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Polarized and unpolarized nucleon structure functions from lattice QCD
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We report on a high statistics quenched lattice QCD calculation of the deep-inelastic structure functions
F., F,, g1, andg, of the proton and neutron. The theoretical basis for the calculation is the operator product
expansion. We consider the moments of the leading twist operators up to spin four. Using Wilson fermions the
calculation is done for three values of and we perform the extrapolation to the chiral limit. The renormal-
ization constants, which lead us from lattice to continuum operators, are calculated in perturbation theory to
one loop order.

PACS numbegs): 12.38.Gc, 13.85.Hd, 13.88e

I. INTRODUCTION for n=2 (generally evem), where

Deep-inelastic lepton-nucleon scattering is described by 1 > 2 (D) > 2o () N
four structure functionsF,, F,, g;, andg,. The spin- 2253 (P8I, ugf P9) =200 [P - - P, — traced,
averaged structure functioris; and F, carry information
about the overall density of quarks and gluons in the . p\n-1_  _ -
nucleon. They have played a seminal role in the development /Ll)#f (E) ¥¥u,Dpu, - -D, ¢~ traces 2
of our current understanding of the structure of hadrons. The
polarized structure functioly; goes one step further and \.ith = u(d) for f=u(d). and
probes the distribution of quarks of a given helicity in the y=u(d) (d),
longitudinally polarized nucleon. Recent measurements of ¢(f)(,2/Q2 =021+ g(u)2c, ,(12Q? )
g, [1] have revealed théat first sigh} surprising result that 1w 7Q%0() = QUL+ 0 C1n(w Q%8 (k))]
only a small fraction of the nucleon’s spin is carried by .t 22 —0h2r1+ 2, 2102
quarks. This has triggered a great deal of interest in the sub- 2a(w7Q%9(m)=Q 1+ g(p) Con(w/Q ,g(,u,))]&g)
ject. The (_)ther polarized structure functig@_ has no inter-_
pretation in purely partonic language. It involves a twist-Here . denotes the subtraction point, afid- -} indicates
three operator and thus offers the first direct measurement @mmetrization. We have chosen the normalization
higher twist operator matrix elemenfg]. Experiments that > 2>, 2\ _ B0 -o(s S ee - 2 2

; ,SIp’,s" ) =(2m)°2E;6(p— r, ST=—My. The

gf:(s:uregz are currently being performed at DESY and ir?orrtgnts >()ﬂ:(l F)2 ha?/e(?he%a)lrtg; model intgrpretation

We have initiated a program to comp\ke, F,, g,, and U(f):<xnfl>(f) (4)
g, on the lattice[3]. For an earlier attempt to compute the n ’
unpolarized structure functions spd. The theoretical basis |\ herex is the fraction of the nucleon momentum carried by

for such a calculation is the operator product expanlsiorahe quarks. In the quenched approximation the above-
(OPB, which relates the moments of the structure funCt'On%entioned equations hold for oddas well

to forward nucleon matrix elements of certain local opera- For the polarized structure functions we have, again for
tors. Where a parton model interpretation exists, it can b‘?he leading twist contribution '

mapped onto an OPE analysis. Our calculation will be in the '
guenched approximation, where internal quark loops are ne- 1 1
glected. In this paper we shall also neglect gluonic operators, 2] dxx'g,(x,Q?) = > > e g(w)al (),
which contribute only to higher order in the coupling con- f=ud

stant expansion. For the unpolarized structure functions we
then have, for the leading twist contribution,

®

1 2 [ ax0a,x, 00 =5 iy S TR o)
2 fo 00 TIFL(Q%) = 2 el (u?/Q% 9oy (),

xdP () — e Q2 a(w))

JoldX*“‘zFxx,Qz)iEd S (u2Q2,g(m)u (), xag ()], ©®)

(1)  for evenn andn=0 (n=2) for g, (g,), where[2]
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) To calculate the nucleon matrix elements we first compute
(PSR, py|PS)= 710 [SoPyyPu o two- and three-point correlation functions defined by

n

— traceg, Cr(t,p)= ;3 T 5.o(Ba(t,P)B4(00)),

> >

d(f)[(sa'py,l_ S,ulpa)

