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Nonfactorization in hadronic two-body Cabibbo-favored decays of D0 and D+
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With the inclusion of nonfactorized amplitudes in a scheme with N, = 3, we studied Cabibbo-
favored decays of D and D+ into two-body hadronic states involving two isospins in the final state.
We have shown that it is possible to understand the measured branching ratios and determine the
sizes and signs of nonfactorized amplitudes required.

PACS number(s): 13.25.Hw, 14.40.Nd

I. INTRODUCTION

In recent past there has been a growing interest [1—7]
in exploring the role played by nonfactorized terms in the
hadronic decays of charmed and bottom mesons. Refer-
ences [1] and [2] have endeavored to calculate the non-
factorized contribution to two-body hadronic decays of
the B meson. These calculations lend support to the

~ oo rule in two-body hadronic B decays. Exper-
imentally, however, the evidence in support [8] of the
N ~ oo rule which appeared to be there in the earlier
B-decay data has since weakened [9] and the sign of the
phenomenological parameter a2 appears to be positive
[9], contrary to the prediction of the % ~ oo rule.

More recently, the view that the phenomenological pa-
rameters ai and a2 are efI'ective and process dependent
has been pursued further [3—7]. The effective aq and
a2, evaluated with N = 3, depend on the nonfactor-
ized contribution. In particular, it was shown in Ref.
[5] how the conundrum of the failure [10] of all popu-
lar models to explain the longitudinal polarization frac-
tion in B ~ QK*o could be resolved in a scheme that
uses N, = 3 but allows a small nonfactorized amplitude.
This idea was carried over to the charm sector in Ref.
[6] where it was shown that with X, = 3 allowing non-
factorized terms somewhat larger than in B decays (by
nonfactorized terms "large" or "small" we mean: in rela-
tion to factorized terms), one could understand data in
D,+ ~ Pm+, Pp+ and Pl+ v~ decays. The introduction and
description of nonfactorized terms is purely phenomeno-
logical in Refs. [5, 6] as is also the case in [3, 4, 7]. No
attempt is made to calculate the nonfactorized terms but,
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rather, the emphasis is to glean some systematic behavior
of these terms so that more can be learned about them
in future.

With this objective, we have studied those hadronic
two-body Cabibbo-favored decays of D, D+ mesons that
involve two isospins in the final state in N = 3 scheme.
These decays are D ~ Kvr, K*vr, Kp, Kai, and K*p.
By fitting data, we have calculated the size and the sign
of the nonfactorized term in each decay. Annihilation
terms, wherever permitted, have been neglected in D
decays because of the smallness of n2 (= C2 + ~') for

C

N, = 3 and other reasons as argued in the text. We
have included final-state interaction phases in all decays
except K*p for reasons we elaborate later. However, we
have neglected inelastic final state interactions because of
the ignorance of the rescattering parameters to be used
in such an analysis.

For decays involving a single Lorentz scalar structure,
such as D ~ Ka, K*m, Kp, and Kai, one can extract
efI'ective ai and a2 which we show to be process depen-
dent. We also argue that color-suppressed decays are
more likely to reveal presence or otherwise of nonfactor-
ized effects.

This paper is organized as follows: Sec. II contains the
conventions and definitions used throughout. We discuss
the decays D —+ Kvr in Sec. III, D ~ K*~, Kp, Kaq
in Sec. IV, and D ~ K*p in Sec. V. The results are
discussed in Sec. VI.

II. DEFINITIONS

Cy = 1 26+004, C2 = —0 51+005 (2)

The efI'ective Hamiltonian for Cabibbo- favored
hadronic charm decays is given by

H = G~ (Cq (ud) (sc) + C2 (uc) (sd) j, (1)
where G~ = ~~ V, V„*& and (ud), etc. , represent color-
singlet (V —A) Dirac currents. Cq and Cq are the Wilson
coefFicients for which we adopt the values
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and an analogous relation for (ud) (sc), where A are the
Gell-Mann matrices. Using Eq. (3) and its analogue, we
reduce the effective Hamiltonian of Eq. (1) to the forms

H = G~ (a, (ud) (sc) + C2H ) (4)

H =G~ a2 uc sd +CiH

to describe color-favored (CF) and color-suppressed (CS)
decays, respectively. The matrix elements of the first
terms in (4) and (5) are expected to be dominated by
factorized. contributions; any nonfactorized part aris-
ing from them is parametrized as detailed in the text.
The second terms H [—:—P (uA d) (sA c)] and H [=
2 p (uA c)(sA d)] involving color-octet currents gener-

The central values of Cq and C2 are taken from Ref. [8]
and the errors are ours.

