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Form factors of meson decays in the relativistic constituent quark model
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A formalism for the relativistic description of hadron decays within the constituent quark model

is presented. First, hadron amplitudes of the light-cone constituent quark model, in particular,
the weak transition form factors at spacelike momentum transfers, are represented in the form of
dispersion integrals over the hadron mass. Second, the form factors at timelike momentum transfers
are obtained by performing the analytic continuation from the region q & 0. As a result, the
transition form factors both in the scattering and the decay regions are expressed through light-cone
wave functions of the initial and final hadrons. The technique is applied to the description of the
semileptonic decays of pseudoscalar mesons and direct calculation of the transition form factors at

q ) 0. Meson properties in the heavy quark limit are investigated.

PACS number(s): 13.20.—v, 12.39.Hg, 12.39.Ki

I. INTRODUCTION

Weak decays of hadrons provide an important source of
information on the parameters of the standard model of
electroweak interactions, the structure of weak currents,
and internal structure of hadrons. Hadron decay rates in-
volve both the Cabibbo-Kobayashi-Maskawa matrix ele-
ments and hadron form factors; therefore, the extraction
of the standard model parameters from the experiments
on hadron decays requires reliable information on hadron
structure.

The problem of theory is to describe hadron form fac-
tors which involve both perturbative and nonperturba-
tive contributions. Higher order corrections to weak cur-
rents are calculable perturbatively and can be predicted
to high accuracy. The calculation of hadronic matrix el-
ements of the weak currents inevitably encounters the
problem of describing the hadron structure and requires
a nonperturbative consideration. This gives the main un-
certainty to the theoretical predictions for hadron tran-
sition amplitudes.

In the case of the semileptonic K~3 decay, the K —+ vr

weak transition form factor deviates from unity only at
the second order in comparatively small SU(3)-symmetry
breaking and can be calculated. to high accuracy [1], that
provides the most accurate value of the V„,. For extract-

ing the V,p, V„, V„g, and Vg from the decay rates and

lepton spectra in D~3 and B~3 decays, a reliable calcu-

lation of hadron transition form factors at timelike mo-

mentum transfers is necessary.
In the last decade an increasing amount of publica-

tions have been devoted both to the perturbative calcu-

lation of higher order corrections to weak currents and to
the description of weak matrix elements of hadrons. We

shall concentrate on the latter problem, closely related to
the investigation of the nonperturbative aspect of hadron
structure.
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Various theoretical approaches have been applied to
the calculation of the nonperturbative contribution to
hadron form factors. The most popular among them are
the quark model [2—9], QCD suzn rules [10—15], and lat-
tice QCD calculations [16—19]. A critical comparison of
these approaches can be found, e.g. , in [20].

Systems containing heavy and light quarks are usu-
ally considered within the heavy quark effective theory
(HQET) [21], an effective theory based on QCD in the
limit of infinitely large quark masses. The B ~ D, D*
decays associated with the heavy-to-heavy (6 ~ c) quark
transition are described in terms of a single universal
Isgur-Wise (IW) function [22] which can be estimated
with any of the mentioned nonperturbative approaches.
The O(1/m&~) corrections to this picture can be consis-
tently calculated within the HQET (for a detailed review
see [23]).

For the decays caused by the heavy-to-light quark tran-
sitions (D ~ K, K*;D -+ vr, p; and B ~ n, p) the sit-
uation turns out to be less definite. The HQET does
not work properly in this case, and theory faces at least
two practical problems: namely, (i) the existing theo-
retical considerations fail to describe the experimental
results for the B -+ K*/ decay [20]; (ii) in the absence
of experimental information on B ~ vr, p decay modes,
the uncertainty of the theoretical predictions for relevant
form factors is too large to make any definite conclusion
on their values (see Table I).

This stimulates further investigation of hadron transi-
tion form factors.

Our special interest lies in the quark model which re-
flects at the phenomenological level intuitive ideas on
hadron structure. Various versions of this model have
been used for calculating hadronic matrix elements of
the weak currents.

Recently, it has become clear that for a consistent and
successful application of quark models to electroweak de-
cays, a relativistic treatment of quark spins is necessary
[20, 23]. However, in the first models by Grinstein, Is-
gur, Scora, and Wise (GISW) [4], and Wirbel, Stech, and
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TABLE I. The form factors of the decays B ~ vr, p at q = 0. The labels Lat, SR, QM, and LCQM stand for lattice, sum
rules, quark model, and light cone quark model, respectively.

Lat

SR

[16] a
[16] b

[17] a
l»1 b

[10]
[12]

WSB [2]
GISW [4]

F+ (0)
0.29+ 0.06
0.35+ 0.08
0.26+ 0.16
0.30+ 0.19
0.24+ 0.025
0.40+ 0.20

0.33
0.09

V(0)
0.45+0.22
0.53+0.31
0.34+0.10
0.37+0.11

0.33
0.27

Ai (0)
0.29+0.16
0.24+0.12
0.25+0.06
0.22+0.05

0.28
0.05

A, (o)
0.24+ 0.56
0.27+ 0.80
0.38+ 0.22
0.49+ 0.26

0.28
0.02

V(o) /A, (o)
2.0+0.9
2.6+1.9
1.4+0.2
1.6+0.3

1.2
5.4

A2 (0)/Ai (0)
0.8+1.5
1.0+3.1
1.5+0.7
2.3+0.9

1.0
0.4

Bauer (WSB) [2] quark spins were not treated relativis-
tically. A nonrelativistic approach by GISW is based on
a successful potential model for meson spectrum [3]. For
the calculation of the electroweak form factors, rescal-
ing of the parameter in the form factor q dependence is
used. Such an alteration has no strong theoretical deduc-
tion. In addition, an extrapolation from the truly nonrel-
ativistic region q q, where the model is rigorously
valid, to a highly relativistic point q = 0 is performed.
The first step to the relativistic treatment of meson de-
cays was done in the WSB approach. The quark model
calculations are performed only at one point q = 0 us-
ing the infinite momentum frame. For the form factor
q dependence the authors postulate a monopole behav-
ior determined by the nearest vector meson state. Al-
though the model considers the quark motion relativisti-
cally, the quark spins are again treated in a nonrelativis-
tic manner. The WSB approach, as well as the GISW
model and its modifications [5, 6], have both the theo-
retical and experimantal objections, namely, the mod-
els do not reproduce the IW scaling of the form fac-
tors in the heavy quark limit, and fail to describe the
data on the widths and polarizations in the semileptonic
D ~ (K, K*)lv decays (Table II). The answer to these
difhculties lies in the correct relativistic consideration of
the spins. The exact solution to this complicated dynam-
ical problem is not known, but a simplified self-consistent
relativistic treatment of the quark spins can be performed
within the light-&out formalism [26,27]. A description
of electroweak properties of pseudoscalar rnesons [7—9]
and transition form factors at q2 ( 0 [7] was performed
in the framework of this formalism. The only difhculty
with this approach is that the applicability of the model
is restricted by the condition q ( 0, while the physical
region for hadron decays is 0 ( q ( (M; —Mf), M, y
being the initial and 6.nal hadron mass, respectively. So,

for obtaining the form factors in the physical region and
decay widths and lepton distributions, assumptions on
the form factor behavior were necessary. A procedure to
remedy this difhculty is proposed here.

We present a formalism for the relativistic description
of the form factors of hadron decays within the con-
stituent quark model. For a direct calculation of the
transition form factors at timelike momentum transfers
we use a dispersion formulation of the light-cone con-
stituent quark model [26]. Namely, the amplitudes of
hadron interactions considered within the framework of
the light-cone formalism are represented as dispersion in-
tegrals over the hadron mass. After that, the form factors
at q ) 0 are derived by performing the analytic contin-
uation from the region q ( 0. As a result, for a decay
caused by the weak transition of the quark Q(m;)
Q(mf), form factors in the region q ( (m, —my) are
expressed through the light-cone wave functions of the
initial and final hadrons. The developed formalism is
applied to the analysis of the electroweak properties of
pseudoscalar mesons.

