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Improved lattice operators: Case of the topological charge density
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We analyze the properties of a class of improved lattice topological charge density operators, constructed by
a smearinglike procedure. By optimizing the choice of the parameters introduced in their definition we find
operators havingi) a better statistical behavior as estimators of the topological charge density on the lattice,
e., less noisy(ii) a multiplicative renormalization much closer to one, diiid a large suppression of the
perturbative tailand other unphysical mixingsn the corresponding lattice topological susceptibility.

PACS numbsds): 11.15.Ha, 12.38.Gc

I. INTRODUCTION 1 *4
qL(X) = W E_+ /.LVpU'Tr[H p(r] (2)
In QCD an important role is played by topological prop- prpo==1

erties. By the axial anomaly, matrix elements or correlatio
functions involving the topological charge density operato
g(x) can be related to relevant quantities of hadronic phe1><1 plaquett¢ is quite non-negligible: for S(3)
nomenology. We mention the topological susceptibility Z(go 1)=0.18[5]. )
which is determinant in the explanation of the,(1) prob- The relation of the zero-momentum correlation of two
lem [1], and the on-shell nucleon matrix elementgfix), q,(x) operators,
which can be related to the so-called spin content of the
nucleon[2]. _

Lattice techniques represent our best source of nonpertur- X = 2 (qL(x)qL(0)>,
bative calculations; however, investigating the topological
properties of QCD on the lattice is a nontrivial task. In awith the topological susceptibility, is further complicated
lattice theory the field is defined on a discretized set an(by an unphysica| background term, which e\/entua”y be-
therefore the associated topological properties are strictligomes dominant in the continuum limitWe recall that the
trivial. One relies on the fact that the physical continuumdefinition of y requires also a prescription to define the prod-
topological properties should be recovered in the continuunct of operatorg6].) Indeed
limit.

Froma field theoretu_:a_l point of view, i.e., considering 'Fhe xL(gé)=a“Z(gS)2x+ M(g3). (4)
lattice as a regulator, difficulties may come from unphysical

divergences proportional to powers of the cutoff, which mus : 6 2
eglecting term®(a®), the background terrivl can be
be removed and therefore make the extraction of the physw%)‘mgen in ?erms of(mi)Zings with tr?e unity operz(a?i()) _called

signal hard. In order to get reliable quantitative estimates operturbatwe tail scaling as-a% and with the trace of the

physical quantities, one should control the unphysical cutoff- nergy-momentungscaling as—a?). In the case of the op-
dependent corrections even when they disappear in the cof eray- 9 P

tinuum limit, given that numerical simulations are performedegator (2) and for SU3), M(go) is already dominant at
at finite lattice spacings, i.e., at finite values of the cutoff.90="1: itis about 85% ofy at g5="1[7]. As a consequence
Such corrections may be relevant, in that the typical valueghe uncertainty ony can be hardly made smaller than
of the bare couplingg? where simulations are usually per- =10% by usmg the operaton) and the heating method to
formed are actually not small, bgé=1, thus few terms in evaluateZ(g§) andM(gp) [8-10.
perturbation theory are not always reliable. Another problem, which has come up in some studies
Considering a lattice version @f(x), q (x) the classical concerning the lattice determination of the on-shell proton
continuum limit must be in general corrected by mcludlng amatrix element ofj(x) [11,], is that the lattice operatdP)

renormalization function. In pure QCD, whera(x) i is very noisy, recqullrmg very 3ccutrate SttatIS'[ICS andbtlherefore
renormalization-group invariafig], expensive simulations in order to get a reasonable uncer-

tainty on the final result. In view of a full QCD lattice cal-
culation the search for a better estimator appears a necessary
step.

