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Polarized and unpolarized nucleon structure functions from lattice QCD
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We report on a high statistics quenched lattice QCD calculation of the deep-inelastic structure functions
F1 , F2 , g1 , andg2 of the proton and neutron. The theoretical basis for the calculation is the operator product
expansion. We consider the moments of the leading twist operators up to spin four. Using Wilson fermions the
calculation is done for three values ofk, and we perform the extrapolation to the chiral limit. The renormal-
ization constants, which lead us from lattice to continuum operators, are calculated in perturbation theory to
one loop order.

PACS number~s!: 12.38.Gc, 13.85.Hd, 13.88.1e
-

I. INTRODUCTION

Deep-inelastic lepton-nucleon scattering is described
four structure functions:F1 , F2 , g1 , and g2 . The spin-
averaged structure functionsF1 and F2 carry information
about the overall density of quarks and gluons in t
nucleon. They have played a seminal role in the developm
of our current understanding of the structure of hadrons. T
polarized structure functiong1 goes one step further an
probes the distribution of quarks of a given helicity in th
longitudinally polarized nucleon. Recent measurements
g1 @1# have revealed the~at first sight! surprising result that
only a small fraction of the nucleon’s spin is carried b
quarks. This has triggered a great deal of interest in the s
ject. The other polarized structure functiong2 has no inter-
pretation in purely partonic language. It involves a twis
three operator and thus offers the first direct measuremen
higher twist operator matrix elements@2#. Experiments that
measureg2 are currently being performed at DESY an
SLAC.

We have initiated a program to computeF1 , F2 , g1 , and
g2 on the lattice@3#. For an earlier attempt to compute th
unpolarized structure functions see@4#. The theoretical basis
for such a calculation is the operator product expans
~OPE!, which relates the moments of the structure functio
to forward nucleon matrix elements of certain local ope
tors. Where a parton model interpretation exists, it can
mapped onto an OPE analysis. Our calculation will be in
quenched approximation, where internal quark loops are
glected. In this paper we shall also neglect gluonic operat
which contribute only to higher order in the coupling co
stant expansion. For the unpolarized structure functions
then have, for the leading twist contribution,

2E
0

1

dxxn21F1~x,Q
2!5 (

f5u,d
c1,n

~ f !
„m2/Q2,g~m!…vn

~ f !~m!,

E
0

1

dxxn22F2~x,Q
2!5 (

f5u,d
c2,n

~ f !
„m2/Q2,g~m!…vn

~ f !~m!,

~1!
530556-2821/96/53~5!/2317~9!/$10.00
by

he
ent
he
d
e
of

y
ub-

t-
t of

d

e

ion
ns
ra-
be
the
ne-
ors,
n-
we

for n>2 ~generally evenn), where

1

2(sW
^pW ,sWuO $m1•••mn%

~ f ! upW ,sW&52vn
~ f !@pm1

•••pmn
2 traces#,

Om1•••mn

~ f ! 5S i2D
n21

c̄gm1
DJ m2

•••DJ mn
c2 traces ~2!
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Here m denotes the subtraction point, and$•••% indicates
symmetrization. We have chosen the normalization

^pW ,sWupW 8,sW8&5(2p)32EpWd(pW 2pW 8)dsW,sW8, s252mN
2 . The

moments ofF1 , F2 have the parton model interpretation

vn
~ f !5^xn21&~ f !, ~4!

wherex is the fraction of the nucleon momentum carried by
the quarks. In the quenched approximation the above
mentioned equations hold for oddn as well.

For the polarized structure functions we have, again for
the leading twist contribution,
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for evenn andn>0 (n>2) for g1 (g2), where@2#
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„m2/Q2,g~m!…5Q~ f !2@11g~m!2ē2,n„m
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In Eq. ~7! @•••# indicates antisymmetrization. In parto
model language,

a0
~u!52Du, a0

~d!52Dd, ~9!

whereDu,Dd determine the fraction of the nucleon spin th
is carried by the quarks. A similar interpretation holds for t
higher spin operators. The structure functiong2 consists of
two contributions:an

( f ) is the so-called Wandzura-Wilczek
contribution @5# which corresponds to twist two, wherea
dn
( f ) corresponds to twist three. In addition todn

( f ) there is a
contribution tog2 from a twist-three operator which is pro
portional to the quark mass@6#. Since we are mainly inter-
ested in the chiral limit we have neglected that.