(P.SIOEay. .
T B - - = -
Cr(t,mp.) =2 Tpu(Ba(t.P)A(7)BOR). (1D

XPpuy Pt traceg,

(7)  The lattice operatorg” used here are obtained from the op-
erators in the Euclidean continuum, which look exactly like
5(1) n - the operators in Eq$2) and(7) up to factors of, by replac-
Opy- = ‘/’VUVSDM "D, ¥ traces, ing the covariant derivative by the lattice covariant deriva-
tive so thatD,, becomes

and
D, (x,Y)=3[U, () 8y x i~ ULX= )8y 3]. (12
e (1Q%,9(1)= QN 1+9( )21 (1HQ%9(1))], ’
3 We write the ratio of three- to two-point correlation functions
e (k?1Q%9(1)=Q (1 +g(p)’€n(n?1Q%g(1)]. as
tS)
R(t,7.p.I",?)=Cp(t,7,p,?)ICL (t,p)
In Eq. (7) [---] indicates antisymmetrization. In parton : 217
model language, 1 Es F(rL ) 13
. 13
al’=2Au, af=2Ad, ) By
whereAu,Ad determine the fraction of the nucleon spin that (for 0<7<t) with
is carried by the quarks. A similar interpretation holds for the F(T', 7)=% T TN 2N]
higher spin operators. The structure functigyn consists of - ¢ : '
. . . (f) . _ R . o
two contributions:a;,’ is the so-called Wandzura-Wilczek N=y,—ip- /E;+my/E;, (14)

contribution [5] which corresponds to twist two, whereas

d{" corresponds to twist three. In addition g’ thereis a  ang 7 defined by

contribution tog, from a twist-three operator which is pro-

portional to the quark mad$]. Since we are mainly inter- 5.9l216.8Y=0(D.S) Zu(p.9). 15

ested in the chiral limit we have neglected that. (.Sl 7Ip.)=u(p,s) 7u(p.S) 19

When calculating three-point functions it is particularly

Il. LATTICE CALCULATION important that the baryon operatBrhas only little overlap

with excited baryon states, in order to make the plateau re-

gion in 7 as broad as possible. As our basic proton operator

we use(with C=y,7y, in our representation

We perform our quenched QCD calculations for Wilson
fermions withr =1 on a 16x 32 lattice. For the gauge cou-
pling we takeB=6/g> = 6.0. To be able to extrapolate our
results to the chiral limit, we run at three different hopping
parametersg=0.155, 0.153, and 0.1515. This corresponds  B,(t,p)= >, e~ ip- Xeabcu (X)[UP(X)Cysd(x)]

to physical quark masseas, of roughly 70, 130, and 190 x,a,b,c
MeV, respectively, using the perturbative relation (16)
1 1 with two important improvements. First we use “Jacobi
mga=0. 56(—— -, (10) smearing”[8] (a version of 9]) in order to have an extended
K Ke proton operator. Thus each quark operator in @4) is re-
. . . placed by
wherea is the lattice spacing.
For the gauge update we use a cycle consisting of a single Ng
three-hit Metropolis sweep foIIowe_d by_ 16 overrelaxation Y— YS= 2 ( KSS)N,#, (17)
sweepg 7]. We repeat this cycle 50 times in order to generate n=0

a new configuration. The resulting configurations seem to be

independent. We see no correlations between hadronic quaftd similarly fory as we smear both source and sink. We
tities calculated on different gauge field configurations. Thfound  suitable values of the parameters to be
calculations are carried out on Quadrics Q16 and QH2 pafNs=50, xs=0.21, which for our largest value gave a rms
allel computers. For details of the implementation of ourradius of about 4, corresponding roughly to 0.5 fm, i.e., half
code on these machines g6 So far we have collected of the nucleon radius. Second we replace each spinor by

the order 1000, 600, and 400 independent configurations at _ _

the threex values. Y— oy NR=2(1+ v, Pp—y"R=yi(1+y,). (18
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TABLE |. The hadron masses in lattice units @t 6.0.