We study, within the field theoretical approach, the possi-
where Z(gS) is a finite function of the bare coupling% bility of improving the lattice estimator af(x) with respect
going to one in the Iimi'ggeo, but atggzl it may be very to all the problems listed above, that is we look for local
different from one. The finite renormalization of the widely versions ofg(x) which are less noisy, have a multiplicative
used lattice operatd#| renormalization closer to one, and whose correspon)glirig

IT,,(x) is the product of link variables) ,(x) around a

()

g, (x)—a*Z(gg)a(x)+0(a%), (1)
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not dominated by the unphysical background sig\ﬂe(gé)

in the regiongézl. [Any X, defined from a IocaqL(x)
will eventually be dominated by its perturbative tail in the
continuum limit. For the purpose of evaluatingit would
suffice to have a small tail @3=1, which should be already
in the scaling region.

II. IMPROVED TOPOLOGICAL CHARGE DENSITY

OPERATORS . _ S
FIG. 1. One-loop diagrams contributing to the multiplicative

Inspired by the widely used smearing techniques we conrenormalization oi](Li)(x).
sider the following set of operators defined in terms of
smeared links/()(x): SU(N) amounts to findingX e SU(N) which minimizes
T (X"=V")(X-V)], or equivalently  maximizes

+4

, 1 O Tr(X"V+VTX). The solution is given b

0=~ 552 e TN, ) ) given by
uvpo==

X=iaV 1+ (VIV-a?)Va/~1 0
whereTl{), is the product of smeared link&()(x) around a

14

1x1 plaguette. Such smeared links are constructed by thWherea is the real root of the equation:

procedure
2_ 212, i \_
O on_ II (d?—a®¥?+ia)= deV (8)
VR (x)=U ,(x), P
~ i i1 c Q1) andd,=0 are the eigenvalues o¥{V)*2 It can be verified
Vi (X)=(1=-c)V, "(x)+ 6. Vzvm vV, T(X) that the lower loop results ch(gg) and the perturbative tail
‘ o P(gj) (see Sec. Il are not modified by rendering!(x)
XVﬁ,[_l)(X+ VO P (x+ )T, unitary as above. It is worth mentioning at this point that
o abrupt cooling leads to exactly the same unitary likksor
0 Vil)(x) c=1. Indeed, cooling reassigns to each link a new value,
V, (X)= — — 72 (6)  X,(x) in a way as to minimize the action, i.e., maximize:
NTrv;”(x)Tvﬁ;)(x) Tr_[X#(x)VEL')(X)T +X,(x)"V{(x)] atc=1, which coincides
with Eq. (7).

() () =\ /Dy a0 (i) For N=3, instead of projecting back onto the SY(
where VZ,() =V, (x=v) . Vﬂ (x) and thereforeqL (.X). group we propose last step of the proced(@g which is
depend on the parametey which can be tuned to optimize simpler and should retain most of the advantages of the stan-
the properties oq(L')(x). All these operators have the correct gard smearing procedure.

classical continuum limit, i.e., foa—0, q(Li)(x)—>a4q(x).
Notice that the size 0f")(x) increases with increasing IIl. PERTURBATIVE ANALYSIS

i ; () i -
the integer parameteér NeverthelesqL (x.) cgn be St'l|| con We have calculateti(l)(g(z)) to one loop for the once-
sidered as local operators when keepinfixed while ap-  gmeared operatag¥(x) with the Wilson action. To carry
proaching the continuum limit. Also, as we shall see, by t thi lculat LDy ded in a Tavl L
optimizing the choice of the parameter a good improve- outthis calcu'ationd (x) is expande N a faylor Series in
the gauge fieldd ,(x), whereU ,(x) =exigoA,(¥)]. In Fig.

ment with respect tq(®)(x)=q (x) is already achieved for . R .
. 1 how the three d tributingZd’. We find
small values ofi. For SU2) the procedurg6) keeps the we show the three diagrams contributin efn

smeared link&/{(x) belonging to the S2) group, and it is ZW=14 7,62+ O(g)
equivalent to the smearing procedures proposed in[R&f. 0 0
For N=3 the smeared links no longer belong to the BY(

group N[ L L1 lo+c| 0.67789- 0'24673
: 21=Nl757 -9~ 5 2 loTCl U N2
The proceduré6) may be used to improve any local op- ! 4N® 8 2w N
erator involving link variables. Smearing methods to im-
. . ; 0.0399
prove lattice estimators have been already widely employed +c2| —0.48436+ N , (9)

in the study of long-distance correlations, such as large Wil-
son loops and hadron source operators.

