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Coupled cluster analysis of the U„1… lattice gauge model
using a correlated ‘‘mean-field’’ reference state

S. J. Baker, R. F. Bishop,* and N. J. Davidson†

Department of Physics, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88,
Manchester M60 1QD, United Kingdom

~Received 16 October 1995!

We apply the coupled cluster method~CCM! to the U~1! lattice gauge model in 211 dimensions, basing our
analysis on a reference state which already contains a certain class of single-plaquette correlations, the so-
called ‘‘mean-field’’ reference state. We consider the simplest possible approximation scheme for the coupled
cluster calculation, in which only single-plaquette correlations are included. The use of the ‘‘mean-field’’
reference state allows us to reproduce, within this level of approximation, the correct leading-order behavior of
the ground-state energy of the equivalent Mathieu problem inboth the strong- and weak-coupling limits. In
addition, we have calculated the mean plaquette and the odd- and even-parity mass gaps.

PACS number~s!: 11.15.Ha, 03.65.Ca, 11.15.Tk
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I. INTRODUCTION

Although most of the effort in the field of lattice gaug
theories~LGT! has been put into the Lagrangian formulatio
there are several advantages to consider these theories i
Hamiltonian formulation@1#. In particular, the Hamiltonian
approach can remove the need to extrapolate the results
tained on finite lattices to the infinite lattice limit. It als
leaves the time dimension continuous, so that the extrap
tion to the continuum limit need only be performed in th
spatial dimensions. A further advantage of the Hamiltoni
formalism is that it permits a direct application of the tec
niques of quantum many-body theory~QMBT! to the study
of LGT systems.

QMBT has undergone rapid progress over the last deca
with particular advances in the method of correlated ba
functions~CBF’s! @2# and the coupled cluster method~CCM!
@3#. Both these methods have been applied to a vast arra
problems in many-body physics, and, more recently, to l
tice gauge theories@4–6#, in particular U~1! and Z2 . A
method related to the CCM has also been applied to SU~2!
@7#.

The U~1! model in 211 dimensions has served as a tes
ing ground for many techniques in LGT, among them t
CCM @5,6#, the CBF method@4#, Páde approximant exten-
sions to strong-coupling series@8,9#, variational techniques
@10–14#, and the so-calledt expansion@15#. Although the
U~1! model is comparatively simple, it is strongly nonpertu
bative and as such provides a real test for the various m
ods.

The CCM has proved its worth as a method of QMBT
fields as diverse as prototypical field theories, spin-latt
systems of interest in magnetism, and quantum chemi
~for a review, see Ref.@16#!. In a previous paper@5#, the
CCM has been applied to the U~1! model with very encour-
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aging results. However, the approach outlined in this earlier
work was better suited to the strong-coupling region, and
considerably more numerical effort was required to obtain
accurate results in the weak-coupling regime. In the presen
paper we present an alternative approach to the problem
which reproduces the correct behavior in both limits with
minimal numerical effort ~although without using this
knowledge as input!, and gives very good results in the
intermediate-coupling region as well.

The paper is arranged as follows. In Sec. II, we provide a
brief outline of our approach, stressing in particular the areas
in which it differs from that of Ref.@5#. In Secs. III and IV,
the approximations which we employ are described, while
our results for several ground-state properties and the mas
gaps are presented and discussed in Sec. V. Section VI con
tains our conclusions and a discussion of future work.

II. COUPLED CLUSTER FORMALISM
FOR THE U „1… MODEL

Since the general formalism for applying the CCM to lat-
tice gauge theories has been discussed at length in Ref.@5#,
we shall keep the present discussion brief and only expand
where the present work differs from that of the earlier litera-
ture.

For U~1! theory in 111 dimensions@the one-dimensional
~1D! chain# and 211 dimensions~the 2D square lattice!, it is
possible to write the Hamiltonian entirely in terms of the
plaquette variables$Bp%:

H5(
p

F22
]2

]Bp
2 1l~12cosBp!G1

1

2 (
p,q

]2

]Bp]Bp1q
,

~1!

where the sum onp runs over all elementary plaquettes, and
the sum onq over all lattice vectors connecting nearest-
neighbor plaquettes on the lattice. Thus,q takes two values
for the 1D chain, and four for the 2D square lattice. Since
this Hamiltonian is invariant under the transformation
$Bp%→$Bp12np%, with n integral, the space ofBp is com-
pact with2p<Bp<p for all p.

ria,
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In what follows, we will require the definition of an inner
product of two functions of the plaquette variables. For fun
tions ^g̃($Bp%)u and u f ($Bp%)&, we define the inner product
as

^g̃u f &5E
2p

p F)
p51

Np dBp
2p G g̃ f . ~2!