1.0 T T T T T T T
K
R . | ‘f’ E 0.1515 0.153 0.155
No.s—g ] 5 S b 1 | 4 m. 0.5042) 0.4222) 0.2972)
E ¢ % 1 T m, 0.5702) 0.5012) 0.4222)
0-7 ‘1’ 3 My 0.9005) 0.7945) 0.6545)
06 3
os 3 E limit is obtained by extrapolating in &/to zero 7 mass.
E p=2u/16 E Assuming, as usual, than’> depends linearly on &/ we
P N — ——— obtain from our data the critical value,=0.156934). In
o 2 4 & 8 10 12 14 16 18 Fig. 2 we plotm%, m?, andmj as a function of 3. In this
t plot we have also included other recent result@&t6.0. A
combined fit givesny /m,=1.37 in the chiral limit. We have
tried linear fits to the nucleon angl masses as well. How-
1.0 5 . ; T T . T . ever, the fits were not acceptable. The same observation was
E made in Ref[13].
o ® ‘ E To calculate three-point functions we require additional
N o8 _ s 3 propagators, one for each chosterp?, andI’. We have fixed
E N t at 13 and have chosdn= 3(1+ vy,), corresponding to the
o 3 ® 5 E unpolarized case, and= 1(1+ y,)iysy,, corresponding to
° 0,0 3 polarization (- - —) in the two-direction. For the momen-
0.6 5 tum we have takep=0 andf):(2#/16,0,0)E(p1,0,0). We
have also considerafl=u, d separately. This means that we
0.5 3 p= 3 must find 2<2X2=28 (half) quark propagators. The choice
E E t=13 is sufficient. Larger values dflead to unacceptably
04 T T T T T T T T T large errors in the signal fdR. Test runs fot =17 turned out
o] 2 4 6 8 10 12 14 16 18

FIG. 1. Effective nucleon mass plot fgg=0 (bottom, and
effective nucleon energy plot fdp|=2/16 (top) at k=0.155.
Both source and sink are smeared. The horizontal lines indicate the
result of the fit as well as the fit interval.

This replacement leaves quantum numbers unchanged, but
we expect it to improve overlap with those baryons which
have slow-moving valence quarks. Practically this means
that for each baryon propagator we invert on a smeared local
source and consider only the first two Dirac components. So
we only have X3 inversions to perform rather than the
usual 4x 3 inversions, which saves a factor 2 in computer
time in the inversion.

In Ref. [3] we have seen that the projecti¢h8) is par-
ticularly effective at reducing unwanted backward propagat-
ing states, which extends the window that one can practically
use for matrix element calculations to well above half the
temporal extent of the lattice. In Fig. 1 we show a plot of the
resulting effective nucleon energy, as given by

In[C(t)/C(t+1)], for p=0 and |p|=2/16 at our smallest
qguark mass. For zero nucleon momentum we find a good
plateau with a proton mass of 0.658 For the lowest non-
zero momentum we find an energy of 0.Y8B, which is in
good agreement with the continuum dispersion relation. In
both cases we see that after a distance of about four time
units there is very little trace of an excited state. In Table |

smallest quark mass the ratio,/m, is about 0.7. The chiral  «x.=0.1569¢5).

1.0

0.6

0.4

0.2

0.0

FIG. 2. m?

T

to have errors of- 2 larger, which roughly corresponds to

6.35

1/x

. . m’, andmg as a function of I#¢ together with
we give the mass values of the nucleon together with thosether recent results of the literatur@: this work, 1 Ref.[10], ¢
of the = and p for our three values ok. Note that at the Ref.[11], A Ref.[12]. The fit to all data points combined gives
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TABLE Il. The lattice operators and their representation. The TABLE Ill. The renormalization constants in the quenched ap-

momentum is taken to b§=(27r/16,0,0)5(p1,0,0) in the case of proximation. The errors quoted are a conservative estimate of the
Vna U3,04:8,05 and5=0 elsewhereC denotes charge conjuga- uncertainties in the numerical evaluation of the integrals involved.
an H L] H ] . . . .
The numbers in the rightmost column represent the contribution of

