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Coupled cluster analysis of the 1) lattice gauge model
using a correlated “mean-field” reference state
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We apply the coupled cluster meth@dCM) to the U1) lattice gauge model in-21 dimensions, basing our
analysis on a reference state which already contains a certain class of single-plaquette correlations, the so-
called “mean-field” reference state. We consider the simplest possible approximation scheme for the coupled
cluster calculation, in which only single-plaquette correlations are included. The use of the “mean-field”
reference state allows us to reproduce, within this level of approximation, the correct leading-order behavior of
the ground-state energy of the equivalent Mathieu problefooii the strong- and weak-coupling limits. In
addition, we have calculated the mean plaquette and the odd- and even-parity mass gaps.

PACS numbe(s): 11.15.Ha, 03.65.Ca, 11.15.Tk

I. INTRODUCTION aging results. However, the approach outlined in this earlier

work was better suited to the strong-coupling region, and

Although most of the effort in the field of lattice gauge considerably more numerical effort was required to obtain

theories(LGT) has been put into the Lagrangian formulation, accurate results in the weak-coupling regime. In the present

there are several advantages to consider these theories in th@Per we present an alternative approach to the problem
Hamiltonian formulation[1]. In particular, the Hamiltonian Which reproduces the correct behavior in both limits with

approach can remove the need to extrapolate the results ofinimal numerical effort (although without using this

tained on finite lattices to the infinite lattice limit. It also knowledge as inpt and gives very good results in the

leaves the time dimension continuous, so that the extrapoldt€rmediate-coupling region as well. _
tion to the continuum limit need only be performed in the 1 N€ Paper is arranged as follows. In Sec. Il, we provide a

spatial dimensions. A further advantage of the HamiltoniarPriEf c.)utli.ne .Of our approach, stressing in particular the areas

formalism is that it permits a direct application of the tech-" which it %"ﬁefs from t'hat of Ref[5]. In Secs. III'and IV, .

niques of quantum many-body thedi@MBT) to the study the approximations which we employ are c_iescrlbed, while
FLGT svst our results for several ground-state properties and the mass

0 systems. . aps are presented and discussed in Sec. V. Section VI con-

QMBT has undergone rapid progress over the last decadgyjng our conclusions and a discussion of future work.

with particular advances in the method of correlated basis

functions(CBF’s) [2] and the coupled cluster meth€dCM)

[3]. Both these methods have been applied to a vast array of

problems in many-body physics, and, more recently, to lat-

Il. COUPLED CLUSTER FORMALISM
FOR THE U(1) MODEL

tice gauge theorie§4—6|, in particular Y1) and Z,. A Since the general formalism for applying the CCM to lat-
method related to the CCM has also been applied t@25U tice gauge theories has been discussed at length in[Ref.
[7]. we shall keep the present discussion brief and only expand

The U1) model in 2+1 dimensions has served as a test-where the present work differs from that of the earlier litera-
ing ground for many techniques in LGT, among them theture.
CCM [5,6], the CBF method4], Pade approximant exten- For U(1) theory in 1+1 dimensiongthe one-dimensional
sions to strong-coupling seri¢s,9], variational techniques (1D) chain] and 2+1 dimensiongthe 2D square lattiggit is
[10-14, and the so-called expansion[15]. Although the possible to write the Hamiltonian entirely in terms of the
U(1) model is comparatively simple, it is strongly nonpertur- plaquette variable$B,}:
bative and as such provides a real test for the various meth-
ods. 9 1 i
The CCM has proved its worth as a method of QMBT in —Zp _2(9—55‘”‘(1_0093;)) t3 % BBy, g’
fields as diverse as prototypical field theories, spin-lattice (1)
systems of interest in magnetism, and quantum chemistry
(for a review, see Refl16]). In a previous papef5], the  where the sum op runs over all elementary plaquettes, and
CCM has been applied to the(lJ model with very encour- the sum ong over all lattice vectors connecting nearest-
neighbor plagquettes on the lattice. Thastakes two values
for the 1D chain, and four for the 2D square lattice. Since

“Electronic address: R.F.Bishop@umist.ac.uk this Hamiltonian is invariant under the transformation
"Present address: Department of Physics, University of Pretorig,B,} —{Bp+2n}, with n integral, the space @ is com-
Pretoria 0002, South Africa. pact with —7<B,< for all p.
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In what follows, we will require the definition of an inner 1 * Np
product of two functions of the plaquette variables. For func-S,==; > > [/ bip,(N1,N2)(cOSN By —Ry )
tions (§({B,})| and|f({B,})), we define the inner product tMnp=1pypp=l
as X(cosnyB,,—Ry)
4B +.y*§)21)pz(n1,n2)sin n;By sinnyBy, ], (7