In the limit of a single plaquette, the Schro¨dinger equation
corresponding to the Hamiltonian of Eq.~1! reduces to the
one-body Mathieu equation. In previous work@5#, the refer-
ence state for the CCM analysis was taken as the stro
coupling (l50) ground state of the Mathieu equation, i.e
as a constant. The correlation operators were then expan
in terms of the excitedl50 eigenstates of the Mathieu equa
tion, which are simply the trigonometric functions cosnB
and sinnB, n51,2, . . . .

The use of the strong-coupling Mathieu ground state
the reference state means that it becomes progressively m
difficult to obtain converged results asl increases into the
weak-coupling regime. In the present work, we use a diffe
ent reference state which allows us to obtain much improv
convergence throughout the range 0<l,`.

If we denote the constant reference state byu0&, we define
our new reference state as

uF&5eTu0&. ~3!

The operatorT is defined to beT5t(pcosBp , wheret is a
parameter to be determined by some external means~e.g.,
variationally!. In the sense that some one-plaquette corre
tions are included in this state,uF& can be viewed as a
‘‘mean-field’’ ~MF! reference state. If we assume that th
stateu0& is normalized to unity, then the ‘‘mean-field’’ refer-
ence stateuF& is normalized to@ I 0(2t)#

Np, whereNp is the
total number of plaquettes on the lattice andI 0 is the zeroth-
order modified Bessel function.

The exact ground-state ket of the Hamiltonian of Eq.~1!
is now taken in the CCM form

uC0~$Bp%!&5eS~$Bp%!uF&, ~4!

with

S~$Bp%!5 (
k51

Np

Sk~$Bp%!. ~5!

The k-body correlation operatorsSk($Bp%) are decomposed
as

S15 (
n51

`

(
p51

Np

S p~n!~cosnBp2Rn!, ~6!
c-
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S25
1

2! (
n1 ,n251

`

(
p1 ,p251

Np

8 @S p1p2
~1! ~n1 ,n2!~cosn1Bp1

2Rn1
!

3~cosn2Bp2
2Rn2

!

1S p1p2
~2! (n1 ,n2!sin n1Bp1

sin n2Bp2
], ~7!

with obvious generalization for k.2. In Eq. ~7!
Rn[I n(2t)/I 0(2t) whereI n is thenth-order modified Bessel
function. The prime on the plaquette summation inS2 indi-
cates the omission of the termp15p2 . The construction of
uC& in the above way ensures that the ground state has pos
tive parity under the simultaneous reversal of the signs of al
the $Bp%.

The $Sk% operators defined above differ from those de-
fined in Ref. @5# for the constant reference state in the re-
placement cosnBp→cosnBp2Rn . The reason for this re-
placement is the following. In the CCM, the correlation
operators$Sk% are defined in terms of the creation operators
relative to some reference stateuf&. We should thus have
^fuSkuf&50 for eachk. If we useu0& as the reference state,
this condition is satisfied if we take the creation operators to
be simply the trigonometric functions, because of their peri-
odicity. However, the use ofuF& as the reference state means
that ^FucosnBpuF&5In(2t)@I0(2t)#

Np21. The presence of the
term 2Rn in Eq. ~7! is to correct for this. Note that no
change is necessary for the odd parity operators sinnBp , as
^FusinnBpuF& vanishes on account of the odd character of
sinnBp under the substitutionBp→2Bp and the fact that the
inner product involves integration over a symmetric interval.

In the CCM the ground-state bra^C̃0u is not the manifest
Hermitian conjugate of the ket, but is parametrized indepen
dently in the form@16#

^C̃0u5^FuS̃~$BP%!e2S~$Bp%!, ~8!

whereS is as defined above for the ground-state ket. The
operatorS̃ is given by

S̃511 (
k51

Np

S̃k~$Bp%! ~9!

and S̃k has the same form asSk except that all coefficients
S p1 . . .

(n1 , . . . ) arereplaced byS̃ p1 . . .
(n1 , . . . ).

The coefficientsS p1 . . .
(n1 , . . . ) and S̃ p1 . . .

(n1 , . . . )
are determined from the CCM equations@5# which are ob-
tained from the condition that the ground-state expectation
value of the Hamiltonian,

H̄5
^C̃0uHuC0&

^C̃0uC0&
5

^FuS̃e2SHeSuF&

^FuF&
, ~10!

should be stationary with respect to variations in both the
bra- and ket-state coefficients.

