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The energies of four-quark states are calculated for geometries in which the quarks are situated on 
the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting 
these tetrahedra into a plane. The interest in tetrahedra arises because they ?re composed of three 
degenerate partitions of the four quarks into two two-quark color singlets. This is an extension 
of earlier work showing that geometries with two degenerate partitions (e.g., squares) experience a 
large binding energy. It is now found that even larger binding energies do not result, but that for 
the tetrahedra the ground and first excited states become degenerate in energy. The calculation is 
carried out using SU(2) for static quarks in the quenched approximation with p = 2.4 on a l@ x 32 
lattice. The results are analyzed using the correlation matrix between different Euclidean times and 
the implications of these results are discussed for a model based on two-quark potentials. 

PACS number(s): 11.15.H.3, 12.38.Gc, 13,75.-n, 24.85.f~ 
I. INTRODUCTION 

In many-particle systems it is often convenient, or, even 
necessary, to replace the fundamental two-particle in- 
teraction by an effective interaction, which can be very 
different from the original. For example, in metals the 
repulsive Coulomb interaction between the valence elec- 
trons, because of the presence of the underlying ionic lat- 
tice, is replaced by an effective interaction that is attrac- 
tive. Also in nuclei, the free two-nucleon potential gets 
strongly modified by the presence of the other nucleons. 
:Ln both of these examples, after this removal of the ex- 
plicit photon and meson degrees of freedom, the resultant 
effective interaction is still mainly in the form of a twe 
body interaction, with only a minor three-body term aris- 
ing in the nuclear case. However, for a system of quarks 
interacting via gluon exchange, even though this basic 
interaction is that of QCD, little is known in multiquark 
systems about the corresponding effective interquark in- 
teraction after the explicit gluon degrees of freedom have 
been removed. This is an important question, if realistic 
calculations are to be made for interacting quark clus- 
ters, e.g., as in meson-meson, meson-nucleon 01, eventu- 
ally, nucleus-nucleus scattering. At present, the only way 
to carry out these fundamental calculations is by using 
Monte Carlo lattice techniques. Unfortunately, mainly 
due to the limitations ,of present-day computers, these 
calculations are restricted to clusters of, at most, two 
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or three quarks, see for example, Ref. [I]. Therefore, a 
bridge is needed between lattice calculations involving 
few quarks and conventional many-body techniques that 
can accommodate larger numbers of quarks. 

In an attempt to throw some light on the relationship 
between QCD and the effective interquark interaction, 
a series of model calculations have recently been made 
[2-81. In these, the energies of four quarks in,various con- 
figurations (e.g., on the corners of a rectangle or tetrahe- 
dron) have been calculated in quenched static SU(2) on 
a 163 x 32 lattice. The reason for studying four quarks is 
because of the possibility for partitioning these into dif- 
ferent color-singlet groups each containing two quarks; 
a situation not possible with two- and three-quark sys- 
tems. This can then be considered as a step toward the 
scattering of quark clusters, in tbis case meson-meson 
scattering. Hopefully, many of the features of an effec- 
tive interquark interaction in SU(2) will be preserved in 
the more realistic case of SU(3) in the same way as, for 
example, the ratios of glueball masses or string energy 
are numerically very similar in SU(2) and SU(3) [g-11]. 

In Refs. [3-81 the main feature in the results is that 
the strongest interaction between two separate two-quark 
clusters OCCUIS when two of the three possible partitions 
of the clusters are degenerate, or almost degenerate, in 
energy. This was first observed in Ref. [3], where the 
four-quark binding energy E dropped by an order of mag- 
nitude, when the four-quark geometry changed from that 
of a square [r x ~]‘to a neighboring rectangle [v x (y +a)]- 
where T is the length of a side of the square in lattice units 
a. For example, E(3a x 3a) = -0.054(1)/a = -90 MeV 
compared with E(3a x 2a or 4a) zz -0.006(1)/a. Subse- 
quent works verified this observation with other geome- 
tries, where the two partitions were not exactly degen- 
erate, but more so than for the above rectangles. For 
example, in Ref. [5] this was achieved by tilting the rect- 
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angles out of the planes defining the underlying lattice, 
and also with other nonplanar geometries. These latter 
cases showed that it was indeed the energy degeneracy 
dictating the size of the interaction and not a geometri- 
cal degeneracy. In other words, with clusters (13)(24) 
and interquark potentials V(ij), it is the degeneracy 
V(13) + V(24) 3 V(14) + V(23) that matters and not 
lrI - r31 + lr2 - raI N lrI - raI + lr2 - r31. For large in- 
terquark distances V(ij) e b,lr; - rj‘jl +c, where b. is the 
string energy and c an additive constant. In that case, the 
energy and geometrical degeneracy are the same. How- 
ever, this is only true for ~ij 2 0.5 fm and in the interest- 
ing region dominated by explicit quark interactions it is 
the energy degeneracy criterion that must be used. This 
is contrary to the assumption made with the so-called 
flip-flop model of Ref. [12] that takes the geometrical de- 
generacy criterion for all interquark distances. 

The reason for studying many different four-quark con- 
figurations (i.e., rectangles, linear, nonplanar, etc.) is to 
give a representative selection of geometrical possibili- 
ties that arise in practice when, for example, two mesons 
scatter. Any quark model for such a scattering, when 
reduced to the same conditions as the lattice calcula- 
tion [i.e., static, quenched, SU(Z)] should give for the 
above selection of configurations the same values for the 
four-quark energies E. As said earlier, the representa- 
tive selection of four-quark configurations concentrated 
on those cases where two of the three possible partitions 
were degenerate in energy. However, a potentially in- 
teresting case is that of the tetrahedron, where all three 
partitions are now degenerate. This is the main subject of 
this paper and is discussed in Sec. II. For completeness, 
the series of configurations shown in Fig. 1 are treated 
with 1 5 d 5 5 and 0 5 T 5 6-the tetrahedron being 
T = d. The 1‘ = 0 case is then closely related to the earlier 
work on squares with d = 1, ,5 and serves as a check 
on those calculations, since they were done with a set of 
basis states restricted to two in number and not three as 
in the present work. 

Since the completion of Refs. (3-71, it has been sug- 
gested [13] that perhaps more care is needed in extract- 
ing energies and their statistical errors from a series of 
Monte Carlo results. Therefore, in Sec. III, the data is 
analyzed taking into account data correlations between 
different Euclidean times. 

