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Using neural networks to enhance the Higgs boson signal at hadron colliders
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P. A. Griffin
Rockefeller University, New York, New York 10021
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Neural networks are used to help distinguish theZZ→ l1l2-jet-jet signal produced by the decay of a 400
GeV Higgs boson at a proton-proton collider energy of 15 TeV from the ‘‘ordinary’’ QCDZ1jets background.
The ideal case where only one event at a time enters the detector~no pileup! and the case of multiple
interactions per beam crossing~pileup! are examined. In both cases, when used in conjunction with the
standard cuts, neural networks provide an additional signal-to-background enhancement.

PACS number~s!: 13.87.Fh, 13.38.Be, 13.85.Qk, 14.80.Bn
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I. INTRODUCTION

A neural network is an information processing system th
is nonlinear, nonalgorithmic, and intensely parallel@1,2#.
Neural networks have been studied as a model for the hum
brain and as a model for certain condensed matter syste
In this paper, we are interested in neural networks only a
tool for high energy collider phenomenology. The great ch
lenge at hadron colliders is to disentangle any new phys
that may be present from the ‘‘ordinary’’ QCD backgroun
Hadron collider events can be very complicated and qu
often one has the situation where the signal is hiding bene
the background. In addition, there are many variables t
describe a high energy collider event and it is not alwa
obvious which variables best isolate the signal or precis
what data selection~or cuts! optimally enhance the signa
over the background. Here neural networks are an excel
tool since they are ideal for separating patterns into cate
ries ~e.g., signal and background!. We will ‘‘train’’ a network
to distinguish between signal and background using a la
number of variables to describe each event. The netw
computes a single variable that ranges from zero to one
the training is successful the network will output a numb
near one for a signal event and near zero for a backgro
event and a single cut can be made on the network ou
which will enhance the signal over the background.

An important final state at hadron colliders consists o
large transverse momentum charged lepton pair plus two
companying jets~i.e., l1l2 j j !. It is one of the relevant sig-
nals for the production of a Higgs particle and its subsequ
decay intoZZ with oneZ decaying leptonically and the othe
Z decaying hadronically into aqq̄ pair which then manifests
itself as a pair of jets. The predominant background for t
process is a single large transverse momentumZ boson plus
the associated jets that mimic the Higgs boson signal.
quiring theZ boson to have a large transverse momentum
demanding a largePT lepton pair forces the background t
have a largePT ‘‘away-side’’ quark or gluon via subpro-
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cesses such asqg→Zq or qq̄→Zg. This away-side parton
often fragments via gluon bremsstrahlung, producing away
side jet pairs which resemble the signal. In this paper, we us
neural networks to help distinguish theZZ→ l1l2 j j decay
of a 400 GeV Higgs boson signal from theZ1jets back-
ground in proton-proton collisions at 15 TeV. The neural net-
work will be used in conjunction with the standard data cuts
to provide additional signal to background enhancements
The discovery mode for a Higgs boson of this mass at a
hadron collider is the ‘‘gold-plated’’ four lepton decay,
ZZ→ l1l2l1l2. Here we investigate whether neural net-
works can help with the ‘‘jet physics’’ of thel1l2 j j mode,
particularly in the environment of multiple interactions per
beam crossing~i.e., pileup!. Also, progress made here can be
carried over to theWW→ ln j j decay mode of the Higgs
boson.

This paper is not intended to be a detailed simulation o
an experiment at the CERN Large Hadron Collider~LHC!
@3,4#. Higgs boson production at a 15 TeV proton-proton
collider is used as an illustration of neural networks as a too
in high energy jet phenomenology. We have designed, con
structed, and tested the networks presented here from th
beginning with the emphasis on high energy data analysis
We begin in Sec. II by discussing the construction and train
ing of our neural networks. In Sec. III we discuss event gen
eration, data selection and cuts for the ideal case where on
one event at a time enters the detector~no pileup!. Our net-
work analysis without pileup is presented in Sec. IV, while in
Sec. V we examine the case of multiple interactions pe
beam crossing~pileup!. Section VI is reserved for summary
and conclusions.