The CCM can be extended to the determination of the
excited states of a system as well as its ground-state prope
ties. In the conventional CCM, the excited states are con
structed by acting on the ground state with an excitation
correlation operatorX, which has a similar partitioning toS
for excited states which have the same symmetry as th
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ground state; for excited states with a different symme
@e.g., parity, as in our U~1! case#, the excitation correlation
operator for these states must reflect their underlying sy
metry. The Schro¨dinger equation for the excited stateuCe& is
then written as

HuCe&5EeuCe&, ~11!

with

uCe&5XuC0&5XeSuF&. ~12!

III. THE ‘‘MEAN-FIELD’’ APPROXIMATION

The simplest approximation scheme available is t
‘‘mean-field’’ scheme, in which we setS50 andS̃51. We
thus approximate the exact ground-state ket and bra by

uC0&5uF&; ^C̃0u5^Fu ~13!

and the expectation value of the Hamiltonian by

H̄MF5
^FuHuF&

^FuF&
5Np~l1@ t2l#R1!. ~14!

There is thus only one parameter, namelyt, to determine,
and we do this by requiring thatH̄ should be stationary with
respect1 to t. This value oft, which we denote byt0 , is
given by the solution of the equation

l5t1
R1

R18
, ~15!

where the prime denotes differentiation with respect tot. In
our subsequent calculations, whereSÞ0 and (S̃21)Þ0, we
shall chooset0 to satisfy Eq. ~15!, i.e., to minimize the
‘‘mean-field’’ estimate2 of H̄MF of Eq. ~14!.

The advantage of usinguF& rather thanu0& as a reference
state becomes clear from an examination of the stro
coupling (l→0) and weak-coupling (l→`) limits of Eq.
~14!. If we denoteH̄MF(t5t0) by Eg

MF , we find in the former
case~to lowest order! that

Eg
MF

Np
;l2

l2

4
1O~l4!, ~16!

which agrees with strong-coupling perturbation theory f
the Mathieu problem@and, in fact, with the U~1! result in any
dimension# to the order shown. In the case of weak couplin
we find that

Eg
MF

Np
;C0Al2

C0
2

8
1O~l21/2! ~17!

1At this level of approximation (S50, S̃51), we are essentially
repeating the variational calculation of Ref.@10#.
2Note that the last term of the Hamiltonian of Eq.~1! does not

contribute to the calculation ofH̄ in Eq. ~14!, which means that we
are effectively solving a Mathieu-type problem.
try
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he
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with C051. This agrees with the result of weak-coupling
perturbation theory for the Mathieu problem to the orde
shown.@It should be noted that the U~1! problem has a simi-
lar weak-coupling expansion, withC050.9833 for the 1D
chain @17# andC050.9581 for the 2D square lattice@4#.#

Since we obtain the correct behavior in these two limits
without the addition of any correlations apart from those
already included inT, we should be able to obtain very good
results at low orders of approximation in the CCM calcula
tions throughoutthe range ofl. This emphasizes the non-
perturbative nature of the CCM, since both the Mathieu an
U~1! problems are well known for lack of convergence in
their strong-coupling perturbation expansions.

The fact that this very low-order ‘‘mean-field’’ approxi-
mation, which includes only some one-body correlations
leads to results for the ground-state energy in the wea
coupling regime which are less than 2% in error for 1D and
less than 5% in error for 2D suggests that the higher-orde
correlations play a small role in determining the ground-stat
energy of these U~1! lattice systems.

In previous work@5#, the connection between the CCM
and strong-coupling perturbation theory for the U~1! model
was stressed. The use of a constant reference state in t
work made this analysis simple and straightforward. In th
present work, the use of the more complex reference sta
uF& makes this analysis more complicated, even for low or
ders. This is because of the relationship of Eq.~15!, which
only allows analytic solution for very low orders. For this
reason, it is not readily feasible to replicate the high-orde
comparisons between the various SUB1(m) approximations
and 2mth order perturbation theory as was done in Ref.@5#.

IV. THE ONE-PLAQUETTE APPROXIMATION SCHEME

A. Ground state

The formulation described above is in principle exact if
all the correlation operators$Sk ,S̃k ;k51,2, . . . ,Np% are in-
cluded in the calculation. However, since we are ultimatel
interested in the situation whereNp→`, this is obviously
not a feasible proposition and some form of approximatio
becomes necessary.