II. THE LATTICE MONTE CARLO 
CALCULATION 

Since most of the details of the lattice Monte Carlo 
calculation have been given in the earlier papers [3-51, 
this section will only very briefly outline those details 
concentrating mainly on aspects specific to the geometry 
shown in Fig. 1. 

Throughout this study the four quarks are treated in 
the static quenched approximation on a 163x 32 lattice in 
SU(2) with fl = 2.4, corresponding to a lattice spacing of 
a zz 0.12 fm. Both the four-quark energies K(4q) and the 
FIG. 1. The four-quark geometry based on a square of side 
d parallel to the yz plane and a distance P from that plane. 
A, B, and C are the three possible partitions. The case when 
P = d is called the tetrahedron. 

corresponding two-quark energies Vi(2q) are extracted on 
this lattice. However, the main quantities of interest are 
the ground-state binding energy Ei,l and the excited 
state energies Ei=2,3 defined by the differences 

E; = K(4q) - 2Vl(2q). (1) 

As described in Refs. [3-51, the V(2q) potentials are 
calculated ,&rn a 3*3 variational basis, where, after fix- 
ing the gauge so that all temporal links are set to unity, 
the three states are constructed iiwm basic lattice links 
that have been “fuzzed” to different levels: 12, 16, and 
20 in the spatial directions. This fuzzing essentially mod- 
els a glue flux-tube between the two quarks in question. 
For the cases where these two quarks are not along a 
given spatial axis [e.g., V(z, y)], the appropriate path of 
links is then constructed as the average of the two most 
simple paths connecting I and y, each consisting of one 
straight section along the I and y axes. For V(4q), using 
only the maximum fuzzing level of 20, the basis states are 
constructed from the different partitions of four quarks 
into a product of two two-quark color-singlet clusters. 
In some cases it seems natural to restrict the variational 
basis to just two partitions, e.g., viith rectangles the two 
involving the sides of the rectangle and not the one con- 
structed from the two diagonal paths. However, in other 
cases, especially for the tetrahedron of interest here, it 
seems to be necessary to keep all three partitions. 

Having constructed the above paths [e.g., P;(Z’l) = 
U~(Tl)lvac) and Pj(T2) = Uj(Tz)]vac)] from fuzzy links, 
Wilson loops W;:, the quantities from which the final 
energies are extracted, are then simply given, with the 
present gauge, as the overlap of paths separated by Eu- 
clidean time T = Z’-Tl, i.e., W$ = (Pj(T~+T)IP~(Z’~)). 

The energies Ei in Eq. (1) are expected to be exact in 
the sense that they are not the result of a truncated weak 
or strong coupling expansion. However, they do contain 
uncertainties such as the following. 

(a) Statistical errors. To a large extent these can be 
estimated with reasonable accuracy; this is the subject 
of sec. III. 

(b) Systematic errors. By their very nature they are 
much harder to estimate. Throughout, the aim is to at- 
tempt at minimizing their effect. In general, the most 
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obvious source of such errors is the use of a lattice that 
is too small (i.e., too few points) or has a grid that is too 
coarse (i.e., 0 too small) for the results to represent those 
expected in the continuum limit of the lattice. This was 
checked in Ref. [5] by using a 243 x 32 lattice at p = 2.5, 
which corresponds to a lattice spacing a = 0.082 fm. In 
the present type of calculation, since, as seen from Eq. 
(l), the signal Ei is a delicate cancellation, it is ueces- 
sary to ensure that the appropriate K(4q) and K(2q) we 
extracted simultaneowly from the mme lattice configu- 
ration. In this way, systematic errors possibly present in 
the separate energies K(4q) and Vl(2q) are expected to 
cancel to some extent. 

In order to study different aspects of degenerate ge- 
ometries, three separate sets of lattice calculations are 
performed in this paper. 

(1) The first concentrates on geometries near to the 
tctrahedra, namely, those cases with T = d, d & 1 (except 
for d = 1, where only T = 1,2 are treated). The data 
is collected into 69 blocks each containing 32 measure- 
ments, i.e., 2208 measurements in all. 

(2) The second set of geometries is for T = 1 and d = 2 
to 5, i.e., situations close’ to that of the squares studied 
earlier in Refs. [3-71. Here the data is collected into 47 
blocks each containing 64 measurements, i.e., 3008 mea- 
surements in all. 

(3) In order to see the connection between the present 
series of geometries, especially that in the previous item, 
and the square/rectangle geometry of Refs. [3-71, a third 
set of runs is carried out. These are a repeat of the 
earlier square/rectang& geometry but with the complete 
3*3 basis, i.e., with the inclusion of the basis state con- 
structed from the diagonal paths. Only a limited number 
of 64 measurements are made; 4 blocks each containing 
16 measurements. However, this is sufficient to see how 
the energies vary in going from the three 2*2 bases (A+B, 

A + C, and B + C) to the complete A + B + C basis. 

III, ANALYSIS OF THE DATA 

As emphasized, for example, in Refs. 113,141, care 
should be taken when analyzing data generated in Monte 
Carlo lattice calculations, in ca.% the data betweendiffer- 
ent Euclidean times is too correlated. This can be taken 
into account in the following manner. As discussed in the 
previous section, the actual quantities measured are the 
Wilson loops W$ between different states i, j at different 
time intervals T. Here the i, j refer to the different de- 
grees of fuzzing for the two-quark potentials and, for the 
four-quark case, to the different quark partitions. How- 
ever, the quantities of interest are the.energies (V) of 
these systems. In Refs. [3-7) these were extracted by 
solving the eigenvalue equation 

(2) 

.where XiT) I --t exp(-vi) as T + co. This matrix for- 
mulation takes into account mixing between the differ- 
ent degrees of fuzzing or four-quark partitions, but says 
nothing about possible correlations between the differ- 
ent times T. As suggested in Ref. [13] it is convenient 
to treat the configuration and time correlations in the 
sane manner. For cla&, this is illustrated by the spe- 
cific example of IL partitions and T time differences in 
the four-quark case. This involves the (n2T) matrix el- 
ements WK,Ws,..., W,‘,, where the expected equality 
between, for example, Wg and WF1 is not enforced by 
symmetrizing the data. Let the index p = 1,. , nz de- 
note these n2 matrices. As discussed in the previous sec- 
tion, the data (Wz) in the form of these (n2T) matrix el- 
ements is collected into N separate blocks, each of which 
is already the average of rn measurements, i.e., in all there 
are mN measurements of each Wilson loop. The average 
of these measurements is denoted by 

The problem is now reduced to fitting these averages by 
a function of the general form 