II. CONSTRUCTING AND TRAINING NEURAL
NETWORKS

Characteristics of the network

Our neural networks are information processing system
with a set ofNin inputs,$x%, which can have any value and
2296 © 1996 The American Physical Society



53 2297USING NEURAL NETWORKS TO ENHANCE THE HIGGS BOSON . . .
one output,znet, which is restricted to the range, 0,znet,1.
The net output is a function of the input set$x% and the
network ‘‘memory’’ parameters as follows:

znet5Fnet~$x%,$w%,$T%!,

where the network memory consists of a set of weights,$w%,
and a set of thresholds$T%. The goal is to construct a net-
work that can distinguish between two patterns of input da
‘‘signal’’ events and ‘‘background’’ events, where each eve
is characterized by theNin variables. A ‘‘perfect’’ network
responds withznet near one for a signal input and withznet
near zero for a background input.

The networks we will be using are far from perfect an
the net outputs will vary from zero to one for both the sign
and the background events. One way to characterize the
formance of a network on a sample ofNsig signal events and
Nbak background events is to define a network ‘‘error func
tion’’ as follows:

xnet
2 5

1

Nsig
(
n51

Nsig

@znet~n!21#21
1

Nbak
(
n51

Nbak

@znet~n!20#2,

whereznet(n) in the first and second summation is the ne
work response for thenth signal and background event, re
spectively. This quadratic error function ranges from zero
one. It is equal to zero for a ‘‘perfect’’ network and is equa
to 0.5 for a network that responds withznet50.5 for both
signal and background~i.e., a ‘‘dumb’’ network!.

Constructing the network

The basic building block of the network is a processin
element called a ‘‘neurode.’’ A single neurode has a set ofN
input variables,$y% and one output,z. There is a weight,wi ,
associated with each input. The neurode forms the weigh
sum of the inputs and adds a thresholdT as

Z5(
i51

N

wiyi1T.

The output of the neurode is arrived at by evaluating t
function f at the pointZ,

z5 f ~Z!,

where the ‘‘sigmoid’’ functionf is given by

f ~Z!5
1

11e2Z .

The outputz ranges from zero to one since the sigmoid fun
tion lies between zero and one for any realZ.

Every neurode hasN inputs andN weights, but just one
output and one threshold. Network nodes consisting ofN1
inputs andN2 outputs are formed by clustering togetherN2
neurodes each withN1 inputs. For example, Fig. 1 shows a
network node consisting of two inputs and four outputs. F
nally, a complete network is constructed by combining se
eral network nodes with the outputs of one node becomi
the inputs of the next node.

Figure 2 shows a schematic of anNin2N12N221 net-
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work architecture. This network hasNin input variables,xi ,
followed by a ‘‘hidden’’ layer withN1 output variables,aj ,
and another hidden layer withN2 output variables,bk . The
output of thej th neurode of the first hidden layer has a value
given by

aj5 f S (
i51

Nin

~w1! i j xi1~T1! j D ,
where (w1)i j and (T1) j are the weights and threshold for the
j th processing element in node 1. Similarly, thekth neurode
of the second hidden layer has an output value given by

bk5 f S (
j51

N1

~w2! jkaj1~T2!kD ,
where (w2) jk and (T2)k are weights and threshold for the
kth processing element in node 2. Finally, the output of the
net is

znet5 f S (
k51

N2

~w3!kbk1~T3!D ,
with node 3 consisting of just one processing element. In
general, a network with two hidden layers and one output has

NinN11N1N212N21N111,

network memory parameters.

FIG. 1. Shows a neural network node with two inputsy1 andy2
and four outputso1•••o4 . A node has the same number of process-
ing elements called neurodes as outputs with the inputs being
shared among all the neurodes.