One of the most popular schemes for approximating th
full CCM is the so-called SUBn scheme, in which only those
correlation operators$Sk ,S̃k% with k<n are retained, and the
remainder set to zero. In our subsequent calculations he
we will work in the SUB1 approximation, i.e.,
S[S1 ,S̃[11S̃1 . While this scheme constitutes a very ma-
jor approximation, it provides a useful and simple testing
ground for properties such as the convergence of the meth
as a function of the coupling and, by comparison with result
from other methods in which the identification of different
orders of correlation is not so straightforward, of the impor
tance of higher-order correlations.

Because of the linear dependence ofH̄ on S̃ in Eq. ~10!,
the CCM equations for the ground-state energyEg and the
ket-state coefficients are independent of the bra-state coef
cients. Within the SUB1 approximation,Eg is given by

Eg5
^Fue2S1HeS1uF&

^FuF&
~18!
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and the equations for the ket coefficients by

^FucosmBpe
2S1HeS1uF&5EgIm~2t !@ I 0~2t !#

Np21,

m51,2, . . . . ~19!

We now make the substitutionnS p(n)→an , where the
$an% are independent of the plaquette indexp because of the
translational invariance of the~infinite! lattice. If we extend
the definition of the$an% to include negative values ofn with
the conventionsa2n52an and a050, we can express the
ground-state energy per plaquette at the SUB1 level by

Eg

Np
5l1~ t2l!R11

1

2 (
n152`

`

(
n252`

`

an1an2Rn11n2
. ~20!

The equations for the ket coefficients are

1

2
~ t2l!~Rm111Rm2122R1Rm!1

m2

2
Rm

2m (
n52`

`

anRn1m1
1

2 (
n152`

`

(
n252`

`

an1an2

3~Rn11n21m2Rn11n2
Rm!50, m51,2, . . . . ~21!

The SUB1 scheme as it stands, however, is still insu
cient to allow for exact calculations to be performed becau
of the infinite sums over the mode indicesn which appear in
the definitions ofS1 and S̃1 . We therefore introduce an ad
ditional subtruncation scheme, the SUB1(m) scheme, in
which we set the coefficientsan and ãn with n.m to zero.

B. Excited states

We now turn to the parametrization of the excited sta
within the SUB1 approximation. Since there are two possi
branches of excitations for the U~1! model, which are distin-
guished by their parity under the transformatio
$Bp%→$2Bp%, we require two excitation correlation opera
tors. We will denote the even-parity operator byXe and its
odd-parity counterpart byXo. Within our SUB1 level of ap-
proximation, these operators are given by their one-body p
titions

X1
e5 (

n51

`

(
p51

Np

X p
e~n!~cosnBp2Rn!, ~22!

X1
o5 (

n51

`

(
p51

Np

X p
o~n!sin nBp . ~23!

The equations for the single-plaquette excitation coefficie
are then given by

^FusinmBpe
2S@H,Xo#eSuF&5eo^FusinmBpX

ouF&,
~24!

^Fu~cosmBp2Rm!e2S@H,Xe#eSuF&

5ee^Fu~cosmBp2Rm!XeuF&, ~25!
ffi-
se

-

tes
ble

n
-

ar-

nts

where eo[Ee
o2Eg , ee[Ee

e2Eg , and Ee
o and Ee

e are the
energies of the odd- and even-parity excited states.

It is at this point that a major difference between the re-
sults of our present work and those of the previous analys
based on the constant reference state appears. If a const
model state is used, all coefficients at the SUB1 level o
approximation~i.e., for ground-state bra and ket states, and
for even- and odd-parity excited states! are independent of
the coordination number of the latticez ~i.e., the number of
nearest-neighbor plaquettes for a given plaquette!, since the
last term in the Hamiltonian~the term]2/]Bp]Bp1q) never
contributes, and the analysis is essentially a way of solvin
the Mathieu equation. In our approach with a ‘‘mean-field’’
model state, we find that the odd-parity excitationsdo de-
pend onz, even though the ground state and even-parity
excitations are independent ofz. The set of equations which
we have to solve for the coefficients of the even-parity ex
cited states is given by

2m (
n52`

`

nxn
eRm1n

1 (
n152`

`

(
n252`

`

n1xn1
e an2~Rn11n21m2Rn11n2

Rm!

5
1

2
ee (

n52`

`

xn
e~Rm1n2RmRn!, m51,2, . . . ,

~26!

while those for the odd-parity excitations are given by

m (
n52`

`

nxn
oSRm1n2

z

4
RnRmD

1 (
n152`

`

(
n252`

`

n1xn1
o an2S z4Rn1

Rm1n2
2Rn11n21mD

52
1

2
eo (

n52`

`

xn
oRm1n , m51,2, . . . . ~27!

