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Determining the weak phase p from charged H decays
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A quadrangle relation is shown to be satisfied by the amplitudes for B+ ~ vr K+, vr+K,
gK+, and g'K+. By comparison with the corresponding relation satisfied by B decay ampli-
tudes, it is shown that the relative phases of all the amplitudes can be determined up to discrete
ambiguities. Making use of an SU(3) relation between amplitudes contributing to the above de-
cays and those contributing to B+ ~ 7r+7r, it is then shown that one can determine the weak
phase p = Arg(V„'bV, b/V„*, V„), where V is the Cabibbo-Kobayashi-Maskawa matrix describing the
charge-changing weak interactions between the quarks (u, c, t) and (d, s, b).

PACS number(s): 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd

I. INTRODUCTION

The presence of phases in elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [1] is the currently
favored explanation of the observed violation of CP in-
variance [2] in the neutral kaon system. However, inde-
pendent tests for the presence of these phases are needed.
One class of such tests is based on observing the predicted
violation of CP invariance in B meson decays. In or-
der to interpret such violations in terms of CKM phases
one needs to identify the Bavor of the decaying B me-
son, posing potential "tagging" problems for neutral B's,
or to understand final-state interactions in "self-tagging"
modes such as B+ ~ 7rK.

Using flavor SU(3) [3—6] we proposed [7—9] that B+ +-
7rm and B+ ~ 7rK amplitudes could be related to one
another in such a way as to obtain the weak phase
p = Arg(V„*bV,b/V*, V, ), where V~ is the element of the
CKM matrix describing the charge-changing weak inter-
action between the quarks i = (u, c, t) and j = (d, s, li).
It was shown [10,11] that electroweak penguin contribu-
tions [12] could spoil this relation, and were likely to be
significant. We proposed a way to specify the phase p
independently of these contributions but making use of a
rare decay B, —i rr rl [13]. A simpler relation yields sim-
ilar information by employing the decays B ~ gsK+,
where gs denotes an octet member. The amplitude tri-
angle relation [14]

A(B+ + rr'K+) + v 2 A(B+ ~ rr+Ko)

= ~3A(B+ m rlsK+) (1)

(also implied by the first three lines of Table II of Ref.
[7]) can be compared with the relation for the charge-
conjugate process to yield an amplitude which, when nor-
malized by that governing B'+ ~ sr+sr, yields the phase
P 0

A modified version of the triangle relation (1) can be
applied to the physical g, an octet-singlet mixture, only
if one neglects the independent amplitudes in which the
singlet component of the g is produced. In this paper
we identify the most important of these amplitudes and
show how to recover information on p in its presence.

We shall show that the natural generalization of (1)
for an octet-singlet mixture, the quadrangle relation

A(B+ ~ ~ K+) + ~2A(B+ ~ ~+K )

= v 3[cos 0A(B+ +rlK+)-

+ sin gA(B+ m rl'K+)], (2)

where

g = @8cos0 —gq sin0,

g' = gssin0+ggcos0,
(3)

and rls = (2ss —uu —dd)/~6, rli = (ss + uu + dd)/v 3,
can be compared with the corresponding relation for B
decays in order to learn the shape of both quadrangles.
One can then form a difference between two amplitudes
for B ~ xK and B ~ xK which, when compared with
the amplitude for B+ ~ 7r+a, provides the weak phase

We introduce notation and assumptions and describe
decay amplitudes in terms of four independent quantities
in Sec. II. The quadrangle (2) and that for B decays
are constructed in Sec. III, where we also obtain an ex-
pression for p. Some comments regarding SU(3) breaking
and experimental considerations occupy Sec. IV, while
Sec. V concludes. An explicit geometric construction of
amplitude quadrangles is described in the Appendix.
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II. NOTATION) ASSUMPTIONS,

AND AMPLITUDES

PEw~pEw
q

0 'C
P Hill ~ P EW

q'

A. Definition of states

For SU(3) amplitudes we adopt a graphical notation
described in more detail in Refs. [7—9,13,15]. Our states
are de6ned by

~+ = ud, ~' = (dd —uu)/~2,
K+ =us, K =ds, K =sd,

gs = (2ss —uu —dd)/v 6,
qg = (ss + uu + dd)/v 3,

K = —su,

(4)

with (3) describing the physical g and q'. A good approx-
imation, corresponding to an octet-singlet mixing angle
[5,16] 0 = 0„—:arcsin(1/3) 19.5, is the representation