Fierz transforming the product of two Dirac currents
of Eq. (1) in K,-color-space, we get

1 1'-
(uc) (sd) = (ud) (sc) + —) (uA d) (sA c)

a=1

ate nonfactorized contributions. We have de6.ned here,
for N, =3,

ai ——Cg + = 1.09+ 0.04,C2

Cg
a2 ——C2 + = —0.09 + 0.05 .

3 (6)

(V(p, ~) j„lo) =s„*mvfv,

(A(p s)lj"lo) =s„*mAfA

(P(„)I,"lo) = f „—„,
and the form factors for the transition of a pseudoscalar
meson (M) to pseudoscalar (P) and vector (V) mesons,

It should be obvious from (4) and (5) that nonfactorized
efFects are more likely to manifest themselves in color-
suppressed decays than in color-favored decays because
of the fact that Cq is much larger than a2 in magnitude.

Further, in calculating the factorized amplitudes, we
use the following matrix elements [8, 11] for the weak
vector (j„) and axial vector (j„) currents between the
vacuum and the pseudoscalar (P), vector (V), and axial
(A) vector states

(J'(')~l.'~lM()) =(( + ')„- .. .)+ (*)+ .. .&. '(') (8)

(~(p ~) ~2„~-2„"~(~pM)) = I(~Mm+mv):. ~P (l )- ' ' (p+t ):™.(9 )mM+mv

q
- m~+m~

where q„= (p —p') „.In addition, the following constraint
applies at all q:

The following relations are also needed to cancel the poles
at q = 0:

2mVA, (q') = (mM + mV)A, (q')
(o) = z, (o) A (0) = A, (0). (11)

—(mM —mV)AMV(q') . (10)
For an axial vector meson, A, we define, analogously

to (9),

(&4', ')li„—i„"lM(u)) = —
(( M+m~)',"&i "(V') — 4 +&') &, "(~')

mM m+
(12)

with the same conditions (10) and (11) imposed on
VMA(q2)

The branching ratio for M ~ PiP2, where Pq and P2
are pseudoscalar mesons, is given by

+(M ~ P1P2) —rM 2 lA(~ ~ P1P2)
l g (13)

8~mM2

and that for M —+ Vj V2, where Uq and V2 are vector
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mesons, is written as

B(M m Vj V2) = 7M 2 ) IA(M -+ Vj V2)A%I
8vrm2M

where IpI is the magnitude of final-state three-momentum
in M-rest frame, 7M is the life time of M, and A(M i
PiP2), etc. are the decay amplitudes. The branching
ratio formula for M —+ PV decay is the same as (14)
with a sum over polarizations of V.

In the following, we list some of the parameters we
have used throughout this paper:

K 7r+H D—:—i ~m~ —m~FO ". 19~

~

Both Fp and Fp (as also all nonfactorized contri-(i)nr (8)~r

butions to follow) are functions of the Mandelstam vari-
ables, 8 = m» t = m~, and u = m . We have chosen
to suppress these variables in writing the last three and
all ensuing equations. The decay amplitude of Eq. (16)
is then written in the form

A(D + K 7r+)

i Gp' (Gi )K f (mD mK)Fp (m ) (20)
f = 130.7 MeV,

f~ = 212.0 MeV,

f, = 212.0 MeV,

V, = 0.975,

fK = 159.8 MeV,

fK. = 221.0 MeV,

V„g ——0.975.

where

( F(1)nf G F(s)nf
( fF 1+ 0

K~
~

FDK(m ) a F (m ))
(»)

III. D —+ PgP2

D ~ K 7r+ K 7r, and D+ ~ K 7r+ . To illus-
trate our method we write, using Eq. (4) for the effective
Hamiltonian, the decay amplitude of D ~ K vr+ as

A(D —+ K sr+) =Gp{ai(K sr+I(sc)(ud)ID )

+C2(K ~+IH('ID')) . (16)

We write the first term as a sum of a factorized and a
nonfactorized part,

(K sr+ (sc)(ud) D ) = (~+ (ud) 0) (K (sc) D )
+ (vr+K I(sc)(ud)ID )

= —if (mD —mK) [Fp (m )
F(i)nf

j (»)

A(D wK z ) = —i (az )K fK(mD —m )

xFpD (mK), (22)

This defines a process-dependent effective ai. We shall
see that it is possible to do so for all decays involving
a single Lorentz scalar structure. We notice also that as
the coefficient C2/ai ( —0.47) is smaller than unity, the
effect of the nonfactorized amplitude arising from H is
suppressed relative to the factorized amplitude in color-
favored decays. For the same reason, the nonfactorized
term proportional to Fo could compete favorably with(j.)~r

F(8)nr
o ~

The decay amplitude for the color-suppressed decay
D + K 7r by following an analogous procedure is given
by

where we have defined the nonfactorized matrix element
of the product of the color-singlet currents (sc) (ud) as