In the next section we demonstrate the equivalence of
the light-cone constituent quark model and the dispersion
relation approach [28,29]. We present all technical details
of the description of a pseudoscalar meson within the
dispersion relation approach (leptonic weak decay, two-
photon decay, elastic electromagnetic form factor) and
show the results to be equal to those of the light-cone
quark model.

Section III considers the transition form factors. First,
at spacelike momentum transfers the light-cone expres-
sion is reformulated as a double dispersion integral rep-
resentation. Secondly, the analytic continuation to the
region of timelike momentum transfers is performed.
Along with the normal Landau singularities, the anoma-
lous non-Landau singularities contribute to the transition

TABLE II. The form factors of the decays D ~ K, K* at q = 0.

Expt.
Lat

SR
QM

LCQM

[24]

[»]
[11]

WSB [2]
GISW [4]

F+ (o)
0.77+ 0.04
0.78+ 0.08
0.60+ 0.22
0.6+ 0.15

0.76
0.8
0.73

V(0)
1.16+0.16
1.08+0.22
0.86+0.24
1.1+ 0.25

1.23
1.10
0.92

Ai (0)
0.61+0.05
0.67+0.11
0.64+0.16
0.5+ 0.15

0.88
0.80
0.63

A2(0)
0.45+ 0.09
0.49+ 0.34
0.40+ 0.32
0.6+ 0.1

1.15
0.80
0.42

V(o)/A, (o)
1.90+0.25
1.6+0.3
1.3+0.2
2.2+0.2

1.4
1.4
1.46

A2 (0) /Ai (0)
0.74+0.15
0.7+0.4
0.6+0.3
1.2+ 0.2

1.3
1.0

0.67
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form factors in this region.
In Sec. IV the electroweak properties of pseudoscalar

mesons are considered. The following issues are ad-
dressed.

(1) The dependence of the axial-vector decay constant
f~ and the heavy-meson elastic form factor on the heavy
quark mass mg is analyzed, using a parametrization of
the meson wave function based on the heavy quark sym-
metry. The corrections to the leading I/mg behavior are
estimated to be at the level of 10—20%%uo in the region of
b- and c-quark masses.

(2) The form factors of pseudoscalar meson decays are
calculated. Our results are in agreement with the @CD
sum rules and the experimental data. The form factors
can be approximated to a high accuracy by the dipole
formula in the physical region, but do not contradict to
the vector meson dominance as well.

(3) The correlation between the values of fD and f~
and the slope of the Isgur-Wise function p is studied.
The parameter p is found to be in the range 0.7 & p
0.9 for reasonable values of heavy-meson decay constants.
We also discuss possible reasons of the deviation &om
unity of the Isgur-Wise function at; zero recoil.

The results are summarized in the Conclusion. The
Appendix provides relevant technical details of the dis-
persion approach.

II. QUARK STRUCTURE OF
PSEUDOSCALAR MESONS

An approach to a composite system description based
on dispersion relations [28] allows constructing relativis-
tic and gauge invariant amplitude of the interaction of a
composite system with an external vector field starting
with low-energy constituent scattering amplitude (see the
Appendix). Two-particle s-channel interactions are con-
sistently taken into account both in the constituent scat-
tering amplitude and the amplitude of interaction with

an external field. In the case of a bound state, its form
factor and structure function are expressed through form
factor and structure function of mass-shell constituents
and the vertex G of constituent-bound state transition.
This vertex is defined by the two-particle irreducible
block of the constituent scattering amplitude. On the
one hand, the dispersion integral representation turns out
to be equivalent to the Bethe-Salpeter treatment with a
separable kernel of a special form, the vertex G being con-
nect;ed with the amputated Bethe-Salpeter wave function
of the bound state [29]. On the other hand, this approach
is equivalent to the light-cone description of a bound state
with the special form of spin transformation (the Melosh
rotation). The vertex G determines the light-cone wave
function of the bound state. Because of the relativis-
tic invariance, the dispersion integral formulation of the
light-cone approach does not face the problem of choos-
ing appropriate component of the current for calculating
the amplitudes of the bound state interaction.

A. The quark-meson vertex

We discuss the case of a pseudoscalar meson, but the
same procedure can be applied to other hadrons as well.
The pseudoscalar meson P with the mass M is consid-
ered to be an S-wave bound state of the constituent
quark with the mass mi and the antiquark with the mass
m2. To derive the expressions for the soft amplitudes
of the meson interactions such as (pv~P), (pp~PO), and
(P'~ J„)P), we start with the corresponding amplitudes
of the constituent quark interactions (pv~QQ), (pp~QQ),
and (QQ~ J„~QQ) and single out the poles corresponding
to the meson. The amplitude of the soft QQ interaction
(Q(k2)Q(k~) ~T~Q(k2)Q(kq)) is the basic quantity which
determines the constituent-quark structure of a bound
state. Near a bound state with the J = 0, the ampli-
tude is dominated by the S-wave partial amplitude. If
the two-particle unitarity condition for the S-wave partial
amplitude is used, the dominant term has the structure

Q ( i m~)'»Q (—k2 m2) 2 1 2 Q'( —k2, m2)~vsQ'(ki, mi)
1 —B„.(P')

with a, b the color indices, N = 3 the number of quark colors, ki = ki' ——mi, k2 ——k2' ——m2, and P = ki + k2. In
Eq. (1),

Bp, (P ) = p„.(s, m„m2),
ds G'(s)

(mk+m2)~ + s P )

where p„,(s) is the spectral density of the Feynman loop graph

p~, (s, m~, m~) = — f dk~dk~d(k~ —m~)li(k~ —m )d(P —k~2—k2) Sp((k~ + m~)ip~(m2 —k2)ip5)

A' '(s, m'„m', ) (s —(my —m2) ) 0(s —(m7 + m2) ),2

Sms
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FIG. 1. Meson dispersion loop graph R„,(P ). FIG. 2. The series of dispersion graphs for (QQIA„(0)IO).

and

A(s, m', , m', )—:(s + m,' —m2)' —4smi.

The quantity Bz, can be interpreted as the dispersion
loop graph of Fig. 1 with the soft QQ vertex:

Q"(ki, mi) its Q (—k2, m2)
N (4)

Q (ki, mi)ipsQ (—k2, m2)
N,

where G„(s) = G(s)/B„', (M ) and

For on-shell constituents, the expression (4) is the only
independent spinorial structure. The scalar function
G(P ) is determined by the soft nonperturbative QQ dy-
namics and has no singularities at s & (mi + m2) [28].
An S-wave bound state with the mass M corresponds to
the pole in the amplitude (1), B„,(M2) = 1. Properly
isolating the pole (for details see the Appendix), we find
the soft constituent vertex of the pseudoscalar meson in
the form

(PI&-(0)lo) = &P f~

f~ is the meson axial-vector decay constant. To obtain
the expression for this matrix element we must erst con-
sider the quantity

(QQI&; (o) lo) (8)

(Q(ki) Q(k2) I&; (0) lo) b-.

= Q(ki) p„psg~(P )

+&„ash+(P ) + (ki —k2) ash (P ) Q(—k2) . (9)

with Q a constituent quark, while the axial current
&„(0)= q(0)p„psq(0) is defined through current quarks.
Next, we must single out the pole corresponding to the
pion.

The bare matrix element has the structure

G„(s)p„.(s, m„m2)ds
vr(s —M2) ~

As we shall see later, the soft vertex G determines the
radial wave function of the pseudoscalar meson, and (6) is
the normalization condition for this wave function. Once
the vertex is Axed, we can proceed with calculating meson
interaction amplitudes.

B. Weak decay of a pseudoscalar meson

Let us consider the decay P m pv. The corresponding
amplitude reads

If current quarks were identical to constituent ones we
would have had

g„'(P') —= 1, 6+(P') —= 0, h'(P'):—O. (10)

It is reasonable to assume that at least at P2 = (mi-
m2) the form factors g and 6 are not far from these
values.