(4) 

in order to extract the energies Vk. As shown in Ref. [13] 
this can be achieved by minimizing the expression 

x2 = c (FF - F?;) M(T,T’,p,p’) (I$’ - “;‘) , 

T,T’,P.P’ 

(5) 

where 

M(T,T’,p,p’) = NC-‘(T,T’,p,p’) (6) 

and C is the covariance matrix 

W,T’,P,P’) = gig Pc(~) -T-l 

x 
1 
w;‘(l) - W$’ 1 (7) 

In what follows, it is convenient to introduce the corre- 
lation matrix 

~(T,T’,P,P’) = 
C(T,T’,P,P’) 

~C(T,T,P,P)C(T’,T’,P’,P’)’ 
(8) 

The above procedure is stable provided N is large 
enough. However, in the present type of lattice cal- 
c-ulation this is not guaranteed and can then lead to 
C(T, T’,p,p’) having very small eigenvalues that produce 
large fluctuations in M(T,T’,p,p’). As argued in Ref. 
[13], such eigenvalues correspond to eigenvectors that al- 
ternate in sign as a function of T and so are not very 
relevant to smooth fit functions of the type proposed 
in Eq. (4). It is, therefore, reasonable to remove these 
disturbing eigenvalues and here the suggestion made in 
Ref. [13] is adopted. This simply replaces the smallest 
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eigenvalues of e(T, T’,p,p’) by their average. The ques- 
tion then arises concerning how many (nt) of the original 
eigenvalues (TQ = n2T) should be retained. Initially a 
number n.+, of these w eigenvalues are fixed, with TXM 
being chosen as u fi, a compro ise choice found af- 
ter some experimentation in Ref. [13 The average (X,) “? 
of the remaining IL* - 12~ eigenvalues is then made and 
those eigenvalues less than (X,) are replaced by (X,) 
itself. Since only a fraction of the nb - ‘LM eigenvalues 
are replaced in this way, there still remains nt > nb 
of the original eigenvalues. In practice the final v+e 
of nt is not strongly dependent on the original choice 
of nM. In the present problem N = 69, n = 2 or 3> 
and T can range from 1 to 5, so that for the largest C 
matrix only about 8 of the total number of 45 original 
eigenvalues should be &a&d. However, frequently the 
T = 1 data are dropped from the analysis, since they 
have very small error bars and presumably contain the 
effect of several higher energy components that become 
negligible already at T = 2 and so cannot be seen for 
T 2 2. Therefore, keeping the T = 1 data often makes it 
difficult to obtain an accurate fit with only a few (1 - 3) 
terms V;. 

Having arrived at a suitable model for c, it remains to 
fix the precise form of the function FT in Eq. (4), which 

is to fit the nZT matrix elements l%‘F by means of Eq. 

(5). It is seen that the Fz are described by the kM poten- 
tials Vk and the corresponding n2kM amplitudes an(k), 
i.e., in all (n” + l)kM parameters. For the four-quark 
case the most reliable fits are found with three partitions 
(n = 3) and four time steps (T = 2,. . ,5), which means 
36 pieces of data are to be fitted with lOkM pamme- 
ters. Therefore, in principle only three potentials (KJ,~) 
can at most be extracted. However, fitting 36 numbers 
(some having significant error bars) with 30 parameters 
(kM = 3) would not succeed. In fact, even the extrac- 
tion of two potentials using the 20 parameters (k.w = 2) 
would probably not give values of V,,, with a meaning- 
ful accuracy. It is, therefore, necessary to impose some 
theoretical constraints to restrict the number (nZkM) of 
parameters a=(k). Since the data wiT involve the over- 
lap of two lattice configurations c(O) = Ui(O)lvac) and 
Pj(T) = Uj(T)Ivac) separated by time T, it can be writ- 
t& & the M&urn expectation 

w$ = (va~lU~(T)U<(O)lvac) 

= C (VitCIUj(T)Ik)(klUi(O)l~c) exp(-Vd’). (9) 
k 

It is, therefore, reasonable to assume that the ampli- 
tudes are separable, i.e., ap(k) .= a;j(k) = ai(k)aj(k). 
This has two good features. 

(1) The number of parameters is now reduced to 
(n + l)kM. Therefore, fitting the 36 pieces of data &cm 
three partitions (n = 3) and four time steps now only 
requires 4kM parameters. This makes the quite reliable 
extraction of two or possibly three potentials feasible. 

(2) This parametrization imposes the symmetry F$ = 

FzT as is expected physically. As said earlier this symme- 
try was not forced on the original data by some procedure 
such as taking the average 0.5(w$ + m>T), since the dif- 

ferences between 1”: and J?$ can contribute to the error 
analysis of the extracted energies. 

It should be added that, in the event of two en- 
ergy states being degenerate (e.g., V,, = VA,), then 
ai(k,)aj(kl) +a<(kz)aj(kz) should be replaced by a single 
amplitude aij. This is the situation encountered in the 
tetrahedron geometry. However, there additional sym- 
metries suggest the following better model. 

In some symmetrical cases, such as four quarks on the 
corners of a square or tetrahedron, the number of param- 
eters can be further reduced by choosing forms of FT that 
guarantee various symmetries. For the square, when only 
the two partitions involving the sides are considered, the 
matrix of Wilson loops has the form 

where not only is the general symmetry WI, = W,, ex- 

petted but also for a square WI, = W,,. In this case Eq. 
(2) is easily solved to give for the lowest energy 

(11) 

and for the energy of the first excited state 

Therefore, in fitting the data it is reasonable to expect 
that only two potentials can be extracted, i.e., kM = 2; 
and so the fitting functions must have the form 

loops has the form 

FT = FT = a(1) exp(-VIZ’) + a(2) exp(-VzT), 

FT = F: = a(1) exp(-VlT) - a(2) exp(-ViT). (13) 

This reduces the number of parameters to four 
[VI,z,a(l,2)] in order to fit the 16 pieces of data cov- 
ering four T steps. Here it should be remembered that 
the suffix p on F,’ is fixed as p = j + n(i - 1). 