I
17 gp

2ss+ uu+ dd

~6
(5)

B. Assumptions about amplitudes

The decays B ~ M8M8, where Ms are pseudoscalar
mesons belonging to octets of flavor SU(3), are charac-
terized by 5 independent amplitudes, corresponding to
one 27, three 8's, and one 1 in the direct channel [3].
[We denote a flavor SU(3) representation by its dimen-
sion in boldface. ] In previous works [7—9,13,15] we have
argued that the neglect of amplitudes containing factors
of f~/m~ is equivalent to relations between the 27 and
one of the 8's, and between the 1 and another of the 8's,
leaving 3 independent amplitudes. These can be charac-
terized by graphs T, C, P, illustrated in Fig. 1, in which
the spectator quark in the decaying B does not enter
into the decay Hamiltonian. A number of tests were pro-
posed [7] for the description of B decays in terms of this
restricted set of SU(3) amplitudes.

The presence of electroweak penguin contributions
[10—13] does not alter the validity of an SU(3) descrip-
tion, as long as one relates amplitudes with the same
strangeness changes (~AS~ = 0 or 1) to one another. In

FIG. 2. Electroweak penguin graphs contributing to
B ~ MSM8 decays. The crosses denote loops involving lV
exchange. Not shown are additional WW box diagrams re-
quired for gauge invariance.

that case one may simply substitute

T M 4:T + PEw
Cm c —=C+Ppw,
PWP=P —-PEw )

(6)
(7)
(8)

p1 = P1 3PEW

in addition to (6)—(8), describing decays involving sin-
glets.

where PFw and PEw, the color-favored and color-
suppressed electroweak penguin amplitudes, correspond
to the graphs in Fig. 2.

When one or two singlet pseudoscalar mesons M1 are
in the Anal state, additional amplitudes must be taken
into account [3,17]. For the decays B ~ MqMs, since
the final state is an octet, there are three 8 amplitudes
corresponding to the three difFerent representations in
the weak Hamiltonian H~ describing 6 ~ q1q2q3, where
q, are light (u, d, s) quarks. These representations trans-
form as 3*, 6, or 15* of SU(3). When combined with
the 3 of the spectator quark, each contains one octet.
For the decays B —+ M1M1, there is one singlet obtained
from the product of the 3* in H~ and the 3 of the spec-
tator quark.

As in the case of M8M8 production we now neglect
all amplitudes in which the spectator quark enters into
the decay Hamiltonian. We thus 'identify a single new
amplitude, depicted in Fig. 3, contributing to M1MS
and M1M1 production. This amplitude is denoted by
Pq. This assumption has also been adopted in Ref. [17],
where many tests of it are proposed.

An additional electroweak penguin contribution occurs
whenever one has M1M8 or M1M1 production. Since it
always appears in a Axed combination with respect to P1,
we have one further amplitude

C, C' P,P'

q'

q'
q
q

q'

FIG. 1. Graphs contributing to B ~ MSM8 decays which
are not suppressed by a factor of fz/mz. Here q = u, d, s,
while q' = d for unprimed amplitudes and s for primed am-
plitudes. The coiled line in the third graph denotes exchange
of one or more gluons.

FIG. 3. Graph contributing to B ~ Mq Ms and
B —+ MI Mq. The coiled lines denote a color singlet exchange
due to two or more gluons.
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Final
state
~+K'
~'K+
~.K+
A& K+
q„K+
g,'K+

0

—1/ ~6
1/~3

—1/~3
1/v 6

Coe%cient of
C p'

0

—1/v 6

1/~3

1/~6

1/v 6

0

3/~6

I
p1

0
0

0

v3

TABLE I. Decomposition of B+ ~ MM amplitudes for
~AS~ = 1 transitions in terms of four independent quantities.
Here q„and g„' denote the mixtures (5).

a(7r+) =—A(B+ m vr+Ko),

a(~ ) = y—2A(B+ m vr K+),

a(q„)—:~3 A(B+ m rI„K+),
a(rI„')—:~6 A(B+ m rI„'K+),

so that (10)—(12) may be transcribed as

—.'[ (n, )+ (~„')] = p'+p', ,

a(~') + a(n&) = p' —pi,

(13)

(14)

C. Summary of amplitudes
and hence

a(7r+) = p',

We shall denote amplitudes corresponding to AS = 0
without primes and those for ~AS~ = 1 with primes. The
amplitudes of interest for ~AS~ = 1 decays are expressed
in terms of the four independent contributions t', c', p',
and p& in Table I. The amplitudes for B+ ~ gK+ and
B+ ~ q'K+ for arbitrary mixing angles 0 may be ob-
tained using the definitions (3).

sa(rI„) + sa(rl„') + a(~ ) = 2a(7r+) .