(K ~+
I
(sc) (ud) ID')—:—zf (mD —mK) E( )"

where

( P""' G F(')"'
K~ 2 FDvr (m2 ) o FD~ (m2

(»)
For the second term in (16), we write In writing (22) we have used

(K' vr I(uc)(sd)ID ) = (K I(sd)IO) (7r I(uc)ID ) + (K m I(uc)(sd)ID )

i (mD ——m ) Fp (mK) + Fp
2

(24)

(K ~ I(uc)(sd)ID ) = i (mD —m ) Fp—
2

(KP~P III(s) IDP) —= —i (mD m'-) F. —
2

(25)

We note that in (24) there would also be a contribution
from an annihilation term which in factorized form is pro-
portional to (KPnPI(sd) IO) (OI(uc) ID ). However, such a
term is proportional to [12] (m2K —m ) Fp (mD). Be-
cause of the fact that (mK —m ) « (mD —m ), it has
been neglected.

Now, as ' in Eq. (23) is large (- —14), the nonfac-
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torized contribution Fp, arising from 0, is greatly
—(s)nr (s)

enhanced in comparison to Fp
" . Nevertheless, it is

not possible to separate the individual contributions from
F(s) f d F(1)

p an p

The amplitude for D+ ~ K sr+ decay is obtained from
Eqs. (20) and (22) via the isospin sum rule

F(s)nf
0

K~ +g)Ic
( 2 )

F(s)nf
D'(,

)

such that

F(1)nx
1 p

C ~D~(m2)'
F(1)nf

2 0

C, ~D-(m2 )' (31)

A(D+ —+ K ~+) = A(D m K sr+)

+v2A(D -+K ~ ). (26)

a / C2
(a; )~ =a, i1+

)

In terms of isospin amplitudes A1~2 and A3~2 and the
final-state interaction (FSI) phases,

and (32)

A(D m K +)

A(D wK vr )

A(D+ m K sr+)

1
(As/2 exp(ihs/2)

3

+v 2A, /2 exp(ih, /2)),
1

(v 2As/2 exp(ih3/2)
3

—A, /2 exp(ib, /2)),

~3A3/2 exp(i83/2 ) .

The relative phase is known [13] to be

gKvr gEcvr PK~ (86 g 8)0

(27)

(28)

(: ) .= .i1+ (~. ~,
( Cg

)
the allowed ranges of these two parameters were

—0.22 & y~~ & 0, —0.32 & (Jr & —0.21. (33)

In calculating the ranges of ply and (Jr, we have em-
ployed the stated errors in Cz and C2, Eq. (2).

There is another allowed solution where &' ' is nega-
1/2

tive and 8 is replaced by (m —h ) [16]. This solution
requires

0.76 & (ai ) & 0.84

with the relative sign of A1~2 and A3/2 positive. The de-
termination of relative phase of (28) in [13] used the 1994
listing [14] of the branching ratios. It differs somewhat
from an earlier [15] determination. There would be an-
other solution where the relative sign of A1y2 and A3/2
is odd and 8 —+ (a —8) [16].

We determine Az/2 and As/2 by equating Eqs. (20)
and (22) to Eq. (27) with the phases hz/2 and 8s/2 set
equal to zero, and then reinstate the phases to calcu-
late the branching ratios from Eq. (13). This procedure
is equivalent to assuming that the eA'ect of FSI in this
mode is simply to rotate the isospin amplitudes without

affecting their magnitudes. For the form factors we have
used the following normalizations at q = 0:

I"0 (0) = 0.77 + 0.04

Eo (0) = 0.83 + 0.08
[17],
[13,18, 19]. (29)

We extrapolated Eo ~(q2) and Ig (q ) as monopoles
with 0+ pole masses of 2.01 and 2.47 GeV, respectively
as in [11].As these form factors are needed at a relatively
small q2 (= m2 or m2~), the results are not very sensitive
to the manner of extrapolation.

The results are summarized below. We first deter-
mined Az/2 and As/2 from (20), (22), and (27) with 8z&z

and b&&z set equal to zero. Next, we searched for the al-

lowed ranges of (az )Ir, (a2 )~ that fit the branching
ratio data [14] as bz~/z

—
bs~/z was allowed to vary in the

range indicated in (28) for As/2/Az/2 & 0. The resulting
ranges were

1.11 & (az ) & 1.17,

(34)

0.41 & y~ & 0.76 —0.71 & (Ir & —0.58.

(35)

Of the two solutions, the solution shown in (30) and (33),
which yields &'~' & 0 has (az )Ic and (a2 )Ir closer to

1/2
the values that have been in vogue over the past decade
and it also requires a smaller nonfactorized contribution.
In principle, there is a sign ambiguity in a1 and a2 .. One
could reverse the signs of both a1 and a2 which only
serves to change the sign of the decay amplitudes. We
think that this is a very unlikely solution because a sign
reversal of a1 can only be accomplished at the expense
of a very large nonfactorized term [& (3—4) times the
factorized term] in class I [11] decays.

