relative to the standard opera
tor ~2!. In Fig. 4 we plotxL,n

( i ) for i51,2 andc51.0 as a
function of the heating stepn, and compare with the corre
sponding data for the standard operator. The expected
teaus are observed fromn.14.

Notice the strong suppression of the background term
the improved operators. Forc.1 the reduction is about a
factor 8 when performing one improving step, and abou
factor 30 by two improving steps. For a larger number
improving steps, the suppression is expected to be large

The suppression of the background term in Eq.~4! to-
gether with the relevant increase ofZ should drastically

TABLE II. We presentM ( i )(b52.6) for i51,2 and various val-
ues ofc, as obtained by the heating method~1000 trajectories!, i.e.,
from the the value ofx

L
at the plateau, observed aroundn.16 for

all operators considered. The numbers in this table should be c
pared with the valueM (b52.6)52.10(5)31025 for the standard
operator~2!.

i c50.6 c50.8 c51.0

1 0.60~2!31025 0.37~2!31025 0.27~2!31025

2 0.23~2!31025 0.13~2!31025 0.07~2!31025
of
e.,

-
d

are
ue
-

-
pla-

in

t a
of
r.

change the relative weights of the contributions tox
L
in the

relevant region for Monte Carlo simulations. By a standard
Monte Carlo simulation atb52.6 on a 164 lattice, we mea-
sured x

L

( i ) for i51,2 and c50.6,0.8,1.0. We performed
15 000 sweeps using an overrelaxed algorithm; this sample
size is already sufficient to show the better properties of the
operatorsq

L

( i )(x). Data for x
L

( i ) are given in Table III. For

comparison we also calculateda4x by cooling @16#.
For the standard operator we foundx

L
52.21(11)

31025, which, due to the large corresponding background
term M52.10(5)31025, does not allow one to determine
a4x at this value ofb. Instead the improved operatorsq

L

( i )

3(x) provide, using Eq.~4!, reliable estimates ofa4x hav-
ing about 10% of uncertainty, which are consistent with each
other and are also consistent with the determination from
cooling: xcool51.3(2)31025, although the latter seems to
be systematically lower. This fact may be explained taking
into account thatQL5(xqL(x), which is used to estimate
the topological charge of cooled configurations, underesti-
mates the topological charge content~for the lattice size we
are working with!, as we found out explicitly when we con-
structed an instanton configuration on the lattice.

The determinations ofZ andM should not be subject to
relevant finite-size scaling effects~as explicitly checked in
Ref. @10#!, since they have their origin in short-ranged fluc-
tuations. Thus finite-size corrections to our estimates ofZ
and M should be negligible. Larger finite-size effects are
expected on the topological modes, as can be argued from
numerical studies available in the literature. For this reason
the measurement ofx

L
, which receives contributions also

from topological modes, was performed on a larger lattice.
We should say that we did not perform a complete analysis
of the finite-size corrections tox

L
, since our purpose was

just to show the better behavior of the improved operators

om-
for
FIG. 4. xL,n versusn in the heating procedure of the flat configuration. Data for the standard operator and improved operators
i51,2 atc51.0 are shown.
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TABLE III. We presentx
L

( i )(b52.6) for i51,2 and various values ofc, as obtained by a standard Mont
Carlo simulation on a 164 lattice ~15 000 sweeps using an overrelaxed algorithm!. We also give the corre-
sponding values ofa4x as obtained from Eq.~4!. Data fora4x must be compared with the cooling resul
xcool51.3(2)31025.

i c50.6 c50.8 c51.0

x
L

1 1.02~7!31025 0.89~7!31025 0.74~7!31025

2 0.93~7!31025 0.92~7!31025 0.71~6!31025

a4x5(x
L
2M )/Z2 1 1.5~3!31025 1.6~3!31025 1.6~3!31025

2 1.5~2!31025 1.4~2!31025 1.4~2!31025
-

q
L

( i )(x) and not the determination ofx for the SU~2! gauge
model. So we limited ourselves to a numerical study n
requiring a supercomputer.

If the improvement for SU~3! is similar to that achieved
for SU~2!, using the optimal operator fori52 at g0

251 the
unphysical term in Eq.~4! is expected to become a small pa
of the total signal, allowing a precise determination ofx by
the field theoretical method.

V. CONCLUSIONS

We have analyzed the properties of a class of improv
lattice topological charge density operators constructed b
smearinglike procedure. Such operators look promising
the lattice calculation of the on-shell proton matrix eleme
of the topological charge density operator in full QCD
which is related to the so-called proton spin content. Inde
their use should overcome the difficulty due to the lar
noise observed in preliminary quenched studies@11,5#, and
ot

rt

ed
y a
for
nt
,
ed
ge

they have a multiplicative renormalization much closer to
one.

Improved operators are also expected to provide a much
better determination of the topological susceptibility by the
field theoretical method in the SU~3! gauge theory, by
strongly reducing the unphysical background term while en-
hancing the term containingx with larger values of the mul-
tiplicative renormalization. This should allow a precise and
independent check of the alternative cooling method deter
minations~see, e.g., Refs.@16,17#!, whose systematic errors
are not completely controlled. Furthermore the improved op-
erators may also open the road to a more reliable lattice
investigation of the behavior of the topological susceptibility
at the deconfinement transition, where cooling does not give
satisfactory results@18#.

The smearinglike procedure~6! may be used to improve
any local operator involving link variables, and a renormal-
ization study would again be called for in all cases. We hope
to return to this issue in the future.
.

@1# E. Witten, Nucl. Phys.B156, 269 ~1979!; G. Veneziano,ibid.
B159, 213 ~1979!.

@2# R. D. Carlitz, inProceedings of the XXVI International Con-
ference on High Energy Physics, Dallas, Texas, 1992, edited
by J. R. Sanford, AIP Conf. Proc. No. 272~AIP, New York,
1993!, and references therein; J. Ellis and M. Karliner, Phys
Lett. B 313, 131 ~1993!, and references therein; G. Veneziano
Mod. Phys. Lett. A4, 1605~1989!; G. M. Shore and G. Ven-
eziano, Mod. Phys. Lett. A8, 373 ~1993!.

@3# M. Campostrini, A. Di Giacomo, and H. Panagopoulos, Phy
Lett. B 212, 206 ~1988!.

@4# P. Di Vecchia, K. Fabricius, G. C. Rossi, and G. Veneziano
Nucl. Phys.B192, 392 ~1981!; K. Ishikawa, G. Schierholz, H.
Schneider, and M. Teper, Phys. Lett.128B, 309 ~1983!.

@5# B. Allés, M. Campostrini, L. Del Debbio, A. Di Giacomo, H.
Panagopoulos, and E. Vicari, Phys. Lett. B336, 248 ~1994!.

@6# R. J. Crewther, Rev. Nuovo Cimento2, 8 ~1979!.
@7# B. Allés, M. Campostrini, A. Di Giacomo, Y. Gu¨ndüc, and E.
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