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Perturbative QCD analysis ofB meson decays
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The resummation of large QCD radiative corrections, including leading and next-to-leading logarithms, i
the pion electromagnetic form factor is reviewed. A similar formalism is applied to exclusive processe
involving heavy mesons, and leads to Sudakov suppression for the semileptonic decayB→p ln. It is found
that, with the inclusion of Sudakov effects, a perturbative QCD analysis of this decay is reliable for the energ
fraction of the pion above 0.4. Combining predictions from soft pion theorems we estimate that the upper lim
of the matrix elementuVubu is 2.8–4.831023 from different models of theB meson wave function.

PACS number~s!: 13.20.He, 12.15.Hh, 12.38.Bx
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I. INTRODUCTION

It has been shown that perturbative QCD~PQCD! is ap-
plicable to exclusive processes such as elastic hadron f
factors for an energy scale higher than a few GeV@1#. The
enlargement of the range of applicability from much high
energies@2# down to this low scale is due to the inclusion o
the transverse momentum dependence into factoriza
theorems. This dependence appears in an exponential fa
which arises from the resummation of large radiative corr
tions and gives Sudakov suppression for elastic scatterin
isolated colored quarks. The detailed derivation of the Su
kov factors for hadron-hadron Landshoff scattering is giv
in @3#. Similar expressions have been obtained and emplo
in the PQCD analysis of the pion and proton form facto
@1,4–6#, pion Compton scattering@7#, and other exclusive
processes@8#. Predictions from this modified version of fac
torization theorems have been examined and found to
dominated by perturbative contributions.

All of the above analyses of large corrections involve on
light hadrons. In this paper we shall extend the resumma
technique to exclusive processes containing both light
heavy mesons, such asB meson decays, and organize th
Sudakov corrections to all orders.

An important work in the study of the standard model
to determine the mixing angles in the Cabibbo-Kobayas
Maskawa~CKM! matrix. The decayK→p ln contains the
information of the matrix elementuVusu, and chiral symme-
try provides a precise method to study this process@9#.
uVcbu is determined by exploring theB→Dln decay, for
which heavy quark symmetry is an appropriate tool@10#. As
to uVubu, which can be measured reliably from theB→p ln
decay@11#, neither of the theories is proper.

Recently, an analysis of the semileptonic decayB→p ln
based on the heavy quark effective theory~HQET! has been
performed by Burdmanet al. @12#. They determined the nor
malization of relevant form factors in terms of soft pion r
lations, and gave the ratio of these form factors to the co
sponding ones in theD→p ln decay. However, an explici
evaluation of theB→p transition form factors is not ye
successful.
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We shall show that by incorporating Sudakov effects
PQCD is applicable to the semileptonic decayB→p ln as
the pion recoils sufficiently fast. By combining our predic-
tions with those from soft pion theorems, which were de
rived in the framework of HQET@12#, the total decay rate
and the branching ratio are estimated. Comparing this es
mation with experimental data, we extract the upper limit o
the CKM matrix elementuVubu. Hence, PQCD complements
HQET in the study of heavy meson decays. The formalis
developed in this work can be easily generalized to oth
heavy-to-light transitions.

The first attempt to apply the PQCD formalism including
Sudakov suppression to theB→p ln decay is made by
Akhoury et al. @13#. However, they did not consider the
transverse momentum dependence, and their predictions
much smaller than ours. As claimed in@13#, the hard gluon
involved in the decay process is off shell at most by a
amount of 1.4LQCDmb , mb being theb quark mass. In our
approach the hard gluon is off shell roughly by 8LQCDmb .
Therefore, the perturbative analysis presented here is m
reliable.

The resummation of Sudakov logarithms for the pio
form factor is reviewed in Sec. II. The resummation tech
nique for the semileptonicB meson decay is developed in
Sec. III, where the full expression for the Sudakov facto
including leading and next-to-leading logarithms is given
Section IV contains the numerical analysis of the factoriza
tion formulas for relevant form factors. Section V is our con
clusion.

II. PION FORM FACTOR

We review factorization theorems including Sudakov ef
fects for a simple light-to-light process, the pion electromag
netic form factor, which is expressed as the convolution of
hard scattering amplitude with wave functions. We invest
gate radiative corrections to the factorization formula, an
explain how they are absorbed into the convolution factor
The first step is to find the leading momentum regions o
radiative corrections, from which important contributions to
loop integrals arise. There are two types of important contr
2480 © 1996 The American Physical Society
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butions: collinear, when the loop momentum is parallel to th
incoming or outgoing pion momentum, and soft, when th
loop momentum is much smaller than the momentum tran
fer Q2 of the process. HereQ2 is assumed to be large and
serves as an ultraviolet cutoff of loop integrals. We associa
small transverse momentumkT with the partons of the pion,
which is taken as an infrared cutoff.

Each type of important contributions gives large sing
logarithms. They may overlap to give double~leading! loga-
rithms in some cases. These large logarithms, appearing
product withas , must be organized in order not to spoil th
perturbative expansion. It is known that single logarithm
can be summed to all orders using renormalization gro
~RG! methods, and double logarithms must be treated by
resummation technique developed in@14#. This technique is
most easily explained in axial gaugen•A50, n being a
gauge vector andA the gauge field.