Similarly, for the tetrahedron the matrix of Wilson 

WT= 

where the general symmetries Wl’, = Wg = WTzr 
Wz = Wz, Ws = W& W.$ = Wz are expected 
and, in addition, there are the equalities Wz, = W& 
and W,‘, = -WIT. The “minus” sign appearing~in the 
last equation is a reminder that the quarks are in fact 
fermion* even though quarks and antiquarks transform 
in the same way under SU(2). This point is discussed 

in more detail in the Appendix of Ref. [7]. Therefore, 
in all, there are only two independent Wilson loops WY1 
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and W& Again Eq. (2) is easily solved to give, for the 
lowest energy (occurring twice), 

x I,2 = 
%+G 

w:-’ + w,T,-’ 
(15) 

and, for the excited state, 
x = G-2wi 
3 WT-I _ 2WT-1’ (16) 

11 12 

In fitting the data it is reasonable to expect that only two 
terms can be extracted, i.e., kJ = 2, and so the fitting 
functions must have the form 
FT = F: = FT = a(1) exp(-VLT) + a(2) exp(-VzzT), 

F: = FT = F: = FT = -FT = -F: = 0.541) exp(-VJ) - a(2) exp(-VzT). (17) 
I 
This again reduces the number of parameters to four 
[V~,a(l,2)] in order to fit the 12 pieces of data (n = 3) 
covering four T steps. In this case, due to the high sym- 
metry there are no longer 36 pieces of independent data. 

In the tetrahedral case it is also seen that, when one 
of the partitions is removed (i.e., n drops from 3 to 2), 
the Wilson loop matrix reduces to the same form as that 
in Eq. (10). As seen by comparing Eqs. (11) and (15) 
the lowest eigenvalue is now the same in the n = 2 and 
3 cases. However, the first excited state is quite different 
in the two cases, unlike the result for most other geome- 
tries. For example, as will be seen later in Table IV of 
Sec. IV, for squares and for those rectangles so far dis- 
cussed, the n = 2 and 3 cases give very similar results 
for & as well as E1. However, there the third parti- 
tion has a higher energy than the other two partitions, 
whereas for the tetrahedron all three partitions have the 
same energy. When the tetrahedron is distorted into a 
neighboring lattice configuration, it will be seen in Table 
II of Sec. IV that both El and Ez can again be given 
quite accurately by n=2. It should be added that for very 
elongated rectangles the two partitions with the highest 
energy become more and more degenerate. In that case 
E1 is essentially zero and & will depend more and more 
on the presence of the third partition. 

In an idealized situation, all of the available n2 pieces 
of data from T=l-5 should, using the above procedure, 
be fitted with a Fz containing kM % IL potentials. This 
would then be the natural extension of Eq. (2) for incor- 
porating into its n eigenvalues the effects of correlations 
between different values of T. As it now stands that 
equation only includes the mixing between the different 
fuzzing levels or partitions. However, in practice, fitting 
all the T values is not possible and decisions have to be 
made concerning both the data (m<;) to actually be fit- 

ted and, in the fitting procedure, the form of FT and also 
the model for the correlation matrix in Eq. (87. 

(a) In the present problem, the data goes from T=l-5 
and the number (TL) of fuzzings, (two-quark) or partitions 
(four-quark) can range from 1 to 3. For both the two- 
and four-quark systems usually T=2-5 turns out to be 
the most suitable range. When the T range is reduced 
to 3-5, better values of x2 emerge from Eq. (5) but at 
the expense of larger errors on the extracted potentials 
vi. On the other hand, when T = 1 data is included, 
because of the small errors on this new data, it usually 
results in either a “no-solution” situation or a xz that is 
too large to be meaningful. In addition to the restric- 
tion on T, a decision must be.made on the number of 
fuzzings or partitions to be included. In the two-quark 
system only two fuzzings were necessary at a given time. 
This is simply a reflection that the different degrees of 
fuzzing are effectively very similar and so little is gained 
by increasing the number of different fuzzings from 2 to 
3. Here the two largest fuzzing levels (16 and 20) are 
used, i.e., n. is always taken to be two in the two-quark 
case. In the four-quark case it is possible to use all of the 
data from the different partitions, i.e., n is always three 
in the tetrahedron case. 

04 I* F;, once the separable form or the more sym- 
metrical one in Eqs. (13) or (17) have been chosen, the 
only decision to be made is the value of kM; the num- 
ber of terms (Vi) to be determined. This is varied be- 

tween 1 and 3. In the correlation matrix C(T,T’,p,p’) of 
Eq. (8) the number of eigenvalues to be initially retained 
(12~) can also be varied. Reference 1131 suggests using 

nb = a, and this was found to be a suitable value in 
the four-quark case as can be seen from Table I (there 
N = 69, so that the fi result is shown as case 11). On 
the other hand, in the two-quark system it is necessary 
to use n,,, = 2 or 3 to get a stable fit. Table I shows the 
effect of varying nb in a four-quark syste? (cases 9-13), 

as well as a fit with no correlations (i.e., C = 1, case 8). 
A few general features can now be seen. (1) Comparing 
cases 8 and 11, the use of the correlation matrix has ap- 
proximately a one-sigma-level effect on the averages and 
it slightly decreases the errors; (2) the exact value of nb 
is not important as long as approximately all the stable 
eigenvalues are retained (Le., nt is in the right range). To 
estimate this range for nt a jackknife procedure on the 
eigenvalues was carried out [15]. 

The above choices in the data and fitting procedure 
are strongly interrelated and so a strategy is necessary 
to single out the optimal set of values for n, the range 
of T, kJ, and nb. An example of this is given in Table 
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TABLE I. The binding energies Ek(d = 3a,r = 4a) obtained with method (I) from Eqs. (5)-(8). 
kM is the number of energies extracted. T is the time range analyzed. n.w is the “umber of 
eigenvalues initially retained. nt is the actual number of unchanged eigenvalues finally retained 
using nb. x’/Nnp is the ratio of chi-squared/number of degrees of freedom with the actual result 
shown in the parentheses. Case 8 is a fit with a ““it correlation matrix and is equivalent to the 
usual least sauares fit. 

Casel k.t, T 1 nb ntl 
1 1 2 4-5) 12 151 

2 I 3 4-51 12 151 

El. I XZIDDF 
-0.06(3) 0.10(4) 230/10 (23) 

-0.03f3) 0.0714) 0.4(21 1 3.9/6 CO.61 
3 3 3-5 10 16 -0.00;(Q) 0.09;(i) 0.3;(i) 1 8.9;1510.;) 
4 3 2-5 8 17 -0.009k2~ 0.10501 0.4oom I n/24 (0.5) 
5 3 l-5 8 16 

6 4 2-5 8 17 -0.OlOi3j 
23.405(Z) I 

7 4 1-5 8 16 -0.004(195) 0.108(36) 0.424(95) I 43129 (1.5) 

-0.003iZi 0.116jZj 0.424{2j 1 10d/33 \3.d) 

0.097(7) 0.40(3) 10/20 (0.5) 

8 
9 
10 
11 
12 
13 

14 

1.8(6.1) 