FIG. 2. Shows a schematic illustration of a network architecture
with three nodes and two ‘‘hidden layers.’’ The network hasNin
inputs followed by a node withN1 output variables,aj , and another
node withN2 output variables,bk , and one output,znet. There are
Nin3N1 weightsW1 andN1 thresholdsT1 associated with node 1;
and N13N2 weightsW2 andN2 thresholdsT2 associated with
node 2; andN2 weightsW3 and one thresholdsT3 associated with
node 3.
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2298 53FIELD, KANEV, TAYEBNEJAD, AND GRIFFIN
The most difficult part of using neural networks for da
analysis is in finding networks that yieldznet near one for the
signal andznet near zero for the background or equivalent
finding networks with a smallxnet

2 . To find networks that can
distinguish between signal and background we minimizexnet

2

with respect to the network memory parameters~i.e., the
weights and thresholds!. The process of minimizingxnet

2 over
a set of signal and background events is referred to as ‘‘tra
ing’’ the network. A well trained~i.e., smart! network has a
small xnet

2 .
Minimizing xnet

2 in the large multidimensional space o
the weights and thresholds is quite challenging and we w
not present all the details here. One way is to simply gen
ate network memories at random and keep the one with
bestxnet

2 . Another method which is referred to as ‘‘backwa
error propagation’’@1,2# involves calculating the derivative
of xnet

2 with respect to every weight and threshold and for
ing the gradient inw2T space. One can lowerxnet

2 by mov-
ing in w2T space in the direction of2¹xnet

2 . Here one has
to be careful not to get caught in a local minimum. We us
combination of the random method and the backward e
propagation method to train our networks.

III. EVENT GENERATION, DATA SELECTION,
AND CUTS—WITHOUT PILEUP

We consider first the ideal case where only one event
time enters the detector. We want to determine whether n
ral networks can be trained to distinguish between the Hi
boson signal and theZ1jets background when there is n
pileup. ISAJET version 7.06 is used to generate Higgs boso
with a mass of 400 GeV in 15 TeV proton-proton collision
The generated width of the Higgs boson is about 30 G
The Higgs boson is forced to decay into twoZ bosons with
oneZ decaying leptonically and the otherZ decaying into a
quark-antiquark pair. We refer to this as the ‘‘signal.’’ Th
‘‘background’’ consists of singleZ boson events generate
with the hard-scattering transverse momentum of theZ, k̂T ,
greater than 100 GeV. SingleZ bosons are produced at larg
transverse momentum via the ‘‘ordinary’’ QCD subprocess
qg→Zq, q̄g→Zq̄, and qq̄→Zg. These subprocesses, o
course, generate addition gluons via bremsstrahlung off b
incident and outgoing color nonsinglet partons, resulting
multiparton final states which subsequently fragment in
hadrons, and is referred to as theZ1jets background.

We are not attempting to do a detailed simulation of
LHC detector @2,3#. Events are analyzed by dividing th
solid angle into ‘‘calorimeter’’ cells having sizeDhDf50.2
315°, whereh andf are the pseudorapidity and azimuth
angle, respectively. A single cell has an energy~the sum of
the energies of all the particles that hit the cellexcluding
neutrinos! and a direction given by the coordinates of th
center of the cell. From this the transverse energy of e
cell is computed from the cell energy and direction. Lar
transverse momentum leptons are analyzed separately
are not included when computing the energy of a cell. J
are defined using a simple algorithm. One first considers
‘‘hot’’ cells ~those with transverse energy greater than
GeV!. Cells are combined to form a jet if they lie within
specified ‘‘distance’’ or ‘‘radius,’’R25Dh21Df2, in h2f
space from each other. Jets have an energy given by the
ta
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of the energy of each cell in the cluster and a momentumpW j
given by the vector sum of the momentums of each cell. T
invariant mass of a jet is simplyM j

25E j
22pW j•pW j .