One often adopts an equivalent “ScHioger picture” of
smearing, whereby lattice operators retain their original defi
nition, while all links in the configuration undergo transfor-
mation (6). Full consistency of this picture would then re-
quire thatV{)(x) be unitary.[As it stands,V{)(x) is only , .
unitary in the case of S(2).] Projecting a matrix V onto Z=1-0.9084;5+0(g,) for N=3, (10

wherel ;=0.15493. Atc=0 we recover the nonsmeared re-
sults[3]:

Z=1-0.53625+0(gs) for N=2,
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0
R=(1,55 0| | T ds

()
B3
is a renormalization-group invariant quantity;j i(x) Ris in-
dicates the operator&sz(x) renormalized in theMS
scheme, and the functiop(g) is related to the anomalous
dimension of the continuum operatay$x), &Mji(x) in the
MS scheme:y(g) = (1/16")(3c_/2)N;g*+O(g®). Notice
that(R) is what can be naturally extracted also from experi-
mental data.

FIG. 2. Diagram contributing to the lowest order term of the In pergurbatlo‘ln theory ) one f|nd§ .Y(go)—l
perturbative tail. +(z;+Yy1)90+O(gp), where z; is the coefficient of the

O(gg) term of the finite renormalization (11L in the pure
which do not lead to a reliable estimate 8fgz=1). Asc  gauge theonjcf. Eq. (9)], andy, turns out to be a small

varies, the following extreme values @fare obtained: number:y; = —0.0486 forN=3 andN;=4 [14].
Z=1-0.136Q5+0(gy) (c=0.6495, N=2, IV. NONPERTURBATIVE ANALYSIS
(11 BY THE HEATING METHOD

_1_ 2 4 _ _
2=1-02472,+0(go) (c=06779, N=3. Estimates of the multiplicative renormalizations of the op-

(i) i -
In both cases?Z is quite close to unity for typical values of faratorsqL (x) and of the background term in the correspond

g2, making the one loop estimate more reliable. It is note\"9 X, can be obtained using the numerical heating method

worthy that the last step in the smearing procedéjeurns ~ [8,9], without any recourse to perturbation theory. This
out to be essential to make approach one foc=0. method relies on the idea that the multlpllcatlve renormaliza-

For g™)(x) we have also calculated the lowest perturba-tion Z(gf) and the background terid (gg) is produced by
tive contribution to the mixing with the unity operator Short-ranged fluctuations at the scale of the cugoffhere-
fore, when using a standard local algoritifor example,
Metropolis or heat bajhto reach statistical equilibrium, the
modes contributing t& andM should not suffer from criti-
cal slowing down, unlike global quantities, such as the topo-
2 logical charge, which should experience a severe form of
6 3N(N°—1)

P(g2)=g8——=—7—p(c)+0(gd), critical slowing[10]. A
0/ 80" 12877 0 We applied the heating method to the operatgf¥x) for

P(gg), which is the dominant part of the background term
M(gg) in the continuum limit. The corresponding diagram is
shown in Fig. 2 and leads to the result

_ ) 3 i=1,2 and for a number of values af in the region

p(c)=0.0028670.017685+0.048665°—0.075362 0=c=1. We restricted our analysis to the @Jpure gauge
+0.068526%— 0.0344385+ 0.00744%5°. (12) theory, expecting no substantial differences for3. The
measurements were performed@t 2.6 (g(z,=1.5384. o)y