tion.
the continuum operators computed in & scheme.
() Components Representation —
Ref.[14] Ref.[15] C (7} Ve Be Z/(19=1.0) BY®
V2a 132 —3.1656) 1.02671) —;‘—%’
S g e oo E e e
Vop  Ctaa— 3(Opnt OpatOag) 73 1(+) + U3 {Hk 3 —19.57210) .16531) -5
40: o 0.37G10)  —0.00311)
157 2216
S ® o va & -37.1630 1. 3143) -%¥
U3 ({114}/“ 2(/{22ﬁ+({334%) 7(12) 8(+) a, 0 15.7953) 0.86660) 0
Vs Crisgt Oy~ Clusy~ Clzasg 71 g £ -1956010) 1.16521)  —¢
d, I -15.68010 1.13241) -8
a % £ GO+
ap ﬁ{5214} 78 E)H) + . . . .
d 5 ® g(+) " needed as input is to state the Feynman rules in symbolic
2 6[2{1]4} 71

form, both for the continuum and the lattice part of the cal-
culation. We will summarize our results here. A detailed ac-
the increase in the noise in the baryon correlation functiorfount of our calculation will be given elsewhel®7].
fromt=13 tot=17. In the case ofvs it turns out that the operatofy;i4
—3( 224+ O(334) Mixes with the operatof16]

lll. LATTICE OPERATORS 1o —2(Cron+ Craza)
AND THEIR RENORMALIZATION (112229 (339
)= Cupv T O o= 2C v (21)

The bare lattice operators(a) are in general divergent.
We define finite operators(x), renormalized at the scale nger renormalization. This operator is of mixed symmetry,

w, by is traceless, and corresponds to the representation
o 5 8(*),C=— as well. Thus we have
Aw)=Z(ap)*,9(a))(a), 19

where Cylm)=Zypop(@) + 2y (@), (22)
; , ree where we have used a shorthand notation for the operators in

(alowlap)=<apa@laP)z-,2 20  Taple Il and Eq(21). We write (Cr=4/3)
with |q(p)) being a quark state of momentymn In the limit ) 2
a—0 this definition amounts to the continuum, momentum ZA(ap)*,9)=1= 7o Cely n(an) +B.]. (23

subtraction renormalization scheme.

The lattice operators transform under the discrete hyperfhis is to be interpreted as a matrix equation in the case of
cubic groupH(4) [14,15. They must be constructed such v;. Our results for the anomalous dimensiops and the
that they belong to a definite irreducible representation of th&,'s are given in Table Il forr=1. The renormalization
latter. In particular they must not mix with lower- constantsZ, andZao have been given before in the litera-

dimensional operators. This is prerequisite to the operatorg;re [18—2(].' We agree with the results of these authors. In
being multiplicatively renormalizable. Furthermore, from the e case ob 5 the off-diagonal component & is negligibly
more practical point of view, the operators should only re-gmgl.

quire a nonzero spatial momentum in at most one direction. The structure functions do not depend n but (x"~ 1)

We have considered the operators listed in Table II. For theng Ay, Ad do. In the following we shall quote our results
group theoretical classification of the lattice operators segy,

Ref.[16]. The calculation ofv,4, v3, v4, @y, andd, re-
quires nonvanishing nucleon momenta. Note that for the w?=Q%=a 2 (24

guenched theory there is no mixing with gluon operators. In
the continuum limit the matrix elements , andv,,, should ~ Which eliminates the logarithms in the Wilson coefficients

be equal. At finite lattice spacing this provides us with aand renormalization constants. At our smallest quark mass,
consistency check and gives information about possible lattaking the nucleon mass as the scale, the inverse lattice spac-
tice artifacts. ing is a '~1.4GeV. In the chiral limit we find