II. LATTICE CALCULATION

We perform our quenched QCD calculations for Wilso
fermions withr51 on a 163332 lattice. For the gauge cou
pling we takeb[6/g2 5 6.0. To be able to extrapolate ou
results to the chiral limit, we run at three different hoppin
parameters,k50.155, 0.153, and 0.1515. This correspon
to physical quark massesmq of roughly 70, 130, and 190
MeV, respectively, using the perturbative relation

mqa50.56S 1k 2
1

kc
D , ~10!

wherea is the lattice spacing.
For the gauge update we use a cycle consisting of a sin

three-hit Metropolis sweep followed by 16 overrelaxatio
sweeps@7#. We repeat this cycle 50 times in order to genera
a new configuration. The resulting configurations seem to
independent. We see no correlations between hadronic q
tities calculated on different gauge field configurations. T
calculations are carried out on Quadrics Q16 and QH2 p
allel computers. For details of the implementation of o
code on these machines see@3#. So far we have collected o
the order 1000, 600, and 400 independent configuration
the threek values.
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To calculate the nucleon matrix elements we first compute
two- and three-point correlation functions defined by

CG~ t,pW !5(
a,b

Gb,a^Ba~ t,pW !B̄b~0,pW !&,

CG~ t,t,pW ,O !5(
a,b

Gb,a^Ba~ t,pW !O ~t!B̄b~0,pW !&. ~11!

The lattice operatorsO used here are obtained from the op-
erators in the Euclidean continuum, which look exactly like
the operators in Eqs.~2! and~7! up to factors ofi , by replac-
ing the covariant derivative by the lattice covariant deriva-
tive so thatDJ m becomes

DJ m~x,y!5 1
2 @Um~x!dy,x1m̂2Um

† ~x2m̂ !dy,x2m̂#. ~12!

We write the ratio of three- to two-point correlation functions
as

R~ t,t,pW ,G,O !5CG~ t,t,pW ,O !/C 1
2 ~11g4!~ t,pW !

5
1

2k

EpW

EpW1mN
F~G,J ! ~13!

~for 0!t!t) with

F~G,J !5 1
4 Tr@GNJN#,

N5g42 ipW •gW /EpW1mN /EpW , ~14!

andJ defined by

^pW ,sWuO upW ,sW&5ū~pW ,sW !Ju~pW ,sW !. ~15!

When calculating three-point functions it is particularly
important that the baryon operatorB has only little overlap
with excited baryon states, in order to make the plateau re-
gion in t as broad as possible. As our basic proton operator
we use~with C5g4g2 in our representation!

Ba~ t,pW !5 (
xW ,a,b,c

e2 ipW •xWeabcua
a~x!@ub~x!Cg5d

c~x!#

~16!

with two important improvements. First we use ‘‘Jacobi
smearing’’@8# ~a version of@9#! in order to have an extended
proton operator. Thus each quark operator in Eq.~11! is re-
placed by

c→cS5 (
n50

Ns

~ksDJ !nc, ~17!

and similarly for c̄ as we smear both source and sink. We
found suitable values of the parameters to be
Ns550, ks50.21, which for our largestk value gave a rms
radius of about 4, corresponding roughly to 0.5 fm, i.e., half
the nucleon radius. Second we replace each spinor by

c→cNR5 1
2 ~11g4!c, c̄→c̄NR5c̄ 1

2 ~11g4!. ~18!
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This replacement leaves quantum numbers unchanged,
we expect it to improve overlap with those baryons whi
have slow-moving valence quarks. Practically this mea
that for each baryon propagator we invert on a smeared lo
source and consider only the first two Dirac components.
we only have 233 inversions to perform rather than th
usual 433 inversions, which saves a factor 2 in comput
time in the inversion.