The minimum of this everywhere-concave polynomial isWhich is a typical value for the SW@) simulations with the
p(c=0.872)=1.4x10"5. Thus, for allN, the leading order Wilson action. The local updating was performed using the

of P(g2) diminishes by more than 2 orders of magnitude€at-bath algorithm. _ _ _
compared to its nonsmeared valie=0). An estimate ofZ can be obtained by heating a configura-

In the presence of dynamical fermions one should takdion o Which is an approximate minimum of the lattice
into account the fact that, unlike pure gauge theory, the to@ction and carries a definite topological cha@g,. Such a

pological charge density mixes under renormalization withconfiguration has been constructed by discretizing an instan-

ﬂujfu Whereji is the singlet axial vector current. The non- ton solution in the singular gauge

renormalizability property of the anomaly in the modified 2

[ X
minimal subtraction 1S) scheme means that the anomaly A, (x)= P —(SLSV—SLSM)X—;, (15

equation should take exactly the same form in terms of bare X+p* 2
or renormalized quantities. However the renormalization of h _ ds.—i q T defi
9, i(x) andq(x) is nontrivial[13]. A renormalization-group :/_vkere S.“BIl Sn Sk;'ak ,_:n e>_<rpf)10nent]|cat|ng |t|_t0 ?lne
analysis leads to the following relation valid for all matrix ink variables ,(x) = exfliA,(x)]. Then a few cooling steps

elements of a lattice versian (x) of g(x) in the chiral limit (about 3 were pgrformed o mgke _the conﬁggraﬂon
L smoother. On a lattice f4and choosingp=6 we obtained

[14]; an instantonlike configuration carrying a topological charge
) ) QL 0=0.96 (all improved operators we considered gave ap-
(i2N¢q )= Y(go)(R), (13 proximately the same value fafy).
One then constructs ensemblég of many independent
whereY(g3) is a finite function ofg3, and configurations obtained by heatirig, for the same number
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TABLE I. We presenZ()(5=2.6) fori=1,2 and various values multiplicative renormalization closer to one than that of the
of _c, as_ obtained by thg heating method for a nu_mt_)er:dISO initial operatoqu(x). FromZ(B8=2.6)=0.25 oqu(x), we
ig’:ﬁ?‘ggeﬁ' mfte”i((’::l ‘:ig‘gyggégf;”ﬂetﬁgthl:t;;aat(';gc:' g’;: pass, by roughly optimizing with respect to the parameter
atic error r}t;latedyt% the stability of the baclfground con?i/guration.c’ to Z(l)(c=0.8,,8=2.6)20.57 by one improving step, and

(?Z(Z)(c=0.8,,8=2.6):0.75 by two improving steps. For

The numbers in this table should be compared with the valu ] ()
Z(B=2.6)=0.25(2) for the standard operat(® [10]. argeri we expect to geZ'” closer and clpser to one, as also
suggested from the results of the cooling methdf]. On
i c=06 c=08 c=1.0 the other hand we should not forget that increasing the num-
ber of improving steps the size of the operatp?(x) in-
creases. One should find a reasonable compromise taking
into account the size of the lattice one can afford in the
simulations.
_ _ A comparison of the above results for 1 with the one-
n of updating steps, aVeragif@(L')IExq(L')(X) over 7, at  |oop calculation(9) shows that the contribution of the higher
fixed n. Let us defineQ(® =(Q"), , i.e., the average on Perturbative orders is still non-negligible, but not so relevant
’ " as in the case of the operator without improving.
Another important property of the improved operators we