We have taken the energy resolution to be perfect, wh
means that the only resolution effects are caused by the
of spatial resolution due to the cell size. However, we
using a very crude calorimeter with large cells~960 cells
with uhu,4!. Experiments at, for example, the LHC@3,4# will
have considerably smaller cell size and hence better sp
resolution. Even with the addition of energy resolution
fects, the combined spatial and energy resolution at the L
should be comparable to or better than in our analysis.

Lepton trigger

Our ‘‘zero-level’’ trigger is designed to select large tran
verse momentumZ bosons that have decayed into charg
leptons. The first cut is made by demanding that the ev
contain at least two high transverse momentum lepto
~l65e6 or m6! in the central region as follows:

PT~ l
6!.25 GeV, uh~ l6!u,2.5.

Lepton pairs ~e1e2 and m1m2! are constructed for the
events that survive this first cut. The pairs are ordered
cording to their invariant mass, with pair No. 1 having t
mass closest to theZ boson and pair No. 2 being the seco
closest, etc. Finally, the event is rejected unless at least
lepton pair satisfies the following

PT~ l
1l2!.100 GeV.

Table I shows that for a 400 GeV Higgs boson at 15 T
roughly 10 000 events per year pass this ‘‘zero level’’ trigg
Here the integrated luminosity for one year is taken to be
expected LHC value of 105/pb @3,4#. About 2 million back-
ground events per year survive this ‘‘zero level’’ lepton c

This high transverse lepton pair cut is, of course, cruc
The transverse momentum spectrum of the singleZ QCD
background falls off rapidly, while for the heavy Higgs b
son the signal is peaked at about half the mass of the H
boson. Here one wants to take as large of a cut onPT( l

1l2)
as possible without loosing too much of the signal. Howev
even with this cut, the background is still more than 2
times the signal.

Jet-pair selection

The jet topology of events with at least one large tra
verse momentum lepton pair is analyzed by first examin
only jet cores@i.e., narrow jets of sizeRj ~core!#. Here one
includes only those jet cores satisfying

ET~jet core!.25 GeV, uh~jet core!u,3,

with

Rj~core!50.2.

With our large calorimeter cell size, a jet core consists
one, two, or three cells~distances are measured from t
center of the cell!.

In an attempt to find the two jets produced by the h
ronic decay of the large transverse momentumZ boson, jet
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TABLE I. 400 GeV Higgs bosons produced in 15 TeV proton-proton collisions. The table shows the number of events per year~with
L5105/pb! for the Higgs boson→ZZ signal and theZ1jets background for the ideal case where only one event at a time enters the detect
~no pileup!. The ‘‘zero-level’’ lepton trigger is used as a reference point and is normalized to 100%. The enhancement factor is defined to
the percentage of signal divided by the percentage of background surviving the given set of cuts. Both the overall and relative enhance
factors are shown.

Selection or cut

H→ZZ signal Z1jets background

Bak/
sig

Enhancement

%
Relative

%
Overall

Events/
year

%
Relative

%
Overall

Events/
year Relative Overall

Lepton trigger:
PT(I ).25 GeVPT(II ).100 GeV 100% 100% 10 185 100% 100% 1 961 818 193 1.0 1.0
Jet pair selection~Rj j,1.6!:
ET( j ).25 GeVPT( j j ).100 GeV 49.0% 49.0% 4 995 30.4% 30.4% 595 622 119 1.6 1.6
Z-mass cut:
81,MZ,101 GeV 51.1% 25.0% 2 551 7.4% 2.3% 44 244 17 6.9 11.1
Higgs boson mass cut:
350,MH,450 GeV 87.8% 22.0% 2 241 32.7% 0.7% 14 471 6.5 2.7 29.8
Z-mass and net cut:
81,MZ,101 GeV
znet.0.75

41.6% 10.4% 1 060 8.3% 0.2% 3 683 3.5 5.0 55.4

Higgs boson mass and net cut:
350,MH,450 GeV
znet.0.75

42.6% 9.4% 954 12.9% 0.1% 1 862 2.0 3.3 98.7
n

in

a
a

o

g

pairs are formed by demanding that the distance betwee
two jet cores inh-f space,d j j

2 5~h12h2!
21~f12f2!