The diagrams shown in Fig. 1 representO(as) correc-
tions to the basic factorization of the pion form factor, whic
contain the large logarithms mentioned above. In axial gau
the two-particle reducible diagrams, such as Figs. 1~a! and
1~b!, have double logarithms from the overlap of collinea
and soft divergences, while the two-particle irreducible co
rections, such as Figs. 1~c! and 1~d!, contain only single soft
logarithms. This distinction is consistent with the physic
picture: Two partons moving in the same direction can inte
act with each other through collinear or soft gluons, whi
those moving apart from each other can interact only throu
soft gluons. Below we shall concentrate on reducible corre
tions, and demonstrate how they are summed into a Suda
factor.

A careful analysis shows that soft divergences cancel b
tween Figs. 1~a! and 1~b!, as well as between Figs. 1~c! and
1~d!, in the asymptotic region withb→0, b being the conju-
gate variable tokT . Therefore, reducible corrections ar
dominated by collinear divergences, and can be absorb
into the pion wave functionP , which involves similar dy-
namics. Irreducible corrections, due to the cancellation
soft divergences, are then absorbed into the hard scatte
amplitudeH. Hence, the factorization picture holds at lea
asymptotically after radiative corrections are included. Th
cancellation of soft divergences is closely related to the u

FIG. 1. O(as) corrections to the basic factorization of the pio
form factor.
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versality of wave functions. For a largeb, double logarithms
are present and the resummation technique must be impl
mented.

Based on the above reasoning, the factorization formul
for the pion form factor in theb space is written as@1#

Fp~Q2!5E
0

1

dx1dx2E d2b

~4p!2
P ~x2 ,b,P2 ,m!

3H̃~x1 ,x2 ,b,Q,m!P ~x1 ,b,P1 ,m!, ~1!

wherem is the factorization and renormalization scale, andb
can be regarded as the separation between two valen
quarks.H̃ is the Fourier transform ofH. P1 andP2 are the
momenta of the incoming and outgoing pions, respectively
We choose the Breit frame, in whichP1

15P2
25Q/A2 and

all other components ofP’s vanish,Q252(P12P2)
2 being

the momentum transfer mentioned before. Equation~1! de-
pends only on a singleb, because the virtual quark line
involved in H is thought of as far from mass shell, and
shrunk to a point@1#. The wave functionP includes all lead-
ing logarithmic enhancements at largeb.

The basic idea of the resummation technique is as fol
lows. If the double logarithms appear in an exponential form
P;exp(2 const3 lnQlnlnQ), the task will be simplified by
studying the derivative ofP , dP /dlnQ5CP . The coeffi-
cient C contains only large single logarithms, and can be
treated by RG methods. Therefore, working withC one re-
duces the double-logarithm problem to a single-logarithm
problem.

The two invariants appearing inP areP•n andn2. Be-
cause of the scale invariance inn of the gluon propagator,

Nmn~q!5
2 i

q2 S gmn2
nmqn1qmnn

n•q
1n2

qmqn

~n•q!2D , ~2!

P depends only on a single large scalen25(P•n)2/n2. It is
then easy to show that the differential operatord/dlnQ can
be replaced byd/dn:

d

dlnQ
P52

n2

P•n
Pa

d

dna P . ~3!

The motivation for this replacement is that the momentumP
flows through both quark and gluon lines, butn appears only
on gluon lines. The analysis then becomes easier by studyin
then, instead ofP, dependence.

Applying d/dna to the gluon propagator, we get

d

dna
Nmn52

1

q•n
~Nmaqn1Nnaqm!. ~4!

The momentumq that locates at both ends of the differenti-
ated gluon line is contracted with a vertex, where the gluon
attaches. After adding together all diagrams with differen
differentiated gluon lines and using the Ward identity, we
arrive at the differential equation ofP as shown in Fig. 2~a!,
in which the square vertex represents

gTa
n2

P•nq•n
Pa ,

n
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Ta being a color matrix. An important feature of the squa
vertex is that the gluon momentumq does not lead to col-
linear divergences because of the nonvanishingn2. The lead-
ing regions ofq are then soft and ultraviolet, in which Fig
2~a! can be factorized according to Fig. 2~b! at lowest order.
The part on the left-hand side of the dashed line is exac
P , and that on the right-hand side is assigned to the coe
cientC.

Therefore, we need a functionK for the absorption of the
soft divergences from the first two diagrams in Fig. 2~b!, and
a functionG for the ultraviolet divergences from the othe
two diagrams. The soft subtraction employed inG is to
avoid double counting. Generalizing the two functions to a
orders, we derive the differential equation ofP :

d

dlnQ
P ~x,b,P,m!5@ 2K ~bm!1G ~xn/m!

1G „~12x!n/m…#P ~x,b,P,m!.

~5!

K andG have been calculated to one loop, and their sing
logarithms have been organized to give the evolutions inb
andQ, respectively@3#. They possess individual ultraviolet
poles, but their sumK1G is finite such that Sudakov loga-
rithms are RG invariant.

Substituting the expressions forK andG into Eq.~5!, we
obtain the solution

P ~x,b,P,m!5expF2 (
j5x, 12x

s~j,b,Q!G P̄ ~x,b,m!. ~6!