Np
<§|f>=fw[pf_llz—;

af. )

with obvious generalization fork>2. In Eq. (7)
R,=1,(2t)/15(2t) wherel,, is thenth-order modified Bessel
) function. The prime on the plaquette summatiorSinindi-

In the limit of a single plaquette, the Scldinger equation  cates the omission of the termy=p,. The construction of
corresponding to the Hamiltonian of E€l) reduces to the |¥) in the above way ensures that the ground state has posi-
one-body Mathieu equation. In previous wdtK, the refer-  tive parity under the simultaneous reversal of the signs of all
ence state for the CCM analysis was taken as the stronghe{Bp}_
coupling . =0) ground state of the Mathieu equation, i.e., The {S,} operators defined above differ from those de-
as a constant. The correlation Operators were then eXpandﬂﬁed in Ref. [5] for the constant reference state in the re-
in terms of the excited =0 eigenstates of the Mathieu equa- placement coaB,—cosnB,—R,. The reason for this re-
tion, which are simply the trigonometric functions a®  placement is the following. In the CCM, the correlation
and sinnB, n=1,2,.. .. operatoryS,} are defined in terms of the creation operators

The use of the strong-coupling Mathieu ground state agelative to some reference stdig). We should thus have
the reference state means that it becomes progressively Marg|S,| ¢)=0 for eachk. If we use|0) as the reference state,
difficult to obtain converged results asincreases into the thjs condition is satisfied if we take the creation operators to
weak-coupling regime. In the present work, we use a differpe simply the trigonometric functions, because of their peri-
ent reference state which allows us to obtain much improvegdicity. However, the use dfb) as the reference state means

convergence throughout the range <. . that (®|cosnB,|d)=1,(20)[1(2) " *. The presence of the
If we denote the constant reference stat¢d)y we define  term —R,, in Eq. (7) is to correct for this. Note that no
our new reference state as change is necessary for the odd parity operatorsiBjn as

(®[sinnB,|®) vanishes on account of the odd character of

sinnB, under the substitutioB,— — B, and the fact that the

inner product involves integration over a symmetric interval.
In the CCM the ground-state b{ay| is not the manifest

The operatofT is defined to beT =ts jcosB,, wheret is a Hermiti_an conjugate of the ket, but is parametrized indepen-

parameter to be determined by some external m¢ans, dently in the form[16]

variationally). In the sense that some one-plaquette correla- AN —S(B

tions are included in this statép) can be viewed as a (Wol=(P|S({Bp} e~ SBe), tS)

‘mean-field” (MF) reference state. If we assume that theyhere S is as defined above for the ground-state ket. The

state|0) is normalized to unity, then the “mean-field” refer- operatoré is given by

ence statéd) is normalized td 1,(2t) ], whereN, is the

total number of plaguettes on the lattice dgds the zeroth- . Np

order modified Bessel function. S=1+ 2 S«({Bp}) (9)
The exact ground-state ket of the Hamiltonian of Eq. k=1

is now taken in the CCM form

|®)=eT|0). 3)

andék has the same form &5 except that all coefficients
.V'pl ~ (nq,...) arereplaced by%l (nqg,...).
[Wo({By})) =SBl | D), 4 The coefficients,, . (ny,...) and.7,  (ng,...)
are determined from the CCM equatiofd which are ob-

tained from the condition that the ground-state expectation

with value of the Hamiltonian,

Np ﬁ=<‘if0|H|\If0):(<b|~Se‘SHes|<D>
S({BpH =2 S{By}). (5 (V| W) (ol®)

k=1

(10

should be stationary with respect to variations in both the
bra- and ket-state coefficients.