2, be
less than 1.6. Namely,

dj j ~ jet-jet cores!,1.6.

In addition, the jet-jet cores are required to satisfy

PT
j j.100 GeV, uf j j2f l l u.90°,

wherePT
j j is the total transverse momentum of the core

pair andf j j2f l l is the azimuthal angle between the lead
lepton pair and the core jet pair. The jet pair is required to
in the opposite hemisphere~or ‘‘away-side’’! from the lepton
pair. If more than one jet pair meets all of these requireme
than the pair with the largest total transverse energy is
lected.

Table I shows that of the 10 000 signal events passing
‘‘zero level’’ lepton trigger about 49% also pass the jet-p
selection criterion. Unfortunately, about 30% of the ordin
Z1jets background events that survive the ‘‘zero level’’ le
ton trigger also have a jet-pair meeting the selection crite

Here it is useful to define two quantities that measure
effectiveness of a particular cut. The ‘‘enhancement fact
is defined as the percentage of signal divided by the perc
age of background that survives the cut. Namely,

Fenh5
% of signal surviving cut

% of background surviving cut
.

The efficiency of a cut is defined as the percentage of si
that survives the cut:

Feff5% of signal surviving cut.
the

jet
g
be
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se-
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ent-
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The jet-pair selection criterion results in an enhancement of
1.6 with an efficiency of about 49%. The ‘‘zero level’’ lepton
trigger is used as a reference point and is normalized to an
efficiency of 100% and an enhancement of one. One might
have expected to do better at this stage. However, once we
require that theZ boson have a large transverse momentum,
we force the background to have a largePT away-side quark
or gluon jet. This away-side parton often fragments via gluon
bremsstrahlung into multiple away-side jets which then sur-
vive the selection criteria.

Invariant mass cuts

The invariant mass,M j j ~full !, is constructed by using all
cells that lie within a ‘‘distance’’Rj j ~full ! in h-f space of
either of the two jets. Cells arenot double counted. For
example, a cell may lie withinRj j ~full ! of both jets, never-
theless it is counted just once. The aim here is, of course, to
reconstruct the invariant mass of theZ boson as shown in
Fig. 3. However, this full jet-jet invariant mass willonly be
used in the event selection. The Higgs boson mass will be
reconstructed by settingM j j5MZ . At this stage, events are
rejected unless the full jet-jet mass satisfies

81,M j j ~ full !,101 GeV,

with

Rj j ~ full !50.6.

As can be seen in Fig. 3 and Table I, about 51% of the Higgs
signal passingboth the lepton cut and the jet-pair selection
haveM j j within 10 GeV of theZ boson mass. On the other
hand, only about 7% of theZ1jets background events sur-
viving both the lepton cut and the jet-pair selection have a
full jet-pair invariant mass within 10 GeV of theZ boson
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FIG. 3. Shows the away-side jet-jet mass for a
400 GeV Higgs boson produced in 15 TeV
proton-proton collisions. The plot corresponds to
the number of events per year~with L5105/pb!
in a 10 GeV bin for the of the Higgs boson→ZZ
signal and theZ1jets background. The ideal case
where only one event at a time enters the detecto
~no pileup! and the case of multiple interactions
per beam crossing~with pileup! are shown. In all
cases the events have survived the ‘‘zero-level’
lepton trigger and the jet-pair selection criterion.
o

m
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o

.

d

e

e

mass. This corresponds to an overall enhancement fact
this stage of about 11 with an overall efficiency of abo
25%. The background lies well above the signal in Fig. 3
that one cannot directly see theZ mass peak. Nevertheles
the jet-jet invariant mass cut is very important.

Reconstructing the Higgs boson mass

The Higgs boson invariant mass is constructed from
momentum vectors of the two charged leptons and the
mentum vector of the jet pair as follows:

M25~El11El21Ej j !
22~pW l11pW l21pW j j !