The exponents, grouping the double logarithms inP , is
expressed in terms of the variables

q̂[ ln@jQ/~A2L!#,

b̂[ ln~1/bL! ~7!

as @1#

FIG. 2. Graphic representation of Eq.~5!.
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s~j,b,Q!5
A~1!

2b1
q̂lnS q̂

b̂
D 1

A~2!

4b1
2 S q̂

b̂
21D 2

A~1!

2b1
~ q̂2b̂!

2
A~1!b2

4b1
3 q̂F ln~2b̂!11

b̂
2
ln~2q̂!11

q̂
G

2FA~2!

4b1
2 2

A~1!

4b1
lnS e2g21

2 D G lnS q̂
b̂
D

1
A~1!b2

8b1
3 @ ln2~2q̂!2 ln2~2b̂!#, ~8!

with L[LQCD. The coefficientsA( i ) andb i are

b15
3322nf

12
, b25

153219nf
24

,

A~1!5
4

3
, A~2!5

67

9
2

p2

3
2
10

27
nf1

8

3
b1lnS eg

2 D , ~9!

wherenf53 in this case is the number of quark flavors and
g is the Euler constant. To derive Eq.~8!, a spacelike gauge
vectorn}(1,21, 0) has been chosen.

The functionsP̄ and H̃ still contain single logarithms
from ultraviolet divergences, which need to be summed us
ing their RG equations@3#:

DP̄ ~x,b,m!522gqP̄ ~x,b,m!, ~10!

DH̃~xi ,b,Q,m!54gqH̃~xi ,b,Q,m!, ~11!

with

D5m
]

]m
1b~g!

]

]g
. ~12!

gq52as /p is the quark anomalous dimension in axial
gauge. Solving Eq.~10!, the large-b behavior ofP is sum-
marized as

P ~x,b,P,m!5expF2 (
j5x, 12x

s~j,b,Q!

22E
1/b

m dm̄

m̄
gq„g~m̄ !…G P̄ ~x,b,1/b!.

~13!

We express the initial conditionP̄ in Eq. ~13! as

P̄ ~x,b,1/b!5f̃~x,b!1O„as~1/b!…, ~14!

where the evolution ofP̄ in b is denoted byO(as), and the
argumentb in f̃ corresponds to the intrinsic transverse mo
mentum dependence of the pion wave function@6#.

Similarly, the RG analysis applied toH̃ gives

H̃~xi ,b,Q,m!5expF24 E
m

t dm̄

m̄
gq„g~m̄ !…G H̃~xi ,b,Q,t !,

~15!
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where t is the largest mass scale involved in the hard sc
tering:

t5max~Ax1x2Q,1/b!. ~16!

The scaleAx1x2Q is associated with the longitudinal mo
mentum of the hard gluon and 1/b with the transverse mo-
mentum. Combining all the above exponents, we derive
factorization formula for the pion form factor,

Fp~Q2!5E
0

1

dx1dx2E d2b

~4p!2
f̃~x1 ,b!f̃~x2 ,b!

3H̃~x1 ,x2 ,b,Q,t !exp@2S~x1 ,x2 ,b,Q!#, ~17!

where the complete Sudakov exponent is given by

S~x1 ,x2 ,b,Q!5(
i51

2

@s~xi ,b,Q!1s~12xi ,b,Q!#

2
2

b1
ln

t̂

b̂
, ~18!

with t̂5 ln(t/L).
Variation of e2S with b has been displayed in@1#: It

shows a strong falloff in the largeb region, vanishing for
b.1/L, and approaches unity in the small-b region, where
the Sudakov logarithms diminish. Ifb is small, the running
coupling constantas with its argument set tot will be small,
regardless of the values ofx’s. When b is large and
x1x2Q

2 is small, as is still large. However, the Sudakov
factor in Eq.~17! strongly suppresses this region. Since t
main contributions to the factorization formula come fro
the small-b region, the perturbation theory becomes re
tively self-consistent.

III. DECAY B˜p ln

We extend the PQCD formalism for the pion form facto
to exclusive processes involving both light and heavy m
sons. In particular, we concentrate on the semileptonic de
B→p ln. We shall show that PQCD is appropriate to th
process when the pion is energetic enough. We first ana
the leading regions of radiative corrections, and derive
Sudakov factor including both leading and next-to-leadi
logarithms.

The amplitude of the decayB→p ln is written as

A~P1 ,P2!5
GF

A2
Vubn̄gm~12g5!l ^p~P2!uūgmbuB~P1!&,

~19!

where the four-fermion interaction with the Fermi couplin
constantGF51.16631025 GeV22 has been inserted.P1
and P2 are the momenta of theB meson and of the pion,
respectively. We start with the lowest-order factorization f
the matrix elementMm5^p(P2)uūgmbuB(P1)& with a hard
exchanged gluon as shown in Fig. 3, the left-hand side be
the B meson at rest and the right-hand side a fast-recoil
pion. The heavyb quark is represented by a bold line. Th
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symbol 3 denotes the electroweak vertex with the CKM
matrix elementVub , from which a lepton pair emerges.