The CCM can be extended to the determination of the
excited states of a system as well as its ground-state proper-
ties. In the conventional CCM, the excited states are con-
= Np structed by acting on the ground state with an excitation

The k-body correlation operator§({B,}) are decomposed
as

N
S = 7. (n)(cosnB,—R.), 6 correlation operatoK, which has a similar partitioning t8
. nEl ;)21 p(N)( p~ o) © for excited states which have the same symmetry as the
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ground state; for excited states with a different symmetrywith Cy=1. This agrees with the result of weak-coupling
[e.g., parity, as in our (1) casd, the excitation correlation perturbation theory for the Mathieu problem to the order
operator for these states must reflect their underlying symshown.[It should be noted that the(Wl) problem has a simi-
metry. The Schrdinger equation for the excited std®#,) is  lar weak-coupling expansion, witE,=0.9833 for the 1D
then written as chain[17] andCy=0.9581 for the 2D square latti¢d].]
Since we obtain the correct behavior in these two limits
H|W)=E V), (1)  without the addition of any correlations apart from those
already included ifT, we should be able to obtain very good
with results at low orders of approximation in the CCM calcula-
tions throughoutthe range ofn. This emphasizes the non-
[P e)=X|Wo)=Xe" D). (12 perturbative nature of the CCM, since both the Mathieu and
U(1) problems are well known for lack of convergence in
IIl. THE “MEAN-FIELD” APPROXIMATION their strong-coupling perturbation expansions.
The fact that this very low-order “mean-field” approxi-
The simplest approximation scheme available is themation, which includes only some one-body correlations,
“mean-field” scheme, in which we se8=0 andS=1. We leads to results for the ground-state energy in the weak-
thus approximate the exact ground-state ket and bra by  coupling regime which are less than 2% in error for 1D and
less than 5% in error for 2D suggests that the higher-order

|Wo)=|D); (Vo|=(D]| (13)  correlations play a small role in determining the ground-state
energy of these (1) lattice systems.
and the expectation value of the Hamiltonian by In previous work[5], the connection between the CCM
and strong-coupling perturbation theory for th€lmodel
—MF_<©|H|®> N[N R (14) was stressed. The use of a constant reference state in that
C(D|D) p(A I IRy). work made this analysis simple and straightforward. In the

present work, the use of the more complex reference state
There is thus only one parameter, namglyto determine, |®) makes this analysis more complicated, even for low or-
and we do this by requiring th&t should be stationary with ders. This is because of the relationship of Ep), which
respect to t. This value oft, which we denote byty, is  only allows analytic solution for very low orders. For this

given by the solution of the equation reason, it is not readily feasible to replicate the high-order
comparisons between the various SUB) (approximations
R; and 2mth order perturbation theory as was done in RBf.
A=t+ E, (15)
1

where the prime denotes differentiation with respect. tin IV. THE ONE-PLAQUETTE APPROXIMATION SCHEME

our subsequent calculations, wh&&0 and &—1)+#0, we A. Ground state
shall chooset, to satisfy Eg.(15), i.e., to minimize the

“ iald” ecti MF
mean-field” estimaté of H"* of Eq. (14). all the correlation operatofsS, ,S,;k=1,2,... Ny} are in-

The advantage of usiri@) rather thar0) as a reference e in the calculation. However, since we are ultimately
state becomes clear from an examination of the StroNG terested in the situation wheié,—0, this is obviously

coupling & —0) @r’:AdF weak-coupmg)(ao_c) limits of EQ. 1ot 4 feasible proposition and some form of approximation
(14). If we denoteH ™ (t=to) by Ej™, we find in the former  pecomes necessary.

The formulation described above is in principle exact if

case(to lowest ordey that One of the most popular schemes for approximating the
ME full CCM is the so-called SUB scheme, in which only those
E A2 . - )
9 y_ M 4 correlation operator§S, ,S,} with k<n are retained, and the
A +O(N%), (16) . :
Np 4 remainder set to zero. In our subsequent calculations here,

we will work in the SUB1 approximation, i.e.,
which agrees with strong-coupling perturbation theory for5551,é51+ él_ While this scheme constitutes a very ma-
the Mathieu problerfiand, in fact, with the () resultinany  jor approximation, it provides a useful and simple testing
dimensior to the order shown. In the case of weak coupling,ground for properties such as the convergence of the method
we find that as a function of the coupling and, by comparison with results
from other methods in which the identification of different
orders of correlation is not so straightforward, of the impor-
tance of higher-order correlations.