2,

where

Ej j
2 5pW j j •pW j j1Mz

2.

The mass of a jet is not a well defined quantity since
depends on the soft particles. The momentum vector of
is better defined and is determined primarily by the c
cells. Thus, in constructing the Higgs boson mass we use
momentum vector of the jet-pair butnot the jet-pair mass
The mass of the jet-pair is set equal to the mass of thZ
boson.

Figure 4 shows the reconstructed Higgs boson mass
both the signal and background events that have passe
lepton cuts, the jet-pair selection, and ha
81,M j j ~full !,101 GeV. At this stage, there are about 20
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Higgs boson events and 14 000 QCD background events per
year within 50 GeV of the true Higgs boson mass of 400
GeV. This corresponds to an overall enhancement factor of
about 30~see Table I! with an overall efficiency of about
22%. However, even with this enhancement theZ1jets
background is still more than six times the signal. It is at this
stage that neural networks will be used to provide an addi-
tional enhancement of signal over background.

IV. NETWORK ANALYSIS WITHOUT PILEUP

We will train a neural network to distinguish between the
signal and background events that have already passed th
lepton cuts, the jet-pair selection, and have
81,M j j ~full !,101 GeV. These important cuts are made be-
fore sending the events to the network. Even though both the
signal and background events have survived these cuts, ther
is still additional information in the events that is not the
same for the signal and the background. The network can use
these differences to further help distinguish signal from
background.

Network inputs and training

Of course, the key to a good network lies in the selection
of the input variables. These variables must characterize the
differences between the signal and the background. In this
analysis we choose the following nine input variables:
FIG. 4. Shows the reconstructed mass of a
400 GeV Higgs boson produced in 15 TeV
proton-proton collisions. The plot corresponds to
the number of events per year~with L5105/pb!
in a 25 GeV bin for the Higgs boson→ZZ signal
and theZ1jets background for the ideal case
where only one event at a time enters the detector
~no pileup!. The events have survived the ‘‘zero-
level’’ lepton trigger and the jet-pair selection cri-
terion with 81,M j j ~full !,101 GeV. No network
cut has been made.
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FIG. 5. Shows the multiplicity of jets for 400
GeV Higgs bosons produced in 15 TeV proton-
proton collisions. The plot corresponds to the per-
centage of events withN jets with ET greater
than 5 GeV for the Higgs boson→ZZ signal and
the Z1jets background for the ideal case where
only one event at a time enters the detector~no
pileup!. The events have survived the ‘‘zero-
level’’ lepton trigger and the jet-pair selection cri-
terion with 81,M j j ~full !,101 GeV.
e

o

a
n

y

x15dj j ,

x25uET
j ~1!2ET

j ~2!u/@ET
j ~1!1ET

j ~2!#,

x35Njet~ET.5 GeV!,

x45ET~Rj j,0.2!/ET~Rj j,1.0!,

x55ET~0.2,Rj j,0.6!/ET~Rj j,1.0!,

x65ET~0.6,Rj j,1.0!/ET~Rj j,1.0!,

x75M ~Rj j,0.2!/M ~Rj j,1.0!,

x85M ~0.2,Rj j,0.6!/M ~Rj j,1.0!,

x95M ~0.6,Rj j,1.0!/M ~Rj j,1.0!.

