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Perturbative QCD analysis of B meson decays
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The resummation of large QCD radiative corrections, including leading and next-to-leading logarithms, in
the pion electromagnetic form factor is reviewed. A similar formalism is applied to exclusive processes
involving heavy mesons, and leads to Sudakov suppression for the semileptonicBdecalyw. It is found
that, with the inclusion of Sudakov effects, a perturbative QCD analysis of this decay is reliable for the energy
fraction of the pion above 0.4. Combining predictions from soft pion theorems we estimate that the upper limit
of the matrix elementV,,| is 2.8-4.8 102 from different models of th& meson wave function.

PACS numbds): 13.20.He, 12.15.Hh, 12.38.Bx

[. INTRODUCTION We shall show that by incorporating Sudakov effects,
PQCD is applicable to the semileptonic dedy #lv as

It has been shown that perturbative QCPQCD) is ap- the pion recoils sufficiently fast. By combining our predic-
plicable to exclusive processes such as elastic hadron foriipns with those from soft pion theorems, which were de-
factors for an energy scale higher than a few GeY The rived in the framework of HQET12], the total decay rate
enlargement of the range of applicability from much higherand the branching ratio are estimated. Comparing this esti-
energieg2] down to this low scale is due to the inclusion of mation with experimental data, we extract the upper limit of
the transverse momentum dependence into factorizatiole CKM matrix elementV,,,|. Hence, PQCD complements
theorems. This dependence appears in an exponential fact6tQET in the study of heavy meson decays. The formalism
which arises from the resummation of large radiative correcdeveloped in this work can be easily generalized to other
tions and gives Sudakov suppression for elastic scattering dfeavy-to-light transitions.
isolated colored quarks. The detailed derivation of the Suda- The first attempt to apply the PQCD formalism including
kov factors for hadron-hadron Landshoff scattering is givenSudakov suppression to the— «lv decay is made by
in [3]. Similar expressions have been obtained and employe8khoury et al. [13]. However, they did not consider the
in the PQCD analysis of the pion and proton form factorstransverse momentum dependence, and their predictions are
[1,4—6, pion Compton scatterin§7], and other exclusive much smaller than ours. As claimed [ih3], the hard gluon
processe$8]. Predictions from this modified version of fac- involved in the decay process is off shell at most by an
torization theorems have been examined and found to bamount of 1.4 ocpm,, M, being theb quark mass. In our
dominated by perturbative contributions. approach the hard gluon is off shell roughly b} §cpmy, .

All of the above analyses of large corrections involve onlyTherefore, the perturbative analysis presented here is more
light hadrons. In this paper we shall extend the resummatioreliable.
technique to exclusive processes containing both light and The resummation of Sudakov logarithms for the pion
heavy mesons, such & meson decays, and organize theform factor is reviewed in Sec. Il. The resummation tech-
Sudakov corrections to all orders. nigue for the semileptoni® meson decay is developed in

An important work in the study of the standard model isSec. lll, where the full expression for the Sudakov factor
to determine the mixing angles in the Cabibbo-Kobayashiincluding leading and next-to-leading logarithms is given.
Maskawa(CKM) matrix. The decayk — «lv contains the Section IV contains the numerical analysis of the factoriza-
information of the matrix elemen¥/, ¢, and chiral symme- tion formulas for relevant form factors. Section V is our con-
try provides a precise method to study this procf@ks  clusion.
|Vep is determined by exploring th8—DIlv decay, for
which heavy quark symmetry is an appropriate {ddl]. As
to |Vyp|, which can be measured reliably from tBe- v
decay[11], neither of the theories is proper. We review factorization theorems including Sudakov ef-

Recently, an analysis of the semileptonic de@y 7lv  fects for a simple light-to-light process, the pion electromag-
based on the heavy quark effective the@dQET) has been netic form factor, which is expressed as the convolution of a
performed by Burdmaet al.[12]. They determined the nor- hard scattering amplitude with wave functions. We investi-
malization of relevant form factors in terms of soft pion re- gate radiative corrections to the factorization formula, and
lations, and gave the ratio of these form factors to the correexplain how they are absorbed into the convolution factors.
sponding ones in th® — «lv decay. However, an explicit The first step is to find the leading momentum regions of
evaluation of theB— = transition form factors is not yet radiative corrections, from which important contributions to
successful. loop integrals arise. There are two types of important contri-

Il. PION FORM FACTOR
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versality of wave functions. For a lardee double logarithms
\/ are present and the resummation technique must be imple-
H mented.
Based on the above reasoning, the factorization formula
for the pion form factor in thé space is written afl]

© ® F Z—ild d i LI b,P
7T(Q )_ 0 Xl XZ (471_)2'/)()(2; ] 21#)