Parton momenta are assigned as in Fig. 3: Theb quark
carriesP12k1 , and the accompanying light quark carrie
k1 . They satisfy the on-shell conditionsP1

25mB
2 ,

(P12k1)
2'mb

2 andk1
2'0, mB being theB meson mass. In

the Breit frameP1 has the componentsP1
15P1

25mB /A2
and vanishing transverse components.k1 may have a large
minus componentk1

2 and small transverse component
k1T , which will serve as the infrared cutoff of loop correc
tions below. The assignment of parton momenta on the pi
side is similar to that for the pion form factor, as shown i
Fig. 3. The large component ofP2 is P2

15hmB /A2, h be-
ing related to the energy fraction of the pion b
P2
05hmB/2. The physical range ofh is 0<h<1, since the

pion carries away at most half of the rest energy of theB
meson. The transverse momentum associated with the
lence quarks of the pion is denoted byk2T . The invariant
mass of the lepton-neutrino pair is given b
ml
25(P12P2)

25(12h)mB
2 .

We now consider radiative corrections to the above ba
factorization. The essential step is again to locate the lead
regions of radiative corrections in axial gauge. For reducib
corrections on the pion side, the conclusion is the same
before: They produce double logarithms with soft ones ca
celed in the asymptotic region, and can be absorbed into
pion wave function, giving the evolution of the wave func
tion. Irreducible corrections, with an extra gluon connectin
a quark in the pion and a quark in theB meson, contain only
soft divergences, which also cancel asymptotically. Henc
they are absorbed into a hard scattering amplitude.

On the left-hand side, three diagrams showingO(as) cor-
rections are displayed in Fig. 4. Figure 4~a!, giving a self-
energy correction to the massiveb quark, produces only soft

FIG. 3. Lowest-order factorization for the decayB→p ln.
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divergences, and is thus not leading. Ifk1
2 is small, collinear

divergences in Figs. 4~b! and 4~c!, which arise from the loop
momentum with a large component parallel tok1 , will not
be pinched. Figures 4~b! and 4~c! then also give only soft
divergences. This is consistent with the physical picture t
a soft light valence quark cannot interact with the hea
quark through a fast moving gluon. However, theB meson
wave functions employed in Sec. IV exhibit substantial pro
ability of finding the light quark withk1

2 of order mB ,
though they peak at smallk1

2 . Therefore, Figs. 4~b! and 4~c!
contribute collinear divergences. Note that Fig. 4~b! contains
soft divergences which are not completely canceled by th
from Figs. 4~a! and 4~c! even in the asymptotic region. In
conclusion, Figs. 4~b! and 4~c! indeed contain double loga
rithms, which must be organized by the resummation te
nique.

Since the collinear divergences on theB meson side are
less important due to suppression from the wave functi
reducible corrections are basically dominated by soft div
gences, and can be absorbed into theB meson wave func-
tion, which is also dominated by soft dynamics. This abso
tion should be compared to that on the pion side, wh
reducible corrections are dominated by collinear dive
gences.

We then write down the factorization formula for the de
cayB→p ln in transverse configuration space:

Mm5E
0

1

dx1dx2E d2b1
4p

d2b2
4p

P p~x2 ,b2 ,P2 ,m!

3H̃m~x1 ,x2 ,b1 ,b2 ,m,m!P B~x1 ,b1 ,P1 ,m!, ~20!

where both the pion andB meson wave functionsP p and
P B contain leading double logarithms. Here twob’s are in-
troduced, because the virtual quark line in the hard scatte
may not be far from mass shell, and cannot be shrunk t
point as explained later. Hence, we needb1 (b2) to denote
the separation between the two valence quarks of theB me-
son ~pion!. The approximationmb'mB5m has been made

FIG. 4. O(as) corrections to theB meson wave function.
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for simplicity. The momentum fractionx1 is defined by
k1

2/P1
2 . H̃m is the Fourier transform of the hard scattering

amplitude derived from Fig. 3, whose explicit expression
will be given in Sec. IV. The resummation of the double
logarithms inP p has been performed in the previous section.
We quote the results directly withQ set tohm andnf set to
4 @13#. Below we shall studyP B .

There are two major difficulties in summing up the double
logarithms in Figs. 4~b! and 4~c!. First, Fig. 4~a!, giving only
single soft logarithms, must be excluded. Second, there are
many invariants involved inP B that are constructed from
P1 , k1 , andn, such asP1

2 , P1•k1 , P1•n, k1•n, andn
2.

The fact thatP B contains many invariants renders the tech-
nique of replacingd/dm by d/dn inapplicable,m being the
large scale of this process, because some large invariants
such asP1

2 cannot be related ton.
However, the difficulties can be overcome by applying the

eikonal approximation to the heavy quark line as shown in
Fig. 5. In the collinear region with the loop momentumq
parallel tok1 and in the soft region ofq, it is possible to
replace theb quark line by an eikonal line:

~P” 12k” 11q”1m!ga

~P12k11q!22m2 '
P1

a

P1•q
1R, ~21!

where the remaining partR either vanishes as contracted
with the matrix structure of theB meson wave function or is
less leading. The factor 1/(P1•q) is associated with the ei-
konal propagator, and the numeratorP1

a is absorbed into the
vertex, where a gluon attaches to the eikonal line. The phys-
ics involved in this approximation is that a soft gluon or a
gluon moving parallel tok1 cannot explore the details of the
b quark, and its dynamics can be decoupled from theb
quark. This idea is similar to the flavor symmetry employed
in HQET. An explicit evaluation of radiative corrections con-
firms this approximation. The first difficulty is then resolved,
because self-energy diagrams of an eikonal line are excluded
by definition @15#.