Because of the linear dependencebbn S in Eq. (10),
N the CCM equations for the ground-state enekgyand the
IAt this level of approximation $=0, S=1), we are essentially ket-state coefficients are independent of the bra-state coeffi-
repeating the variational calculation of REf0]. cients. Within the SUB1 approximatiok, is given by
°Note that the last term of the Hamiltonian of EG) does not _s s
contribute to the calculation df in Eq. (14), which means that we :(<1)|e He 1|q)>
are effectively solving a Mathieu-type problem. g (®| D)

MF 2

C
N~ Colh— 5 +o ) (17
Np 8

(18
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and the equations for the ket coefficients by where e°’=Ec—E,, e*=E¢—Eg, and Eg and Eg are the
energies of the odd- and even-parity excited states.
(®|cosmBye™ SiHeS D) =Egl y(2t)[19(2t) N1, It is at this point that a major difference between the re-
sults of our present work and those of the previous analysis
m=1,2,... .(19 based on the constant reference state appears. If a constant

model state is used, all coefficients at the SUB1 level of
We now make the substitution.”,(n)—a,, where the approximation(i.e., for ground-state bra and ket states, and
{a,} are independent of the plaquette ingekecause of the for even- and odd-parity excited stateme independent of
translational invariance of th@nfinite) lattice. If we extend the coordination number of the lattiee(i.e., the number of
the definition of thga,,} to include negative values ofwith  nearest-neighbor plaquettes for a given plaglietiace the
the conventionsa_,=—a, anda,=0, we can express the last term in the Hamiltoniaithe termazlaBpaB,Hq) never
ground-state energy per plaquette at the SUB1 level by  contributes, and the analysis is essentially a way of solving

the Mathieu equation. In our approach with a “mean-field”
Eq 1 model state, we find that the odd-parity excitatialtsde-

N A= MR A+ 5 _E _E a,@n,Rn +n, (200 pend onz, even though the ground state and even-parity
P fL==%® M=% excitations are independent nf The set of equations which
we have to solve for the coefficients of the even-parity ex-

cited states is given by

o o

The equations for the ket coefficients are

1 m?
E(t_)\)(Rm+1+ Rmfl_ZRlRm)"' 7Rm

©

e
—m 2 anRm+n

n=—oo
(e 1 o] e ] B B
-m > aRnimt > > 2 aya, .
n=- M==% Ng=—e +n E N E nlxnlanZ(Rnl+n2+m_ I:2n1+n2Rm)
1=—%® Np=—x
X(Rn1+n2+m_ Rn1+n2Rm):0' m=1.2,.... (21

1 )
=§eeZ X®(Rmsn—RmRn), mM=12,...,

n=—ow

The SUB1 scheme as it stands, however, is still insuffi-
cient to allow for exact calculations to be performed because
of the infinite sums over the mode indicesvhich appear in (26)
the definitions ofS; andS;. We therefore introduce an ad-

o . ; hile th for the odd-parit itati i b
ditional subtruncation scheme, the SUBf)( scheme, in while those for the odd-parity excitations are given by

which we set the coefficients, anda, with n>m to zero. o 7
m Z_ nxﬁ( Rm+n—ZRan>
B. Excited states "
We now turn to the parametrization of the excited states . . o z
L L . : + E 2 nyX, an | = Rn. R —R
within the SUB1 approximation. Since there are two possible =t 0,5t o 1%n,;%ng| g g MmNy iy AN+ m

branches of excitations for the(l) model, which are distin-

guished by their parity under the transformation 1. <o

{B,}—{—B,}, we require two excitation correlation opera- =~ € n;x XaRmin, M=12,.... (27)
tors. We will denote the even-parity operator ¥§ and its

odd-parity counterpart b)X°. Within our SUBL level of ap- |, the above equatlonsgnz.%g(n) and xﬁz.%g(n); both

proximation, these operators are given by their one-body Palre independent of the plaguette index because of transla-

titions tional invariance. We have also extended these definitions to
= Np include negative values af using the relation® ,=xg,
XS= 21 21 Z(n)(cosnBy—Ry), (220  x%2,=—xp, andxg=x5=0. In the derivation of the above
n=1 p=

equations we have made use of the recurrence relations of
N the modified Bessel functiorj48].

o s As in the case of the ground state, a truncation of the
Xlzngl pzl 2p(n)sinnB,. (23 mode indices is necessary to make the calculation tractable.
We can again employ the SUBHJ scheme, in which we

The equations for the single-plaquette excitation coefficient§€t@in only those coefficien®, andx, with n<m in Egs.