This quadrangle relation is illustrated in Fig. 4, along
with the triangle formed by the three combinations in
(14).

The charge-conjugate processes also satisfy relations
equivalent to (14):

III. QUADRANGLE CONSTRUCTION

A. A speci6c example of vy
—g' mixing

The amplitudes for B+ ~ sr+ K contain only a contri-
bution from p'. Since both the gluonic and electroweak
penguin contributions of the amplitudes are dominated
by the top quark, the weak phase of p' is vr = Arg(V&, Vi&),
which does not change sign under charge conjugation.
The same is true for the term pz. Hence we shall seek
two linear combinations of amplitudes expressed in terms
of p' and pi. When combined with A(B+ w ++Ko),
these will form an amplitude triangle whose shape will
not change under charge conjugation.

The method can be illustrated using the special mix-
tures rj„and q„' defined in Eq. (5), which are probably
close to the physical states. We find

—.'[ (n.) + (n„')] = p'+ p', ,

a(~') + a(n, ) = p' —p',

a(~ ) =p'

where

a(~ ) =A(B —+sr K ),
a(7r ) = —v2A(B -+ vr K ),

a(q„) —= ~RA(B —& rjpK ),
a(g„'):—v 6A(B m q„'K ),

and hence

a(qp) + -'a(-q„') + a(~ ) = 2a(vr ) .

(17)

v 3A(B+ —
& rj„K+) + ~6A(B+ —

& q'K+)

= 3(p' +p'), (10)

as well as

—~2A(B+ -+ vr K+) + v 3 A(B+ m g„K+) = p' —pi .

(11)

Combining these results with

A(B+ —+ vr+K ) = p',

we form a triangle with sides p', p' —pz, and p'+ p~. This
triangle will not change shape under charge conjugation.

For simplicity we de6.ne

The triangles formed by the combinations (14) and
(16) are identical. Thus, the two quadrangles (15) and
(18) must intersect at a point 3/4 of the distance from
their upper left-hand vertices to their upper right-hand
vertices. The shapes of the quadrangles are thus deter-
mined, up to discrete ambiguities which we shall discuss
in Sec. IIID and in the Appendix. This construction is
reminiscent of one applied earlier to the decays B + ~K
and B —+ 7rK [18] in order to specify the shapes of am-
plitude quadrangles based on isospin.

Once the quadrangles are rigid we can form the differ-
ence

a(7r ) —a(vr ) = t'+ c' —(t'+ c~),

where the overbar denotes quantities appropriate to B
decays. By an argument presented earlier [13],this differ-
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as illustrated in Fig. 5. The two upper sides of the
triangle invariant under charge conjugation are

u = ~2[p' cot(0 —Op) —~3@'i sin 0csc(0 —Op)],
v = ~6 sin 0 csc(0 —Op) (p' + p', ) .

(22)

a(

a(n, )

a(g)/3

We have shown the two coefficients of a(rl) in (21) sepa-
rately in order to illustrate the construction of the invari-
ant triangle. The two terms in the square bracket may
be combined, leading to

~2 a(rl) cos 0 + a(rI') sin 0+ a(~ ) = 2a(7r+),

2a(7r')=2a (7r )=2p'

FIG. 4. Quadrangle relation (15) satisfied by amplitudes
(13) for B+ decays (dashed lines, with solid line as base).
The solid triangle corresponds to the linear relation among
the combinations (14). Dotted lines denote correspond-
ing quadrangle for B decays. Here g„and g„' denote
the octet-singlet mixtures (5). The dot-dashed line denotes
a(vr ) —a(7r ) = t'+ c' —(t'+ c'), whose magnitude and phase
provide information on sing and a strong phase shift difter-
ence, respectively.

.'a(ns) +,~a(ni) = I + P'i

~a(rjs) + ~ia(ao) = Q2/3p' .

(24)

which is just (2). The combination of rj and rI' decay
amplitudes appearing in (23) is that corresponding to
its, as also pointed out in Ref. [14].

Some special cases of (20), (23), and Fig. 5 may be
noted.

When 0 = 0, the first two of Eqs. (20) reduce to

ence can be utilized in conjunction with the amplitude
for B+ —+ 7r+vr to extract both a strong phase diKer-
ence and sing. We shall recapitulate this argument in
Sec. III C.