1 0.522) 0.572) 0.542)
2 0.682) 0.752) 0.692)

the ensemblé& . Fluctuations of length=a contributing to

Z should rapidly thermalize, while the topological structureCan infer from the heating method results is that they are
of the initial configuration is leftapproximately unchanged much less noisy tha (x) at fixed background. In other
for a long time. After a few heating steps where the short- - L o ’ i
ranged modes contributing B get thermalizedQ, ,, should words, in the Monte C_arlq determinations of the matpx ele-
show a plateau approximately #Q, o. The estimates of Ments ofq_(x) the contribution of short—ra}ng_ed f_Iuctuanns to
z0(B=2.6) from the plateaus observed in the heating pro_the error is largely suppressei)d. Aqlzlif);mtl('g?tlve idea o{i;[hls fact
cedure are reported in Table I, and should be compared witf/@y come from the quanutgf =AZVIZT, whereAZ is
the valuez(B=2.6)=0.25(2) for the standard operat®) the typical error pf the data in thg plateau during the heating
[10]. The plateaus formed by the rati@{i)n/Q(Li)o starting procedure described above. We indeed founccferl.0 and

from n=6 are clearly observed in Fig. 3, where data 1‘orf0r an equal number of measurements

i=1,2 andc=0.8 are plotted versus. Checks of the stabil- o0 o0

ity of the background topological structure of the initial con- —5=6, —z=15. (16)

figuration were performed ai=8,10, by cooling back the € €

configurations (locally minimizing the actioh finding ) ) )

Q_=Q, , after few cooling steps. An estimate of the background signdl(gg) can be ob-
This analysis confirms the one-loop perturbative calculatained by measuring, ,=(Qf) /V on ensembles of con-

tions, that is the improved operators we considered have figurations#, constructed by heating the flat configuration

O =1
O i=2 ’
1.0 b
0.8 - ' E
.o ®----- B - ®__;___
Q,/0
L'¥Lo0 06 o 7
————————————— m—————-m——————m——————
04 E
02 -
0.0 n 1 1 1 1 ] i 1
0 2 4 6 8 10 12 14 16
n

FIG. 3. Q_,/Q_ o versusn in the heating procedure of an instanton configuration. Data=fdr,2 atc=0.8 are shown. For comparison
the solid line represents the estimateZofor the standard operatdg).
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TABLE II. We presentM)(8=2.6) fori=1,2 and various val- change the relative weights of the contributionsytoin the

ues ofc, as obtained by the heating methd®00 trajectories i-.,  rglevant region for Monte Carlo simulations. By a standard

from the the value of_at the plateau, observed aroune 16 for Monte Carlo simulation aB=2.6 on a 16 lattice, we mea-
all operators considered. The numbers in this table should be COM: i red X(i) for i=1.2 and c=b 6.081.0. We ,performed
pared with the valuéM (8= 2.6)=2.10(5)x 10 ® for the standard L ' o

operator(2). 15 000 sweeps using an overrelaxed algorithm; this sample

size is already sufficient to show the better properties of the
i c=06 c=08 c=1.0 operatorsq(x). Data for x) are given in Table Ill. For

comparison we also calculatedy by cooling[16].
For the standard operator we founQL=2.21(11)

X 10" °, which, due to the large corresponding background
term M=2.10(5)x 10" °, does not allow one to determine

for the same numben of updating step$9,10]. Measure- a’y at this value ofg. Instead the improved operatog$’
ments were performed on a“Rttice. The plateau showed X(X) provide, using Eq(4), reliable estimates ad’y hav-

after few heating stepsn&14 in this case by the data Ing about 10% of uncertainty, which are consistent with each
() should be placed approximately at the value ofother and are also consistent with the determination from

of xih . _5
cooling: xcoo=1.3(2)X 10 >, although the latter seems to

M®(g?), since no topological activity is detected there, i.e., J : . :
the background is still flatthis is checked by cooling back _be systematically lower. This faCt,maY be explameq taking
into account thaQLzEqu(x), which is used to estimate

the heated configuratiopswhile the other modes contribut- _ _ _ _
ing to M(g2) should be already approximately thermalizedthe topological charge of cooled configurations, underesti-
(for a discussion of this issue s¢&0]). The estimates of Mates the topological charge contéfur the lattice size we
M) (B=2.6) from the plateaus observed during heating aré'® working with), as we found out explicitly when we con-
given in Table II, and should be compared with the valueStructed an instanton configuration on the lattice.