The rescatterings of the constituent quarks lead to the
series of the dispersion graphs of Fig. 2. The bare matrix
element enters into a single loop graph B~ whose spec-
tral density is the product of G(s) and the corresponding
Feynman graph spectral density which reads

dkidk2h(k, —m, )S(k2 —m2)b(P —ki —k2)

xSp([p„psg~(P ) + P„ash+(P ) + (ki —k2)„ash (P )j(ki + mi) its(m2 —k2)) .

ds G(s) Pi~2(s, mi2, m22) s —(mi —m2)

[(mi+m2)g~( ') — +( ') —( i ™2)'-( ')l.
B„=4iP„QN,

The trace is equal to

—4i(kipm2 + k2„mi)g/(P ) + 4iPp(k] k2 + mim2)&+(P ) + 4i(k] —kg)„(kik2 + m] m2)& (P ) .

So the expression for the loop graph B„takes the form

(12)

The amplitude with the quark rescatterings taken into account has the same spinorial structure as the bare amplitude



2464 DMITRI MELIKHOV 53

(Q(ki)Q(k2)IA„(0)IO) = Q(ki) p„psg~(P ) + P„ash+(P ) + (ki —k2)„ash (P ) Q( —k2),

with

g~(P') = g~(P') ~-(P') = h'-(P')

(14)

G P2
h+(P ) = h+(P )—

1 ps

A'~' s m' m' s —m —m
4[( m )

' (P') —s Ii' (P') —(m' —m') 6' (P') j
7r (s —M2) 167rs 28

The form factor h+ develops a pole at P = M as Bz, (M ) = 1. Near P = M the pole dominates the amplitude

1
(QQIA„IO) = (QQIP) (PIA~IO) + regular terms.

Comparing the pole terms in (14) and (15) and using the relation

(PIQQ) =
C

one Ands

(PIA„(0)IO) = iP„fI
with

(i6)

fI = 4/X. dsG s A~ sm s —m —ms „(s) (s, m, „m2) s —(mi —m2)
~(s —M2) 16vr s 2s

(17)

Assuming that in reality the values of g& and h are not far from the limit (10), we neglect the terms involving 6
and come to the relation

f~ = 4+m. (m, + m, )g„'(M')
ds G„(s) A ~ (s, mi, m2) (s —(mi —m2) )

)2 m(s —M2) 16vrs 28

C. The two-photon decay of the neutral pseudoscalar meson

%e consider the decay of the neutral pseudoscalar meson Po whose constituent quark structure is described by the
vertex

QiwsQG (pz)

The rate of the decay Po ~ 2p can be written as

2I'=7m M g, g = G~ (M, o, o),

where the form factor G~» is connected with the amplitude

(OI&.', (q. )J.—,(qs) IP) = 2e-,-.~,~.q2'q,'G~»(M', q,', q.').

(2o)

(21)

The electromagnetic current J„' (0) = q(0)p„q(0) is defined through current quarks, whereas the meson structure is
described in terms of the constituent quarks. So, for calculating the meson amplitude the constituent quark amplitude
of the electromagnetic current is necessary. The latter is assumed to have the structure

(Q(k')lq(0)p q(0)IQ(k)) = Q(k')p„Q(k)f (q ), q = k' —k. (22)

The constituerit charge form factor f, (q2) is normalized such that f, (0) = e„ the constituent charge. The anomalous
magnetic moment of the constituent quark is neglected in expression (22), but it can be included into consideration
straightforwardly.
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The single dispersion representation for the form factor G~~~ reads

2 dsiG„(si) 2 2GI ~~ (M, s2, ss) = f, (s2)f, (ss) +p»(si~ s21 ss)) s2 = q21 ss = qs
7r {si —M2)

where L~» is determined by the spectral density of the Feynman graph of Fig. 3:

N
8+2

h (k,' —m') b (k,' —m')
dk, dk2dk38(P k2 k3)b(k2 —k, —qs) m2 —k2

x Sp(ip&(m —k&)p, (m+ ki)p~, (m+ k2)) = e~, ~—,&,&, q2'qs'AJ»(s„s2, ss) .

The trace reads

(24)

Sp(its(m —ks)p, (m+ ki)p~, (m+ k2)) = 4m'~ ~ p p q2 q3

mph, 0(si —4m ) ( si —s2 —ss + A (si, s2, ss) gl —4m /si )
(si, s2, ss) = ' ln

~

47l A (si s2 ss) (si —s2 —ss A ~ (si s2 s3) gl —4m /si )
Substituting (26) into (23), one obtains the expression which defines the quantity Gs» for off-shell photons. For real
photons one Ands

mph. ,
4a

e
dsG„(s) 1 f 1 + gl —4m /s )—ln I

7I (s —M ) s ( 1 —Q] —4m2/s )

D. The elastic electromagnetic form factor

The elastic electromagnetic form factor of a pseudoscalar meson is given by the matrix element

(PM~J„' (0)~PM) = (PM +P )„F'(q'), P' = P" = M', P —P' = q, q' (0.

Assuming the following structure for the constituent-quark matrix element of the electromagnetic current J' (0) =
q(0)~~q(0)

(~(k') ~q{0)..q(0) ~&(k )) = eke)..~(k ) f-{q')
the elastic charge form factor of the meson can be written in the form

F' (q ) = fi{q )H(q, mi, m,') + f2(q )H(q, m'„mi) (30)

in terms of the form factors H. The quantity H(q, mi, m2) describes the subprocess when the constituent 1 interacts
with the photon, while the constituent 2 remains spectator.

The double dispersion representation for the form factor H(q, mi, m, ) (Fig. 4) reads

H(q, m, i, m2) = ds G„(s) ds'G„(s')

Here A is the double spectral density over P and P' of the corresponding triangle Feynman graph:

G
V~/ Cg

iG„gg

I"
i$5

an.e Q
F2

FIG. 3. The graph describing the decay P —+ pp.
FIG. 4. The contribution H(q, mi, m2) to the elastic

form factor.
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dkgdkydk26 ky™
y b ky my 8 k2 m2 8 P —ki —k2 b P' —kg —k2

with

x Sp((ki + mi)p&(ki + mi)its(m2 —k2)its) = 2P~(q)6(s') s, q lmi, mi, m2) (32)

P„(q)=lP — ql, P =s, P' =s', (P' —P) =q.)„
The trace reads

—Sp((k', + mi)p„(ki + mi)ps(m2 —k2)ps) = 2ki„(s —(mi —m2) ) + 2ki„(s' —(mi —m2) ) + 2k2„q

Multiplying both sides of (32) by P„and using (33) one obtains, at q & 0,
2

A(s', s, q lmi, mi, m2) = (s's + (s' + s —q )m2 (mi —m2) —(mi + m2) (mi —m2)')
4As~2(s', s q2)

xo(s —(mi+ m2) )0(s' —(mi+ m2) )0[—q (s'+ s —q +2(mi —m2))

+A(s', s, q')(q' —4m', )], q' & 0,
with A(s', s, q2) = (s'+ s —q ) —4s's.

(34)

At q2 = 0 one Ands

Q(s', s, q = Olmi, mi, m2) = 7rp„, (s, mi, m2) 8(s' —s),

with p„, defined in (3), and

P'(0) = ("+") ds G2(s)
, , pp, (s, m„m2) = e, + e2 .

,+m2)'

As we have pointed out in the Appendix, this is just the Ward identity consequence.
To reveal the relationship between the dispersion integral (31) and the light-cone technique, we introduce the

light-cone variables

(kp —k, ), k+ —— (kp+ k, ), k' = 2k+k —k~2,
2

''
2

(37)

into the integral representation for the form factor spectral density (32). We choose the reference frame in which

P~ ——0, q+
——0, q&

———q,2 — 2

that is possible at q2 & 0. Performing k integration and setting (p = +) in both sides of (33) one finds

A(s, s, q lmi, mi, m2) =
16m

dzd kg ( mi m2 ki
8l s—

*(1—*) & 1 —»»(1—*))
m,' m', (kg +zqi)'l (, 2

l l

s' + s —2(mi —m, )1 —x x x(1 —x) ) (

Here we denoted z = k2+/P+ and k~ = k2~.
Substituting (38) into (31) and performing s and s'

integrations, one derives

II(q~, mi, m2) = dzd k~Q(x) k~)g(x) k~ + xq~)

x P(z, k~, q~), (39)

where the radial light-cone wave function of a pseu-
doscalar meson is introduced:

g(z, kg) =

P(q~ = 0) = 1 .