X H(x1,Xz,b,Q, ) 7%y, b, Py, ), 1)

wherep is the factorization and renormalization scale, and
can be regarded as the separation between two valence
quarks.H is the Fourier transform ofl. P, andP, are the
© @ momenta of the incoming and outgoing pions, respectively.
We choose the Breit frame, in whid®; =P, =Q/+2 and
_ _ o all other components d®’s vanish,Q?= — (P, — P,)? being
FIG. 1. O(as) corrections to the basic factorization of the pion the momentum transfer mentioned before. Equatinde-
form factor. pends only on a singld, because the virtual quark line
butions: collinear, when the loop momentum is parallel to thénvolved in H is thought of as far from mass shell, and
incoming or Outgoing pion momentum, and soft, when theShrUnk toa pOIn[l] The wave functior”” includes all lead-
loop momentum is much smaller than the momentum transing logarithmic enhancements at large
fer Q2 of the process. Her@z is assumed to be |arge and The basic idea of the reSUmmatiqn tEChnique iS. as fol-
serves as an ultraviolet cutoff of loop integrals. We associatéoWs. If the double logarithms appear in an exponential form
small transverse momentukg with the partons of the pion, Z”~exp(= consXInQIninQ), the task will be simplified by
which is taken as an infrared cutoff. StUdying the derivative OV, d/)/dan:C‘% The coeffi-
Each type of important contributions gives large singlecient C contains only large single logarithms, and can be
logarithms. They may overlap to give doulleading loga-  treated by RG methods. Therefore, working wéhone re-
rithms in some cases. These large logarithms, appearing indIces the double-logarithm problem to a single-logarithm
product withas, must be organized in order not to spoil the Problem. S
perturbative expansion. It is known that single logarithms The two invariants appearing i are P-n andn®. Be-
can be summed to all orders using renormalization grougause of the scale invariance rinof the gluon propagator,
(RG) methods, and double logarithms must be treated by the . oy 1 sy e
resummation technique developed[i#]. This technique is N””(q)z_—l ghr— n"q'+q9'n +n2 a’q
most easily explained in axial gauge A=0, n being a q° n-q (n-q)?)’
gauge vector and the gauge field. ) oo 1
The diagrams shown in Fig. 1 represédfaes) correc- 2’ depends only on a single Igrge scg?ec(P-n) /n“. Itis
tions to the basic factorization of the pion form factor, which then easy to show that the differential operadédinQ can
contain the large logarithms mentioned above. In axial gaugf€ replaced byl/dn:
the two-particle reducible diagrams, such as Figs) and 2
1(b), have double logarithms from the overlap of collinear iy: _ n_Pa
and soft divergences, while the two-particle irreducible cor- dinQ P-n" dn®
rections, such as Figs(d and 1d), contain only single soft o ) )
logarithms. This distinction is consistent with the physical The motivation for this replacement is that the momentim
picture: Two partons moving in the same direction can interflows through both quark and gluon lines, uappears only
act with each other through collinear or soft gluons, whileon gluon lines. The analysis then becomes easier by studying
those moving apart from each other can interact only througf€ N m_stead ofP, dependence.
soft gluons. Below we shall concentrate on reducible correc- Applying d/dn,, to the gluon propagator, we get
tions, and demonstrate how they are summed into a Sudakov q 1
factor. nY_— _ _ (NMaNV va s
A careful analysis shows that soft divergences cancel be- dnaN g-n (N"%q"+ N™a"). @
tween Figs. ) and 1b), as well as between Figs(c) and
1(d), in the asymptotic region witb— 0, b being the conju- The momentung that locates at both ends of the differenti-
gate variable tok;. Therefore, reducible corrections are ated gluon line is contracted with a vertex, where the gluon
dominated by collinear divergences, and can be absorbedftaches. After adding together all diagrams with different
into the pion wave function”, which involves similar dy- differentiated gluon lines and using the Ward identity, we
namics. Irreducible corrections, due to the cancellation ofirrive at the differential equation of as shown in Fig. @),
soft divergences, are then absorbed into the hard scattering Which the square vertex represents
amplitudeH. Hence, the factorization picture holds at least
asymptotically after radiative corrections are included. The a_ N
. . . . gT P.,
cancellation of soft divergences is closely related to the uni- P-ng-n

@
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FIG. 2. Graphic representation of E®). (H—_ Q=—_ _ — _
A=z, Af=g - —oonitgBin 2>, 9)

T2 being a color matrix. An important feature of the square
vertex is that the gluon momentuqmdoes not lead to col-
linear divergences because of the nonvanishihgrhe lead-

ing regions ofq are then soft and ultraviolet, in which Fig. The functions and A still contain single logarithms

2(a) can be factorized according to Figli at lowest order, from ultraviolet divergences, which need to be summed us-
The part on the left-hand side of the dashed line is exactl)(ng their RG equatior?&]' '

2, and that on the right-hand side is assigned to the coeffi-
cientC.

wheren;=3 in this case is the number of quark flavors and
v is the Euler constant. To derive E@®), a spacelike gauge
vectorne(1,—1, 0) has been chosen.