In the above equations,xn
e[X p

e(n) and xn
o[X p

o(n); both
are independent of the plaquette index because of transl
tional invariance. We have also extended these definitions t
include negative values ofn using the relationsx2n

e 5xn
e ,

x2n
o 52xn

o, and x0
o5x0

e50. In the derivation of the above
equations we have made use of the recurrence relations
the modified Bessel functions@18#.

As in the case of the ground state, a truncation of the
mode indices is necessary to make the calculation tractabl
We can again employ the SUB1(m) scheme, in which we
retain only those coefficientsan and xn with n<m in Eqs.
~26! and~27!. The determinations ofee andeo then reduce to
the solutions of generalized eigenvalue equations.

The excitation energies which are of particular interest ar
the lowest excitations in each parity sector, the so-calle
mass gaps. The lowest excitation in the odd-parity secto
~sometimes referred to as the photon-sector mass gap! is re-
lated to the glueball massMA ~see below for the precise
relationship!, where the subscript indicates antisymmetric.
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TABLE I. Ground-state energy per plaquette for various values ofl for U~1! lattice gauge theory in 211 dimensions within the
SUB1(m)-approximation scheme form51,2,3,5,10,20. Within the SUB1 approximation the ground state of the U~1! model is equivalent to
the ground state of the Mathieu problem; the highest-order results are exact to the accuracy shown for the Mathieu problem.

l 0.5 1 5 10 50 100 200

SUB1~1! 0.439323 0.774584 2.130507 3.060732 6.952695 9.879051 14.019766
SUB1~2! 0.439118 0.772465 2.098194 3.026606 6.942991 9.873201 14.015951
SUB1~3! 0.439117 0.772429 2.098265 3.028447 6.943527 9.873350 14.015996
SUB1~5! 0.439117 0.772431 2.099943 3.031441 6.943734 9.873376 14.016000
SUB1~10! 0.439117 0.772431 2.099977 3.031510 6.943730 9.873375 14.016000
SUB1~20! 0.439117 0.772431 2.099977 3.031510 6.943731 9.873375 14.016000
-
-
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-

r-
r

ak
,
f

nt
e

The even-parity mass gap is related to the physical vacuu
sector mass gapMS (S for symmetric!.

V. RESULTS

In this section we present the numerical results of ou
CCM SUB1 calculations for the ground-state energy and th
mass gaps. In addition to these spectral observables, we h
also calculated other quantities which are of interest in th
study of lattice gauge theories, namely, the specific heat, W
son loops, and the mean plaquette.

The specific heat is of interest as it gives some indicatio
of the coupling at which the ground-state energy chang
from the power-law behavior at strong coupling to th
nonanalytic square-root behavior for weak coupling. Wilso
loops and the mean plaquette can be used as order par
eters to investigate the phase structure of lattice models@19#.

A. Ground-state energy

The fact that the ground-state energy of the U~1! model
under the SUB1 approximation is independent of the lattic
coordination number, together with the observation that th
last term of the Hamiltonian of Eq.~1! does not contribute to
either Eg or the ket coefficient equations at this level o
approximation, means that at the SUB1 level we are solvin
the Mathieu problem. The ground-state energy per plaquet
Eg /Np , is therefore identical to the lowest eigenvalue of th
Mathieu equation for a given value of the coupling.

We show our numerical results forEg /Np for the U~1!
model under the CCM SUB1 approximation in Table I over
wide range ofl. It is clear from the results that we obtain
good convergence over the entire range of couplings, b
particularly in the strong- and weak-coupling limits. The
convergence atl5200 is very impressive, and stresses th
ability of the CCM to perform remarkably well far outside
the perturbative region.

It is simple to show that the results obtained for th
‘‘mean-field’’ approximation above, where we showed tha
the CCM energy in both limits reproduced the relevant low
order perturbation theory expansions, remain true at t
SUB1 level, i.e., the additional correlations introduced b
S1 do not disturb the extreme strong- or weak-coupling be
havior.

B. Specific heat

The ground-state energy in LGT is the analogue of th
free energy of statistical mechanics, with a similar analog
m-
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between the coupling and the temperature. It is thus custom
ary in LGT to refer to the second derivative of the ground
state energy with respect to the coupling as the specific he
which we will denote byx rather than the more usualC to
avoid confusion with contours on the lattice which are intro
duced below in connection with Wilson loops.