We shall return to a discussion of our numerical es-
timates of ply~ and (Ir [equivalently, (a~ )Jr~ and
(a2 )Ic ] in Sec. VI.

IV. D w PxV

A. D —+K' m+ K' m and D+ ~K' m+

—0.92 & (az )~ & —0.87.

However, this solution requires pic and (~, which are
measures of nonfactorization eKects, to be larger and of
opposite signs. That is,

0.46 & (a,~) & —O.39. (3O)

Equivalently, if we define the two parameters

Using the definitions introduced in Sec. II and the
method of calculation detailed for D ~ Kvr decays, the
amplitudes for the decays D ~ K*vr are given by
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(36)

where

A(D w K* vr ) = 2G~f~mIr. Ao (m )(s* p~)
x (a',~)

A(D w K* 7r ) = v 2GF fK.mIr ~ Fi (mIr. ) (s* pLi)

x (a',")
A(D+ m K* 7r+) = A(D —+ K* 7r+)

+~2A(D +K-* vr ),

1.74 & (ai ) . & 1.96,

1.73 & (ai ) . & 1.95,

3/2 ( 0.
A1/2

—0.43 & (a' ) ~. & —0.34 BSWII . (40)

—0.53 & (a' ) . & —0.43 BSWI,

(i) ..= i

=G2 1

c0 + 2 0
ADK (m2) ai ADK'(m2) )

F(i) r G F(s) r

FD~ (m2 ) a2 FD~ (m2 ) )
(37)

1.29 & (ai ) . & 1.51,

—P.9P & (ae ) . & —0.81

1.28 & (ai ) ~. & 1.52,

BSWI,

In (36) and (37), in addition to (8) and (9), we have used
the definitions

—0.71& (a',~) . & —0.63 BSWII . (41)

(K* ~+l(sc)(ud) D')"'—:2Gp f mls. Ae "'(s* p~),
(K* m. +~H ~D )—:2G~f mrs. A

" (E* pii),
(K* x (uc)(sd) ~D )—:v 2GF fIr mj{ Fi

x (s* pii),

From (37) the parameters pic. and (~. , analogous
to ply and (Ir defined through (31) and (32), were
estimated to be

3/2 ) 0.
A1/2

—1 91 & y~. & —1.14,

and —0.38 & (K. & —0.25 BSWI,

(K*'&'lH'"ID') = &&Gs f~.mz*F,'""'(s" pL ) .

(38)

—1.89 & y~. ~ & —1.13,

—0.30 & (Ir. & —0.18 BSWII, (42)

Ao (0) = 0.70 + 0.09

Fi (0) = 0.83 + 0.08
[13,17],
[13,18]. (39)

We used the normalization of the form factors given
in (39) and considered monopole [referred to as Bauer-
Stech-Wirbel I (BSWI) hereafter) as well as dipole (re-
ferred to as BSWII hereafter) forms for the q extrapo-
lation of the form factors AP (q ) and. Fi (q ) with
pole masses 2.11 and 1.87 GeV, respectively. Allowing
b to vary in the range (103+17},we determined the
allowed ranges of (ai+) . and (a2 ) . for &'~' ) 0

and '~' & 0 that fit the branching ratio data [14]. The
1/2

results were
3/2 ) 0.

A1/2

It is known [13] from an analysis of 1994 listed data [14]
that FSI phases in this decay are large, b:—b~&2

bz&z
——(103+17) for &'~' ) 0. To take the FSI phases

into account we follow a procedure similar to that for
D —+ Kvr decays; we calculate the isospin amplitudes
by equating the amplitudes in (36) to those in (27) with
phases set equal to zero. Having so determined Az/2 and
A3/2 we reinstate the phases. For the form factors we

have used the following normalizations at q = 0:

3/2 ( 0.
A1/2

—0.93 & y~. & —0.34,

—0.68 & (Ic. & —0.53 BSWI,

—0.96 & y~. & —0.34,

—0.52 & (Ir. & —0.40 BSWII . (43)

B. D —+K p+, K p and D+ —+K p+

We write, using the definitions given in Sec. II, the
amplitudes for the decays D m Kp as

Simply by fitting the three branching ratios for
(D, D+) ~ K*vr, it is not possible to favor one solu-
tion or the other. Here, the solutions obtained with the
constraint &' ' ) 0 require large nonfactorization con-

1/2

tributions to (ai )z.- as evidenced by ply- in (42). On

the contrary, the solutions corresponding to &' ' & 0
1/2

[with 8~ +(vr —b~ )] req-uire larger nonfactorization
contributions to (a2 )Ir. as seen by comparing (Ir. 's

of (43) with those of (42). A discussion of these results
is given in Sec. VI.
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A(D +K p )

= 2GF f,m, (s* pD. )F, (m,') (a',")

3/2 ( 0
Al/2

0.71 & (a',")lcp & 0.85,

A(D mK p)

= y aGF f~m, (s* .p~) A, ' (mIr) (a', )

—2.53 & (a2 )leap & —2.19

0.62 & (ai )~p & 0.74,

(BSWI),

—2.35 ( (a2 ) Icp ( —2.04, (BSWII) . (48)

A(D+ +K -p+) = A(D +K -p+)

+J2A(D + K p ),
where

(44)

These ranges translate into the following limits on yKp
and (Icp defined in analogy with yz and (K of (31).