3 2-5 - -0.0100(19) 0.1035(25) 0.393(14) 8.8/24 (0.4) 
3 2-5 0 7 -0.0091(19) 0.1045(23) 0.398(10) lo/24 (0.4) 
3 2-5 2 11 -0.0090(17) 0.1053(24) 0.399(7) lo/24 (0.4) 
3 2-5 8 17 -0.0090(17) 0.1054(23) 0.400(7) 12/24 (0.5) 
3 2-5 15 22 -0.0091(17) 0.1054(22) 0.400(7) 16124 (0.7) 
3 2-5 36 36 -0.0087(17) 0.1065(19) 0.400(5) 28/24 (1.2) 

Method (II) -0.010(2) 0.105(5) 0.39(3) 
I. Basically tbis strategy amounts to fist fitting only a 
portion of the data, e.g., T =(3 or 4) - 5, with only a few 
potentials, e.g., kM =l or 2; see cases l-2 in Table I. It 
is possible to see a suitable range for nt, and therefore for 
nb as well, already from these fits. Then kM is increased 
to find a maximum number of potentials that can be 
extracted by “sing tbis range of T (see cases 2,6,7). The 
data base is then progressively enlarged to include more 
time steps, while trying to keep the value of x2 per degree 
of freedom fixed or decreasing by adding more potentials 
if possible (cases 2-7). Naturally, adding a time step 
constrains the potentials more than before, so that the 
errors of the potentials decrease accordingly. Initially 
this works well, but eventually the x2 become larger and 
larger, so that usually the results become meaningless 
before the ultimate stage of including all of the data (i.e., 
11 = 3 and T =l-5). However, it should be added that 
the T. = 1 data fitted with kM = 3 has to be treated 
with caution, if the resulting potentials are significantly 
different from those extracted with T = 2 - 5 and kM=2, 

since this may indicate that even higher energy states are 
polluting the T = 1 data. 
FIG. 2. The binding energies, in units of 
the lattice spacing, of the four-quark states 
for the geometry of Fig. 1 for d = 3 and 
T = 0,1,2,3,4. Solid lines show lattice re- 
sults: o-the ground-state binding energy 
El. x-the first excited state energy &. 
Dashed and dotted lines show model results 
with f = 1 from Eq. (27) for EI and Ez, 
respectively. 
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IV. RESULTS 

The results for the tetrahedronlike geometry in Fig. 1 
are shown in Fig. 2 and Tables II and III. Several points 
arise ticm Table II. 

(1) I+om earlier work in Refs. [3-51, for the correspond- 
ing squares [i.e., (d,O) in this notation], where two of the 
basis states are degenerate, the binding energy of the 
low& state ranges from -0.07 to -0.05 as d goes from 
1 to 5 [see Table IV]. However, now, even though at 
least two of the basis states are always degenerate (A 
and B), the ground-state binding energy is always less 
than that of the corresponding square [El(d, O)]. For a 
fixed d, jEl(d, r-)1 decreases as T increases. Nothing in- 
teresting happens to El at T = d, at which point all the 
basis states are degenerate in energy. 

(2) For fixed d, as T increases i?om 0 to d, the energy 
of the first excited state Ez decreases until &(d,d) = 
TABLE II. The binding energies Es of four quarks in the geometry of Fig. 1 for d = 1 with 
T = 1,2 and d = 2,. ,5 with T = d, d * 1. Here T = d are the tetrahedra. (1) A + B + C (I) is 
from Eqs. (S)-(9) with A, B, C shown in Fig. 1. (2) A + B + C (II) is from Eq. (2) in a 3*3 basis, 
see Ref. [7]. (3) A + B and B + C are from Eq. (2) using only 2*2 bases. (4) VI are the two-quark 
potentials (i) Vl(d,d) and (ii) V,(d,r). (5) The symbol S indicates that the entry in the table is 
the same as that to its left, within numerical accuracy, i.e., rounding errors. These results are from 
2208 measurements contained in 69 blocks of 32 measurements each. 

(d/a,r/a) E, / A+B+C (I) / A+B+C (II) 1 AtB 1 BtC [I 

(Ll) h -0.0145(4) -0.016(Z) S S (i) 0.%35(l) 
EZ ,, /, -0.0X(2) -0.016(2) 
E3 0.85(Z) 0.834(4) 

CL21 W -0.0034(4) -0.003(l) 0.03(l) S (i) 0.4885(l) 
EZ 0.262(2) 0.265(2) 0.265(Z) 0262(Z) (ii) 0.6023(3) 
E3 0.95(9) n Q~Of~\ 

CA11 EI -0.0453(9) 
“.“~“,“, 

S 
0.083(i)' 

'0.043(2) -0.042(2) (i) 0.6689(4) 
0.085(Z) 0.086(Z) 0.084(Z) (ii) 0.6023(3) 

0.78(7) 0.67(3) 
-0.0202(S) -0.020(l) S S (i) 0.6689(4) 

,, n -0.017fZ) -0.017(2) 

1, 
-0.028(l) S S (i) 0.7974(S) 

7, -0.006(4) -0.006(4) 

ES 0.19(l) 0.19(l) 

WV El -0.06(3) -0.013(4) O.OO(6) -0.011(4) (i) 1.017(2) 

Ez O.Ol(5) 0.0(l) 0.0(l) 0.03(7) (ii) 1.072(4) 
E3 0.15(9) 0.14(10) 
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TABLE III. The notation is the same as Table II but with T = 1 and d = 2,3,4,5. These results 
are from 3008 measurements contained in 47 blocks of 64 measurements each. The Es(d x d) are 
the corresponding energies for the nearby square of side d. 