are then given by (26) and(27). The determinations af® ande® then reduce to
the solutions of generalized eigenvalue equations.
(®|sin mB,e~ Y H,X°]eS®) = (P|sin mB,X°|®) The excitation energies which are of particular interest are
P ’ P 1 . . . .
(24)  the lowest excitations in each parity sector, the so-called

mass gaps. The lowest excitation in the odd-parity sector
<<I>|(cosme—Rm)e*S[H,Xe]eS|<I>) (sometimes referred to as the photon-sector mas}mgap_—
lated to the glueball maskl, (see below for the precise
= e*(®[(cosmB,— Ry, X°| D), (25 relationship, where the subscript indicates antisymmetric.
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TABLE I. Ground-state energy per plaquette for various values. dbr U(1) lattice gauge theory in 21 dimensions within the
SUB1(m)-approximation scheme fon=1,2,3,5,10,20. Within the SUB1 approximation the ground state of ti¢ idodel is equivalent to
the ground state of the Mathieu problem; the highest-order results are exact to the accuracy shown for the Mathieu problem.

A 0.5 1 5 10 50 100 200

SUB1(1) 0.439323 0.774584 2.130507 3.060732 6.952695 9.879051 14.019766
SUB1(2) 0.439118 0.772465 2.098194 3.026606 6.942991 9.873201 14.015951
SUB1(3) 0.439117 0.772429 2.098265 3.028447 6.943527 9.873350 14.015996
SUB1(5) 0.439117 0.772431 2.099943 3.031441 6.943734 9.873376 14.016000
SUB1(10) 0.439117 0.772431 2.099977 3.031510 6.943730 9.873375 14.016000
SUB1(20) 0.439117 0.772431 2.099977 3.031510 6.943731 9.873375 14.016000

The even-parity mass gap is related to the physical vacuunbetween the coupling and the temperature. It is thus custom-

sector mass gaplg (S for symmetrig. ary in LGT to refer to the second derivative of the ground-
state energy with respect to the coupling as the specific heat,
V. RESULTS which we will denote byy rather than the more usuél to

) ] _ avoid confusion with contours on the lattice which are intro-
In this section we present the numerical results of ouryyced below in connection with Wilson loops.

CCM SUBL calculations for the ground-state energy and the \ye definey as
mass gaps. In addition to these spectral observables, we have
also calculated other quantities which are of interest in the 92 =
study of lattice gauge theories, namely, the specific heat, Wil- X=~ _2(_) ' (28)
B\ BNy
son loops, and the mean plaquette.
The specific heat is of interest as it gives some indication 12 ) o
of the coupling at which the ground-state energy change¥heres=»\""=. We have chosen this definitiga5] so as to
from the power-law behavior at strong coupling to the©Obtain a peak iny as the ground-state energy changes char-
nonanalytic square-root behavior for weak coupling. Wilson@cter from strong to weak coupling, rather than the shoulder
|Oops and the mean p|aquette can be used as order paramhl(:h WOUl.d O.CCUr |.f we were to define it in terms of the
eters to investigate the phase structure of lattice mddéls ~ second derivative with respect 10[9,20].
We showy as a function ofy/\ for the SUB18) approxi-
A. Ground-state energy mation in Fig. 1. There is no discontinuity ig, which
strongly suggests the lack of any phase transition. The peak
The fact that the ground-state energy of th&l)lumodel i 4 is the result of the change from strong to weak coupling,

under the SUB1 approximation is independent of the lattic&yhich, according to our results, occurs in the region of
coordination number, together with the observation that thg ~g 6. This is in good agreement with previous results

last term of the Hamiltonian of Eq1) does not contribute to (10,185,

either E; or the ket coefficient equations at this level of

approximation, means that at the SUB1 level we are solving

the Mathieu problem. The ground-state energy per plaguette, C. Mass gaps

Eg/Np, is therefore identical to the lowest eigenvalue of the  The formalism for describing excited states within the
Mathieu equation for a given value of the coupling. CCM has been described above. In this section, we present

We show our numerical results fét/N, for the U1)  the results of our SUB1 calculations for the mass gaps for the
model under the CCM SUBL1 approximation in Table | over ay(1) model in 2+1 dimensions.

wide range of\. It is clear from the results that we obtain
good convergence over the entire range of couplings, but 1
particularly in the strong- and weak-coupling limits. The
convergence ak =200 is very impressive, and stresses the
ability of the CCM to perform remarkably well far outside

the perturbative region.

It is simple to show that the results obtained for the
“mean-field” approximation above, where we showed that
the CCM energy in both limits reproduced the relevant low-
order perturbation theory expansions, remain true at the
SUBL level, i.e., the additional correlations introduced by
S, do not disturb the extreme strong- or weak-coupling be-
havior.