TP (X,b,p)=—2y47 (X,b,), 10
Therefore, we need a functiof for the absorption of the (x.b.42) Yo (XDo) (0
soft divergences from the first two diagrams in Fifb)2and SR (x b — 4~ B(x b 11
a function < for the ultraviolet divergences from the other H(.0,Qup)=47gH(xb.Q. ), (1
two diagrams. The soft subtraction employed $nis to  with
avoid double counting. Generalizing the two functions to all
orders, we derive the differential equation.sf: d d

d , ‘
g (%D.Pu) =L 27(bp) + S (xvl )

+(1—=x)v/un)]7 (x,b,P, ).
5

7 and ¥ have been calculated to one loop, and their single
logarithms have been organized to give the evolutionb in
and Q, respectively3]. They possess individual ultraviolet
poles, but their sunvZ'+ ¢ is finite such that Sudakov loga-

rithms are RG invariant.
Substituting the expressions f6¢" and < into Eq.(5), we
obtain the solution

.'%(x,b,P,,L;.):exp{— > s(¢,b,Q) | AX,b,u). (6)

&=x, 1-x

The exponents, grouping the double logarithms ig’, is
expressed in terms of the variables

q=In[£Q/(\2A)],

b=In(1/bA) (7

~

as[1]

D=y — —.

9 MaM+,3(9) 79 (12
Yq= —as/m is the quark anomalous dimension in axial
gauge. Solving Eq(10), the largeb behavior of>’ is sum-
marized as

.v/)(x,b,P,M)=exp[—§_El_ s(£,b,Q)
rdup -\l =
—2] —v4(9(w)) |7 (x,b,1/b).
b u
(13
We express the initial conditios’ in Eq. (13) as
7 (x,0,1/b) = $(x,b) + O(ay(1/b)), (14)

where the evolution af”in b is denoted byO(«g), and the

argumentb in ¢ corresponds to the intrinsic transverse mo-
mentum dependence of the pion wave funcfi6h
Similarly, the RG analysis applied td gives

H(Xi vvavt)u
(15

- tdu _
H(x; ,b,Q,M)=exr{ —4f %yq(g(m)
M
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wheret is the largest mass scale involved in the hard scat-
tering: Pk, (1-x,)P,- k2T

t=max \X1X,Q,1/b). (16

The scaleyx;x,Q is associated with the longitudinal mo-
mentum of the hard gluon andhlivith the transverse mo-
mentum. Combining all the above exponents, we derive the
factorization formula for the pion form factor, k, x2P2 +k2T

1 d’b - ~ ()
Q)= [ dxadns [ 4 b0x1 ) b0x, b) )

X H(Xq,%2,b,Q,0)exd — S(x1,%,0,Q)1,  (17)

N/
7\

where the complete Sudakov exponent is given by

2
S(X1,Xz,b,Q)=izl [s(x,b,Q)+s(1-x;,b,Q)]

2 I ! (18
—— 1IN =,
Bi b (b)

with t=In(t/A).

Variation of e”S with b has been displayed ifi]: It
shows a strong falloff in the largb region, vanishing for .
b>1/A, and approaches unity in the smhllegion, where sympol X denotes the elec_troweak vertex with the CKM
the Sudakov logarithms diminish. I is small, the running Matrix element¥/,;,, from which a lepton pair emerges.
coupling constanixg with its argument set to will be small, Parton momenta are assigned as in Fig. 3: Bhguark
regardless of the values of's. When b is large and CcarresPi—k;, and the accompanying light qu%rk carnes
X;X,Q? is small, ag is still large. However, the Sudakov Ki. They satisfy the on-shell conditionsP7=mg,
factor in Eq.(17) strongly suppresses this region. Since the(P1—ki)?~mg andki~0, mg being theB meson mass. In
main contributions to the factorization formula come fromthe Breit frameP; has the component8; =P; =mg/\/2
the smallb region, the perturbation theory becomes rela-and vanishing transverse componemts.may have a large
tively self-consistent. minus componentk; and small transverse components

ki, which will serve as the infrared cutoff of loop correc-
Il. DECAY B—slv tions below. The assignment of parton momenta on the pion
) ) side is similar to that for the pion form factor, as shown in
We extend the PQCD formalism for the pion form factor Fig. 3. The large component &, is P; = nt/\/E, 7 be-

to exclusive processes involving both light and heavy Meing related to the energy fraction of the pion by
sons. In particular, we concentrate on the semileptonic decayo_ »mg/2. The physical range of is 0< =<1, since the
B— 7lv. We shall show that PQCD is appropriate to this ;i carries away at most half of the rest energy of Ehe
process when the pion is energetic enough. We first analyzg oo “The transverse momentum associated with the va-
the leading regions of radiative corrections, and derive th(l’ence quarks of the pion is denoted ky,. The invariant
Sudakov factor including both leading and next-to-leading <o " of  the lepton-neutrino pai: is given by