The eikonal approximation also reduces the number of
large invariants involved inP B . We have the scale invari-
ance inP1 as shown by the Feynman rule for an eikonal line
in Eq. ~21!, in addition to the scale invariance inn. Hence,
P1 does not lead to a large scale, and the only large scale is
k1

2 , which must appear in the ratios (k1•n)
2/n2 and

(k1•P1)
2/P1

2 .
A direct lowest-order investigation on the diagrams in

Fig. 4 indicates that the second scale (k1•P1)
2/P1

2 does not
exist. A lowest-order analysis helps to find out where and

FIG. 5. Eikonal approximation for theb quark line.
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what important logarithms are. These important logarith
will certainly be summed to all orders as shown below.
suffices to examine Fig. 4~b!, since Fig. 4~a! has been ex-
cluded, and Fig. 4~c! gives a contribution that depends onl
on k1 andn. The loop integral associated with Fig. 4~b! is
proportional to

E d4q

~2p!4
P1

agb~k” 11q” !

P1•q~k11q!2
Nabe

iqT•b, ~22!

in which the eikonal approximation for theb quark has been
employed. It is apparent that only the first termgab in Nab
leads to theP1 dependence for the specific choice of th
gauge vectorn}(1,21, 0) as in the pion case. Because th
large logarithms arise from the leading regions, we conc
trate on the soft and collinear regions ofq. In the soft region
Eq. ~22! becomes

E d4q

~2p!4
P1•k1

P1•qk1•qq
2e

iqT•b, ~23!

which possesses scale invariance ink1 , and thus the ratio
(k1•P1)

2/P1
2 cannot exist. In a similar way, we can sho

that this ratio does not appear in the collinear region eith
Therefore, with the eikonal approximation the problem

simplified to one in analogy with the pion case. NowP B
depends only on the single large scalen825(k1•n)

2/n2, and
d/dm can be replaced byd/dn. Following the same proce-
dures as in Sec. II, the differential equation ofP B is derived
as

d

dln m
P B5

d

dln k1
2P B5@K ~bm!1G ~n8/m!#P B ,

~24!

where the lowest-orderK is obtained from Fig. 6~a!, and
G from Fig. 6~b!, with the square vertex representing

gTa
n2

k1•nq•n
k1

a .

Note the absence of the diagram corresponding to the s
energy correction to the eikonal line. Since theB meson
massm is a Lorentz invariant, differentiation with respect t
m in Eq. ~24! should be regarded as a mathematical tool, a
what really varies is the parton momentumk1

25x1m/A2.
Comparing Fig. 6~a! with Fig. 2~a!, we find that the evalu-

ation ofK for the B meson is similar to that for the pion
except the third diagram. The contribution from this ext
diagram is proportional to

E d4q

~2p!4
n2k1

aP1
b

k1•nq•nP1•q
Nabe

iqT•b, ~25!

which vanishes forn}(1,21, 0). Because no new ultravio-
let and infrared divergences are introduced, this diagr
does not spoil the RG invariance of the Sudakov logarithm
The functionsK andG for theB meson are then the sam
as those for the pion.

Substituting the expressions forK andG into Eq. ~24!,
we obtain the solution
s
It
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m
s.

P B~x1 ,b1 ,P1 ,m!5exp@2s~x1 ,b1 ,m!#P̄ B~x1 ,b1 ,m!,
~26!

where the exponents is given by Eq.~8! but withnf54 @13#.
Summing up the single logarithms inP̄ B , Eq. ~26! becomes

P B~x1 ,b1 ,P1 ,m!5expF2s~x1 ,b1 ,m!

22E
1/b1

m dm̄

m̄
gq„g~m̄ !…G f̃B~x1 ,b1!

1O„as~1/b1!…, ~27!

where the anomalous dimensiongq is the same as before.
Combining the summation of the single logarithms inH̃m

and the results fromP p , we derive the complete Sudakov
exponent

S~xi ,bi ,h,m!5s~x1 ,b1 ,m!1s~x2 ,b2 ,hm!

1s~12x2 ,b2 ,hm!2
1

b1
S ln t̂

b̂1
1 ln

t̂

b̂2
D .
~28!

t is the largest scale involved in the hard scattering, whic
will be defined in Sec. IV.

IV. NUMERICAL RESULTS

Having derived the Sudakov exponent for the semilep
tonic decayB→p ln, we evaluate the form factors, and ex-
amine how much of a contribution comes from the perturba
tive region with smallbi . The expression for lowest-order
Hm(a) from Fig. 3~a! is written as

FIG. 6. Lowest-order diagrams for~a! the functionK and for
~b! the functionG associated with theB meson.
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Hm~a!5trFga

g5P” 2

A2Nc

gm
P” 12x2P” 21k”2T1m

~P12x2P21k2T!22m2ga
~P” 11m!g5

A2Nc
G 2g2NcC F

~x2P22k11k2T!2

5
4~11x2h!g2C Fm

2

@x2hm
21k2T

2 #@x1x2hm
21~k1T2k2T!2#

P2
m , ~29!

where the factorsg5P” 2 /A2Nc and (P” 11m)g5 /A2Nc are the matrix structures of the pion andB meson wave functions,
respectively@13#, C F54/3 is a color factor, andNc is the number of colors. The relationk1

25x1m/A2 has been inserted. In
the second expressionk2T in the fermion propagator is not neglected. For the pion form factor, the corresponding transv
momentum dependence is negligible, because there is not the constant 1, but onlyx2 , in the numerator, which cancels the
singularity fromx2→0 in the denominator. However, in the present case, due to the massiveness of theb quark, the constant
1 exists and such a cancellation does not occur as shown in Eq.~29!. To ensure that the virtual quark is part of the hard
scattering,k2T must be retained.