We definex as

x52
]2

]b2 S Eg

bNp
D , ~28!

whereb5l1/2. We have chosen this definition@15# so as to
obtain a peak inx as the ground-state energy changes cha
acter from strong to weak coupling, rather than the shoulde
which would occur if we were to define it in terms of the
second derivative with respect tol @9,20#.

We showx as a function ofAl for the SUB1~8! approxi-
mation in Fig. 1. There is no discontinuity inx, which
strongly suggests the lack of any phase transition. The pe
in x is the result of the change from strong to weak coupling
which, according to our results, occurs in the region o
l'0.6. This is in good agreement with previous results
@10,15#.

C. Mass gaps

The formalism for describing excited states within the
CCM has been described above. In this section, we prese
the results of our SUB1 calculations for the mass gaps for th
U~1! model in 211 dimensions.

FIG. 1. The specific heatx as a function ofAl for the SUB1~8!
approximation. The peak atAl'0.78 is indicative of the change
from strong- to weak-coupling behavior.
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TABLE II. Even-parity mass gap for various values ofl for U~1! lattice gauge theory in 211 dimensions within the
SUB1(m)-approximation scheme form51,2,3,5,10,20. Within the SUB1 approximation this mass gap of the U~1! model is equivalent to the
first even-parity excitation of the Mathieu problem.

l 0.5 1 5 10 50 100 200

SUB1~1! 2.119021 2.422291 5.812630 9.326872 25.156609 36.921923 53.517423
SUB1~2! 2.110648 2.404033 6.080411 10.163532 26.713305 38.446453 55.030373
SUB1~3! 2.111321 2.412691 6.580474 11.367925 26.753995 38.450347 55.030397
SUB1~5! 2.111333 2.413220 6.634255 10.873960 26.691813 38.440945 55.028324
SUB1~10! 2.111333 2.413220 6.624583 10.827390 26.697462 38.441374 55.028340
SUB1~20! 2.111333 2.413220 6.624578 10.827175 26.697389 38.441371 55.028340
g. 2
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As was the case for the ground-state energy, the ev
parity excitations at the SUB1 level are independent ofz, so
that the mass gap is simply the second-lowest positive pa
eigenvalue of the Mathieu equation. For the odd-parity ex
tations, on the other hand,z does enter the equations@see Eq.
~27!#. To reproduce the Mathieu results, we must takez50.
The odd-parity mass gap is then the lowest odd-parity eig
value of the Mathieu equation. The results of these two c
culations are shown in Tables II and III. Although the co
vergence is not as good as in the case ofEg /Np , it is still
impressive.

The fact that Eq.~27! contains az dependence means tha
we expect different behaviors for the two casesz50
~Mathieu! and z54 @U~1! in 211 dimensions#. It is well
known thateo for U~1! in (211)D falls off rapidly with
increasing coupling, while for the Mathieu problem it in
creases, as we have seen in Table III. We have there
carried out SUB1 calculations withz54.

The physical glueball massM of the U~1! system in (2
11)D is related to the mass gape of the Hamiltonian of Eq.
~1! by

Ma5
e

Al
, ~29!

wherea is the lattice spacing. It is expected thatM should
decrease exponentially with increasingl, according to the
expression

M2a2.Alexp@b11b2Al#. ~30!

In Fig. 2 we therefore show plots of ln@(eo)2/l3/2# against
Al for SUB1~4! and SUB1~10! approximations. The pre-
dicted exponential decrease withl in the weak-coupling re-
gime is clearly visible.
en-

rity
ci-

en-
al-
n-

t

-
fore

We have performed least-squares fits to the data of Fi
over the range 1<Al<2.5 to determine the coefficientsb1
and b2 in Eq. ~30!. Our results, together with those from
other calculations, are shown in Table IV. Our results
clearly comparable with those obtained by other method

One quantity which we cannot predict at the SUB1 le
is the ratio of the mass gapsMS /MA , since our results for
ee are essentially only for the Mathieu problem. In the wea
coupling limit, this ratio is expected to be'2, corresponding
to the lack of a stable glueball in the U~1! theory in the limit
l→`. To make a prediction for this ratio, correlations b
yond the SUB1 level will have to be included in the calc
lation of the even-parity mass gap.

D. Wilson loops and the mean plaquette

We begin by defining the path operatorPC for a contour
C as

PC5)
p8

eiBp8, ~31!

where the product runs over allNC plaquettes which lie in-
sideC. The Wilson loopWC is defined as the expectatio
value ofPC in the ground state, so in our CCM analysis it
given by

WC5K)
p8

eiBp8L 5
^FuS̃Pp8exp~ iBp8!uF&

^FuF&
. ~32!