M(B=2.6)=2.10(5)x 10"® relative to the standard opera- The determinations o andM should not be subject to
tor (2). In Fig. 4 we p|otX(Li) fori=1.2 andc=1.0 as a relevant finite-size scaling effectas explicitly checked in
. . n , .

function of the heating step, and compare with the corre- Ref.[10]), since they have their origin in short-ranged fluc-

sponding data for the standard operator. The expected plégations. Thus finite-size corrections to our estimate& of
teaus are observed from= 14 ' and M should be negligible. Larger finite-size effects are

Notice the strong suppression of the background term iﬁaxpect'ed on the topol_oglcall modeg, as can be argued from
the improved operators. Far=1 the reduction is about a numerical studies available in the literature. For this reason
factor 8 when performing one improving step, and about 41¢ measurement of, , which receives contributions also
factor 30 by two improving steps. For a larger number offrom topological modes, was performed on a larger lattice.
improving steps, the suppression is expected to be larger. We should say that we did not perform a complete analysis

The suppression of the background term in E4). to-  of the finite-size corrections o, since our purpose was
gether with the relevant increase @f should drastically just to show the better behavior of the improved operators

1 0.602)x10°° 0.3712)x10°% 0.272)x 105
2 0.232)x10°° 0.132)x10°° 0.072)x10°°

25 . . . . . .
x i=0
O i=1 .
NI phoppp bl
15+ i
10%,
1.0 .
05 i
———————— BG-GB -
. P O e g 8- --8 - -
0'00 4 8 12 16 20 24

FIG. 4. x_, versusn in the heating procedure of the flat configuration. Data for the standard operator and improved operators for

i=1,2 atc=1.0 are shown.
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TABLE IIl. We presenty"(8=2.6) fori=1,2 and various values af as obtained by a standard Monte
Carlo simulation on a T6lattice (15 000 sweeps using an overrelaxed algorjthvile also give the corre-
sponding values of*y as obtained from Eq4). Data fora*y must be compared with the cooling result:
Xeoo= 1.3(2)X 10°°.

i c=0.6 c=0.8 c=1.0
X, 1 1.027)x10°° 0.897)x10°° 0.747)x 1073

2 0.937)x10°° 0.927)x10°° 0.71(6)x 10>
a*x=(x,—M)/z? 1 1.53)x10°° 1.6(3)x10°° 1.6(3)x10°°

2 1.52)x10°° 1.42)x 105 1.42)x 105

q(Li)(x) and not the determination of for the SU2) gauge they have a multiplicative renormalization much closer to

model. So we limited ourselves to a numerical study notone.
requiring a supercomputer. Improved operators are also expected to provide a much
If the improvement for SIB) is similar to that achieved better determination of the topological susceptibility by the
for SU(2), using the optimal operator for=2 atgi=1 the field theoretical method in the $B) gauge theory, by
unphysical term in Eq(4) is expected to become a small part strongly reducing the unphysical background term while en-
of the total signal, allowing a precise determinationyoby  hancing the term containing with larger values of the mul-
the field theoretical method. tiplicative renormalization. This should allow a precise and
independent check of the alternative cooling method deter-
minations(see, e.g., Ref§16,17]), whose systematic errors
are not completely controlled. Furthermore the improved op-
We have analyzed the properties of a class of improveerators may also open the road to a more reliable lattice
lattice topological charge density operators constructed by avestigation of the behavior of the topological susceptibility
smearinglike procedure. Such operators look promising foat the deconfinement transition, where cooling does not give
the lattice calculation of the on-shell proton matrix elementsatisfactory result§18].
of the topological charge density operator in full QCD, The smearinglike procedui®) may be used to improve
which is related to the so-called proton spin content. Indeeény local operator involving link variables, and a renormal-
their use should overcome the difficulty due to the largeization study would again be called for in all cases. We hope
noise observed in preliminary quenched studikk5|, and  to return to this issue in the future.
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