3/2 ) 0

F(l)nf C F(s)nf

lcp FDK (m2) a FDK(m2)

( A(i)nf C A(s)nf
1 0

(45)

—0.52 & yKp & —0.11,

—0.75 & (Icp ( —0.50,

—0.15 & yKp & 0.20,

(BSWI),

We have also used, in addition to (8) and (9), the defini-
tions

(K p+~(sc)(ud) ~D )
—= 2Gp fpmpF,

' "'(s* p~),
(K p+~H( ) ~D ) = 2Gp fpmpF,

" (s* .p~),
(K p ~(uc)(ud)~D ) = ~2G~flcmpAe

" (s* pz)),

(K p ~H( )~D )—:~2G~f~mpAo
" (c* pii) .

(46)

Fits [13, 15] to D —+ Kp data admit a solution with
A3/2A"' ) 0 and a relative I"SI phase b = 61/2 ~3/2

Kp Kp

(0+30) . We use FiD (0) from Eq. (29) and, for want of
better information, the BSW [11]value of Ao (0) = 0.67.
In this decay also we have considered both monopole
(BSWI) and dipole (BSWII) extrapolations of the form
factors Fi ~(q )a2nd Ao P(q2) with 1 pole at 2.11 GeV
and 0 pole at 1.87 GeV, respectively [ll]. To search for
the allowed ranges of (ai )Icp and (a2 )~p, we followed
the same procedure as that outlined in the analysis of
D ~ Kvr and K*vr decays by varying b p in the domain
(0 6 30) and searching for allowed values of ai and aP
that fit the data [14]. We found the following allowed
ranges for (ai )lcp and (a2 )~p'

3/2 ~ 0
Al/2

1.17 & (a )~ & 1.32,

3/2 ( 0A

—0.69 & (~p & —0.46, (BSWII) . (49)

—0.41 & yKp & —0.85,

—2.00 & (Icp & —1.60, (BSWI),

061 & yKp & 104,

—1.86 ( (Jcp ( —1.50, (BSWII) . (50)

C. D ~ K a+» K a~ and D+ —+ K a+~

%'e write, using definitions given in Sec. II, decay am-
plitudes for D —+ Ka1 as

A(D' ~ K—
ai+) = 2Gf. , m. , (

'spii)
xF, (m )(a', )Ic, ,

A(D w K a, ) = v 2G~ flem, (s* pri)C, VO"

A(D+ m K a+, ) = A(D +K a+, )-
+~2A(D m K ai), (51)

where

Note that the solutions with A' ' ( 0 require much
1/2

larger nonfactorized contributions. A discussion of yKp
and (Kp is given in the last section.

—1.OO & (a',")~, & —O.75

1.01 & (ai )Irp & 1.15

(BSWI),
~nf +(8)nf +2 +(1)nf

0 0 + ~ 0 )
1

( F(l)nf C F(s)nf

FP~(m. ) a, F ~(m )~
—0.92 & (a,")~p & —0.69 (BSWII) . (47) (52)
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In deriving (51), in addition to (8) and (12), we have used
the definitions

(K a+~(sc)(ud)~D')—:2Gp f,m, (s* pD)I'l')"',
(K-a+~H~') ~D')"'—= 2G~ f.,m. , (s* PD)I. ~')"',

(K a, ~(uc)(sd) ~D )
—= ~2G~ fKm, (s* PD)Vol

(K a, ~Hl )~D )" =—i/2G~fKm, (r* PD)Vo

(53)

We obtain the following solutions.
3/2 ) 0.

A1/2

2.28 & (ai )K, & 2.75,

—1.65 & V,"' & —0.69

1.51 & (ai )K, & 1.81,

(BSWI),

In the decay amplitude for D ~ K a» we have re-
tained only the nonfactorized contributions arising from

the product of color-singlet currents and H . The rea-
- (8)

son being that the factorized amplitude cannot be calcu-
lated in the BSW scheme, ai(1260) being a Pi state,
unlike for K* which is a S» state, BSW procedure
does not define the null-plane wave function for L =1
quark-antiquark pairs. However, the relevant form fac-
tor Ve

'
(q ) [see Eq. (12)] can be calculated in the model

proposed by Isgur, Scora, Grinstein, and Wise [20] where
it can be shown that it vanishes at the zero-recoil point.
This does not imply that it vanishes everywhere but as
it also comes multiplied by the rather small coefIicient
a2(= —0.09), we have neglected the factorized amplitude
all together.