B. Specific heat FIG. 1. The specific heat as a function ofy\ for the SUB18)

The ground-state energy in LGT is the analogue of theapproximation. The peak af\~0.78 is indicative of the change
free energy of statistical mechanics, with a similar analogyfrom strong- to weak-coupling behavior.
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TABLE I1l. Even-parity mass gap for various values af for U(1) lattice gauge theory in 21 dimensions within the
SUB1(m)-approximation scheme fon=1,2,3,5,10,20. Within the SUB1 approximation this mass gap of {i¢ tdodel is equivalent to the
first even-parity excitation of the Mathieu problem.

A 0.5 1 5 10 50 100 200

SUB1(1) 2.119021 2422291 5.812630 9.326872 25.156609 36.921923 53.517423
SUB1(2) 2.110648 2.404033 6.080411 10.163532 26.713305 38.446453 55.030373
SUB1(3) 2.111321 2.412691 6.580474 11.367925 26.753995 38.450347 55.030397
SUB1(5) 2.111333 2.413220 6.634255 10.873960 26.691813 38.440945 55.028324
SUB1(10) 2.111333 2.413220 6.624583 10.827390 26.697462 38.441374 55.028340
SUB1(20) 2.111333 2.413220 6.624578 10.827175 26.697389 38.441371 55.028340

As was the case for the ground-state energy, the even- We have performed least-squares fits to the data of Fig. 2
parity excitations at the SUBL level are independent,afo  over the range & A =<2.5 to determine the coefficienbs
that the mass gap is simply the second-lowest positive paritgnd b, in Eq. (30). Our results, together with those from
eigenvalue of the Mathieu equation. For the odd-parity exciother calculations, are shown in Table IV. Our results are
tations, on the other hand does enter the equatiofsee Eq.  clearly comparable with those obtained by other methods.
(27)]. To reproduce the Mathieu results, we must takeD. One quantity which we cannot predict at the SUB1 level
The odd-parity mass gap is then the lowest odd-parity eigeris the ratio of the mass gapds/M », since our results for
value of the Mathieu equation. The results of these two cale® are essentially only for the Mathieu problem. In the weak-
culations are shown in Tables Il and lll. Although the con- coupling limit, this ratio is expected to be2, corresponding
vergence is not as good as in the cas&fN,, it is still  to the lack of a stable glueball in the(1) theory in the limit
impressive. A—o. To make a prediction for this ratio, correlations be-

The fact that Eq(27) contains & dependence means that yond the SUB1 level will have to be included in the calcu-
we expect different behaviors for the two cases0 lation of the even-parity mass gap.

(Mathiey and z=4 [U(1) in 2+1 dimension$ It is well
known thate® for U(1) in (2+1)D falls off rapidly with

increasing coupling, while for the Mathieu problem it in- D. Wilson loops and the mean plaquette
creases, as we have seen in Table Ill. We have therefore We begin by defining the path operat®g for a contour
carried out SUB1 calculations with=4. C as
The physical glueball masdl of the U1) system in (2
+1)D is related to the mass gapof the Hamiltonian of Eq. _ B
(1) by Pc—g e, (31)
€
Ma= K (29 where the product runs over all; plaquettes which lie in-

side C. The Wilson loopW, is defined as the expectation
value of P in the ground state, so in our CCM analysis it is

wherea is the lattice spacing. It is expected thdt should given by

decrease exponentially with increasiing according to the

expression 3
o\ (DISII, expiB,)|P)

MZ2a2=/Nexf by +b,\\]. (30) Wc=<H el > = (®]®) . (32

p

In Fig. 2 we therefore show plots of [[Z°)%/A%?] against

J\ for SUB1(4) and SUB110) approximations. The pre- Note that the mean plaquettd=(cosBy) is simply the
dicted exponential decrease within the weak-coupling re- smallest Wilson loop, in whick is a single plaquette. At the
gime is clearly visible. SUBL level, we obtain

TABLE lll. First odd-parity excitation for various values of for the Mathieu problemZ=0) within the SUB1(n)-approximation
scheme fom=1,2,3,5,10,20.