Note that the mean plaquetteU[^cosBp& is simply the
smallest Wilson loop, in whichC is a single plaquette. At the
SUB1 level, we obtain
7
9
3
4
4
4

TABLE III. First odd-parity excitation for various values ofl for the Mathieu problem (z50) within the SUB1(m)-approximation
scheme form51,2,3,5,10,20.

l 0.5 1 5 10 50 100 200

SUB1~1! 2.116739 2.395799 4.637478 6.380933 13.848386 19.635153 27.87581
SUB1~2! 2.050949 2.190696 3.978095 5.776481 13.608417 19.478510 27.77083
SUB1~3! 2.050475 2.185975 3.927026 5.741709 13.618967 19.486238 27.77495
SUB1~5! 2.050477 2.186082 3.949638 5.778249 13.622795 19.486618 27.77499
SUB1~10! 2.050477 2.186082 3.949753 5.777410 13.622566 19.486596 27.77499
SUB1~20! 2.050477 2.186082 3.949753 5.777411 13.622568 19.486596 27.77499
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WC5@R1#
NC21FR11NC(

n51

`

ãnSRn111Rn21

2
2RnR1D G .

~33!

The Wilson loop serves as a gauge-invariant order parame
to distinguish between a confined phase, where, in the lim
of a large loop, it decays according to an area la
(WC;exp@2KA#, with A the area enclosed by the loop!, and
a deconfined phase, where the decay follows a perimeter
(WC;exp@2kp#, with p the perimeter of the loop!. Since the
U~1! model in 211 dimensions is confining at all couplings
we expect an area-law behavior everywhere. This is inde
the case, as can easily be seen from Eq.~33! if we take the
limit NC→`. In this situation, the prefactor dominates an
we obtain

WC;@R1#
NC, ~34!

with a clear area-law behavior.
It is tempting to identify the coefficientK of the area law

as the string tension, as was done in Ref.@10#. However,
there are dangers in doing this. Our Wilson loops are spa
like rather than timelike, andK is thus not the coefficient of
the linear contribution to the static quark-antiquark potentia
We will thus avoid making this identification in this work.

TABLE IV. Parameters for the exponential fit of Eq.~30! for the
glueball mass. The two coefficientsb1 and b2 are shown for the
CCM SUB1~4! and SUB1~10! approximations as well as for the
other calculations indicated. Numbers in parentheses indicate un
tainties in the last digit quoted.

Source b1 b2

SUB1~4! 6.13~3! -5.39~2!

SUB1~10! 6.14~1! -5.39~1!

Suranyi@12# -5.7
Hamer and Irving@8# 6.15~43! -5.3~5!

Hamer, Oitmaa, and Zheng@9# 6.27~6! -5.42~6!

Heys and Stump@14# 6.21~6! -4.97~5!

Lana @21# 4.98~10! -4.1~2!

Dabringhaus, Ristig, and Clark@4# 6.26~2! -4.80~6!

Morningstar@15# 5.94~5! -5.23~4!
ter
it
w

aw

ed

d

e-

l.

The mean plaquette is the simplest gauge-invariant quan
tity in a pure gauge theory, and, since it can be obtained from
the Hellmann-Feynman theorem, as

U512
d~Eg /Np!

dl
, ~35!

represents the internal energy of the thermodynamic syste
corresponding to the lattice gauge model. It provides an or
der parameter for lattice gauge systems in the sense that
exhibits singularities in the bulk thermodynamics at phase
transitions, but has the disadvantage that it is always nonze
and thus cannot be used to distinguish phases in terms of
vanishing in one phase and not in another. However, discon
tinuities inU as a function of the coupling provide a useful
means of spotting phase transitions~see, for example, Ref.
@22# for the case of U~1! LGT in 311 dimensions, which
has a deconfinement transition!.

In our calculation there is no indication of any disconti-
nuity in U and thus no suggestion of a phase transition. This
is as would be expected for U~1! theory in 211 dimensions
@23#. Numerical results for the mean plaquette, as calculate
in various SUB1(m) approximations, are shown in Table V
and are in good agreement with the results of other method

VI. FUTURE WORK AND CONCLUSIONS

In the present work we have applied the coupled cluste
method to the U~1! model in 211 dimensions. The analysis
is an extension of that presented in Ref.@5#, in which the
convergence of the method has been greatly improved, pa
ticularly in the weak-coupling regime, by the use of an im-
proved reference state which includes some one-body corre
lations. We have worked only at the simplest level of
approximation, namely the SUB1 level, where only inter-
mode couplings are considered in the correlation operato
and no account is taken of inter-plaquette correlations. Unde
the SUB1 scheme, the CCM analysis of the U~1! model es-
sentially reduces to the solution of the Mathieu problem; a
notable exception to this general conclusion is the calcula
tion of the odd-parity mass gap, which, even at the SUB1
level, displays a dependence on the lattice coordination num
ber.