We use I"i (0) from Eq. (29) and both monopole
(BSWI) and dipole (BSWII) forms for q2 extrapolation
of the form factor Ei (q ) with 1 pole at 2.11 GeV.

We allowed the isospin phase b ' = b ' —b

to vary in the domain (0 6 37) [15] and searched for
the allowed ranges of (ai )K, and Vo" that fitted the
branching ratio data [14]. This case differs from those
discussed thus far. Whereas in the earlier cases, the color-
suppressed amplitude depended on the product of a2
which was unknown, and a form factor which is treated
as known, the color-suppressed amplitude here depends
on the product of t», which is known and Von, which
is unknown. Hence, we varied (ai )K, and Vo" to fit
the branching ratios for D ~ K a» and D+ + K a»
[14] and the upper limit B(Do —+ Koaoi) & 1.9% [14,
15]. It is worth bearing in mind that the range of

determined by Mark III Collaboration [15] uses
B(DO -+ Koaoi) = (0.4+0.4 +0.9)% in doing their ampli-
tude analysis even though they only have an upper limit
of & 1.9% at 90% C.L. for this branching ratio. Thus
their determination of b ' and the ratio of the isospin
amplitudes have to be understood with this caveat.

3/2 ( 0.
A1/2

—1.61 & Vo" & —0.69 (BSWII). (54)

1.44 & (ai )K, & 1.80,

—4.09 & Vo" & —3.39 (BSWI),

0.75 & (a', )K, & 1.19,

—3.61 & yK~, & —2.11
—1.56 & yK, & —0.75

3/2 ( 0.
A1/2

—1.54 & yK, & —0.10
—0.22 & yK, & 0.74

(BSWI),
(BSWII).

(BSWI),
(BSWII).

(56)

(57)

From the above it is seen that for &' ' ) 0 one
1/2

needs large nonfactorized contributions to (ai+)K, and

a relatively small Vo", while for &' ' & 0 solutions can
1/2

be found with very little nonfactorized contribution to
(ai )K, but a much larger Vo" . Not unexpectedly, there
is a considerable dependence on the manner of extrap-
olation of the form factors because of the large mass of
a».

V. DmV, V~

D + K* p+, K* p and D+ ~ K* p+. Using the
definitions given in Sec. II, one can write the decay am-
plitudes for Do ~ A*—&+ K*o&o and D+ ~ A o&+

as)

—4.09 & V~" & —3.39 (BSWII) (55)

The corresponding ranges for yK, are the following.
3/2 ) 0.

A1/

A(D m K* p ) = Gpmpfp (mD + mK. )e'K. sp[aiAi (mp) + aiAi + C2Ai ]o g — + DK 2 (»)nf 48) nf'

sK ' (PD PK')sP (PD + PK') r ADK' z 2i A(i)~f + G A( )~f]-- (a»A2 (mp) + a» 2 +
mD + mK+

+ p K'paKaa'aunaj && (ama) + ax& " + &2&""'lI
mD + mK
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A(D w K' p ) = G~m~. f~. (m~ + mp)E~. sp[a2A~ (m&. ) + a2A~
" + CqA~

"
]2

sp (pD pp)sK' ' (p& + pp) r Dpz 2 i (&)~& (s)~&](a,A, (m~. )+,A,
mQ + mp

2i
ps~. s p p~[a2V (m~. ) + a2V " + CgV "

]7AQ + mp

A(D+ m K* p+) = A(D -+ K* p+) + ~2A(D m K* p ), (58)

where the quantities in the color-favored decay D ~ K* p+ with super index 1 (e.g. , Az
"

) arise from the non-
factorized contribution to the matrix elements of the color-singlet currents (sc)(ud); those with super index 8 (e.g. ,

Az ) arise from H made up of color-octet currents; the tilded quantities refer to the color-suppressed decay(8)nr (8)

D ~ K* p (e.g. , Az
" arises from H ).

The decay rate can be calculated using (14). For the form factors we use the following normalizations with errors
where available:

A~~ =0.61+0.05,
Ai P = 0.78

A~~ =0.45+0.09,
A, ' = 092,

V = 1.16+ 0.16

V P =1.23 (59)

A(8) nf

A~~ (m')
A(s)nf

A, P(m~2. )

A(x) nr
Gi

C A '(m2) '

A-(i) nr
G2

Ci A, P(m2~. )
(60)

we found that the three branching ratios B(D
K* p+), B(D ~ K* p ), and B(D+ ~ K* p+) [14]
could be understood for y~. p and (~.p lying in the
ranges

0.02 & y~. p & 0.80, —0.31 ( (~.p & —0.24 .