A 0.5 1 5 10 50 100 200

SUB1(1) 2.116739 2.395799 4.637478 6.380933 13.848386 19.635153 27.875817
SUB1(2) 2.050949 2.190696 3.978095 5.776481 13.608417 19.478510 27.770839
SUB1(3) 2.050475 2.185975 3.927026 5.741709 13.618967 19.486238 27.774953
SUB1(5) 2.050477 2.186082 3.949638 5.778249 13.622795 19.486618 27.774994
SUB1(10) 2.050477 2.186082 3.949753 5777410 13.622566 19.486596 27.774994

SUB1(20) 2.050477 2.186082 3.949753 5777411 13.622568 19.486596 27.774994
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TABLE IV. Parameters for the exponential fit of E@O) for the The mean plaquette is the simplest gauge-invariant quan-
glueball mass. The two coefficients and b, are shown for the tity in a pure gauge theory, and, since it can be obtained from
CCM SUB1(4) and SUB110) approximations as well as for the the Hellmann-Feynman theorem, as
other calculations indicated. Numbers in parentheses indicate uncer-

tainties in the last digit quoted. d(Eg/Np)

U=1- T, (35)
Source by b,
SUB1(4) 6.133) -5.392) represents the internal energy of the thermodynamic system
SUB1(10) 6.141) 5.391) corresponding to the lattice gauge model. It provides an or-
Suranyi[12] 5.7 der parameter for lattice gauge systems in the sense that it
Hamer and Irving 8] 6.1543) -5.3(5) exhlb_|t_s singularities in 'Fhe bulk thermod_yr_1am|cs at phase
Hamer, Oitmaa, and Zherjg] 6.276) -5.426) transitions, but has the dlsadvianyage_that itis alvx_/ays nonzero
Heys and Stumj14] 6.21(6) -4.975) and_ thys cannot be used to dlst!ngU|sh phases in terms of it
Lana[21] 4.9810) 4.102) vanishing in one phase and not in another. However, discon-
Dabringhaus, Ristig, and Clafi] 6.262) 4.806) tinuities inU as a function of th_e_ coupling provide a useful
Morningstar[,15] ' 5:94(5) _5:234) means of spotting phase transitiofsee, for example, Ref.

[22] for the case of 1) LGT in 3+ 1 dimensions, which
has a deconfinement transitjon
In our calculation there is no indication of any disconti-
nuity in U and thus no suggestion of a phase transition. This
is as would be expected for(l) theory in 2+1 dimensions
(33 [23]. Numerical results for the mean plaquette, as calculated
in various SUB1(n) approximations, are shown in Table V
The Wilson loop serves as a gauge-invariant order parametehd are in good agreement with the results of other methods.
to distinguish between a confined phase, where, in the limit
of a large loop, it decays according to an area law
(Wc~exd —KA], with A the area enclosed by the Igopand
a deconfined phase, where the decay follows a perimeter law In the present work we have applied the coupled cluster
(W~ exd —kp], with p the perimeter of the logpSince the  method to the 1) model in 2+1 dimensions. The analysis
U(1) model in 2+1 dimensions is confining at all couplings, is an extension of that presented in RF], in which the
we expect an area-law behavior everywhere. This is indeedonvergence of the method has been greatly improved, par-
the case, as can easily be seen from B§) if we take the ticularly in the weak-coupling regime, by the use of an im-
limit Nc—c0. In this situation, the prefactor dominates and proved reference state which includes some one-body corre-

We=[RJNe™? RnR1

(R ,+R._
R1+NCZ an( n+12 n l_
n=1

VI. FUTURE WORK AND CONCLUSIONS

we obtain lations. We have worked only at the simplest level of
approximation, namely the SUB1 level, where only inter-
We~[R,]Ne, (39 mode couplings are considered in the correlation operator,
and no account is taken of inter-plaquette correlations. Under
with a clear area-law behavior. the SUB1 scheme, the CCM analysis of théllumodel es-

It is tempting to identify the coefficierX of the area law sentially reduces to the solution of the Mathieu problem; a
as the string tension, as was done in Rd0]. However, notable exception to this general conclusion is the calcula-
there are dangers in doing this. Our Wilson loops are spacdion of the odd-parity mass gap, which, even at the SUB1
like rather than timelike, anH{ is thus not the coefficient of level, displays a dependence on the lattice coordination num-
the linear contribution to the static quark-antiquark potential ber.