The first variable is simply the distance inh-f space be-
tween the two ‘‘away-side’’ jets selected in the jet-pair sel
tion. For the signal this is related to the opening angle of
quark-antiquark pair resulting from theZ→qq̄ decay, while
for the background this is the distance between, for exam
an outgoing quark and the radiated gluon jet. The sec
variable is the ‘‘skewness’’ of the transverse energies of
two jets cores, while the third variable is simply the over
number of jets~with ET.5 GeV! in the event and is show
in Fig. 5.
c-
the

ple,
nd
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The remaining variables depict the precise manner in
which transverse energy and mass are distributed around the
away-side jet pair. For example,x6 is the ratio of the amount
of transverse energy coming from calorimeter cells within
the ‘‘halo’’ region 0.6,Rj j,1.0 surrounding both jets to the
total transverse energy of theextended jet pair
@Rj j ~extended!51.0#. As can be seen in Fig. 6, the fraction of
transverse energy in this region is, on the average, slightly
larger for the background than for the signal. Similarly,x9 is
fraction of the full jet-jet invariant mass that comes from
calorimeter cells in the ‘‘halo’’ region 0.6,Rj j,1.0. Figure 7
shows that more of the extended jet-jet mass lies in this
region for the background than for the signal. The other halo
regions also show slight variations between signal and back-
ground which the network can use to help distinguish be-
tween the two.

The idea here is similar to the jet-jet profile analyses we
presented in Ref.@5#. For the signal, the away-side jet pair
arises from theqq̄ decay of a large transverse momentumZ
boson. TheZ boson is a color singlet and does not radiate
gluons during flight. On the other hand, the largePT away-
side recoil quarks or gluons in the singleZ background are
not color singlets and produce additional gluons via brems-
strahlung. These radiated gluons deposit transverse energ
around the jet-jet cores. This results in more transverse en-
ergy and invariant mass surrounding the jet-jet cores for the
Z1jets background than for the Higgs boson signal. The
FIG. 6. Shows the fraction of transverse en-
ergy coming from calorimeter cells within the
‘‘halo’’ region 0.6,Rj j,1.0 surrounding either
of the away-side jets. The plot corresponds to the
percentage of events with the jet-jet transverse
energy fraction within the 0.025 bin for the Higgs
boson→ZZ signal and theZ1jets background for
the ideal case where only one event at a time
enters the detector~no pileup!. The events have
survived the ‘‘zero-level’’ lepton trigger and the
jet-pair selection criterion and have
81,M j j ~full !,101 GeV.
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FIG. 7. Shows the fraction of invariant mass
coming from calorimeter cells within the ‘‘halo’’
region 0.6,Rj j,1.0 surrounding either of the
away-side jets. The plot corresponds to the per-
centage of events with the jet-jet invariant mass
fraction within the 0.05 bin for the Higgs
boson→ZZ signal and theZ1jets background for
the ideal case where only one event at a time
enters the detector~no pileup!. The events have
survived the ‘‘zero-level’’ lepton trigger and the
jet-pair selection criterion and have
81,M j j ~full !,101 GeV.
distribution of transverse energy and invariant mass arou
the ‘‘away-side’’ jet pair is slightly different in the two cases

The network is trained on a sample of 8 348 signal an
7 254 background events using the nine inputs shown abo
and where both signal and background events have alrea
satisfied the lepton cuts, the jet-pair selection, and ha
81,M j j ~full !,101 GeV. To get this training sample, it was
necessary to generate 80 000 Higgs boson events a
800 000Z1jet events. There is no systematic procedure th
provides the best network topology for a given problem. On
looks for the simplest network that can discriminate sign
from background. We experimented with a variety of ne
work sizes and types and present here the results from
9-16-8-1 net which has 305 memory parameters. After
lengthy training process we achievedxnet

2 50.1678 on the
training sample.

Network performance

Figure 8 shows the network response~i.e., znet! for the
sample of signal and background events used in the trainin
The situation is far from the ideal. There are some even
around znet50.5 for which the net cannot distinguish be-
tween signal and background. Nevertheless, the net does
low for some separation of signal and background. The n
clearly recognizes some events as signal or backgrou
while for other events there is an overlap and the net cann
distinguish between the two. Ideally one would like a clea
separation between the signal and background in Fig. 8. O
would then perform a network cutoff and assign any eve
with znet.zcut to be signal and events withznet,zcut to be
background.