B. General mixing angle

The quadrangle relations are not much more compli-
cated for a general mixing angle 0. We assume 0 is mea-
sured by other means (see also Sec. IV B). The combina-
tions corresponding to (14) are

cos(0 —Op) sill (0 —Op )
3

a(~) + a(n') = I '+ pi
6

a(rl) sin(0 —Op)

The second equation may be combined with the last of
(20) to obtain (1). This relation also follows directly from
(23) in the limit 0 —+ 0.

When 0 = 0„, close to the physical value, we have

cos(0 —Op) = gl/3, sin(0 —Op) = g2/3, so the combi-
nations (20) reduce to (14), while (23) reduces to (15).
The sides u and v of the triangle in Fig. 5 reduce to
vL p p1 and v p +pl'

The construction of rigid quadrangles proceeds as in
the example of Sec. III A. The a amplitudes obey a quad-
rangle relation similar to (21) or (23), with the same in-
variant triangle. Knowing 0 we can mark ofF a point a
suitable distance along the a(il) or a(rl) side of each quad-
rangle, which must be common to the two triangles. As
in Fig. 4 we can then determine the quantity (19).

An alternative construction is clearly possible in which
an invariant triangle is constructed with one side com-
posed of a linear combination of a(m ) and a(rIt) instead
of a(~ ) and a(rl).

= p' cos(0 —Op) —v 3 p'i sin 0, (20)
a(g) v'2/3 csc(8—80)

a(7r+) = p' .

Here Op = —arcsin(I/~3), the mixing angle for which rj
would be pure strange and g' would be pure nonstrange.
We have retained the normalizations (13) for a(rl) and
a(~').

The quadrangle relation may be written as
2a(vs+) =2p'

W2 sin8 cot(8 —80)

a(g') sin8

a(&) csc(0 —Op) + ~2 sin 0 cot(0 —Op)

+a(rI') sin 0+ a(7r ) = 2a(7r+), (21)

FIG. 5. Quadrangle relation (21) satisfied by decay ampli-
tudes (dashed lines, with solid line as base). The solid line
corresponds to the linear relation among the combinations
(20). The sum of the two a(q) coefficients is v 2 cos8.
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C. Determination of p

The amplitudes a(vr ) and a(vr ), which consist of
terms containing tree and penguin weak phases, can be
expressed as

a m = a ~ e'~e' ~ —a ~ e' ~,
(25)

where all strong phases are written relative to that of p'.
Here we have used the fact that the weak phase of the
electroweak penguin is 7t;. Taking the difference we find

a(vr ) —a(m ) = 2i sin pe'
I

a lc I
. (26)

T'/T = c'/c = Iv-/v-~l(f~/f-) (27)

(neglecting the electroweak penguin contributions), that

Ia.z I

=
I &-/&-~l (f~/f-) v 21A(B+ ~ ~+~')

I
(28)

It does not matter whether we use the amplitudes for
B+ ~ sr+sr or B ~ vr x; negligible CP asymmetry
is expected in the rates since electroweak penguin contri-
butions should be small here [10,11,13].

We now use flavor SU(3) to relate la ~ I, corresponding
to an I = 3/2 mK amplitude [13], to the corresponding
I = 2 nm amplitude. [Both belong purely to the 27 of
SU(3).] We find [7,8,13], since v 2 A(B+ m 7r+7ro)

(T+ C—) —(P@+w+ PEw) and

strong phases of p' and pi are identical in this example;
the invariant triangle has zero area.

The folded quadrangles in Fig. 6 illustrate a discrete
ambiguity which will hold in general. The intersection
of suitably chosen points along the a(il) and a(il) sides
of the quadrangles may be constructed either with the
quadrangles as shown in Fig. 5 or folded as in Fig. 6.
When CP violation is not present in rates, so that the
sides of the quadrangles are equal in pairs, one solution
will correspond to sing = 0, while the other (as illus-
trated in Fig. 6) will give a value of sing which may be
compared with the range inferred from analysis of CKM
parameters based on other experiments (such as CP vi-
olation in neutral kaon decays). Solutions in which the
difference (26) yields an unphysical value

I
sin pl ) 1 may

be rejected.
Another trivial ambiguity corresponds to fIipping Figs.

4 and 5 about the horizontal axis. By reference to Eq.
(26) one can see that this corresponds merely to the re-
placement bT ~ vr —bT, but no change in p.