The results which we have obtained, even at this low leve

er-
TABLE V. Mean plaquette for various values ofl for U~1! lattice gauge theory in 211 dimensions within
the SUB1(m)-approximation scheme form51,5,10. Also shown are results from unistate and bistatet
expansions~denoted by Ut and B t, respectively!, a guided random-walk algorithm on an 838 lattice
~GRW!, a Green’s function Monte Carlo method~GFMC!, and strong- and weak-coupling perturbation
theory ~PT!. Numbers in parentheses indicate uncertainties in the last digit quoted.

l 0.0625 0.25 1 4 16

SUB1~1! 0.03122 0.12310 0.41153 0.73964 0.87586
SUB1~5! 0.03122 0.12333 0.41800 0.74416 0.87485
SUB1~10! 0.03122 0.12333 0.41800 0.74415 0.87485
U t @15# 0.03124~4! 0.1238~2! 0.4333~3! 0.757~4! 0.881~3!

B t @15# 0.0313~2! 0.123~2! 0.437~3! 0.760~11! 0.882~13!
GRW @24# 0.027~3! 0.121~2! 0.439~10! 0.777~12!
GFMC @25# 0.433~1! 0.756~1!

PT 0.03123 0.12381 0.761 0.880
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of approximation, are indicative of the power of the CC
and, in particular, its ability to obtain well-converged resu
far ouside the perturbative regime. Although it is possible
view the CCM as a particularly ingenious resummation
perturbation theory@5#, the method is inherently nonpertu
bative and, as such, has a great advantage over moread hoc
schemes for forcing or accelerating convergence such
Padéapproximants. The ability of the CCM to obtain full
converged results forany coupling for the notoriously non-
perturbative Mathieu problem to arbitrary accuracy for co
paratively little numerical effort is a strong indication of it
usefulness in other nonperturbative problems.

One of the advantages of the CCM is that its formulati
in terms of correlation operators means that it is compa
tively simple to identify the contribution of particular level
of correlations to observables. However, because of the
that there is no guarantee that the SUBn series of approxi-
mations is smoothly convergent to the exact result, one
to be cautious in making sweeping statements about the r
tive importance of a particular level of correlation in a ca
culation. Nevertheless, our results suggest that the gro
state of the U~1! system is comparatively weakly correlate
The fact that the ground-state energy of the Mathieu prob
is within 5% of its counterpart for the U~1! problem in (2
11)D in the extreme weak-coupling limit and essentia
exact in the extreme strong-coupling limit is already indic
tive of this. Our SUB1 results for the mean plaquette, wh
are in good agreement with those of other methods, sup
this conclusion.

The excited states are rather different, since the Math
results for these energies have a completely different beh
ior to those of the U~1! problem. This is particularly clear for
the even-parity excitations, and the inclusion of two-bo
and higher correlations are obviously necessary if we are
obtain acceptable results for the U~1! system. Nevertheless
our reference state in some sense includes longer-range
relations for the odd-parity mass gap, as shown by
coordination-number dependence in the SUB1 approxim
tion. Our results forz54 are entirely comparable with thos
of other methods.

The obvious path for future work is the inclusion of inte
plaquette correlations. A good starting point appears to be
inclusion of two-plaquette correlations via the so-call
SUB2-m scheme, in which only correlations between tw
plaquettes which aremth nearest neighbors or closer are i
cluded inS. This scheme has been applied with some s
cess to the U~1! model in (211)D @5,26# using the constant
M
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reference state, and its use in conjunction with the ‘‘mean-
field’’ reference state holds great promise.

The success of the CCM in its applications to the simple
U~1! model in (211)D is very encouraging, and it will be
very interesting to apply the formalism to the nontrivial case
of U~1! theory in (311)D, where a phase transition is ex-
pected, and also to non-Abelian models. In addition, the ex-
tension of our CCM analysis from the case of pure gauge
theories to those including matter fields is also envisaged.
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FIG. 2. Plot of ln@(eo)2/l3/2# againstAl to show the exponential
decrease of the glueball mass with increasingl. Results for CCM
calculations under the SUB1~4! and SUB1~10! approximations are
shown.
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