G„(s)Qs —(m, —m, )'
~s~2~8(s —M ) Qx(1 —x)

2
2 2 k~2+ +

1 —x x x(l —x)
'

s —(mi —m2) + k~ q~/(1 —x)
8 —m~ —m2 8' —mz —m2

(40)
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The quantity P accounts for the contribution of spins. It
is different &om unity at q~ g 0 because both the spin-
non8ip and spin-Qip amplitudes of the interacting quark
contribute. Equation (36) is the normalization condition
for the soft radial wave function

In terms of this wave function, the pseudoscalar meson
axial-vector decay constant f~ is represented as FIG. 5. The dispersion graph for the decay (P2~V„~Pt).

fy = g~
' dz d kg g(, k~)

2ms&2

m2(1 —z) + m1z
X

s —mq —m2 2 (42)

This expression can be easily deduced by introducing
the light-cone variables into the dispersion representa-
tion (ll), making use of (12) and examining the p = +
component of the axial current.

Similarly, introducing the light-cone variables into (24)
yields the following expression for g~~~..

m/N dzd kg z

( )
( ~ )( 2+k2)~

A. The pseudoscalar meson transition form factor
atq~ &0

The amplitude of the weak transition of pseudoscalar
mesons M1 ~ M2 (Fig. 5) is determined by the two form
factors F+ and E

(PM. M21&~ lPM, M1) = (PMz + PM2)p++(s3)
+(P, —P, )„S (s,),

(PM„M2iA„ CPM, , M1) = O,

+M M2 +M — ] +M —+M —IM +M
2 = 2 2 — 2

The weak currents are defined through current quarks

(43) V„"= q, (O)q„q2(O), A„= q2(O)q„q, q, (O). (44)
The same expressions for the form factor, pseudoscalar

meson electroweak constant, and the two-photon decay
constant as (39)—(43) were derived within the light-cone
approach in Refs. [7—9].

III. FORM FACTORS OF MESON TRANSITIONS

In this section we examine the electroweak transitions
of pseudoscalar mesons. First, we derive the dispersion
representations for transition form factors at q & 0 and
demonstrate them to be equal to those obtained within
the light-cone calculations. Second, these dispersion rep-
resentations allow us to perform the analytic continua-
tion and derive the form factors of semileptonic decays
of pseudoscalar mesons at q & 0 where the direct ap-
plication of the light-cone technique is hampered by the
contribution of pair-creation subprocesses.

The structure of the mesons is described in terms of the
constituent quarks by the vertices

Q2(k2)i&sQ3( —k3) G

Q1(k1)iysQ3( —k3)
G (46)

For calculating the tranition amplitude (44) we again
need the constituent quark matrix element of the weak
current which is taken in the form

(Q1(k1) lq1(o)~~q2(o) IQ2(k2)) = Q1(k1)~~Q2(k2) f»(s3) .

(46)

The dispersion representation for the form factors at s3 &
0 reads

ds1G„1(s1) ds2G„2(s2)++(s3) f21(s3), "
M,

"
M, )

&+(sl) s21 s3ml) m2 1 m3) (47)

Here L~ are the double spectral densities of the Feynman graph corresponding to Fig. 5 in sz and s2 channels:

dk 1dk2dksb (k1 —m1) 8(k2 —m2) h (k2 —m 3)h (P1 —k2 —k3) b'(P2 —k3 —k1)

x Sp((k1 + m1)p~(k2 + m2)its(m3 —k3)its) = (P1 + P2)~6+ (s1, s2, ss~m1, m2, ms)
+(P1 P2) p+ —(sl s2 ) s3 ~m1 y m2) m3)

Our G„(s) is just equal to hp(P) of Ref. [7].
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with Pl ——P2 + P3, Pl = 81, P2 ——s2, P3 ——PM ——s3. The vertices G„l 2 are normalized in accordance with (6).
The trace reads

Sp((kl + ml)p~(k2 + m2)p3(m3 k3)p5) (49)

= 2kl„[sl —(m2 —m3) ] + 2k2„[s2 —(m3 —ml) ] + 2k3„[$3 —(ml —m2) ]

= (Pl + P2 —2k3) p [a(81,m2, m3) + a($2, m3, ml) —a($3, ml, m2)]
+(Pl + P2)~a($3, ml, m2) + (Pl —P2)~ [a(82, m3, ml) —a(81, m2, m3)] ) (50)

wllel'e o, (8, pl, p2) = s —(pl p2)
Making use of the relation

with

b+ (81 82 s3) — s3(81 + s2 $3 + ml + m2 —2m3) —(ml —m2) (sl —82)
b (sl, 82, 83) = (ml —m2) (2sl + 282 —s3) —(sl —s2) (sl + s2 —s3 + ml + m2 —2m3),

(52)

(53)

we come to the following result for L~.

B~(81,s2, 83)6+ (8j s2 83 ~ml, m2, m3) = ' ' A(81, 82, s3 ~ml, m2, m3)
A Sl, S2, S3)

B+ (81, s2, 83) = b+ (sl, $2, s3) [a(sl, m2, m3) + a(82, m3, ml) —a(83, ml, m2)] + a(83, ml, m2) A(81, s2, s3),

B (81, 82, 83) = b (sl, 82, 83) [n(81, m2, m3) + a($2, m3, ml) —a(83, ml, m2)]
+[a($2, m3, ml) —a(sl, m2, m3)]A(sl, 82, 83) .

Here 6, the double spectral density in Pl and P2 channels of the Feynlnan triangle graph I'(Pl, P2, P3 ) with scalar
constituents, is introduced:

F(P1, P2, P3) =1 2 3 2 4
dkldk2dk3b(P1 —k2 —k3)h(P2 —k3 kl)

(m', —k,2 —'0) (m', —k,2—'0)(m,'—k,2 —'0)
dsy d82

, A(81, s2, 83~ml, m2, m3).~ sq —M~2 ~ s2 —M22
(55)

At s~ ——P3 ( 0 this spectral density reads

8(—b+(81, 82, 83) —A(81, s2, s3)A(s3, ml, m2))
(sy, 82, 83 m], m2, m3

16A ~ (sl) s21 s3)

The solution of this 0 function is

82 ) (ml + m3), sl (82, 83) ( Sl ( 81 (82 83),

sg 82~ 83 2 (82S3 —82(ml + m2) —83(ml + m3) + ( 1 m2)(ml —m3)
1

+A (s2, m3, ml)A (83, m„m2)) .

The final dispersion representation for the form factors at 83 ( 0 takes the form

8 (8 8 )ds2G„2($2) " "'" dslG„l(81) B+(sl, s2, s3)

(,+,)~ vr(82 —M2), -(„„)vr(81 —Ml) 16A (sl, 82, 83)
(57)

This representation will be the starting point for considering meson decays in the next section.
To demonstrate the equivalence of the results of the dispersion method and the light-cone approach, we turn back

to Eq. (48) and again make use of the light-cone variables (37), choosing the reference frame PM, + ——0, PM, ~ = 0.
Setting p, = + and making use of (49) gives, for b, +,
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4+ (8j 82 83 ~mi, m2, m3)

2m3

1 dx] Gx2dx3
d ks~b(z i —z2) h (1 —z i —z3)16' XgX2X3

*2Z3 I
(k3J + z3P3J )

Z2Z3 )
(58)

(Hereafter z; = k,+/P+, Pi+ ——P2+ ——P+, qz = P3J —q&
—s3, z = z3, k~ = k3~.) Substituting (58) into (47)

yields the following expression for the form factor F+ which gives the main contribution to the semileptonic meson
decay rate:

P+(q~) = f»(R. )
dzd k~ G„i(8,) G„2(82)