We have computed the renormalization constants for oud™ *~2 GeV. We will denoteZ,.(1,9=1.0) byZ,. The cor-
operators in the quenched approximation for Wilson fermi-responding numerical values are also listed in Table Ill. As
ons in perturbation theory to one-loop order. For this task wéhe Wilson coefficients are generally computed in the modi-
have developed packages of computer algebraic progranid minimal subtraction NIS) regularization scheme, one
USingMATHEMATICA andMAPLE to such a level that all thatis needs to know the renormalization constants in this scheme
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too. In Table Il we state the contribution of the continuum The exact amount depends on how it is implemented, and
operators computed in tHdS scheme. The difference of the there is considerable freedom to do ¢ib.is better to com-
B.'s then gives the result in thelS scheme. pute the renormalization constants nonperturbatiyeiy];

The renormalization constants receive contributions fronthat is what we are doing no{23].) The results are plotted
five different types of diagrams: the vertex, the leg self-in Figs. 4 and 5 and the numerical values are listed in Table
energy, the leg tadpole, the operator tadpole, and the operatby. All our results are given for the proton. The distribution
comb diagrams. The tadpole diagrams give by far the largestinctions of the neutron are obtained by interchangirand
contribution to the renormalization constants. The leg tady.
pole contribution is the same for all operators. The operator \we shall now discuss our results in detail. The first im-
tadpole contribution is proportional to the number of Cova”'portant observation to make is that the valuegf, and
ant derivatives and has opposite sign to the leg tadpole. Leg,y ' \hich are obtained from different representations of
and operator tadpole diagrams cancel each otheg inThis the hypercubic groupi(4) (cf. Table 1)), are consistent with
accounts for the small values &, ,B,, . In &, only the  oa0n gther, within the error bars. This indicates that lattice
leg tadpole contributes. In all other cases it is the operatogytifacts are presumably small. A second observation is that

tadpole diagram which dominates. all matrix elements show roughly a linear behavior ir,1/
i.e., in the quark madef. Eq.(10)]. The lines shown in Figs.
IV. STRUCTURE FUNCTION RESULTS 4 and 5 are linear fits to the data. The result of the extrapo-

The next step is to calculate the ratio of three- to two-lation is indicated by the solid circles and the solid box, and
point correlation function®, as given in Eq(13), for the the numerical values of the fit are given in the last column of
’ ot v Table IV.

operators listed in Table Il. To make sure that we are com- )
puting the matrix elements of the lowest-lying state, i.e., the L€t US concentrate on the moments of the unpolarized

nucleon, we must look for plateaus in the time distance of structure functions shoyvn in F?g. 4 f'irst. We see that the
the operator from the source, forOr<t=13. In Fig. 3 we lOwest moment §=2) is practically independent of the
show R as a function ofr for six of our operators at duark mass. For growing the moments show a stronger and
x=0.153. The ratioR, not shown here is of the same stronger_lncrease with the quark mass. For the distribution

. . 2b . . function itself this means that at smallquark mass effects
quality asR, , . We find in all cases that the signal is prac- ;. "aqiigible, while at intermediate and largeits shape
spacings from the source and from the sink. For¥3the |imit of large quark masses the higher moments approach the
signal is practically zero as one would expect. The fit intervayredictions of the nonrelativistic quark model. In particular
is taken to be 4 7<9. The result of the fit is shown by the \ye find (x"~1)(W~2(x""1)@ for all n. In the chiral limit

horizontal lines, and the errors are indicated by the dotteghe picture changes completely. Whereas at smiie ratio

lines. ) ] ~of u to d distribution is roughly two, the ratio increases
The renormalized operator matrix elements are obtamepapid|y for larger values of.
from the ratioR by We may compare our results in the chiral limit with the
i1 1 1 phenomenological valence quark distribution functions. Fit
i () (d) =
R, ==>— = Pw2ar» Ry, =—5— Moy, D_ of Ref. [24] gives (x)!"'=0.284, (x)!“=0.108,
28 Z,, 26T e 7, 2k (x»W=0,083, (x)®=0.026, (x*®¥=0.032, and
(x3)@=0.009. Fit CTEQ3M of Ref. [25] gives
R —_ 11 2, R — iiE 2, (x)W=0.301, (x)@=0.083, (x?=0.090, (x?)@
v Z,, 2« Pws v oy, Z,, 2k p,P1V4: =0.038, (x®)(W=0.036, andx3)(?=0.009. It appears that
the quenched lattice results fgk) are significantly larger
i 1 my 1 11 than the values obtained from the phenomenological valence
Ra,= Z. 72« an, Ra,= 7. 2x 6MNP182, quark distribution functions, while fofx®) the lattice results
0 1 2 are smaller than the phenomenological values. This is true