logarithms. 2= (P, — P,)2=(1— 7)m?
The amplitude of the deca§— i is written as IWe now consider radiaBtive corrections to the above basic
G factorization. The essential step is again to locate the leading
_"Fy = _ = i regions of radiative corrections in axial gauge. For reducible
AlP1,P2) \/EV“bw“(l vo)l(m(P2)[uy*blB(Py)), corrections on the pion side, the conclusion is the same as
(19 before: They produce double logarithms with soft ones can-
celed in the asymptotic region, and can be absorbed into the
where the four-fermion interaction with the Fermi coupling pion wave function, giving the evolution of the wave func-
constantGe=1.166<10 ° GeV 2 has been inserted®; tion. Irreducible corrections, with an extra gluon connecting
and P, are the momenta of thB meson and of the pion, a quark in the pion and a quark in tBemeson, contain only
respectively. We start with the lowest-order factorization forsoft divergences, which also cancel asymptotically. Hence,
the matrix elemenM*={x(P,)|uy*b|B(P,)) with a hard they are absorbed into a hard scattering amplitude.
exchanged gluon as shown in Fig. 3, the left-hand side being On the left-hand side, three diagrams showi(gr,) cor-
the B meson at rest and the right-hand side a fast-recoilingections are displayed in Fig. 4. Figuréal giving a self-
pion. The heavyb quark is represented by a bold line. The energy correction to the massilsequark, produces only soft

FIG. 3. Lowest-order factorization for the decBy- 7l v.



2484 HSIANG-NAN LI AND HOI-LAI YU 53

(a)

FIG. 5. Eikonal approximation for the quark line.

for simplicity. The momentum fractiorx; is defined by
ki /P; . H* is the Fourier transform of the hard scattering
amplitude derived from Fig. 3, whose explicit expression
will be given in Sec. IV. The resummation of the double
logarithms in7,. has been performed in the previous section.
(b) (©) We quote the results directly witQ set toym andn; set to
4 [13]. Below we shall study”’ .

There are two major difficulties in summing up the double
logarithms in Figs. &) and 4c). First, Fig. 4a), giving only
single soft logarithms, must be excluded. Second, there are
many invariants involved in/g that are constructed from
P., kg, andn, such asPi, P;-ky, P;-n, ky-n, andn?.

The fact that”; contains many invariants renders the tech-
h ique of replacingd/dm by d/dn inapplicable,m being the
vi)?arge scale of this process, because some large invariants

FIG. 4. O(«as) corrections to th& meson wave function.

divergences, and is thus not leadingk]f is small, collinear
divergences in Figs.(#) and 4c), which arise from the loop
momentum with a large component parallelkp, will not

be pinched. Figures(B) and 4c) then also give only soft
divergences. This is consistent with the physical picture t
a soft light valence quark cannot interact with the hea 5
quark through a fast moving gluon. However, Bemeson Such asPy cannot be related to.

wave functions employed in Sec. IV exhibit substantial prob- _ HOWever, the difficulties can be overcome by applying the
ability of finding the light quark withk; of order mg, eikonal approximation to the heavy quark line as shown in

: Fig. 5. In the collinear region with the loop momentumn
though they peak at smadl . Therefore, Figs. @) and 4c) . . o .
contribute collinear divergences. Note that Figo)4&ontains E:rﬁa:fe! Iﬁg)l in;k'r;irfzebsogtn r:i?(g):alo ﬁnelt is possible to
soft divergences which are not completely canceled by those P 9 y '
from Figs. 4a) and 4c) even in the asymptotic region. In P.— K+ d+m) e pa
conclusion, Figs. é) and 4c) indeed contain double loga- (Pi—Kitd 5 )72 ~ 1t
rithms, which must be organized by the resummation tech- (P1=ky+@)*=m®  Py-q

nique. where the remaining pamR either vanishes as contracted

Ies?ri]r?]e égzniog:‘ee?g (l'l\jer%gggieo Sn Ofrotnl?emzs\?\,gvseldﬁj :éfionwith the matrix structure of thB meson wave function or is
P bp less leading. The factor T - q) is associated with the ei-

reducible corrections are basically dominated by soft diver—kOnal ropagator. and the numerak# is absorbed into the
gences, and can be absorbed into Bheneson wave func- . P E 9 ,I ttaches t ? ikonal line. The ph
tion, which is also dominated by soft dynamics. This absorp-yer €x, where a gluon attaches 1o the eikonal liné. The pnys-

tion should be compared to that on the pion side, wheré®S involve_d in this approximation is that a soft g_Iuon ora
reducible corrections are dominated by collinear diver-gluon moving parallel t(kl_ cannot explore the detalls of the
gences. b quark, _and |ts. dy_namcs can be decoupled from bhe
We then write down the factorization formula for the de- quark. This idea |_s_S|m|Iar to the flavqr symmetry gmployed
cay B— mrlv in transverse configuration space: In HQET' An eXp!'C't gvaluatmq of ra}d]atlve 'correctlons con-
firms this approximation. The first difficulty is then resolved,
1 d2b, d?b, because self-energy diagrams of an eikonal line are excluded
M“zf dx;dx, 4—4—.{//),,(x2,b2,P2,,u) by definition[15].
0 Toam The eikonal approximation also reduces the number of
(20) large invariants involved in/g. We have the scale invari-