(d/a, r/a) 
PJ) 

(3J) 

(431) 

(5J) 

A+B+C (I) A+B+C (II) 
-0.0447(6) -0.043(2) 

0.085(l) 0.085(l) 
0.69(3) 0.66(3) 

-0.052(Z) -0.049(2) 
0.089(3) 0.09(l) 
0.53(2) 0.55(S) 

-0.050(4) -0.047(l) 
0.088(6) 0.088(S) 
0.54(5) 0.54(3) 

-0.052(5) -0.044(5) 
0.073(S) 0.073(l) 
0.51(9) 0.55(4) 

E;(d x d) 
-0.0588(S) 
0.1414(S) 

-0.0531(5) 
0X57(12) 

-0.0524(10) 
0.097(2) 

-0.047(3) 
0.075(3) 

(i) O.k9(4) 
(ii) 0.6021(3) 

(i) 0.7974(S) 
(ii) 0.6992(5) 

(i) 0.9102(15) 
(ii) 0.7841(10) 

(i) 1.017(2) 
(ii) 0.8652(8) 

TABLE IV. The energies for a selection of squares and rectangles in the ranges d = 1,. ,5 
and T = 1,. ,5. The Ed are from a 2*2 basis using ~800 (1600) for the rectangles (squares). In 
contrast to Ref. [7], these results utilize Eqs. (5)-(g) and not Eq. (2). The other columns use only 
64 measurements. At B + C denotes the 3’3 basis and At B, B t C the corresponding 2*2 bases. 
The energies are those at T = 3 and not from any plateau in T. The notation (different from Fig. 
1) is that A has links along the sides of length T. B has links along the sides of length d. C is the 
state defined by the diagonals. S(L) is the state(s) with the lowest unperturbed energy. 
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E1(d,d). For T > d, Ez(d,T) increases again. This de- 
generacy of EQ for the tetrahedron is a new feature com- 
pared with earlier geometries. As will emerge in the next 
section, this is a severe cons+nt on any model wishing 
to describe this data. 

(3) As seen from columns A + B + C (I and II), in all 
cases the energies extracted using either (I) Eqs. (5)-(8) 
or (II) Eq. (2) are within the error bars of each other. If 
a choice has to be made, then the results (I) are prefered, 
since they involve a more detailed analysis of, the data. 

(4) In columns A+B and B+C only the corresponding 
two basis states are used. The symbgl 5’ means that the 
extracted El are emctly the same as the A + B + C 
(II) results. In those cases it is; therefore, sufficient to 
only use a 2*2 basis. However, the choice of which 2*2 
basis depends on the particular geometry, since one of 
these two basis states must have the lowest unperturbed 
energy. Since A and B are degenerate in energy, for a 
given d this amounts to using A + B for T 5 d. Whereas, 
for T > d it is necessary to use B + C, since C now has 
the lowest unperturbed energy. 

(5) Except for the tetrahedra, the values of Ez are 
essentially the same in the 2*2 and 3*3 bases. 

(6) The values of Es(d, v) are always much higher than 
Ez(d,r). However, as discussed in the next section, this 
second excited state is dominated by excitations of the 
gluon field and so is outside tke scope of the models in: 
troduced in that section. 

(7) The last column shows the two two-quark ground- 
state potentials V,(d,d) and &(d,r) that enter with this 
geometry. In the next section, these are needed for eval- 
uating a model for the four-quark binding energies. 

Several of the above points are also illustrated in Fig. 2 
for the case of d/a = 3 and r/a = 0, 1,2,3,4. In addition, 
there are shown the theoretical predictions for the f = 1 
limit of the model to be discussed in the next section. 

Table III is very similar to Table II except that ~/a 
is now restricted to unity, i.e., geometries nearest to the 
(d x d) squares. The following points can be made. 

(1) Again the energies extracted by Eqs. (5)-(8) (I) 
and Eq. (2) (II) are within the error bars of each other, 
with (I) being preferable, since it involves a more detailed 
analysis of the data. 

(2) For comparison in Ei(d x d) are given the energies 
of the nearby squares from Ref. [5] with only a 2*2 basis 
but analyzed with method (I). In general, these all have 
a somewhat larger binding energy, indicating that the 
binding energy is maximized for the square geometry. 

In Table IV results are giveti for various 
square/rectangle geometries. ,The main purpose of this 
set of runs is to see any change in the results for E1,z 
extracted from the 2*2 bases, when this is extended to a 
3*3 basis by in&ding a third state C. Also an estimate 
can now be made for the position of the second excited 
state Es. 

Several comments should be made about these results. 
(1) For the lowest energy El, introducing the third 

basis state has little effect on the results given by the 
two basis state calculation provided the partition with 
the lowest energy is one of those two states in that basis. 
In fact, for squares (i.e., 1‘ = d) the results are identical 
for the A+B+C and A+B bases. However, in a general 
case when using a 2*2 basis, for d > T it is necessary to 
include state A and for d < + state B. Remember that 
in this notation it is state C that is constructed from the 
diagonal two-quark color singlets and so always has the 
highest unperturbed energy. 

(2) T&e energy Ez of the tist excited state is less de- 
pendent on the choice of basis, with the 3*3 and 2*2 
possibilities giving in most cases essentially the same re- 
sults. 

(3) F&n column A + B + C it is seen that Es, the 
energy of the second excited state, is always considerably 
higher in energy than Ez. 

(4) The E;(P) column is the result of many more mea- 
surements than the following columns. Therefore, in view 
of the facts in the previous items, these numbers should 
be considered as the most accurate for rectangles. They 
are basically the same as those in Ret?. [4,5,7], except 
that the data has been subjected to the improved analy- 
sis (I) using Eqs. (5)-(8). 

V. AN INTERPRETATION OF THE RESULTS 

One of the main reasons for embarking on this work 
is the attempt to find a model which gives a simple un- 
derstanding of the four-quark binding energies in terms 
of the corresponding two-quark potentials. At first sight, 
it may seem that the best such model should be able to 
explain all of the energies extracted from the lattice cal- 
culation of the previous section. However, this would be 
not only too ambitious but also it would be outside of 
the goal of the desired model. When the lattice data is 
analyzed by directly diagonalising Eq. (2), then the num- 
ber of energies extracted is equal to the number of basis 
states, i.e., three for the tetrahedral geometry. On the 
other hand, when the expression in Eq. (5) is minimized, 
the number of extracted energies depends very much on 
the quality of the lattice data. For the tetrahedron, as 
seen in Tables II and III, it is also possible to extract 
the three lowest eigenvalues and, in principle, even more 
could be obtained. This point is discussed in more detail 
in Ref. [16], where also the results &xn other four-quark 
geometries are extracted using Eqs. (5)-(g). However, 
for the model to be discussed below only the lowest two 
lattice eigenvalues are of interest, since the third is dom- 
inated by excited gluon components. Such a feature is 
outside any model that incorporates an interaction that 
is based on the two-quark potential in its ground state. 
It can be seen that the third state is basically a gluonic 
field excitation as follows. 

(1) As shown in the above tables and also in the Ap 
pendii of Ref. 171, except for the tetrahedra, the addition 
of a third basis state into the lattice calculation has only 
a minor effect on the results using only two basis states 
indicating that the structure of the third eigenstate is 
very different from the lower two states. 

(2) In the linear case, on a lattice where all three par- 
,titions are constructed from links along a single spatial 
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axis, i.e., without the need for introducing combinations 
of links along different axes, these partitions are linearly 
dependent leading to a singular matrix, if a three basis 
calculation is attempted in Eq. (2). 