16vrsz(1 —z) vr(si —Mi2) 7r(s2 —M22)

x
~
s, +s, —(m, —m, )' —(m, —m. )'+ *

[—q~2 —(m, —m2)']
~

(60)

Introducing the radial light-cone wave function according to (40) leads to the familiar light-cone expression (cf. [7])

++(vi) = f~i(qi) J «&'&i@i(~,ki)A(~, &i+ ~@i)p+(~&i,vi, );

si + s2 —(mi —m3) —(m2 —m3) + i [
—

q&
—(mi —m2) ]

2/si —(m2 —m3) /82 —(m3 —mi)
[miz + m3(1 —z)][m2z + m3(1 —z)] + kg(kg + zqg)

z(1 —z) gsi —(m2 —m3) $82 —(m3 —mi)

B. The transition form factors at q~ ) 0

For the description of decay processes the form factors in the region 0 & s, & (M, —M, ) are necessary, while
the light-cone representation (60) is valid only at 83 & 0. For deriving the form factors at 83 ) 0 the dispersion
representation (57) turns out to be a convenient starting point. We write this representation in the form

(62)

where

(61)
')I Bi —Mi 7r 82 —M2 A Bi, 82~ 83

where 4 is the double spectral density of the Feynman graph I' with scalar constituents (55). This double dispersion
representation defines the analytic function of s3 both at negative and positive values provided the proper expression
for the spectral density 4 is used. It is important to point out that the functions G„(s) have no singularities in the
right-hand side of the complex s plane [28], and B and A are polynomials. So the details of the dispersion integration
at 83 & 0 are determined by the behavior of the quantity L.

A detailed consideration of the double spectral density 4 for two massless constituents was performed in [10]. We
extend that consideration to the case of arbitrary nonzero masses. The same analysis of 4 for arbitrary masses was
done by Azimov [30].

Following [10],we first consider the single dispersion representation for I'(Pi, P2, P3 ) in P2. A standard calculation
yields, in the region P3 & (m2 —m, i),Pi & (m2 + m3), P2 & (mi + m3)

I'(Pi P2 P3')=,&2(Pi' 82 P3)
( + )2 7l 82 P2

(72(81~ 82~ 83) —(T+(81~ 82~ 83) (7—(81~ 82~ 83)~ (63)

rr~(si, 82, s3) = ln[d(si, s2, s3) + A (82, mi, m3)A (si, s2, s3)],
167rA Bi, 82) 83

d(si, s2, s3) = —82(si + 83 —82 + mi + m3 —2m2) —(si —s3) (mi —m3) .

Hereafter we assume m2 & mq. The single dispersion representation reproduces the exact value of the Feynman
expression (55). Next, we consider the function (72(Pi, s2, P3) as the analytic function of si —Pi at fixed s2 and

A detailed analysis shows that for P3 ) (m2 —vni) +~ [(m2+mq) —Pi ] the anomalous contribution to the single dispersion
representation emerges. As we consider the case of a bound state Pi & (m2 + ms), the normal dispersion representation is
valid at least for P3 & (m2 —mq)



2470 DMITRI MELIKHOV 53

83 —P3 ) O. As 82 ( 82 such that

+
~ ~

+ (m23 —m21), s3 & (m2 —mi),2~st ( 2 s3 ) (64)

both of the functions 0+ and cr have square root branch points on the physical sheet at 81 ——(1/82 —~83)2 and
sP = (~82 + 1/83), connected by the cut [dashed line in Fig. 6(a)].

In addition, the function 0 has a logarithmic cut on the physical sheet from si to si defined by expression (56).
The square-root cuts cancel in o2 ——0+ —0. , and the logarithmic cut is the only singularity of 02 on the physical
sheet. The function o+ has also a logarithmic cut from sz to 8] which is located on the second unphysical sheet of
the Riemann surface of the square root [dotted line in Fig. 6(a)], and does not influence the double spectral density.
The situation changes at 82 ——82 which is determined by the condition sP(s2) = si (s2). The logarithmic and square-
root branch points coincide, and for further increasing 82 & 82 the logarithm branch point moves up through the
square-root cut onto the physical sheet, whereas the position of the logarithm branch point of 0 goes to the second
sheet [Fig. 6(b)]. Hence, on the physical sheet the function a+ acquires the logarithmic cut from 81 to sR, and o.

still has the logarithmic cut from Sz to 8+. Both of the functions have also square-root branch cuts from sz to 8+.
In the difference 02 ——0+ —0 the square-root cuts cancel each other, but the logarithmic cuts add. The resulting
expression for the double spectral density takes the form

8(82 —(m, + m3)')0(s, & 8, & 8+, )
Sy 82, S3 mi, m2, m3

16A / si, 8~, 83

28(0 & 83 & (m2 —mi) )0(s2 —s2)0(sp & 81 & 81)
16A'/2(81, 82, 83)

(65)

One can check the double dispersion representation (55) with the spectral density 4 given by (65) to reproduce
correctly the Feynman expression. The first term in (65) relates to the Landau-type contribution emerging when all
intermediate particles go on mass shell, while the second term describes the non-Landau contribution.

In addition to the quantity A, the spectral density of the representation (61) involves the factor 1/A(si, s2, s3)
which is singular at the lower limit of the integration in the non-Landau term: namely,

~(8» 8» 83) = (» 81 ) (» —si ).

As it has been discussed in [10], in this case an accurate application of the Cauchy theorem yields the subtraction term
in the non-Landau contribution. Representing o2 as a contour integral, we must take into account the nonvanishing
contribution of the small circle around the point SP. Underline once more that the presence of the factor G„i(81) does
not change the argumentation as the function G„,(si) has no singularities at si ) (m2 + m3) . The final properly
regularized representation for the form factors at s3 & (m2 —mi) takes the form [omitting the constituent transition
form factor f21(83)]

+(83) = ds, G„,(s, )

,). 7r(82 —M22)

S1

S1

dslGul (81) B(81182183)
~(81 —M2) 16%3/2(8„82, 83)

SO
2

ds2G„2(s2)
vr (82 —M,')

R
1

d81 Gel( 1)8B( 1)882183)0(81 81) Gvl(sp)B(sp) 821 83) 66
16~(8 SR)3/2 (8 SL)3/2(8 M2) (SR SL)3/2(SR M2)

It should be pointed out that although the representa-
tions (61) and (66) were deduced for the case of pseu-
doscalar rnesons, transition form factors of any hadrons
have the same structure. A particular choice of the initial
and Anal hadrons yields a specific polynomial B. So the
performed analysis is valid in the general case of hadron
decay.

SL SR S-
1 1 1

SL
1

SR
1
~ ~

SL SR S
1 1 S

~ ~ e ~ ~ ~ ~ ceo ~ ~ e ~ ~ ~ ~ e ~ ee ~ eel

S1

IV. CALCULATION RESULTS SL
1

SR
1

We are now in a position to apply the developed for-
malism to the analysis of the properties of pseudoscalar
rnesons and to the direct calculation of the decay form
factors. To this end we must specify the parameters of

FIG. 6. The location of the singularities of n2 at 83 ) 0:
(a) 82 & 82; (b) s2 ) 8', .
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TABLE III. The constituent quark masses and the calculated f~ for n = 0.02.

Quark
tC) CL

Quark mass, GeV
0.25
0.40
1.80
5.20

Meson
7r+ (ud)
K+ (us)
D+ (cd)
R+ (ub)

Meson mass, GeV
0.14
0.49
1.87
5.27

fr*,MeV
130
160
234
202

the model, i.e. , input the vertex functions of the pseu-
doscalar mesons and constituent quark masses.

(
P(k) = exp

I

—4cr

A. Parameters of the model

For a pseudoscalar meson built up of quarks with the
masses mg and mq, it is convenient to introduce the
function P related to the vertex function G„as

s~ —(m2q —m2) 2

G-(s) = . .. 4(k),~2 gs —(mq —m, )'
A'~ (s, mq, m )

(67)
2 s

The normalization condition (6) for G„yields the follow-

ing normalization condition for P:

(68)

The function P is the ground-state S-wave radial wave
function of a pseudoscalar meson for which we choose a
simple exponential form

where pI = mqm~/(mq+m~) is the reduced mass. The
parameterization (69) is inspired by the nonrelativistic
quantum mechanics and, as we shall see later, is conve-
nient for the analysis of the case mg m oc.