ance inP; as shown by the Feynman rule for an eikonal line

where both the pion anB meson wave functions”, and I EQ. (21), in addition to the scale invariance im Hence, _
7% contain leading double logarithms. Here tiis are in- P, does not lead to a large scale, and the only large scale is
troduced, because the virtual quark line in the hard scatterinly » Which must appear in the ratiosky(n)*n? and
may not be far from mass shell, and cannot be shrunk to &K Pl)Z/P%-

point as explained later. Hence, we ndmsd(b,) to denote A direct lowest-order investigation on the diagrams in
the separation between the two valence quarks oBtinee-  Fig. 4 indicates that the second scakg-(P;)%/ P2 does not

son (pion). The approximatiorm,~mg=m has been made exist. A lowest-order analysis helps to find out where and

+R, (21)

X HM(XLXZ!blrbZvmwu“)"ij(xlrblIleu‘)!
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what important logarithms are. These important logarithms

will certainly be summed to all orders as shown below. It

suffices to examine Fig.(B), since Fig. 4a) has been ex- +
cluded, and Fig. &) gives a contribution that depends only

on k; andn. The loop integral associated with Figb4 is

proportional to

d*q P{yP(ki+4)
2Na,8
(2m)* Py-q(ky+0)

(22) +

in which the eikonal approximation for thequark has been

employed. It is apparent that only the first tegy, in N,z ' (a)
leads to theP; dependence for the specific choice of the

gauge vecton=(1,—1, 0) as in the pion case. Because the

large logarithms arise from the leading regions, we concen-

trate on the soft and collinear regionsafin the soft region

Eq. (22) becomes

d*q P1-ky i
ar-b
(2m) Pr-aky-q?® 3
which possesses scale invariancekin and thus the ratio (b)

(k1~P1)2/P§ cannot exist. In a similar way, we can show

that this ratio does not appear in the collinear region either. FIG. 6. Lowest-order diagrams fea) the function.7Z" and for
Therefore, with the eikonal approximation the problem is(b) the function:s” associated with th& meson.

simplified to one in analogy with the pion case. Norg

depends only on the single large scalé=(k;-n)?/n?, and Pa(X1,01,P1 ) =exf —s(Xq,by,m)]Zs(Xq, by, 1),
d/dm can be replaced bg/dn. Following the same proce- (26)
dures as in Sec. Il, the differential equation-gf is derived o )

as where the exponerstis given by Eq(8) but withn;=4[13].

Summing up the single logarithms irtz , Eq. (26) becomes

d d
/5= =7/p=[Z(bu)+2(v'Iu)] 78, )
din m™ = din ky Fg(X1,by Py, )= exg —s(x;,by,m)
(24)
where the lowest-order”’ is obtained from Fig. @), and du ~
% from Fig. 6b), with the square vertex representing —Zf/b — 7(9(n)) | pa(X1,by)
1M
2
gTe— ko +0O(ay(1by)), 27)

ki-ng-n ki
where the anomalous d|men5|% is the same as before
Note the absence of the diagram corresponding to the selombining the summation of the single logarithmsHr

energy correction to the eikonal line. Since tBemeson  and the results fronv”,, we derive the complete Sudakov
massm is a Lorentz invariant, differentiation with respect to exponent

m in Eq. (24) should be regarded as a mathematical tool, and

what really varies is the parton momentuq=x,m/ 2. S(xi by, 7,m)=s(x1,by,m) +s(Xz,b2, 7m)
Comparing Fig. 6a) with Fig. 2(a), we find that the evalu-

ation of 77" for the B meson is similar to that for the pion

except the third diagram. The contribution from this extra

diagram is proportional to

1/ 1 t
+s(1—X5,by, pm)— ,81 In—+|nb—
2

(28
d“q n?k{P#

N _.eldrb (25) t is the largest scale involved in the hard scattering, which
(2m)* k;-ng-nP-q ** ’

will be defined in Sec. IV.

which vqnishes foqm(l,— 1, 0). Be(_:ause no new 'uItre}vio— IV. NUMERICAL RESULTS

let and infrared divergences are introduced, this diagram

does not spoil the RG invariance of the Sudakov logarithms. Having derived the Sudakov exponent for the semilep-

The functions% and & for the B meson are then the same tonic decayB— =l v, we evaluate the form factors, and ex-

as those for the pion. amine how much of a contribution comes from the perturba-
Substituting the expressions fo¥” and & into Eq.(24), tive region with smallb;. The expression for lowest-order

we obtain the solution H~® from Fig. 3a) is written as
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HE@ — ] ¥sP2 » P1—X2Po+Kor+m ya(P1+m)75 —9°N:7k
2N, T (Pi—XoPptkor)?—m? 2N, | (xoP2—kitkor)?
A(1+x,m)g% 7 gm?