The previous paragraph has shown that only the lowest 
two lattice eigenvalues are of interest when constructing 
a model based on the basic two-quark potential in its 
ground state. To this end, in Refs. [3-71 it was proposed 
that the lattice energies Ei should be fitted by a model 
defined in terms of only two basis states A and B. In this 
model the Ei are given as the eigenvalues of the equation 

with 

[V(f) - WPWI Qi = 0, (18) 

N(f) = ( ii2 ;““) 

where Xi = E; + ~~3 + wb, the configuration A = 
(ql&)(q2q4) being the lowest in energy of the three po% 
sible partitions into two two-quark singlets. The off- 
diagonal matrix element 

(AIVIB) = VAS = VBA 

is of the form expected from a two-quark isovector po- 
tential 

vij = -+< .7jvij. (21) 

The additional factor of j appearing in the off-diagonal 
matrix elements is to be interpreted as a gluon field over- 
lap factor. In the weak coupling limit j is unity. How- 
ever, in general this limit is found to result in too much 
binding compared with the lattice results. Therefore, j is 
treated as a phenomenological factor, which is adjusted 
to fit the lattice energies. The problem is then reduced to 
understanding the resulting values of j, which have es- 
sentially simply replaced the lattice energies. That this 
is a reasonable model is supported by several points. 

(1) This factor j is approximately unity when all four 
quarks are close together. This is indeed where the j = 1 
weak coupling limit should be best. 

(2) For a given geometry, a single value of j qualita- 
tively explains quite well both El and Ez. 

(3) When j is parametrized as 

j = exp[-kb.S], (22) 

where S is the minimal area of a surface bounded by the 
straight lines connecting the four quarks and baaa is the 
string energy density with the value FC* 0.070, then it is 
found that, for squares and rectangles, the parameter k 
is reasonably constant at is 0.50 zk 0.05. Of couxse, the 
ultimate goal is to find such a parametrization in which 
the corresponding p~ameter(s) k would be strictly con- 
stant for all geometries (i.e., squares, t&rahedra,. .). If 
this selection of geometries is sufficiently representative, 
then the reasonable assumption would be that this same 
parametrization should work for other geometries not cal- 
culated on the lattice. 

Prior to tbis work on tetrahedrons the geometries con- 
sidered had, at most, two of the three possible partitions 
being degenerate in energy (e.g., for squares). In these 
cases, as seen from Table IV, it is found that the lat- 
tice energies El and Ez are essentially the same for the 
three-basis-state calculation (A + B + C) and those two- 
basis-&ate calculations (A + B, A + C, and effectively 
B + C) which involve the basis state with lowest unper- 
turbed energy. This is one of the reasons why the 2*2 
version of the j model in Eq. (19) was quite successful 
for a qualitative understanding of these cases. However, 
for tetrahedra and the neighboring geometries calculated 
in Sec. II, it now seems plausible to extend the j model 
to the corresponding 3*3 version in which 

and 

>I (23) 

where the negative sign in the BC matrix elements is of 
the same origin as the one in Eq. (14). This extension 
has both good and bad features. On the positive side, all 
three basis states are nova treated on an equal footing. 
This is convenient when considering some general four- 
quark geometry, since it is then not necegsary to choose 
some favored 2*2 basis, which could well change as the 
geometry develops from one form to another. On the 
negative side, in the weak coupling limit (i.e., f, j’, f” --t 
1) the 3*3 matrix of Eq. (18) becomes singular, in the 
sense that adding columns B and C results in column A. 
However, in this limit, each of 2*2 matrices corresponding 
to the three possible partitions A + B, A + C, and B + C 
gives the same results. Away from weak coupling the 3*3 
matrix is no longer singular, but now the three possible 
2*2 partitions do not necessarily give the same results. 
Below an attempt is made to minimize the differences 
between these three partitions, since in the corresponding 
lattice calculation the differences in most cases are indeed 
small. 

The strategy of trying to mimic the lattice calculation 
by means of the j model in Eqs. (18) and (19) is carried 
out at two different levels. 

(1) The lattice calculation is made in the static 
quenched approximation with the SU(2) gauge group. 
Therefore, in the j model there must not be any kinetic 
energy term (i.e., static quarks) and also quark-antiquark 
pair creation (for example, in the form of meson exchange 
between quark clusters) must not be included (i.e. the 
quenched approximation). Furthermore, the two-quark 
potential in Eq. (21) is expressed in terms of 7 matrices, 
the generators of SU(2). 

(2) The lattice calculation, as said earlier, gives es- 
sentially the same results for any of the three partitions 
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A + B, A + C, and B + C as the complete A + B + C 
basis. As will be seen below, this point is more difficult 
to mimic. Since this feature is automatically encoded in 
the matrix elements of Eq. (14), one possibility for the j 
model is to attempt to,mimic in more detail the form of 
these matrix elements. 

For the tetrahedron geometry, the j model as written 
in Eq. (23) takes on a particularly simple form since each 
of the ~ij are equal and also j = j’ = j”. In this case 
the eigenvalues are 

El = Ez = ES = 0. (24) 

This has the positive feature that El and Ez are de- 
generate as in the lattice results of Table II. However, 
they are degenerate at zero binding energy. This latter 
feature is unavoidable for the model in its present form, 
since there is only one energy scale present. This is the 
two-quark potential between each of the quarks, which 
is, of course, independent of the pair of quarks chosen, 
since all interquark distances are the same for the tetra- 
hedron. It is, therefore, necessary to introduce a second 
energy scale into the model. However, any improvements 
in the model have very limited choices, since there are 
only two different matrix elements involved, the diagonal 
ones all equal to, E and the off-diagonal ones all equal to 
f0.5 jE. Therefore, the most general modifications are 
to change the diagonal matrix elements to d1 - E and 
the off-diagonal ones to +0,5j(d2 - E). This results in 
the eigenvalues 

El = Ez = d1 + 0.5jdz 
If 0.5j 

and E3 = dl - jdz 

1-f 
(25) 

At first sight it may appear that there is sufficient infor- 
mation to now extract the new parameters dl+, since j 
can be estimated using the parameters (assumed to be 
universal) from other geometries, thus leaving two equa- 
tions for El,2 and Es and the two unknowns dl,z. How- 
ever, as said before, this is too much to demand from the 
j model, since in the lattice calculation the third basis 
state in the complete A + B + C basis generally plays a 
minor role in determining the values of El,2 and, there- 
fore, the third eigenvalue is presumably dominated by an 
excitation of the gluon field. Even so, it is of interest to 
see that a similar feature now arises with Es in Eq. (25), 
since this third state is removed in the weak coupling 
limit, i.e., Es + cm as j + 1. However, the f model, if 
it is to be successful, should only be expressed in terms 
of the lowest energy gluon configurations, since the gluon 
field is not explicitly in its formulation, but only appears 
implicitly in the form of the two-quark potentials and the 
f factors. In view of this, no quantitative attempt should 
be ma+ to identify the second excited state emerging 
from the lattice calculation as ES in the j model. 