for both, u andd quark distributions. Thus, our calculation
would predict a valence quark distribution function that is
larger at small to intermediate values »wfand smaller at
large values ofx than the phenomenological distribution
We have defined the continuum quark fields @ times  functions. But this is a lame comparison because we are
the lattice quark fields. For the renormalization constants welealing with probabilities. Considgix), and let the sub-
take the perturbative values given in Table Ill. In the case okcriptsV, S, andG denote the valence quark, sea quark, and
vz We have also computed the nucleon matrix element of thgluon contribution. Momentum conservation then demands
operator in Eq(21). It turned out to be noisy and consistent that (x>8’)+(x>§,d)+<x>s+<x>6:1. In the quenched ap-
with zero within an error of rOUghly 1/5 the magnitude of the proximation<x>s =0, so that valence quark and g|u0n con-
|eading Symmetric contribution. Given the small Oﬁ-diagonaltributions should sum up to one. If, for examp|e’ the g|uon
component of the renormalization constant, we may thugontribution is approximately equal in both cases, we would
safely neglect the effect of mixing. Tadpole resummationthys expect to find that the quenched quark result is notice-
[21] would leaveZ,, , Z,, unchanged, while it would ably larger than the valence quark contribution. A better
change the other renormalization constants by a few percemjuantity to compare is therefore the difference usfand

Rq.= t 1!l d 25
dz_z_dzﬂgmNpl 2- (29
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FIG. 3. The ratioR for u andd quark insertions fok=0.153.(a) _isza’ (b) Rva’ (c) Ry, (d) —iRaO, (e) Ra,. and(f) Ry, Both source
and sink are smeared. The source i$=ad, the sink at=13. ’

d-quark distribution functions in which the sea quark and theThis is to be compared with the experimental value of the
gluon contributions drop out. In the chiral limit we obtain axial vector coupling constarg,=1.26. If we add the sea
(x)W—(x)@ = 0.264). This result is only one standard quark contribution to our ressit— a recent lattice calcula-
deviation away from the CTEQ3M result of 0.22. For thetion [27] finds Au=Ad=—0.145), As=—0.13(4) using
higher moments we find agreement with the phenomenologiperturbative renormalization factors—we find good agree-
cal numbers within the error bars. ment with a recent phenomenological fit of the individual
We shall now turn to the discussion of our results for thecontributions[26] except forAu. For the total quark spin
polarized structure functions shown in Fig. 5. Let us firstcontribution to the nucleon spin we would furthermore ob-
focus onAu andAd, which in the quenched approximation tain A%=0.18(11), in agreement with the result of a full
determine the fraction of the proton spin that is carried by théQCD calculation[28], i.e., including dynamical quarks. For
valence quarks. Sea quark effects may be neglected fdreavy quark masses we fiddi~1 andAd~ —1/4, in good
heavy quarks, and they drop out in the differedoe— Ad.  agreement with the three-quark mog29].
In the chiral limit we obtain By comparing the moments,=2Aq anda, with those
of the unpolarized structure functions we find that in the
Au—Ad=g,=1.079). (26) chiral limit g, is less singular thak,; asx goes to zero. This
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FIG. 4. The moments of the unpolarized proton structure func-
tions as a function of I, together with a linear fit to the data. The
solid symbols indicate the extrapolation to the chiral limit.(&)
circles refer to(x),, boxes to(x)y, .

FIG. 5. The moments of the polarized proton structure functions
as a function of 14, together with a linear fit to the data. The solid
symbols indicate the extrapolation to the chiral limit.

0.015@32) proton,

1 2y
fo dx>*gy(x,Q )—r —0.001220) neutron. 9

is also what one finds experimentallg0]. In the limit of
large quark masses, on the other hand, it seemsgthéd
proportional toF; .