_ Py (29
[Xopm?+ K57 ][ X1 pm?+ (Ky1—Ko7)?] 2

where the factorsysP, /2N, and P;+m)ys/\2N, are the matrix structures of the pion aBdmeson wave functions,
respectively{ 13], #==4/3 is a color factor, andll; is the number of colors. The relatidq=xlm/\/§ has been inserted. In
the second expressid in the fermion propagator is not neglected. For the pion form factor, the corresponding transverse
momentum dependence is negligible, because there is not the constant 1, by ,omythe numerator, which cancels the
singularity fromx,—0 in the denominator. However, in the present case, due to the massiveness ofudud, the constant
1 exists and such a cancellation does not occur as shown ii28g.To ensure that the virtual quark is part of the hard
scatteringk,t must be retained.

Similarly, the expression for lowest-orde*(®) is given by

—9°Nc7k 49%7 pxy pm?

P2, Patkg #(P1+m)7’5 _ b
(XoPo =Ky +Kor)?  [Xg M2+ Kir][ XX pmP+ (Kyr—Kor)?] 1

V2N, (Potk)? Y TN,

4927 px m?

H# ) =t YVa

- P%. 30
[X17m?+KEr ][ XX pm?+ (kg —Kor)?] " 2 (30
To derive the second formula, we have replakédy
Ps-k Pi-ky 2 Pyk
2° "1 ';_L 1 l__ 21 P’{. (31)
P1-P2 Pi-Pa 7 P1-Py

Herekq7 in the fermion propagator is negligible, because the singularity ftpmO0 is removed by the numerator. However,
we keep it for consistency.
Performing the Fourier transform of Eq29) and (30), the matrix elemenM# is written as

M#=f, P&+ f,PL. (32)

The factorization formulas for thB— 7 transition form factors; andf, are given by
1 [
f]_: 16775,/|:m2f0 XmdXZJ;) bld blbzdbzd)g(xl)¢W(X2)X17]h(xl,X2,bl,bz,ﬂ,m)exq_s(xi ,bi ,7],m)] (33)
and

1 o0
fzzlﬁﬂg%sz’o dxldxzjo b,db;b,db, pg(X1) b (X2)[ — X h(Xq,X5,01,05,7,m)

+(1+x27m)h(Xz,Xq,b2,01, 7,m)Jexd — S(x; ,b; , 7,m)], (39
respectively, with
h(Xy,%2,by,by, 7,M) = a()Ko(VX1Xa nmby)[ 8(b;— by)Ko(VXg 7mby) 1 o( /X 7mb,)
+ (b~ by)Ko(VXq 7mby) L o( VX pmby) 1. (35)

Ko and |, are the modified Bessel functions of order zero. To derive E2@. and (34), we have employed the relation
d(X) = ¢p(x,b=0)/47. Here we neglect the evolution mand the intrinsidb dependence of the wave functions, since these
two effects cancel partially: The former gives an enhancef@gnbut the latter leads to a suppressiéifh Similar to Eq.(16),

we choose the largest scdl@ssociated with the hard gluon as

t= ma)( \/X1X27]m,1/b1,1/b2). (36)

The running coupling constant is given by

ast) 1 B, In2t
=— . 3
™ 281 4B 12 37
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We consider the following two models of th& meson wave function, which have been adoptedll®]. They are the
oscillator wave functiori16]

2

oy k N\/i m3 (1 m3 |2 k2 N\/i m? k
g (X, T)_a? X(1—x)ex ~ 502 E_X_W ex 5.2 T2 X(1—x)ex —sz ex ~5.2) (38

2
B w
in our approximatiormy~mg=m, and[17]

2 2 -2
m k
Ct—p—1 , (39)

(1) — N’
q)B (XlkT) N 1—x X(l—X)

wherex is the momentum fraction of the light quark in tBemeson. The parameters mg> are w=0.4 GeV andm=5.28
GeV. The constan is determined by the normalization of the wave function,

! d?ky 0 _[* (Dyy— 1B
fodxj o Pl (x,kT>=f0dx¢B =% (40

fs=160 MeV being theB meson decay constafit8], which leads toN=176.9 GeV. The constant$’ andC in ®{" are
determined by the normalizatio&7]

flde o dM(x,k )=f—B
0 1678 T 5 5
f o f O L k) = (41)
o 16/173 B AT _21

from which N’ =760.66 Ge\? andC= —26.888 973 GeV are obtained.
The Fourier transform ofg gives