In the nonrelativistic quantum mechanics a bound-
state wave function is determined by the motion of the
particle with the mass p~ in the potential independent
of masses, and thus o. does not depend on the masses
as well. Relativistic effects destroy this simple feature
of the wave function. In @CD the situation is much
more complicated because additional dimensional quan-
tities such as A@cD and the condensates appear. So,
o. should be considered as some unknown function of
the quark masses. It is possible to obtain the informa-
tion on the behavior of o. as a function of mg at fixed
mq ——'m g ——0.25 GeV in the two regions: at small mg
and mg M oo.

At m@ & 0.5 GeV the value of o. can be determined by
describing the data in the light-meson sector. The light-
quark masses given in Table III and o.„=o.~ ——0.02

1
0.9~
0.8:—
0.7:—
06:—
0,5:—
0.4:—
0.3:—
0.2:— F.'(O')

0.1:—
0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
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Q2
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0.7
0.6
0.5:—
0.4:—
0.3:— F:(O')
0.2:—
0.1:—

0-I I I I I I I I I » I » I I I I I I » I I « I I I
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Q2

1
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0.1
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Q2

1
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Q2

FIG. 7. The a+ form factor, ct„=0.02. FIG. 8. The A"+ form factor, n~ = 0.02.
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provide a good description of the data on f, f~, and
the elastic form factors (Figs. 7 and 8). The meson
decay constants and form factors are calculated with the
values g&(M2) = 1 and f, (q ) = f, (0), respectively.

In the region mg —+ oo the behavior of o. can be found
I

on the basis of the heavy quark symmetry. To this end,
let us consider the amplitudes of the elastic and inel-
stic transitions between pseudoscalar mesons consisting
of heavy Q and light q quarks and. introduce the dimen-
sionless form factors as

(M, P'iQp„QiM, P) = (P'+ P)„F,i(q ); q & 0, (70)

2

F,i(q ) = h, i(~) = 1 —p, i(~ —1) + O(((u —1) ), (u = 1 — ) 1,

(M2, P2~Q2p„Qj iMi, P, ) = (Pi + P2)„F+(q ) + (Pi —P2)„F (q ), 0 & q' & (M, —M,)', (71)

2

h+(cu) = h+(1) —p'((u —1) + O((~ —1)').
In the limit of in6nitely heavy quarks Qi 2, the amplitudes are expressed in terms of the single universal Isgur-Wise
function (IW) ((w) [22]:

h+(~) = h, i(cu) = ((~), h (u)) = 0, (((u) = 1 —p (cu —1) +O((~ —1) ). (72)

In addition, the heavy quark symmetry predicts the
universal relation for heavy-meson decay constants:

QM~fq = const. (73)

The asymptotic relations (72) and (73) are the zero-order
terms of the 1/mq expansion which is calculable within
the HQET [21]. A particular form of the IW function
depends on the heavy meson wave function.

Expressions (72) and (73) mean that the HQ symmetry
restricts the possible behavior of the meson wave func-
tion at large mq. Table IV gives the results on f~ and

p &
vs mg at m~ = 0.25 GeV, and Fig. 9 presents the

quantity gmq fp as the function of mq for various val-
ues of n. In the HQ limit, for a finite binding energy of
the meson the heavy meson and the heavy quark masses
coincide, Mq/mq = 1. So, the value of gmq f~ should
be independent of the heavy quark mass.

These results show that the asymptotic relations (72)

and (73) are satisfied if the parameter n of the wave
function (69) tends to a constant n as mq ~ oo.

Thus the function n(mq) has the following behavior:
it is equal to 0 02 at mg ( 0 5 GeV and tends to a
constant o. as mg ~ oo. For investigating the B and
D mesons and their decays we need the information on
o. in the region mg ——2 —5 GeV.

The simplest way is to extract o. at mg ——2 —5 GeV
from the analysis of fD and f~ as w'e have done for the
light mesons. In the absence of the experimental data
we refer to the results of other models. As one can see,
the decay constants f~ calculated with n from the range
0.02 & n~, o.'ii & 0.04 cover the regions 160 MeV& fry &
230 MeV and 130 MeV& f~ & 200 MeV which include
the predictions of most of the models (Table V). Hence
the values of Q.D and 0;~ related to the true wave func-
tions of D and B mesons are expected to be inside the
interval 0.02 —0.04.

However, there is an attractive possibility to spec-

TABLE IV. The decay constants fJ of pseudoscalar mesons built up of quarks with the masses
mg and m~ and the slope of h, i at cu = 1 calculated from (Mg~Qp„QiMq) as functions of mq at
m~ = 0.25 GeV.

mg, GeV
0.25
0.4
1.8
5.2
10
20
40
80

n = 0.01
fr, MeV

151
190
324
308
254
195
143
103

2
Pet

0.04
0.25
0.6
0.75
1.0
1.0
1.0
1.0

0; = 0.02

fJ, MeV
130
160
234
202
162
122
89
63

Pei
0.06
0.35
0.65
1.0
1.05
1.1
1.11
1.11

n = 0.04
f~,MeV

104
128
163
132
102
76
55
39

Pe&

0.08
0.5

0.82
1.05
1.1
1.23
1.25
1.25

n = 0.08
fy, MeV

80
97
110
85
64
48
34
24

2
Pej
0.1
0.65
1.0
1.1
1.25
1.45
1.66
1.66
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FIG. 9. The quantity m& f~ as the function of m at
~q = 0 25 GeV.

3

ify no ~ more precisely. Namely, it seems reasonable
to assume n to be approximately constant in the re-
gion m, g & 1 —2 GeV. There are at least two argu-
ments behind this assumption. First, a system consist-
ing of a heavy and a light particles behaves like a quasi-
nonrelativistic system. And second, there are no visi-
ble sources within QCD to yield steep changes of n in
this region. Then for the B and D mesons one expects
n~ ——n~ ——n . The next step is to estimate n . We
consider the value n = 0.02 to be both attractive and
reasonable: on the one hand, the same parameter de-
scribes all ground-state mesons, and on the other hand,
one Ands, for n = 0.02,

gm fI 0.58 GeV ~

1
0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I!.I
0 5 10 15 20 25 30 35 40 45 50

Q2

0.9
0.8
0.7
0.6
0.5
0.4
0.3

FIG. 10. The D+ form factor. Solid line: o.~ ——0.02;
dotted line: nD ——0.04.

in agreement with the value 0.6—0.7 found in [14].
Assuming nD ——n~ ——n, we can estimate the mag-

nitude of the higher order 1/mq corrections which deter-
mine the deviations of the calculated fJ and p, i at finite
mg from the asymptotic relations (72) and (73). Rather
strong violation of the HQ symmetry for b and c quarks
(5—15% at mg = 5 GeV and 20—30% at mg = 2 GeV)
can be observed both in fp and p, l at n = 0.02—0.04.

We shall analyze the transition form factors obtained
at nD, ~ ——0.02 and 0.04. If our assumption nD ——n~ ——

n = 0.02 does not work properly, the form factor calcu-
lations for n = 0.02 and n = 0.04 give an interval which
is expected to include the true value.

Table III gives the numerical parameters of the model.

0.2
0.1 =

0 I

0

30

25—

20—

15—

10—

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Q2

B. Discussion

(1) The results on the axial-vector decay constant f~
are shown in Fig. 9 and Table IV. Assuming n(mg) =

at mg & 2 GeV, one can see the asymptotic rela-
tion gmg fI = const to work perfectly at mg ) 40—

0
0 10 20 30 40 50 60 70 80 90 100

Q2

FIG. 11. The B+ form factor. Solid line: n~ = 0.02;
dotted line: a~ ——0.04.
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50 GeV, and finds essential corrections to the asymp-
totic relations at lower mg. For o. = 0.02 one obtains
fD = 234 MeV and f~ = 202 MeV that confirms the
expectation fD f& [13j. These values for the decay
constants correspond to the constituent quark decay con-
stant g&

——1. In reality, the latter can be less than unity,
g&o 0.75—1. This will lead to decreasing the fI

(2) Figures 10—15 present the elastic and transition
form factors calculated with o.D ~ ——0.02 and 0.04.