(61)

A further comment is in order: The problem of intro-
ducing FSI phases in this decay is a complicated one.
There are three partial waves, S, P and D, and for each
of them there are three helicity configurations. One,
therefore, does not expect a single relative isospin phase

and extrapolate them to relevant q with monopole forms
with pole masses [11]2.53 GeV for AP and Ag, 2.11
GeV for V, 2.42 GeV for Ai and A2, and 2.01
GeV for V p. We tried putting nonfactorized contri-
bution in Ai-, A2-, or V- like terms and combinations
thereof. We found that nonfactorization is needed in
Aq-like terms to fit all three branching ratios B(D
K' p+), B(D ~ K* p ), and B(D+ ~ K* p+). It
was possible, for example, to fit B(D -+ K* p+) and
B(D ~ K* po) with nonfactorized contributions to
A2-like terms alone; however, such a scheme failed for
B(D+ m K*'p+).

Thus, putting nonfactorized eKects only in the Ai-like
terms and defining

h
&2

—
hz&2 (as seems to be the case in the fit to the data

in Ref. [15]) to be applicable to the problem. It would
be more appropriate to use a difFerent relative isospin
phase for each helicity amplitude. For this reason, we
have chosen to work with zero FSI phases rather than
use the phase determination of Ref. [15].

VI. SUMMARY AND CONCLUSIONS

We have carried out an analysis of those Cabibbo-
favored two-body hadronic decays of D and D+ which
involve two isospins in the final state in a formalism
that uses N = 3 and includes nonfactorized amplitudes.
These decays are: D ~ Kvr, K*7t, Kp, Kaq, and K*p.
We have included the measured FSI phases in all but the
K*p decays but only in so far as they rotate the isospin
amplitudes without afFecting their magnitudes. We have
ignored annihilation terms and inelastic FSI. The ratio-
nale for the former in D + Kzr decays is that these terms
are proportional to a2(m~ —m ) while the terms that are
kept are proportional to aq(m& —m~) or a2(m& —m ).

Justifying the neglect of annihilation terms in D ~
K*vr or Kp is harder as they involve the divergence of the
axial vector current. If, however, the annihilation form
factors Ao (m~) and Ao (m&) would be much smaller
than the form factors Ao (m ) or Ao P(m~), the anni-
hilation term would be smaller than the terms retained.
The neglect of the inelastic FSI is largely because of ig-
norance of the parameters to be used in implementing a
believable calculation.

Despite the statement above regarding the size of the
annihilation terms, perhaps it is fair to say that at our
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present level of understanding of nonfactorization effects,
we d.o not fully understand their role.

From the data, one only determines (aq)' and (a2)'
which, as we and others [7] have shown, are process
dependent. The next question is: What effects con-
tribute to (az)' and (a2)' in a scheme that uses

3'? We have tacitly assumed [3—7] that these
effects arise from the following sources: the nonfac-

torized matrix elements of Hl =
2 g (sA c)(uA d),

H =
2 P (sA d)(uA c), and parts of the effective

Hamiltonians made up of color-singlet currents (sc)(ud)
and (uc) (sd). With these assumptions, we have extracted
the relative size of the nonfactorized. contribution in each
specific channel. We now turn to a detailed discussion of
specific decays.

From D ~ Kvr decays we have determined the values
of (az )g. and (a2 )~ . We found that if we allowed the

ratios of the isospin amplitudes &' ' to be positive and
1/2

chose b~ to be (86 + 8), then (a~+)~ and (a2 )~ had
the values given in (30). However, as the branching ra-
tios remain invariant under simultaneous change of sign
of the ratio &'~' and 8~ ~ (a —8~ ), there is another

1/2
solution given by (34). The values of the parameters y~
and (~, which are measures of the nonfactorized contri-
butions, were extracted and are shown in (33) and (35)
for the two sets of solutions of (a~ )~ and (a2 )~ . The
latter set of solutions require much larger nonfactorized
contributions to both (aP)~ and (a2 )~

In our formalism it is not possible to separate the
contribution of Eo from that of Eo . One might(i)~r (8)~~

(8)nf (8)nf
also be tempted to assume that Eo ——Eo, how-

ever, such an assumption would be flawed since H (8)

and H are related by V-spin symmetry (s .,','. u),
' —(8)

but under the same transformation ~D ) —+ ~D+) and
~K 7r+ )~ ~K+K ). Thus V-spin symmetry leads to

(K 7r+ Hl l~D ) = (K+K ~H~ l~D,+) (62)

and not to a relation between E( )" and E( )" . We
also emphasize that the nonfactorized contribution in the
color-suppressed decay D" ~ K vr is enhanced relative
to the factorized term by a factor of Cq/a2(= —14) which
is not the case in the color-favored d.ecay D ~ K a+.
Thus, the color-suppressed processes are more likely to
reveal the presence of nonfactorized contributions than
those revealed by color-favored processes. Further, in
the color-favored decay the nonfactorized. amplitude aris-

ing from the color-singlet currents (sc)(ud) (called I"o(x)nr

here) could be just as important as the one from H (8)

(called I"o
" here).