If we combine our results with the perturbatively known Here we have converted the renormalization constants to the
[31] Wilson coefficients we can compute the moments ofMS scheme, because the Wilson coefficients were computed
g;. In the chiral limit we obtain, for the lowest moment,  in this scheme too. This result is consistent with experiment

[32].

@7 Let us finally discuss the structure functign. From Fig.

5(c) we read off that the twist-three contributio, is
strongly mass dependent. Whit approaches zero in the
heavy quark limit, for bottu andd quark insertion, it is of
the same order of magnitude as its twist-two counterpart
for small quark masses. In the chiral limit we obtain

0.16616)
—0.00809)

J'ld , proton,
0 Xgu(x, Q%)= neutron.

Recall thatQ?~4 Ge\2. For the difference of proton and
neutron structure functions we find

1
fodx[g&’(x,Q%—91<X:Q2>1:°-17425>- @8 fldxegz<x,Q2>
0

Our result is in good agreement with the phenomenological B
analysis[26,30. In the higher moments af, sea quark ef- :[ —0.016116)—0.010@22) = — 0.026138)

fects should not play any role anymore. In the chiral limit we —0.001309) +0.000913)= —0.000422) neutron.
obtain (30

proton,
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TABLE IV. Structure function results for the proton. All num- structure functions of the nucleon. The calculation has been

bers refer to the momentum subtraction scheme. performed in the quenched approximation, where sea quark
effects are neglected, and it was done for three different
K quark masses. This allowed us to extrapolate our results to
Observable 0.1515 0.153 0.155 «.=0.1569 the chiral limit.
(x) 0.477123) 0.43620) 0.45728) 0.430493 The valence quark distributions that we have obtained dif-
()W 0.47822 0.47320) 0.47520) 0.47332) fer somgwhat from the phenomenological or.ﬁéé]. One
() 0.47816) 0.45514) 0.46616) 0.45226) explanation could be that at smaller v_alueQ3fh|gher twist
)@ 0.22611) 0.20%10) 0.19512)  0.17420) contannons are non-negllg!ble, Whlch_ have not begn in-
(x)@ 0226100 021909 021109  0.20415) c_Iuded in the p_hgr_10n_1enolog|cal analysis. We plan to inves-
(0O 022608 021007 020307 0.18412) tigate this possibility in the future. Our results for the polar-

ized structure functions are consistent with experiment, as far

x2) () 0.14711) 0.127100 0.12313)  0.10420 ) i .
éxzi(d) 0 06;{(05; 0 05205; 0 043(06; 0 03%0; as data exist. A surprise was that the twist-three operator
(AW 006005 0044905 003508 002211  contributed so much tg,. o
(3@ 002603 0.01803 0.00804) -0.00X07) It was interesting to see how the results varied with the
Au 093845 093544 0.86343  0.83470) quark mass. At large quark masses our results agree largely
Ad -0' 25012) -0. 25012) _0' 24614) _O' 24422) with what one would expect on the basis of the quark model.
’ ' | | For small quark masses there are, however, significant

(u) , )
) Shma o oumn SR e

(ZU) ' ' ' ' With the (raw) lattice data being relatively accurate now,
dz 0.11405)  -0.13807) -0.20116)  -0.23320) the calculation of the renormalization constants has become
d{® 0.02002) 0.02402) 0.03606)  0.04007)

a major issue. So far we have computed the renormalization
constants in perturbation theory to one-loop order. We hope

As before, Wilson coefficientt81] and renormalization con- 0 do better in the near futufe3]. _

stants are consistently computed in #& scheme. In Eq. The renormalization constant farz has independently
(30) the first number comes froah,, while the second num- Peen computed by the Rome groig#]. We have compared
ber comes froma, [cf. Eq. (6)]. We see that the twist-three Our results with theirs at intermediate stages of the calcula-
operator provides the dominant contribution. The Wandzuration, and they agreed. These authors use a slightly different
Wilczek description ofg, [5] is a valid approximation for basis of operators from ours though.

large quark masses, but for light quark masses it is definitely

not. Our results seem to be in disagreement with recent esti-

mates based on sum rulg’3], which suggest that for the ACKNOWLEDGMENTS
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