Similarly, the expression for lowest-orderHm(b) is given by

Hm~b!5trFga

g5P” 2

A2Nc

ga
P” 21k” 1

~P21k1!
2gm

~P” 11m!g5

A2Nc
G 2g2NcC F

~x2P22k11k2T!2
5

4g2C Fx1hm
2

@x1hm
21k1T

2 #@x1x2hm
21~k1T2k2T!2#

P1
m

2
4g2C Fx1m

2

@x1hm
21k1T

2 #@x1x2hm
21~k1T2k2T!2#

P2
m . ~30!

To derive the second formula, we have replacedk1
m by

P2•k1
P1•P2

P1
m1S P1•k1

P1•P2
2
2

h

P2•k1
P1•P2

DP2
m . ~31!

Herek1T in the fermion propagator is negligible, because the singularity fromx1→0 is removed by the numerator. However,
we keep it for consistency.

Performing the Fourier transform of Eqs.~29! and ~30!, the matrix elementMm is written as

Mm5 f 1P1
m1 f 2P2

m . ~32!

The factorization formulas for theB→p transition form factorsf 1 and f 2 are given by

f 1516pC Fm
2E

0

1

dx1dx2E
0

`

b1db1b2db2fB~x1!fp~x2!x1hh~x1 ,x2 ,b1 ,b2 ,h,m!exp@2S~xi ,bi ,h,m!# ~33!

and

f 2516pC Fm
2E

0

1

dx1dx2E
0

`

b1db1b2db2fB~x1!fp~x2!@2x1h~x1 ,x2 ,b1 ,b2 ,h,m!

1~11x2h!h~x2 ,x1 ,b2 ,b1 ,h,m!#exp@2S~xi ,bi ,h,m!#, ~34!

respectively, with

h~x1 ,x2 ,b1 ,b2 ,h,m!5as~ t !K0~Ax1x2hmb2!@u~b12b2!K0~Ax1hmb1!I 0~Ax1hmb2!

1u~b22b1!K0~Ax1hmb2!I 0~Ax1hmb1!#. ~35!

K0 and I 0 are the modified Bessel functions of order zero. To derive Eqs.~33! and ~34!, we have employed the relation
f(x)5f̃(x,b50)/4p. Here we neglect the evolution inb and the intrinsicb dependence of the wave functions, since thes
two effects cancel partially: The former gives an enhancement@4#, but the latter leads to a suppression@6#. Similar to Eq.~16!,
we choose the largest scalet associated with the hard gluon as

t5max~Ax1x2hm,1/b1,1/b2!. ~36!

The running coupling constant is given by

as~ t !

p
5

1

2b1t̂
2

b2

4b1
3

ln2t̂

t̂2
. ~37!
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We consider the following two models of theB meson wave function, which have been adopted in@13#. They are the
oscillator wave function@16#

FB
~ I!~x,kT!5

N

v2Ax~12x!expF2
mB
2

2v2 S 122x2
mb
2

2mB
2 D 2GexpS 2

kT
2

2v2D'
N

v2Ax~12x!expS 2
m2

2v2 x
2D expS 2

kT
2

2v2D , ~38!

in our approximationmb'mB5m, and@17#

FB
~ II !~x,kT!5N8FC1

mb
2

12x
1

kT
2

x~12x!
G22

, ~39!

wherex is the momentum fraction of the light quark in theB meson. The parameters inFB
(I) arev50.4 GeV andm55.28

GeV. The constantN is determined by the normalization of the wave function,

E
0

1

dxE d2kT
16p3FB

~ I!~x,kT![E
0

1

dxfB
~ I!~x!5

f B

2A3
, ~40!

f B5160 MeV being theB meson decay constant@18#, which leads toN5176.9 GeV. The constantsN8 andC in FB
(II) are

determined by the normalizations@17#

E
0

1

dxE d2kT
16p3FB

~ II !~x,kT!5
f B

2A3
,

E
0

1

dxE d2kT
16p3 @FB

~ II !~x,kT!#25
1

2
, ~41!

from whichN85760.66 GeV3 andC5226.888 973 GeV2 are obtained.
The Fourier transform ofFB gives

f̃B
~ I!~x,b!5E d2kT

~2p!2
FB

~ I!~x,kT!eikT•b5
N

2p
Ax~12x!expS 2

m2

2v2 x
2DexpS 2

v2b2

2 D , ~42!

f̃B
~ II !~x,b!5

N8bx2~12x!2

4pAm2x1Cx~12x!
K1„Am2x1Cx~12x!b…, ~43!
I
e
y

with K1 the modified Bessel function of order one. As state
before, we neglect the intrinsicb dependence of the wave
functions, and obtain

fB
~ I!~x!5

1

4p
lim
b→0

f̃B
~ I!~x,b!5

N

8p2Ax~12x!expS 2
m2

2v2 x
2D ,
~44!

fB
~ II !~x!5

N8x~12x!2

16p2@m21C~12x!#
. ~45!