In Ref. @3# we have seen that the projection~18! is par-
ticularly effective at reducing unwanted backward propag
ing states, which extends the window that one can practic
use for matrix element calculations to well above half t
temporal extent of the lattice. In Fig. 1 we show a plot of th
resulting effective nucleon energy, as given b
ln@C(t)/C(t11)#, for pW 50 and upW u52p/16 at our smallest
quark mass. For zero nucleon momentum we find a go
plateau with a proton mass of 0.658~5!. For the lowest non-
zero momentum we find an energy of 0.765~11!, which is in
good agreement with the continuum dispersion relation.
both cases we see that after a distance of about four t
units there is very little trace of an excited state. In Table
we give the mass values of the nucleon together with th
of the p and r for our three values ofk. Note that at the
smallest quark mass the ratiomp /mr is about 0.7. The chiral

FIG. 1. Effective nucleon mass plot forpW 50 ~bottom!, and

effective nucleon energy plot forupW u52p/16 ~top! at k50.155.
Both source and sink are smeared. The horizontal lines indicate
result of the fit as well as the fit interval.
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limit is obtained by extrapolating in 1/k to zerop mass.
Assuming, as usual, thatmp

2 depends linearly on 1/k, we
obtain from our data the critical valuekc50.15693(4). In
Fig. 2 we plotmp

2 , mr
2 , andmN

2 as a function of 1/k. In this
plot we have also included other recent results atb56.0. A
combined fit givesmN /mr51.37 in the chiral limit. We have
tried linear fits to the nucleon andr masses as well. How-
ever, the fits were not acceptable. The same observation w
made in Ref.@13#.

To calculate three-point functions we require additiona
propagators, one for each chosent, pW , andG. We have fixed
t at 13 and have chosenG5 1

2(11g4), corresponding to the
unpolarized case, andG5 1

2(11g4) ig5g2 , corresponding to
polarization (1 - 2) in the two-direction. For the momen-
tum we have takenpW 50 andpW 5(2p/16,0,0)[(p1,0,0). We
have also consideredc5u, d separately. This means that we
must find 2323258 ~half! quark propagators. The choice
t513 is sufficient. Larger values oft lead to unacceptably
large errors in the signal forR. Test runs fort517 turned out
to have errors of; 2 larger, which roughly corresponds to

TABLE I. The hadron masses in lattice units atb56.0.

k
0.1515 0.153 0.155

mp 0.504~2! 0.422~2! 0.297~2!

mr 0.570~2! 0.507~2! 0.422~2!

mN 0.900~5! 0.798~5! 0.658~5!

the

FIG. 2. mp
2 , mr

2 , andmN
2 as a function of 1/k together with

other recent results of the literature:s this work,h Ref. @10#, L
Ref. @11#, n Ref. @12#. The fit to all data points combined gives
kc50.15699(5).
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the increase in the noise in the baryon correlation funct
from t513 to t517.

III. LATTICE OPERATORS
AND THEIR RENORMALIZATION

The bare lattice operatorsO (a) are in general divergent
We define finite operatorsO (m), renormalized at the scale
m, by

O ~m!5ZO„~am!2,g~a!…O ~a!, ~19!

where

^q~p!uO ~m!uq~p!&5^q~p!uO ~a!uq~p!&up25m2
tree ~20!

with uq(p)& being a quark state of momentump. In the limit
a→0 this definition amounts to the continuum, momentu
subtraction renormalization scheme.

The lattice operators transform under the discrete hyp
cubic groupH(4) @14,15#. They must be constructed suc
that they belong to a definite irreducible representation of
latter. In particular they must not mix with lower
dimensional operators. This is prerequisite to the opera
being multiplicatively renormalizable. Furthermore, from th
more practical point of view, the operators should only
quire a nonzero spatial momentum in at most one direct
We have considered the operators listed in Table II. For
group theoretical classification of the lattice operators
Ref. @16#. The calculation ofv2,a , v3 , v4 , a2 , andd2 re-
quires nonvanishing nucleon momenta. Note that for
quenched theory there is no mixing with gluon operators.
the continuum limit the matrix elementsv2,a andv2,b should
be equal. At finite lattice spacing this provides us with
consistency check and gives information about possible
tice artifacts.

We have computed the renormalization constants for
operators in the quenched approximation for Wilson ferm
ons in perturbation theory to one-loop order. For this task
have developed packages of computer algebraic progr
usingMATHEMATICA andMAPLE to such a level that all that is

TABLE II. The lattice operators and their representation. T

momentum is taken to bepW 5(2p/16,0,0)[(p1,0,0) in the case of

v2,a ,v3 ,v4 ,a2 ,d2 , andpW 50 elsewhere.C denotes charge conjuga
tion.