The most general class of discrete ambiguities is illus-
trated by the solution presented in the Appendix. There,
one works backward from the known magnitudes of a(il)
and a(g) and assumes a variable relative phase P be-
tween them. Then, for given Ia(a )I, Ia(7r )I, Ia(il')I, and
a(il') I, one fincls a fourfold ambiguity in the solution for
a(~+) = Ia(7r )I. The correct values of P are those for

which a(sr+)
I

equals the observed value.

IV. PRACTICAL CONSIDERATIONS

A. SU(3) breaking

D. Discrete ambiguities

In general, one expects Ipi/p'I g 0 and Arg(pi/p') g 0,
so that there is a nontrivial invariant triangle. In that
case, it will be very hard to avoid CP violation in rates
for B+ decays to at least one of the modes 7t K+, gK+,
or q'K+ if the standard picture with p g 0 is correct.
We shall argue in Sec. IVC that the gK+ modes may
hold the best prospect for such an asymmetry.

The two quadrangles can be degenerate, for example,
if all four sides were equal in pairs, which would cor-
respond to the absence of CP-violating asymmetries in
decay rates. A limiting case is illustrated in Fig. 6. The

b

The decays in question do not all have the same phase
space. The correction factor ( p, ) is expected to be
relatively small, since p, ~ = 2.61 MeV/c, p,"~ = 2.59
MeV/c, and p," = 2.53 MeV/c.

More important is the violation of SU(3) associated
with the difference between creation of nonstrange and
strange quark pairs in the flnal state in penguin (P') am-
plitudes. As discussed in a previous analysis [15] one does
not really have a way to estimate this term. The creation
of strange quark pairs occurs in the decays B+ —+ gK+
and B+ ~ g'K+, but not in B+ + vrK decays. For the
mixed il = il„with 0 = 0„=19.5', exact SU(3) symme-
try between nonstrange and strange quark pair creation
would lead to the vanishing of the p' contribution (see
Table I), which one might expect [13,15] to be domi-
nant. Assuming Ipil ( Ip'I, a suppression of the rate for
B+ ~ gK+ in comparison with the B+ + vrK and g'K+
modes would be one piece of circumstantial evidence in
favor of SU(3), though the contributions of the ampli-
tudes besides p' would have to be taken into account as
well.

FIG. 6. Example of degenerate quadrangles with no CP
violation in 8+ decay modes. Here a = 2a(vr+) = 2a(vr ),
b = a(vr ), c:—a(7l)~2 cos8, d—:a(g') sin 8, with barred
quantities referring to corresponding R decay amplitudes.

B. Nature of g and vy'

The representation of g and g' as quark-antiquark
states with an octet-singlet mixing angle 0 0„ is con-
sistent with present data [16]. However, the admixture
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of non-qq states in the g and g' is less certain. By study-
ing the decays p ~ rIp and P -+ gp one can conclude
that the non-qq admixture of the i1 is rather small [19].
The uu + dd content of the g' is probed by the decay
g' m ~, but one must await the measurement of the
rate for P ~ g'p to learn the ss content of the g' [19].
We have assumed that the gluonic content of g' is small.

C. Detection. of Anal states

It is likely that the branching ratio for B ~ 7t K+ is
about 10 s [20]. This process corresponds to an am-
plitude A(B ~ vr K+) = (t' +—p'), which should
be dominated by the p' contribution. Thus A(B+
7r K+) = (t' +—c' + p')/~2, also expected to be dom-
inated by p', should correspond to a branching ratio of
about (1/2) x 10, while A(B+ + 7r+K ) = p' should
correspond to a branching ratio of 10 . With a branch-
ing ratio B(K +sr+a -) si, the effective branching
ratio for detecting B+ ~ vr+K via charged particles is
(1/3) x 10

The rate for the gK+ final state is harder to estimate.
As we have mentioned, the p' contribution to this decay
vanishes in the limit of exact SU(3) for a mixing angle of
8 = 0„, so that A(B+ —+ rI„K+) = —(t' + c' + pi)/~3.
We estimated [c'[ ~t'~ (1/5)[p'~ in Ref. [13], so that
a branching ratio below 10 is a distinct possibility.
(However, if the three terms t', c', and p'i are of com-
parable magnitude and add constructively, the suppres-
sion of the rate for B+ -+ HAIK+ could be relatively mild. )
One must also take into account the eKciency whereby
g's can be reconstructed, e.g. , via their decays g —+ pp
and g ~ sr+~ ~0.