We will thus avoid making this identification in this work. The results which we have obtained, even at this low level

TABLE V. Mean plaquette for various values ®ffor U(1) lattice gauge theory in21 dimensions within
the SUB1fm)-approximation scheme fom=1,5,10. Also shown are results from unistate and bistate
expansiongdenoted by Ut and Bt, respectively, a guided random-walk algorithm on arnx® lattice
(GRW), a Green’s function Monte Carlo methd@FMC), and strong- and weak-coupling perturbation
theory (PT). Numbers in parentheses indicate uncertainties in the last digit quoted.

A 0.0625 0.25 1 4 16
SUB1(1) 0.03122 0.12310 0.41153 0.73964 0.87586
SUBI1(5) 0.03122 0.12333 0.41800 0.74416 0.87485
SUB1(10) 0.03122 0.12333 0.41800 0.74415 0.87485
Ut [15] 0.031244) 0.12382) 0.43333) 0.7574) 0.8813)

B t [15] 0.03132) 0.1232) 0.4373) 0.76011) 0.88413
GRW [24] 0.0273) 0.1212) 0.43910) 0.777112)

GFMC [25] 0.4331) 0.7561)

PT 0.03123 0.12381 0.761 0.880
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of approximation, are indicative of the power of the CCM 15 — T —
and, in particular, its ability to obtain well-converged results
far ouside the perturbative regime. Although it is possible to
view the CCM as a particularly ingenious resummation of 10 1
perturbation theory5], the method is inherently nonpertur-
bative and, as such, has a great advantage over atbhec
schemes for forcing or accelerating convergence such as 5r 1
Padeapproximants. The ability of the CCM to obtain fully
converged results foany coupling for the notoriously non-
perturbative Mathieu problem to arbitrary accuracy for com-
paratively little numerical effort is a strong indication of its i [$%]
usefulness in other nonperturbative problems.

One of the advantages of the CCM is that its formulation
in terms of correlation operators means that it is compara-
tively simple to identify the contribution of particular levels
of correlations to observables. However, because of the fact
that there is no guarantee that the SU8&eries of approxi-
mations is smoothly convergent to the exact result, one has a5k
to be cautious in making sweeping statements about the rela-
tive importance of a particular level of correlation in a cal-

-10

culation. Nevertheless, our results suggest that the ground .20 e T
state of the 1) system is comparatively weakly correlated. 0 05 1 15 2 25 3 35 4 45 5
The fact that the ground-state energy of the Mathieu problem VA

is within 5% of its counterpart for the (@) problem in (2

+1)D in the extreme weak-coupling limit and essentiall
) bling ydecrease of the glueball mass with increasingResults for CCM

exact in the extreme strong-coupling limit is already indica- . o
tive of this. Our SUB1 resu?ts forpthegmean plaquettye whichc"’“cu""Itlorls under the SUBJ) and SUBT10) approximations are

are in good agreement with those of other methods, suppo? own.
this conclusion. . . ) . . .

The excited states are rather different, since the Mathieﬁ,efef,ence state, and its use in conjunction with the “mean-
results for these energies have a completely different behat€ld” reference state holds great promise. _
ior to those of the \(L) problem. This is particularly clear for  The success of the CCM in its applications to the simple
the even-parity excitations, and the inclusion of two-body!U(1) model in (2+1)D is very encouraging, and it will be
and higher correlations are obviously necessary if we are t§€Y interesting to apply the formalism to the nontrivial case
obtain acceptable results for thgl) system. Nevertheless, Of U(1) theory in (3+1)D, where a phase transition is ex-
our reference state in some sense includes longer-range cd€cted, and also to non-Abelian models. In addition, the ex-
relations for the odd-parity mass gap, as shown by itd€nsion of our CCM analysis from the case of pure gauge
coordination-number dependence in the SUB1 approximat-heor'es to those including matter fields is also envisaged.
tion. Our results foz=4 are entirely comparable with those
of other methods.

The obvious path for future work is the inclusion of inter-
plaquette correlations. A good starting point appears to be the
inclusion of two-plaquette correlations via the so-called We thank Y. Xian for useful discussions. One of us
SUB2m scheme, in which only correlations between two (R.F.B) acknowledges the support of a research grant and
plaquettes which areth nearest neighbors or closer are in- another of ugS.J.B) acknowledges financial support from
cluded inS. This scheme has been applied with some sucthe Engineering and Physical Sciences Research Council
cess to the (1) model in (24-1)D [5,26] using the constant (EPSRQ of Great Britain.

FIG. 2. Plot of If(9)%\%?] againsty\ to show the exponential
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