^O & Components Representation
Ref. @14# Ref. @15# C

v2,a O $14% t3
(6) 6(1) 1

v2,b O $44%2
1
3(O $11%1O $22%1O $33%) t1

(3)
hhh (1)

h
1

v3 O $114%2
1
2(O $224%1O $334%) t1

(8) 8(1) 2

v4 O $1144%1O $2233%2O $1133%2O $2244% t1
(2)

hh(1)

hh
1

a0 O 2
5 t4

(4) ( 12,
1
2)
(2) 1

a2 O $214%
5 t3

(4)
( 12 ,

1
2 )

(1) 1

d2 O @2$1#4%
5 t1

(8) 8(1) 1
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needed as input is to state the Feynman rules in symbo
form, both for the continuum and the lattice part of the ca
culation. We will summarize our results here. A detailed ac
count of our calculation will be given elsewhere@17#.

In the case ofv3 it turns out that the operatorO $114%
21

2(O $224%1O $334%) mixes with the operator@16#

O ~114!2
1
2 ~O ~224!1O ~334!!,

O ~mmn!5Ommn1Omnm22O nmm ~21!

under renormalization. This operator is of mixed symmetr
is traceless, and corresponds to the representati
8(1),C52 as well. Thus we have

O $%~m!5Z$%$%O $%~a!1Z$%~ !O ~ !~a!, ~22!

where we have used a shorthand notation for the operators
Table II and Eq.~21!. We write (CF54/3)

ZO„~am!2,g…512
g2

16p2CF@gO ln~am!1BO #. ~23!

This is to be interpreted as a matrix equation in the case
v3 . Our results for the anomalous dimensionsgO and the
BO ’s are given in Table III forr51. The renormalization
constantsZv2,b andZa0 have been given before in the litera-
ture @18–20#. We agree with the results of these authors. I
the case ofv3 the off-diagonal component ofZ is negligibly
small.

The structure functions do not depend onm, but ^xn21&
andDu, Dd do. In the following we shall quote our results
for

m25Q25a22, ~24!

which eliminates the logarithms in the Wilson coefficient
and renormalization constants. At our smallest quark mas
taking the nucleon mass as the scale, the inverse lattice sp
ing is a21'1.4 GeV. In the chiral limit we find
a21'2 GeV. We will denoteZO(1,g51.0) byZO . The cor-
responding numerical values are also listed in Table III. A
the Wilson coefficients are generally computed in the mod
fied minimal subtraction (MS) regularization scheme, one
needs to know the renormalization constants in this schem

he

-

TABLE III. The renormalization constants in the quenched ap
proximation. The errors quoted are a conservative estimate of t
uncertainties in the numerical evaluation of the integrals involve
The numbers in the rightmost column represent the contribution
the continuum operators computed in theMS scheme.

^O & gO BO ZO(1,g51.0) BO
MS

v2,a
16
3 23.165~6! 1.0267~1! 2

40
9

v2,b
16
3 21.892~6! 1.0160~1! 2

40
9

v3 $%$%: 25
3 219.572~10! 1.1653~1! 2

67
9

$%(): 0 0.370~10! 20.0031~1!

v4
157
15 237.16~30! 1. 314~3! 2

2216
225

a0 0 15.795~3! 0.8666~0! 0
a2

25
3 219.560~10! 1.1652~1! 2

67
9

d2
7
3 215.680~10! 1.1324~1! 2

13
12
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too. In Table III we state the contribution of the continuu
operators computed in theMS scheme. The difference of th
BO ’s then gives the result in theMS scheme.

The renormalization constants receive contributions fro
five different types of diagrams: the vertex, the leg se
energy, the leg tadpole, the operator tadpole, and the oper
comb diagrams. The tadpole diagrams give by far the larg
contribution to the renormalization constants. The leg ta
pole contribution is the same for all operators. The opera
tadpole contribution is proportional to the number of cova
ant derivatives and has opposite sign to the leg tadpole.
and operator tadpole diagrams cancel each other inv2 . This
accounts for the small values ofBv2,a

,Bv2,b
. In a0 only the

leg tadpole contributes. In all other cases it is the opera
tadpole diagram which dominates.