H9(x b)=J ¢ DY (x,ky)e'kTP= ﬁ\/x(l—x)ex - m” x%|exp — W*b* (42)
B AN (2m)2 BT 2m 202 2 )
By = —DXATT TR 0b) (43
X,b)= mx+Cx(1—x)b),
8 4mJmPx+Cx(1—x)
|
with K, the modified Bessel function of order one. As stated #CA(x)=5/3f X(1—X)(1—2x)2, (47)
before, we neglect the intrinsic dependence of the wave i
functions, and obtain with f =93 MeV the pion decay constant arad,=2.02
GeVv 1.
1 ~ N m? We are now ready to compufe andf, in Egs.(33) and
D (y)= —lim HM L K1=wexd — —x2 2 -
B (X)= 47Tk|)'in0¢5 (x,b)= 872 x(1 x)ex;{ szx ) (34) numerically. Setting\ =0.2 GeV, the results of; from
(44) the two models othg(x), with b; andb, integrated up to the
same cutoffo;.=b,.=b., are shown in Fig. 7. Fop" , it
| N’x(1-x)? is found that atp=0.4 approximately 50% of the contribu-
P8 (x) = 1672+ C(1=x)]" (45  tion to f; comes from the region witl(1/b.)/7<0.5 or,

equivalently,b,<0.6A. At »=0.5, 55% of the contribution

Obviously, both models peak at smajlwhich characterizes S accumulated in this perturbative region. A4s-1, the per-
the soft dynamics in th8 meson. However, the probability turbative contribution has reached 70%. It implies that the
at intermediatex is indeed comparable at least in model II, PQCD analysis of the deca—mlv in th(% range of
and the resummation of double logarithms performed in Secy> 0.4 is relatively self-consistenit,4]. For ¢y’ , the per-
Il is essential. At last, we employ the Chernyak-Zhitnitsky turbative analysis becomes reliable fgpr~0.5. This is be-

model[19] for the pion wave functiofi20]: cause ¢ peaks at a smallex=0.05 (44" peaks at
- x=0.11), which enhances the soft contribution. This is also
$7(x,b) =53 x(1—x)(1—2x)? the reason predictions fromy) are about twice larger than
X(1—x)b? those fromg§" .
X 4wexr{ - ) (46) In the approach of13] the transverse momentum depen-
4a dence was not considered. Instead, the energies of the virtual
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for mgx ~mg, Mg« being theB* meson masd.; in the soft

pion limit vanishes like - ymg« /mg. In the above expres-

sion ggg+ ,~0.75[21] is the BB* 7w coupling constant, and

fgx~1.1fg [22] is the decay constant of tH&* meson.
Compared to the approachi3,23 in the literature that

are based on the Brodsky-Lepage QCD exclusive theory

] [24], our predictions for th&— 7 transition form factors are

= much larger. The reason is as follows. Since the previous

] approaches did not include the transverse momentum depen-

dence, the virtual quark in the hard scattering may go on

6 shell asx,—0 as shown in Eq(29). In order that factoriza-

tion theorems make sense, this quark propagator must be

subtracted, and thus the constant 1 in the numerator of Eq.

(29) is removed. This subtraction then leads to much smaller

results. In our formalism the factorization is preserved by

adding transverse momenta and Sudakov suppression that

control the magnitude of transverse momenta, instead of by

subtraction. Hence, the large difference between our predic-

tions and those 13,23 is basically attributed to the inclu-

1 sion of the transverse momentum dependence and the Suda-

7 kov effects, not to the particular choice of wave functions.

] With the results off ; andf,, we compute the differential

decay rate oB°— 7| " v for massless leptorid 3],

O 2 =R, 60
FIG. 7. Dependence @8) f, and(b) f, on the cutoffb, derived dy ubl —76gy3 'L 20 T ITub (),

from ¢ (solid lines and from ¢4" (dashed lines for (1)

17=0.4, (2) »=0.5, and(3) »=1.0. where the second formula defines the functr{ry). Predic-

tions of R(%) are shown in Fig. 8, from which the decrease
of dI'/d# with » is observed. This behavior is opposite to

quark and of the virtual gluon involved in the hard scatteringthat given in[13], which shows an increase with starting
were taken as the ultraviolet and infrared cutoffs of radiativelfom zero at7=0.5. Such a dip at the middle value gfis
corrections, respectively. The resulting Sudakov logarithmsagain due to the subtraction of the on-shell fermion propaga-
which are proportional to Invk; , then give weaker suppres- tOF fro_m hard scatterin§13]. Predictions if13] for the dif-
sion. From the steepest descent approximation of their Sud4grential decay rate are almost 1@mes smaller than ours.

kov factor, the saddle point was found &f ~1.4A for The differential decay rate in the soft pion limit is ob-

n=1. Similarly, we determine the saddle point of our Suda-tainGd from Eq(49):

kov factor in Eq.(28) by

. G|2:m577 fé* 2
lim R(7)= 19272 72 JeBra
S IS 7—0 m

ﬁ_blzé’_bzzo, (48)

(51)

which exhibits a linear relation withy. Extrapolating Eq.
(51) and our factorization formulas to each other, we observe
from which a larger scale bf{=10A for A=0.1 GeV or a fair match aroundy=0.2 as shown in Fig. 8. Certainly, this
1/b,=6A for A=0.2 GeV is obtained. Hence, the perturba- extrapolation may not be reliable, but it is interesting to ob-
tive expansion in our formalism is more reliable. At such aserve the match of these two different approaches at interme-
large scale, the radiative corrections to the hard scatterindiate . It implies that our PQCD formalism is successful at
with a triple gluon vertex, which were responsible for Suda-large , but becomes worse quickly in the soft pion limit. On
kov suppression ifi13], are in fact of higher twist and un- the contrary, the soft pion technique is appropriate at small
important. 7, but gives an overestimation in the perturbative region.