The K ~ vr transition form factor is well approximated
by the linear function F+(q ) = F+(0) + aq, F+(0) =
0.96, a = 1.27 GeV in agreement with the results of
[1l.

The parameters of the monopole F(q ) = F(0)/(1—
q /M „) and the dipole F(q2) = F(0)/(1 —q2/M&2, . )2
fits to the other transition form factors are given in Ta-
ble VI. The dipole formula excellently approximates the
transition form factors with better than 2% accuracy.
Although the monopole fit provides a worse accuracy,
its parameters agree with the vector meson dominance.
The values F+(0) are close to the corresponding results
of QCD sum rules (cf. Tables I and II) and the existing
experimental data.

(3) Figure 16 plots the IW function ((ur) = 6+(cu) for
the decay B ~ D at various values of o,D and o,~. The
function h (~) turned out to be negligibly small in agree-
ment with (72).

The IW function has been extensively studied both
theoretically and experimentally (see Table VII). The
analysis by ARGUS [31] and most of the earlier theo-
retical results suggested 1 ( p ( 2. However, a recent
analysis by CLEO as well as recent theoretical estimates
favor the lower values p & 1. We found the relation
0.7 & p & 0.9 for all values of o.D ~ from the considered
interval.
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-20 -15 -10 -5 0 5 10 15 20

FIG. 13. The form factor E+(q ) for B m vr. Solid line:
o.~ = 0.02; dotted line: the monopole fit; dash-dotted line:
the dipole fit. Dashed line: n~ = 0.04.

1.2—

As it follows from the HQ symmetry, the value ((1)
strongly depends on the relationship between o.~ and a~.
it turns out to be close to unity for o.~ ——o,D and steeply
decreases as n~ g o.D One .can find rather uncertain
constraint for the considered region of the parameters
o,Li, gy.'0.87 & ((1) & 0.98 (Table VIII).
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&&&. 12. The form factor E+(q ) for & ~ D.
n~ = o.~ = 0.02; dotted line: the monopole fit; dash-dotted
line: the dipole fit. Dashed line: a~ = n~ ——0.04.

FIG. 14. The form factor I'+ for D ~ K. Solid line:

o.~ = 0.02; dotted line: the monopole fit; dash-dotted line:

the dipole fit. Long-dashed line: the Landau singularity

contribution; long-dash-dotted line: the non-Landau term.

Dashed line: n~ ——0.04.
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TABLE V. The decay constants fJ of pseudoscalar mesons MeV.

Expt. [25]
Lattice [19]
Sum rules

LCQM [9]
LCQM [8]

130.7+ 0.46

130.7
130.7

K
159.8+1.9

162
162

D
& 310

200+ 30
160 [11]

165—195 [14]
220
206

180+ 40

130—200 [14]
188
186

TABLE VI. The form factors at q = 0 and the parameters of the monopole and dipole fits. The masses of the lowest
vector mesons which are expected to dominate the form factors are given in brackets.

Decay
B -+ D
B —+ vr

D —+K
Dme

&+(0)
0.73
0.23
0.70
0.55

M, GeV
5.7

5.2 [5.324]
2.22 [2.11]
2.1 [2.01]

A p —Q~ —0.02
Mg, GeV

7.7
6.22
3.0
2.8

(0)
-0.34
-0.19
-0.37
-0.31

Mg, GeV
7.6
6.19
2.84
2.68

&+(0)
0.68
0.22
0.70
0.59

6.08
2.95
2.68

-0.20
-0.5
-0.44

ag ——o~ = 0.04
Mq, GeV I" (0)

7.20 -0.32
M„GeV

7.15
6.01
2.73
2.54

TABLE VII. The slope of the IW function p .

ARGUS [31]
1.07 + 0.17

CLEO [32]
0.87 + 0.12

Lat [18]
1.2

SR [15]) 1.04
SR [33]

0.7 + 0.2
This work
0.8 + 0.1

TABLE VIII. The parameters of the IW function.

0.02
0.02
0.04
0.04

Qg
0.02
0.04
0.02
0.04

((1)
0.98
0.87
0.93
0.98

P
0.78
0.75
0.7
0.88
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FIG. 15. The form factor I"+ for D + vr. Solid line: a~ ——

0.02; dotted line: the monopole fit, dash-dotted line: the
dipole fit. Dashed line: a~ = 0.04.

FIG. 16. The Isgur-Wise function ((u) = h+(cu) of the
decay B ~ D: solid line: a~ = a& ——0.02; dashed line:
a~ = a~ = 0.04; dash-dotted line: a~ ——0.04, e~ = 0.02;
dotted line: aD ——0.02, a~ = 0.04.
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Let us underline that except for the relationship be-
tween crD and n~, the value ((1) is also aifected by
the particular values of heavy-meson binding energies.
At; large quark masses and the binding energy kept fi-
nite, the heavy meson and heavy quark masses coincide,
M /m = 1. Hence the positions of the "quark zero
recoil point" qp

——(mg, —mg, ) and the meson zero re-
coil point q „=(Mq —M2) also coincide. For infinitely
heavy quarks this yields ((1) = 1. For the physical heavy
quarks and mesons, the positions of the "quark zero recoil
point" cup = 1 —

[(mph' —mg2) —(Mz —M2) j/2M&M2
and the "meson zero recoil point" ~ = 1 do not coincide
any longer. The calculated ((wp) turns out to be not
far from unity if nD = n~. So, the value ((1) is sen-
sitive to the particular values of the quark masses. The
quark masses used in our calculation are chosen such that
mg —m~ = M~ —MD, and thus qp ——q and (dp = 1.
That is why ((1) 1 at n~ = a~. For other reason-
able values of quark masses, the deviation from unity at
n~ = o.~ are found at the level of 3—4%.

(4) The analysis of the analytic properties of the
hadron transition form factors yields the following typical
picture demonstrated in Fig. 14: at q & 0 the contri-
bution of the non-Landau singularity is absent, and the
Landau-type singularity determines the form factor; in
the region 0 & q & (m2 —mq) both of them are essen-
tial; at the point q2 = (m2 —mq)2 the contribution of the
Landau singularity vanishes, and the non-Landau singu-
larity determines the decay form factor at this "quark
zero recoil" point.

For hadron decays related to the heavy-to-heavy quark
transitions, a specific relationship between the Landau
and the non-Landau contributions to the dispersion rep-
resentation is observed: the normal Landau contribution
dominates the form factor at all q & (m2 —mq), whereas
the anomalous singularity is essential only in the close
vicinity of this point. So, efFectively the transition form
factor are determined by the contribution of the Landau
contribution only. Thus the HQ symmetry can be for-
mulated in the language of the analytic properties of the
transition form factors as the dominance of the Landau
singularity in the almost whole kinematical region.

In the case of the meson decay related to a heavy-to-
light quark transition, the anomalous non-Landau con-
tribution is important in a broad kinematical region. So
the relations suggested by the HQ symmetry would not
work properly.

V. CONCLUSION

We investigated form factors of hadron transitions
within the relativistic constituent quark model and pro-
posed a formalism for a direct calculation of hadron decay

form factors. The developed approach was applied to the
analysis of the electroweak properties and transitions of
pseudoscalar mesons. Our main results are as follows.

(1) The equivalence of the light-cone constituent quark
model and the approach based on the dispersion relation
integration over a bound state mass for the description of
leptonic decays and transition form factors at spacelike
momentum transfers has been demonstrated. Although
the comparison has been performed for a particular case
of pseudoscalar mesons, the approaches are equivalent for
the description of any hadrons.