IV. STRUCTURE FUNCTION RESULTS

The next step is to calculate the ratio of three- to tw
point correlation functionsR, as given in Eq.~13!, for the
operators listed in Table II. To make sure that we are co
puting the matrix elements of the lowest-lying state, i.e., t
nucleon, we must look for plateaus int, the time distance of
the operator from the source, for 0!t!t513. In Fig. 3 we
show R as a function oft for six of our operators at
k50.153. The ratioRv2,b

not shown here is of the sam

quality asRv2,a
. We find in all cases that the signal is pra

tically constant for time distances larger than two latti
spacings from the source and from the sink. For 13<t the
signal is practically zero as one would expect. The fit interv
is taken to be 4<t<9. The result of the fit is shown by the
horizontal lines, and the errors are indicated by the dot
lines.

The renormalized operator matrix elements are obtain
from the ratioR by

Rv2,a
5

i

Zv2,a

1

2k
p1v2,a , Rv2,b

52
1

Zv2,b

1

2k
mNv2,b ,

Rv3
52

1

Zv3

1

2k
p1
2v3 , Rv4

5
1

Zv4

1

2k
Ep1

p1
2v4 ,

Ra0
5

i

Za0

1

2k

mN

2Ep1

a0 , Ra2
5

1

Za2

1

2k

1

6
mNp1a2 ,

Rd2
5

1

Zd2

1

2k

1

3
mNp1d2 . ~25!

We have defined the continuum quark fields byA2k times
the lattice quark fields. For the renormalization constants
take the perturbative values given in Table III. In the case
v3 we have also computed the nucleon matrix element of
operator in Eq.~21!. It turned out to be noisy and consisten
with zero within an error of roughly 1/5 the magnitude of th
leading symmetric contribution. Given the small off-diagon
component of the renormalization constant, we may th
safely neglect the effect of mixing. Tadpole resummati
@21# would leaveZv2,a, Zv2,b unchanged, while it would
change the other renormalization constants by a few perc
m
lf-
ator
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The exact amount depends on how it is implemented, and
there is considerable freedom to do so.~It is better to com-
pute the renormalization constants nonperturbatively@22#;
that is what we are doing now@23#.! The results are plotted
in Figs. 4 and 5 and the numerical values are listed in Table
IV. All our results are given for the proton. The distribution
functions of the neutron are obtained by interchangingu and
d.

We shall now discuss our results in detail. The first im-
portant observation to make is that the values of^x&a and
^x&b , which are obtained from different representations of
the hypercubic groupH(4) ~cf. Table II!, are consistent with
each other, within the error bars. This indicates that lattice
artifacts are presumably small. A second observation is tha
all matrix elements show roughly a linear behavior in 1/k,
i.e., in the quark mass@cf. Eq.~10!#. The lines shown in Figs.
4 and 5 are linear fits to the data. The result of the extrapo
lation is indicated by the solid circles and the solid box, and
the numerical values of the fit are given in the last column of
Table IV.

Let us concentrate on the moments of the unpolarized
structure functions shown in Fig. 4 first. We see that the
lowest moment (n52) is practically independent of the
quark mass. For growingn the moments show a stronger and
stronger increase with the quark mass. For the distribution
function itself this means that at smallx quark mass effects
are negligible, while at intermediate and largex its shape
depends strongly on the magnitude of the quark mass. In th
limit of large quark masses the higher moments approach th
predictions of the nonrelativistic quark model. In particular
we find ^xn21& (u)'2^xn21& (d) for all n. In the chiral limit
the picture changes completely. Whereas at smallx the ratio
of u to d distribution is roughly two, the ratio increases
rapidly for larger values ofx.

We may compare our results in the chiral limit with the
phenomenological valence quark distribution functions. Fit
D2 of Ref. @24# gives ^x& (u)50.284, ^x& (d)50.108,
^x2& (u)50.083, ^x2& (d)50.026, ^x3& (u)50.032, and
^x3& (d)50.009. Fit CTEQ3M of Ref. @25# gives
^x& (u)50.301, ^x& (d)50.083, ^x2& (u)50.090, ^x2& (d)

50.038, ^x3& (u)50.036, and̂ x3& (d)50.009. It appears that
the quenched lattice results for^x& are significantly larger
than the values obtained from the phenomenological valenc
quark distribution functions, while for̂x3& the lattice results
are smaller than the phenomenological values. This is true
for both, u andd quark distributions. Thus, our calculation
would predict a valence quark distribution function that is
larger at small to intermediate values ofx and smaller at
large values ofx than the phenomenological distribution
functions. But this is a lame comparison because we are
dealing with probabilities. Consider̂x&, and let the sub-
scriptsV, S, andG denote the valence quark, sea quark, and
gluon contribution. Momentum conservation then demands
that ^x&V