Obviously, both models peak at smallx, which characterizes
the soft dynamics in theB meson. However, the probability
at intermediatex is indeed comparable at least in model I
and the resummation of double logarithms performed in S
III is essential. At last, we employ the Chernyak-Zhitnitsk
model @19# for the pion wave function@20#:

f̃p
CZ~x,b!55A3 f px~12x!~122x!2

3S 4pexpF2
x~12x!b2

4ap
2 G D , ~46!
d

,
c.

fp
CZ~x!55A3 f px~12x!~122x!2, ~47!

with f p593 MeV the pion decay constant andap52.02
GeV21.

We are now ready to computef 1 and f 2 in Eqs.~33! and
~34! numerically. SettingL50.2 GeV, the results off i from
the two models offB(x), with b1 andb2 integrated up to the
same cutoffb1c5b2c5bc , are shown in Fig. 7. ForfB

(II) , it
is found that ath50.4 approximately 50% of the contribu-
tion to f i comes from the region withas(1/bc)/p,0.5 or,
equivalently,bc,0.6L. At h50.5, 55% of the contribution
is accumulated in this perturbative region. Ash51, the per-
turbative contribution has reached 70%. It implies that the
PQCD analysis of the decayB→p ln in the range of
h.0.4 is relatively self-consistent@1,4#. For fB

(I) , the per-
turbative analysis becomes reliable forh.0.5. This is be-
cause fB

(I) peaks at a smallerx50.05 (fB
(II) peaks at

x50.11), which enhances the soft contribution. This is also
the reason predictions fromfB

(I) are about twice larger than
those fromfB

(II) .
In the approach of@13# the transverse momentum depen-

dence was not considered. Instead, the energies of the virtual
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quark and of the virtual gluon involved in the hard scatteri
were taken as the ultraviolet and infrared cutoffs of radiati
corrections, respectively. The resulting Sudakov logarithm
which are proportional to lnm/k1

2 , then give weaker suppres
sion. From the steepest descent approximation of their Su
kov factor, the saddle point was found atk1

2'1.4L for
h51. Similarly, we determine the saddle point of our Sud
kov factor in Eq.~28! by

]S

]b1
5

]S

]b2
50 , ~48!

from which a larger scale 1/b1510L for L50.1 GeV or
1/b156L for L50.2 GeV is obtained. Hence, the perturb
tive expansion in our formalism is more reliable. At such
large scale, the radiative corrections to the hard scatte
with a triple gluon vertex, which were responsible for Sud
kov suppression in@13#, are in fact of higher twist and un-
important.

The magnitude off 2 is much larger than that off 1 , espe-
cially in the small-h region. This fact is consistent with thei
behaviors in the soft pion limit as derived in HQET@12#,
where f 2 is found to have a pole ath→0,

lim
h→0

f 2'
2 f B*
h f p

gBB* p , ~49!

FIG. 7. Dependence of~a! f 1 and~b! f 2 on the cutoffbc derived
from fB

(I) ~solid lines! and from fB
(II ) ~dashed lines! for ~1!

h50.4, ~2! h50.5, and~3! h51.0.
ng
ve
s,
-
da-

a-

a-
a
ring
a-

r

for mB*'mB , mB* being theB* meson mass.f 1 in the soft
pion limit vanishes like 12AmB* /mB. In the above expres-
sion gBB* p'0.75 @21# is theBB*p coupling constant, and
f B*'1.1f B @22# is the decay constant of theB* meson.
Compared to the approaches@13,23# in the literature that

are based on the Brodsky-Lepage QCD exclusive theory
@24#, our predictions for theB→p transition form factors are
much larger. The reason is as follows. Since the previous
approaches did not include the transverse momentum depen
dence, the virtual quark in the hard scattering may go on
shell asx2→0 as shown in Eq.~29!. In order that factoriza-
tion theorems make sense, this quark propagator must b
subtracted, and thus the constant 1 in the numerator of Eq
~29! is removed. This subtraction then leads to much smaller
results. In our formalism the factorization is preserved by
adding transverse momenta and Sudakov suppression th
control the magnitude of transverse momenta, instead of by
subtraction. Hence, the large difference between our predic
tions and those in@13,23# is basically attributed to the inclu-
sion of the transverse momentum dependence and the Sud
kov effects, not to the particular choice of wave functions.

With the results off 1 and f 2 , we compute the differential
decay rate ofB0→p2l1n for massless leptons@13#,

dG

dh
5uVubu2

GF
2m5h3

768p3 u f 11 f 2u2[uVubu2R~h!, ~50!

where the second formula defines the functionR(h). Predic-
tions ofR(h) are shown in Fig. 8, from which the decrease
of dG/dh with h is observed. This behavior is opposite to
that given in@13#, which shows an increase withh starting
from zero ath50.5. Such a dip at the middle value ofh is
again due to the subtraction of the on-shell fermion propaga
tor from hard scattering@13#. Predictions in@13# for the dif-
ferential decay rate are almost 103 times smaller than ours.