(2) The obtained dispersion formulation of the light-
cone constituent quark model allows a consideration of
the decay processes where the direct application of the
light-cone technique is hampered by the contribution of
pair-creation subprocesses. The analytic continuation in
the dispersion representation of the transition form fac-
tor yields the form factor at timelike momentum trans-
fers expressed through the meson radial light-cone wave
function. Along with the normal Landau singularities,
the anomalous non-Landau singularities contribute to the
form factors at q ) 0.

(3) For hadron decays related to the heavy-to-heavy
quark transitions a specific relationship between the con-
tributions of the Landau-type and the non-Landau sin-
gularities has been observed. This allows a formulation
of the heavy quark symmetry in the language of the an-
alytic properties of the decay form factors as the domi-
nance of the normal Landau contribution in the almost
whole kinematic region of momentum transfers.

(4) Electroweak properties and form factors of pseu-
doscalar mesons have been analyzed using a parameter-
ization of the meson wave function based on the heavy
quark symmetry. We have examined the dependence of
the axial-vector decay constant on the heavy-quark mass,
and found f~ 235 MeV and f~ 200 MeV. These val-
ues can be decreased by a factor of 0.75—1, if the decay
constant at the level of the constituent quarks is less than
unity.

The correlation between the axial-vector decay con-
stant f~ and the transition form factors yields the IW
function parameter p = 0.8 + 0.1 for the axial-vector
decay constants from the intervals 160 MeV& f~
235 MeV and 130 MeV& f~ & 200 MeV.

Analyzing the dependence of f~ and the heavy meson
form factor on the heavy quark mass we have found that
the violation of the HQ symmetry relations can be ex-
pected at the 10—20 % level for the 6 and c-quark -masses.

(5) The calculated form factors of pseudoscalar meson
transitions have been approximated with a 2% accuracy
by the dipole formula in the whole kinematic region. The
form factors are also compatible with the vector meson
dominance and are close to the results of the QCD sum
rules.

~GG G

FIG. 17. One of the terms in the expansion of Ap(s). FIG. 18. One of the terms in the series for T„.
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The developed approach can be applied to the de-
scription of the pseudoscalar-to-vector meson transitions
and rare decays of heavy mesons. This work is now in
progress.

Im Ap(s) = p(s) ~Ap(s) ~',

A(s, m,', m', )
16m s (A4)
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with p(s) the two-particle phase space. The N/D method
represents the partial amplitude as Ap(s) = N(s)/D(s),
where the function N has only left-hand singularities and
D has only right-hand ones. The unitarity condition
yields

D(s) = 1 — ——:1 —B(s).ds p(s)N(s)
(m1+m2)2 X 8 S

(A5)

Assuming the function N to be positive we introduce
G(s) = QN(s). Then the partial amplitude takes the
form

APPENDIX: BOUND STATE DESCRIPTION
WITHIN DISPERSION RELATIONS

To illustrate main points of the dispersion approach
we consider the case of two spinless constituents with the
masses m~ and m2 interacting via exchanges of a meson
with the mass p. We start with the scattering amplitude

Ap(s) = G(s) 1+B(s) + B (s) + B (s) + . G(s)
G(s)G(s)
1 —B(s) (A6)

B($) =
1+my) 2

ds p(s) G2(s)
(A7)

This expression can be interpreted as a series of loop
diagrams of Fig. 17 with the basic loop diagram

A(s, t) = (k'„k2~T~k„k, ),
s = (k~ + k2)', t = (kg —k', )' (Al)

The bound state with the mass M relates to a pole
both in the total and partial amplitudes at s = M2 so
B(M ) = 1. Near the pole one has for the total ampli-
tude

The amplitude as a function of s has the threshold sin-
gularities in the complex s plane connected with elastic
rescatterings of the constituents and production of new
mesons at (A8)

I I 1
A = (kz, k2~P) 2 (P~kq, k2) + regular termsM2 —P2

1—:&s (ki k2) M, P, Xs (ki, kz) +

s = (mg + m2)', (mg + m2 + p)',
(m, + m2+ 2p), . . . . (A2)

where y~(kq, k2) is the amputated Bethe-Salpeter ampli-
tude of the bound state. The dispersion amplitude near
the pole reads

We assume that an S-wave bound state with the mass
M ( mq + m2 exists, then the partial amplitude Ap(s)
has a pole at s = M . The amplitude A(s, t) has also
t-channel singularities at t = (np, ); n = 1, 2, 3, . . . con-
nected with meson exchanges. If one needs to construct
the amplitude in the low-energy region s & (mq + m2)
the dispersion N/D representation turns out to be con-
venient. Consider the S-wave partial amplitude

A = N/D + regular terms related to other partial waves

G2(M ) G2(Mz)
(M2 —s)B'(M2) M2 —s (A9)

where G„ is a vertex of the bound state transition to
the constituents. The singular terms correspond to each
other and, hence,

1

Ap(s) = dz A(s, t(s, z)), (A3) ~~(k„k,) -+ G„(P2) = c(s '&

QB'(M2) (Alo)

where t(z) = —(1 —z)A(s, mz, m2)/2$, z = cos 0 in the
c.m. system. The Ap(s) as a function of complex s has
the right-hand singularities related to s-channel singular-
ities of A(s, t). In addition, it has left-hand singularities
located at s = (mq + m2) —(np); n = 1, 2, 3. . .
They come from t-channel singularities of A(s, t). The
unitarity condition in the region s (mq + m2) reads

Underline that among right-hand singularities the con-
structed dispersion amplitude takes into account only the
two-particle cut.

I et us turn to the interaction of the two-constituent
system with an external electromagnetic field. The am-
plitude of this process T~ = (kz, kz~ J„(q)~kq, k2) in the
case of a bound state takes the form
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T„=(k'„k', ]P') „,(P'[J, (q)~P), (Plki k2) +

= yp(k'„k,') „,(P'+ P)„I"(q') P, M, xJ (ki, k2) + (A11)

where the bound state form factor is defined as

(P'l~ (q)IP) = (P'+P) I"(q') . (A12)

G(s) G(")
1 —B( )

[B(s') —B(s)] —B( ') (A15)

The dispersion amplitude T„with only two-particle
singularities in the P and P' channels taken into ac-
count is given [28] by the series of graphs in Fig. 18.

These graphs are obtained from the dispersion scat-
tering amplitude series by inserting a photon line into
constituent lines. The amplitude reads

At s = 8' = M, the quantity T„develops both s and
8' poles, so

T.(P, P, .)=". )(P+P).~(") (
M2 —s —8

+less singular terms, (Alo)

T„(P',P, q) = 2P„(q)T(s', s, q') + —", C,

p'=s, P"=s', q=P' —P, P„(q)= (P —,q[).

where

E(q') =- dsG„(s) ds'G„(s')

,). rr(s —M2) rr(s' —M2)

(A17)

T(. . .
)

G(s) q(. . .
)

G(s')
1 —B(s) ' '

1 —B(s')
Here

(A14)

I'(s', s, q ) = dsG(s) ds'G(s')
7t 8 —8 7l 8 —8

and A(s', s, q ) is the double spectral density of the three-
point Feynman graph with a pointlike vertex of the con-
stituent interaction.

The longitudinal part C is given by the Ward identity

The dispersion method allows one to determine
T(s, s', q ), which is the part of the amplitude transverse
with respect to q&. Summing up the series of dispersion
graphs in Fig. 2 gives

is the bound-state form factor [see (Alo) and (All)]. So,
the quantity (P'[J~(q) ~P) corresponds to the three-point
dispersion graph with the vertices G„. The following re-
lation is valid A(s', s, 0) = rrb(s' —s)p(s). This is a conse-
quence of the Ward identity which relates the three-point
graph at zero momentum transfer to the loop graph. This
relation yields the charge normalization E(0) = 1. The
expression (A17) gives the form factor in terms of the X
function of the constituent scattering amplitude and dou-
ble spectral density of the Feynman graph. In general,
the following prescription works: to obtain the dispersion
expression spectral density in channels corresponding to
a bound state, one should calculate the related Feynman
graph spectral density and multiply it by G„.

If the constituent is a nonpoint particle, the expression
(A17) should be multiplied by the form factor of an on-
shell constituent.
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