One advantage of the B+ ~ gK+ mode is that no
one amplitude need be dominant, and there is room for
differences in final-state phases (especially in comparing
singlet and nonsinglet amplitudes), so that this could well
be a mode in which CP violation shows up as a difference
in the branching ratios for B+ —+ gK+ and B ~ gK

The g'K+ amplitude has a coeKcient of p' equal to
3/~6 for 8 = 0„. Thus the branching ratio B(B+ —+
g'K+) could well exceed 10 . The i1' would be de-
tectable, for example, through its pp and gvr+vr modes.

Key assumptions in this program include the valid-
ity of nonet symmetry for q and q' (testable to some
extent in electromagnetic processes [5,19]), the neglect
of amplitudes scaling as fI3 (testable in relations pro-
posed earlier [7]),and the validity of SU(3) itself (testable
to a limited extent in other cases [15] but only indi-
rectly here through a possible suppression of the decays
B+ ~ rIK+). Indeed, we expect the detection of these
decays to be the most demanding aspect of the present
construction. Once the gK+ mode has been seen, the
major hurdle will have been overcome, with the possibil-
ity of a CP asymmetry in B ~ gK+ rates. Along the
way, we expect the decays B+ —+ g'K+ to make a promi-
nent appearance at the branching ratio level of 10 or
greater.
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APPENDIX: EXPLICIT CONSTRUCTION
OF QUADRANGLES

We show in Fig. 7 the way in which the shapes of the
quadrangles may be explicitly determined using only the

V. CONCLUSIONS

We have shown that one can measure the weak phase
Arg(V„*bV b/V„*, V, ) by determining the relative

rates for B+ —+ 7r K+, B+ —+ ++K, B+ ~ gK+,
B+ ~ g'K+, and the corresponding charge-conjugate
processes. The method is based on construction of am-
plitude quadrangles satisfying a constraint that specifies
their shapes up to possible discrete ambiguities. The dif-
ference between the complex amplitudes for B+ ~ 7t K+
and B + vr K, when compared with the magnitude
of the amplitude for B+ ~ vr vr, then yields both sing
and some information on differences of strong-interaction
phase shifts.

FIG. 7. Explicit construction of amplitude quadrangles.
Here we denote ~a(7r )~—:b, )a(7r ) —a(7r ) ~

= e, ~a(g)
~

= 3c/4,
[a(vy')(/3 = d, and 2[a(7r+)( = 2[a(vr )( = AB = a, with cor-
responding notation for barred quantities.
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lengths of the sides, the fact that they share a side, and
the fact that the opposite sides intersect at a point corre-
sponding to a fixed ratio of their lengths. The discussion
is presented for simplicity for the case 0 = 9&

——arcsin( —).
Letters denote magnitudes of amplitudes, whereas in Fig.
6 they denote the complex amplitudes.

We first construct lines with length c = s[a(g)~ and
c = 4

[a(rl)] intersecting at a variable angle p at a point 4
of the distance along their lengths. We orient these lines
so that the points C and C are joined by a line parallel to
the x axis, and call the intersection point M the origin.
The length of the line CC will be e = ~a(m ) —a(vr )];
that of EE will be e/3 and EE will also be parallel to
the x axis.

Now construct the triangle CCA with sides b = ]a(z. ) [,
b = ]a(vr ), and e, and the triangle EEB with sides
d = ]a(rl') /3, d = ]a(rl')~/3, and e/3. The distance
a = AB must be given by 2]a(sr+)]. This determines the
angle P. There is at most a fourfold ambiguity in this
construction, corresponding to the possibility of Bipping
either triangle about its base.

h„= —
[
—) (b', b', e')]'I',

2c (Al)

where A(a, b, c):—a + b + c —2ab —2ac —2bc, with
similar expressions for the heights g~, gti = g~/3, and
h~ of the respective triangles CCM, EEM, and EEB.
Then y~ —y~ ——g~ + g~ + h~ + h~ is specified up to the
fourfold ambiguity mentioned above. The x coordinates
of A and B may be obtained from expressions such as

xc —x~= —[e +b —b],1

2c (A2)

with similar expressions for z~, x~, and x~ —x~. Thus
one can also obtain x~ —x~, and hence AB = [(x~-
xa)'+ (y~ —ya)']'I'.

It is easily seen that the above construction specifies
the distance a = AB up to a fourfold ambiguity, given
any value of e for which the two lines CE and CE can
actually intersect. For example, the height h~ of the
triangle CCA (its projection along the y axis) is
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