The magnitude of , is much larger than that df,, espe- The overlap indicates the transiti¢@,25] of the B meson
cially in the small# region. This fact is consistent with their decays to PQCD at middle values pfand the complemen-
behaviors in the soft pion limit as derived in HQHET2], tarity between soft pion theorems and the perturbative for-
wheref, is found to have a pole a}—0, malism.

We then estimate the total decay rdieby integrating
of dI'/d % using Eq.(51) for <0.2 and using our predictions

B e o (49)  for 7>0.2. We obtain 0.4 10" |V,,|* GeV from soft pion
s theorems, and 12810 *YV,,,|? and 0.3 10" |V,,|? GeV

lim f,~
7]*}0
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TABLE I. Percentage for results d¢f + f, at =1 from various

5 T T .
wave functions.
[ \ b
a0 ] 0 kD) BT #xD)
- NONA ]
> SN ] AV (x) 1 97% 40% 38%
O 4 FEEN ] #8(x,b) 58% 56% 25% 24%
— F \ 4
~ !
< . ] 8" (x) 1 98% 36% 35%
= 2r, ] »W(x,b) 49% 48% 21% 20%
s b 0%
e’ ! 7
A L1
171, s
H ~e o ] a 50% difference. That in the pion wave functions gives only
\ 7 . . . . .
T ()] 1-3 %. Note that if¢® is used, and the intrinsib depen-
0 dence of both th& meson and pion wave functions is con-
6 02 04 06 08 1 1.2 sidered, the result will decrease to 20%. It implies that the
n form of the wave functions still needs to be determined pre-

cisely. However, we emphasize that the completdepen-
FIG. 8. Dependence @&(7) on 7 derived from(1) 40, from  dence of wave functions includes the evolution proportional

(2) 4V, and from(3) soft pion theorems. Dashed lines representt0 as(1/b). Taking into account the evolution will moderate
the extrapolation. the drastic difference due to the intrindicdependence.

for the use of¢y and ¢4 , respectively, from the PQCD V. CONCLUSION

formalism. Their sum gived'~2.2x10 Vv |2 GeV for In this paper we have applied the resummation technique
model | and 0.% 10~ 4V |2 for model Il. They correspond to the semileptonic deca§— | v, and derived the Sudakov
to branching ratios 4¥,,|> and 14V,|?, respectively, for factor up to next-to-leading logarithms in this heavy-to-light
the total width of theB® meson is (0.5£0.02)x 10 ® MeV transition process. The idea is to employ the eikonal approxi-
[26]. The current experimental limit on the branching ratio of mation for the heavyp quark line such that its nonleading
B°— 7 1" v is 3.3x10 4 [27]. We then extract the matrix self-energy diagram is excluded, and the number of large

element |V ,|<2.8x10% from model | and scales involved in th& meson wave function is reduced.
[Vl <4.8x 1072 from model Il. The value 0.003 given in The resummation of double logarithms in the heavy meson is
the literaturg 26] is located in the above range. then simplified to one in analogy with the light meson case.

It is also interesting to investigate the effects from theThe PQCD calculation of the differential decay rate includ-
variation of parameters and wave functions involved in thising Sudakov effects has been examined and found to be re-
work. Decreasing the QCD scale from=0.2 to 0.1 GeV, liable for » above 0.4. By combining our predictions with
we obtain form factors which are roughly 30% larger. Whensoft pion results and comparing them with experimental data,
including the intrinsicb dependence of the wave functions, we have estimated the total decay rate, and extracted the
the perturbative region will be extended downsto-0.3, but  upper limit 2.8—4.& 102 for the CKM matrix element
the magnitudes of the form factors will decrease. When em}V,,|.
ploying the asymptotic pion wave functig@0] We do not observe the dip at=0.5 for the differential

decay rate as predicted [d3], which arises from the sub-
traction of an on-shell fermion propagator from the hard
scattering. This subtraction is not necessary in our analysis
' because of the inclusion of the transverse momentum depen-
(52)  dence. The behavior of the differential decay rateiis also
opposite to that if13].
We have investigated the effects from the intringicle-
as .y _ _ pendence of wave functions. Another source oflthdepen-
$x(x) \/§f’TX(1 X), 3 dence, the evolution, still needs further consideration. Our
n{ormalism can be easily applied to a similar semileptonic
ecayB— pl v and other nonleptoniB meson decays, which
ill be published elsewhere.

x(1—x)b?
4a%

$2(x,b)= \/§fwx(1—x)( 4wexp[ -

which is less end-point concentrated, predictions for the for

factors will become about 40%. The outcomes of the stud

on the intrinsich dependence are listed in Table I, where the

results off,+f, at =1 presented in Fig. 7 are taken as

unity for simplicity, and those from various wave functions

in Egs. (42), (43), (46), and(52) are expressed in terms of ACKNOWLEDGMENTS
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