In Ref. [17] it was shown that the two-state model of 
Eqs. (19) with the overlap factor j = 1 agreed with per- 
turbation theory up to fourth order in the quark-gluon 
coupling [i.e., to O(a’)] and gives El,z=O for tetrahedra. 
Therefore, the nonzero lattice results for small tetrahedra 
must be of O(a3) at least. Another aspect of this special 
situation for t&ah&a is also seen, when extracting or 
interpreting the value of ES, by the need for the third 
basis state both in the lattice calculation (see Table II) 
and in the j model, since in comparison with Eq. (25) 
the two basis state version gives 

E 
1 

= & + Wdz 

1+0.5j 
and Ez = 4 - O.Vdz 

l-0.5f ’ (26) 

i.e., both the two- and three-basis state models have the 
same ground state, but the latter does not show the El = 
Es degeneracy. 

In Fig. 2 the predictions are shown for the j = 1 limit 
of the above model in the case of d = 3. If, in the notation 
of Fig. 1, the appropriate two potentials in state A(or B) 
and state Care defined as va = h(3, V) and v,: = Vl(3, 3), 
respectively, then 

V1(4q) = 8va ; 2vc and fi(4q) = 2v,. (27) 

Here the Vi(4q) are defined in Eq. (1). To extract Ei for 
T 5 d the two-quark potential &(2q) is taken to be v,, 
whereas for T > d the appropriate potential ‘is Vl(2q) = 

WC. 
The expressions in Eq. (25) are not particularly useful 

unless there is a model for the parameters dl,z. However, 
since it is not the purpose of this paper to make a com- 
prehensive study of models covering all the four-quark 
geometries considered in earlier works [4-S], only a few 
general remarks will be made here for the tetrahedron 
geometry. Models for the dl,z need extensions of the po- 
tential in Eq. (21), so that for the tetrahedron there are 
two energy scales present. Here several ways of achieving 
this goal are suggested. 

(1) The effect of an isoscalar two-quark potential. As 
discussed in Ref. [4], an isoscalar potential wij can be 
introduced into V;i, ensuring V;j = Vij for a color singlet 
two-quark system, by the form 

Vij = -TjT; ‘7j (V<j -t&j) + W<j. (28) 

In this case, dl = dz = 4w since all of tde wij are now 
equal to w and results in El = Ez = Es = 4~. Therefore, 
from Table IV it is seen that the w range from -0.0035 
to -0.0070, i.e., they have values much smaller than the 
corresponding V<j = ZI given in the last column. A similar 
feature was found in Ref. [4], when the form in Eq. (28) 
was introduced to improve the model fit for squares and 
rectangles. However, as shown in Ref. [li’], in perturba- 
tion theory all terms of O(a’) are included in the two 
state model of Eq. (19) with f = 1. Therefore, in the 
weak coupling limit Wij must be of O(&‘) at least. 

(2) The effect of a three- or four-body potential. The j 
factor is itself a four-body operator. However, it is con- 
ceivable that additional multiquark effects arise. Some 
perturbative possibilities are discussed in Ref. [17]. There 
it is shown that all three-quark terms arising from three 
gluon vertices always vanish, but that the four gluon ver- 
tex can contribute to two-, three-, and four-quark terms 
at O(a3). However, in the tetrahedral case (7 = d), can- 
cellations result in this particular four-quark term also 
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vanishing. 
(3) The effect of noninteracting three gluon exchange 

processes. These are also discussed qualitatively in Ref. 
[17] and contribute at O(a3) to two-, three-, and four- 
quark potentials. 

(4) The effect of two quark potentials in which the 
gluon field is excited. The fist excited state [Vi(T)] of 
the two-quark potential VI(~) is approximately given by 
V;(T) x Vl(~)+r/7 see, for example, Refs. [9,10]. There- 
fore, if a fourth state, based on such an excited state, is 
introduced into the model, since it is higher in energy 
than the three degenerate basis states so far considered, 
it will give attraction in the ground state. Furthermore, 
as the size of the tetrahedron increases this fourth state 
will approach the other three states, so that the attrac- 
tion felt in the ground state will increase-a trend seen 
in the tetrahedron results for El,2 in Table II. 

The above isoscalar potential option now offers a rea- 
son for El = Ez # 0. But, u;fortunately, Es is still 
equal to El,z since dl = dz. However, there is no reai 
son to expect any three- or four-body forces to also be 
purely isoscalars. In this case, their contributions to dl 
and dz could be different and through the presence of the 
1 -f factor in Eq. (25) any estimates of Es could be very 
model dependent. 

VI. CONCLUSIONS 

This paper discusses three separate aspects of four- 
quark energies. 

(1) Four-quark configurations (t&ah&a) involving 
three degenerate basis states. This showed the interest- 
ing result that, for tetrahedra, the ground and first ex- 
cited states are degenerate in energy. The onset of this 
degeneracy can be seen in Fig. 2, where, as a square 
(T = 0) gets deformed into a tetrahedron (T = d = 3), 
the ground and first excited states, originally at -0.053 
and 0.116, become degenerate at -0.026. This is a new 
feature not observed in earlier four-quark configurations 
(e.g., squares, linear,. .). 

(2) The use of the correlation matrix in Euclidean time 
for extracting energies from the basic lattice data. Be- 
cause the four-quark binding energy is the difference of 
two quantities that are comparable in magnitude, the fi- 
nal result involves a rather delicate cancellation; see Eq. 
(1). It was, therefore, considered worthwhile to investi- 
gate the effect of correlations in the basic data. Here it is 
shown that such an improved analysis of the lattice data 
leads to results that are essentially the ssme as those in 
earlier, less complete, analyses. 

(3) The construction of a model in an attempt to ex- 
plain these energies. Here it is seen that the j model, 
introduced in earlier papers, needs to be modified before 
it can be used to described the tetrahedron results. Hope- 
fully, a guide to these modifications can be suggested by 
perturbation theory, which has already proven useful in 
justifying the basic model at small interquark distances. 
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