(u)1^x&V
(d)1^x&S1^x&G51. In the quenched ap-

proximation^x&S 5 0, so that valence quark and gluon con-
tributions should sum up to one. If, for example, the gluon
contribution is approximately equal in both cases, we would
thus expect to find that the quenched quark result is notice
ably larger than the valence quark contribution. A better
quantity to compare is therefore the difference ofu- and
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FIG. 3. The ratioR for u andd quark insertions fork50.153.~a! 2iRv2,a
, ~b! Rv3

, ~c! Rv4
, ~d! 2iRa0

, ~e! Ra2
, and~f! Rd2

. Both source
and sink are smeared. The source is att50, the sink att513.
he

e-
al
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d-quark distribution functions in which the sea quark and t
gluon contributions drop out. In the chiral limit we obtai
^x& (u)2^x& (d) 5 0.26~4!. This result is only one standard
deviation away from the CTEQ3M result of 0.22. For th
higher moments we find agreement with the phenomenolo
cal numbers within the error bars.

We shall now turn to the discussion of our results for t
polarized structure functions shown in Fig. 5. Let us fir
focus onDu andDd, which in the quenched approximatio
determine the fraction of the proton spin that is carried by t
valence quarks. Sea quark effects may be neglected
heavy quarks, and they drop out in the differenceDu2Dd.
In the chiral limit we obtain

Du2Dd[gA51.07~9!. ~26!
he
n

e
gi-

he
st
n
he
for

This is to be compared with the experimental value of t
axial vector coupling constantgA51.26. If we add the sea
quark contribution to our results — a recent lattice calcula-
tion @27# finds Dū5Dd̄520.14(5), D s̄520.13(4) using
perturbative renormalization factors—we find good agre
ment with a recent phenomenological fit of the individu
contributions@26# except forDu. For the total quark spin
contribution to the nucleon spin we would furthermore o
tain DS50.18(11), in agreement with the result of a fu
QCD calculation@28#, i.e., including dynamical quarks. Fo
heavy quark masses we findDu'1 andDd'21/4, in good
agreement with the three-quark model@29#.

By comparing the momentsa052Dq anda2 with those
of the unpolarized structure functions we find that in th
chiral limit g1 is less singular thanF1 asx goes to zero. This
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is also what one finds experimentally@30#. In the limit of
large quark masses, on the other hand, it seems thatg1 is
proportional toF1 .

If we combine our results with the perturbatively known
@31# Wilson coefficients we can compute the moments o
g1 . In the chiral limit we obtain, for the lowest moment,

E
0

1

dxg1~x,Q
2!5H 0.166~16! proton,

20.008~09! neutron.
~27!

Recall thatQ2'4 GeV2. For the difference of proton and
neutron structure functions we find

E
0

1

dx@g1
p~x,Q2!2g1

n~x,Q2!#50.174~25!. ~28!

Our result is in good agreement with the phenomenologic
analysis@26,30#. In the higher moments ofg1 sea quark ef-
fects should not play any role anymore. In the chiral limit w
obtain

FIG. 4. The moments of the unpolarized proton structure fun
tions as a function of 1/k, together with a linear fit to the data. The
solid symbols indicate the extrapolation to the chiral limit. In~a!
circles refer tô x&a , boxes tô x&b .
f

al

e

E
0

1

dxx2g1~x,Q
2!5H 0.0150~32! proton,

20.0012~20! neutron.
~29!

Here we have converted the renormalization constants to th
MS scheme, because the Wilson coefficients were compute
in this scheme too. This result is consistent with experimen
@32#.

Let us finally discuss the structure functiong2 . From Fig.
5~c! we read off that the twist-three contributiond2 is
strongly mass dependent. Whiled2 approaches zero in the
heavy quark limit, for bothu andd quark insertion, it is of
the same order of magnitude as its twist-two counterparta2
for small quark masses. In the chiral limit we obtain

E
0

1

dxx2g2~x,Q
2!