The differential decay rate in the soft pion limit is ob-
tained from Eq.~49!:

lim
h→0

R~h!5
GF
2m5h

192p3

f B*
2

f p
2 gBB* p

2 , ~51!

which exhibits a linear relation withh. Extrapolating Eq.
~51! and our factorization formulas to each other, we observe
a fair match aroundh50.2 as shown in Fig. 8. Certainly, this
extrapolation may not be reliable, but it is interesting to ob-
serve the match of these two different approaches at interme
diateh. It implies that our PQCD formalism is successful at
largeh, but becomes worse quickly in the soft pion limit. On
the contrary, the soft pion technique is appropriate at smal
h, but gives an overestimation in the perturbative region.
The overlap indicates the transition@7,25# of the B meson
decays to PQCD at middle values ofh and the complemen-
tarity between soft pion theorems and the perturbative for-
malism.

We then estimate the total decay rateG by integrating
dG/dh using Eq.~51! for h,0.2 and using our predictions
for h.0.2. We obtain 0.4310211uVubu2 GeV from soft pion
theorems, and 1.8310211uVubu2 and 0.3310211uVubu2 GeV
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for the use offB
(I) andfB

(II) , respectively, from the PQCD
formalism. Their sum givesG'2.2310211uVubu2 GeV for
model I and 0.7310211uVubu2 for model II. They correspond
to branching ratios 43uVubu2 and 14uVubu2, respectively, for
the total width of theB0 meson is (0.5160.02)31029 MeV
@26#. The current experimental limit on the branching ratio
B0→p2l1n is 3.331024 @27#. We then extract the matrix
element uVubu,2.831023 from model I and
uVubu,4.831023 from model II. The value 0.003 given in
the literature@26# is located in the above range.

It is also interesting to investigate the effects from th
variation of parameters and wave functions involved in th
work. Decreasing the QCD scale fromL50.2 to 0.1 GeV,
we obtain form factors which are roughly 30% larger. Wh
including the intrinsicb dependence of the wave function
the perturbative region will be extended down toh.0.3, but
the magnitudes of the form factors will decrease. When e
ploying the asymptotic pion wave function@20#

f̃p
as~x,b!5A3 f px~12x!S 4pexpF2

x~12x!b2

4ap
2 G D ,

~52!

fp
as~x!5A3 f px~12x!, ~53!

which is less end-point concentrated, predictions for the fo
factors will become about 40%. The outcomes of the stu
on the intrinsicb dependence are listed in Table I, where t
results of f 11 f 2 at h51 presented in Fig. 7 are taken a
unity for simplicity, and those from various wave function
in Eqs. ~42!, ~43!, ~46!, and ~52! are expressed in terms o
percentage. The outcomes for otherh are close to those
listed in Table I.

It is observed that the intrinsicb dependence in theB
meson wave functions is more important, which gives rise

FIG. 8. Dependence ofR(h) on h derived from~1! fB
(I) , from

~2! fB
(II ) , and from~3! soft pion theorems. Dashed lines represe

the extrapolation.
of

e
is

en
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rm
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he
s
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to

a 50% difference. That in the pion wave functions gives only
1–3 %. Note that iffp

as is used, and the intrinsicb depen-
dence of both theB meson and pion wave functions is con-
sidered, the result will decrease to 20%. It implies that the
form of the wave functions still needs to be determined pre
cisely. However, we emphasize that the completeb depen-
dence of wave functions includes the evolution proportiona
to as(1/b). Taking into account the evolution will moderate
the drastic difference due to the intrinsicb dependence.

V. CONCLUSION

In this paper we have applied the resummation techniqu
to the semileptonic decayB→p ln, and derived the Sudakov
factor up to next-to-leading logarithms in this heavy-to-light
transition process. The idea is to employ the eikonal approx
mation for the heavyb quark line such that its nonleading
self-energy diagram is excluded, and the number of larg
scales involved in theB meson wave function is reduced.
The resummation of double logarithms in the heavy meson i
then simplified to one in analogy with the light meson case
The PQCD calculation of the differential decay rate includ-
ing Sudakov effects has been examined and found to be r
liable for h above 0.4. By combining our predictions with
soft pion results and comparing them with experimental data
we have estimated the total decay rate, and extracted th
upper limit 2.8–4.831023 for the CKM matrix element
uVubu.

We do not observe the dip ath50.5 for the differential
decay rate as predicted in@13#, which arises from the sub-
traction of an on-shell fermion propagator from the hard
scattering. This subtraction is not necessary in our analys
because of the inclusion of the transverse momentum depe
dence. The behavior of the differential decay rate inh is also
opposite to that in@13#.

We have investigated the effects from the intrinsicb de-
pendence of wave functions. Another source of theb depen-
dence, the evolution, still needs further consideration. Ou
formalism can be easily applied to a similar semileptonic
decayB→r ln and other nonleptonicB meson decays, which
will be published elsewhere.
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TABLE I. Percentage for results off 11 f 2 ath51 from various
wave functions.

fp
CZ(x) fp

CZ(x,b) fp
as(x) fp

as(x,b)

fB
(I)(x) 1 97% 40% 38%

fB
(I)(x,b) 58% 56% 25% 24%

fB
(II )(x) 1 98% 36% 35%

fB
(II )(x,b) 49% 48% 21% 20%
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