In D + K*vr decay, we again found two sets of solu-
tions for (a~ )~. and (a2 )~. when we allowed 6~-
to vary in the range (103 + 17) . These solutions are
shown in (40) for &'~' ) 0 and in (41) &'~' & 0.

1/2 1/2
In the color-suppressed decay D ~ K p, for the

case &' ' ) 0, we find large nonfactorized contribu-
1/2

tions: —0.75 & (~~ & —0.50 for monopole form fac-
tors and —0.69 & (~~ & —0.46 for dipole form fac-

tors. They result in —1.00 & (a2 )~~ & —0.75 and
—0.92 & (a2 )~~ & —0.69, respectively. The nonfactor-
ized contribution to the color-favored decay D m K p+
appears to be small leading to: 1.17 & (aP)~~ & 1.32
for monopole form factors and 1.01 & (aP)~~ & 1.15
for dipole form factors. A solution was also found for

& 0, shown in Eq. (48). However, this solution re-
1/2

quires rather large nonfactorized contributions in color-
suppressed D ~ K p decay as seen from Eq. (49). In
all the above, we used bz&z

—
8z&z

——(0 6 30).
The decays D ~ Kai have long posed a problem

for the factorization model. Inclusion of nonfactor-
ized amplitudes allows us to understand the branching
ratios involved. Our picture suggests that the color-
suppressed decay D ~ K a& proceeds almost entirely
through a nonfactorized amplitude, parametrized by Vo"

in Eq. (51), whose size we limit by the experimental up-
per limit on B(D ~ K a~). We are then able to under-
stand the measured branching ratios B(D ~ K az )

and B(D+ ~ K az ) provided that: For &'~' ) 0,

(az )~, and Vo" are given by Eq. (54) for monopole and

dipole extrapolations of the form factor. For &' ' ( 0,
1/2

the allowed values of (az )~, and Vo" are those shown in

Eq. (55). Note that the case &'~' & 0 requires a smaller
1/2

nonfactorized contribution to (az )~, but a larger one
A3/2to V" than those for the case ' ' ) 0. We allowed
Al/2

(8,(,' —8? ') = (0 + 37)o [15].
For the decays D ~ K*p (and, in general, for any

P ~ VV decay), one cannot define (az ) and (a2 ) as
the decay amplitude involves three independent Lorentz-
scalar structures and it is not possible to factor out an
effective aq and a2. We tried to Bt data on the three
branching ratios B(D ~ K* p+), B(D ~ K* p ),
and B(D+ m K*op+) by assuming nonfactorized con-
tributions to Aq-, A2-, and U-like terms in the decay
amplitude but had success in reproducing data to one
standard deviation only if nonfactorized effects were in-
cluded in Aq-like terms. Thus, retaining the nonfac-
torized effects only in Aq like terms, we find signi6-
cant nonfactorized effects in the color-suppressed decay
D ~ K* p, characterized by the parameter (~.~ of
Eq. (61): —0.31 & (~*& & —0.24. The analogous param-
eter y~. ~, Eq. (61), which is a measure of nonfactorized
contribution to the color-favored decay D —+ K* p+,
has the opposite sign, and could, in principle, be very
small: 0 02 ( p~ p ( 0 80 We do not believe that we

have said the last word on the problem of D —+ K*p de-
cays. Fitting the branching ratio data for D+ ~ K* p+,
D ~ K' p+, and D ~ K* p, along with the separa-
tion of the branching ratios into longitudinal and trans-
verse states of polarization, is a nontrivial task [21].

We take this opportunity to remedy the use [3, 7] of
imprecise language, for which we are partly to blame [5],
which attributes S waves entirely to A~-like terms, P
waves to U-like terms and D waves entirely to A2-like
terms. In fact, while V-like terms give rise to P-wave
final states only, Aq- and A2-like terms give rise to both



53 NONFACTORIZATION IN HADRONIC TWO-BODY CABIBBO-. . . 2515

S and D waves [22].
We conclude by saying that one can understand D de-

cays in a picture with N = 3 but only with the in-
clusion of nonfactorized amplitudes. This picture re-
sults in process-dependent effective aq and a2 (except
for D -+ VV decays), which ought to be complex as are
all the nonfactorized amplitudes. We have not included
the inelastic Anal-state interaction effects which would
further complicate the analysis. The effort here was to
parametrize the nonfactorized amplitudes and determine

their sizes. The understanding of any systematics that
emerge is yet to come.
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