5H 20.0161~16!20.0100~22!520.0261~38! proton,

20.0013~09!10.0009~13!520.0004~22! neutron.
~30!

c- FIG. 5. The moments of the polarized proton structure functions
as a function of 1/k, together with a linear fit to the data. The solid
symbols indicate the extrapolation to the chiral limit.
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As before, Wilson coefficients@31# and renormalization con-
stants are consistently computed in theMS scheme. In Eq.
~30! the first number comes fromd2 , while the second num-
ber comes froma2 @cf. Eq. ~6!#. We see that the twist-three
operator provides the dominant contribution. The Wandzu
Wilczek description ofg2 @5# is a valid approximation for
large quark masses, but for light quark masses it is definit
not. Our results seem to be in disagreement with recent e
mates based on sum rules@33#, which suggest that for the
proton d2 is very small. Because the gluon contributio
which we have neglected, may be large, one should perh
only compare the difference of proton and neutron struct
functions as in the previous cases.

V. CONCLUSION

We have presented results of a calculation of the low
moments of the polarized and unpolarized deep-inela

TABLE IV. Structure function results for the proton. All num
bers refer to the momentum subtraction scheme.

k
Observable 0.1515 0.153 0.155 kc50.1569

^x&a
(u) 0.477~23! 0.436~20! 0.457~28! 0.430~43!

^x&b
(u) 0.478~22! 0.473~20! 0.475~20! 0.473~32!

^x&av.
(u) 0.478~16! 0.455~14! 0.466~16! 0.452~26!

^x&a
(d) 0.226~11! 0.201~10! 0.195~12! 0.174~20!

^x&b
(d) 0.226~10! 0.219~09! 0.211~09! 0.204~15!

^x&av.
(d) 0.226~08! 0.210~07! 0.203~07! 0.189~12!

^x2& (u) 0.147~11! 0.127~10! 0.122~13! 0.104~20!

^x2& (d) 0.066~05! 0.056~05! 0.047~06! 0.037~10!

^x3& (u) 0.060~05! 0.049~05! 0.035~08! 0.022~11!

^x3& (d) 0.026~03! 0.018~03! 0.008~04! -0.001~07!
Du 0.938~45! 0.935~44! 0.863~43! 0.830~70!
Dd -0.250~12! -0.250~12! -0.246~14! -0.244~22!
a2
(u) 0.170~10! 0.165~11! 0.161~20! 0.154~27!

a2
(d) -0.037~03! -0.037~04! -0.051~10! -0.050~12!

d2
(u) -0.110~05! -0.138~07! -0.201~16! -0.233~20!

d2
(d) 0.020~02! 0.024~02! 0.036~06! 0.040~07!
ra-

ely
sti-

,
aps
re

er
tic

structure functions of the nucleon. The calculation has bee
performed in the quenched approximation, where sea quar
effects are neglected, and it was done for three differen
quark masses. This allowed us to extrapolate our results t
the chiral limit.

The valence quark distributions that we have obtained dif
fer somewhat from the phenomenological ones@24#. One
explanation could be that at smaller values ofQ2 higher twist
contributions are non-negligible, which have not been in-
cluded in the phenomenological analysis. We plan to inves
tigate this possibility in the future. Our results for the polar-
ized structure functions are consistent with experiment, as fa
as data exist. A surprise was that the twist-three operato
contributed so much tog2 .

It was interesting to see how the results varied with the
quark mass. At large quark masses our results agree large
with what one would expect on the basis of the quark model
For small quark masses there are, however, significan
changes.

With the ~raw! lattice data being relatively accurate now,
the calculation of the renormalization constants has becom
a major issue. So far we have computed the renormalizatio
constants in perturbation theory to one-loop order. We hop
to do better in the near future@23#.

The renormalization constant forv3 has independently
been computed by the Rome group@34#. We have compared
our results with theirs at intermediate stages of the calcula
tion, and they agreed. These authors use a slightly differen
basis of operators from ours though.
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@17# M. Göckeler, R. Horsley, E.-M. Ilgenfritz, H. Perlt, P. Rakow
G. Schierholz, and A. Schiller~in preparation!.

@18# G. Martinelli and Y. C. Zhang, Phys. Lett.123B433 ~1983!.
@19# G. Martinelli and C. T. Sachrajda, Nucl. Phys.B306, 865

~1988!.
@20# S. Capitani and G. Rossi, Nucl. Phys.B433, 351 ~1995!.
@21# G. P. Lepage and P. B. Mackenzie, Phys. Rev. D48, 2250

~1993!.
@22# G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A

Vladikas, Nucl. Phys.B445, 81 ~1995!.
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