Figure 8 also shows the network response~i.e.,znet! for an
independent sample of signal and background eventsnot
used in the training. If the network generalized perfectl
there would be no difference between the response of t
network for the independent and the training samples. T
small differences seen in Fig. 8 reflect that fact that we ha
trained the net on a small relatively sample of events. W
could improve the ability of the network to generalize by
starting with a larger training sample, but this result is suffi
cient for what we want to illustrate in this paper.

The enhancement and efficiency of the network cuto
depends on the value chosen forzcut, where the network
enhancement and efficiency are defined as
nd
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net5

% of signal with znet.zcut
% of background withznet.zcut

,

Feff
net5% of signal with znet.zcut.

The overall network performance can be characterized by the
single curve of the network enhancement versus the network
efficiency shown in Fig. 9. Each point in Fig. 9 corresponds
to a different choice for the network cutoff with the lower
efficiencies and higher enhancements corresponding to larger
values of zcut. In the analysis presented here, we choose
zcut50.75 which for the training sample corresponds to a
relative efficiency of about 42% with a relative enhancement
of about 6.

Fisher discriminates

Another method of separating signal and background is to
use Fisher discriminates@6#. This method is analogous to a
neural network with no hidden layers. Here as with the net-
work, one inputs a set ofNin variables,xi , and there is one
output,F. However, in this caseF is a linear function of the
inputs,

F5(
i51

Nin

a ixi ,

where the Fisher coefficients,ai are chosen to maximize the
separation between signal and background inF space,

~mF
sig2mF

bak!2

~sF
sig!21~sF

bak!2
,

wheremF andsF are the mean and the standard deviation,
respectively, of the Fisher output for the signal~sig! and
background~bak! sample. The Fisher coefficients are given
by

a i5(
j

~Vsig1Vbak! i j
21~m j

sig2m j
bak!,

where~Vsig1Vbak!21 is the inverse matrix andmi is the mean
of the distributionxi ,
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FIG. 8. Shows the network response,znet, for
the sample of signal and background events used
in the training and for an independent sample of
signal and background events. The plot corre-
sponds to the percentage of events withznet
within a 0.05 bin for the Higgs boson→ZZ signal
and theZ1jets background for the ideal case
where only one event at a time enters the detecto
~no pileup!. The events have survived the ‘‘zero-
level’’ lepton trigger and the jet-pair selection cri-
terion and have 81,M j j ~full !,101 GeV.
t

s

e

s
r

s

.

-

-

.

s

m i5
1

N (
n51

N

xi~n!,

andV is the covariance matrix,

Vi j5
1

N (
n51

N

@xi~n!2m i #@xj~n!2m j #.

Here the sum overn corresponds to the sum over the trainin
sample.

In this case training consists of calculating the Fisher c
efficients which involves inverting anNin3Nin matrix, but is
easier than training a network. Once this is done the situa
is similar to the network. For each input ofNin variables
there is one outputF. We have determined the Fisher coe
ficients for the sample of signal and background events u
to train our network and the Fisher response for these eve
is shown in Fig. 10. The separation between signal and ba
ground is not as good as with the network. As with the n
work, the overall Fisher performance can be characterized
the single curve of the Fisher enhancement versus the Fi
efficiency which is shown in Fig. 9 together with the netwo
performance. Each point corresponds to a different cho
for the Fisher cutoff.

Using the network cutoff

We now analyze anindependentsample of events using
the trained network as a tool to help distinguish betwe
g
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signal and background. Figure 11 shows the reconstructed
Higgs boson mass for both the signal and background event
that have passed the ‘‘zero level’’ lepton trigger, the jet-pair
selection with 81,M j j ~full !,101 GeV,and the network cut-
off ~with zcut50.75!. Now, there are about 1 000 Higgs boson
events and 2 000 QCD background events per year within 50
GeV of the true Higgs boson mass of 400 GeV. This corre-
sponds to an overall enhancement factor of about 100~see
Table I! with an overall efficiency of about 10%. Figure 11
shows that the signal and background are now comparable
Comparing the reconstructed Higgs boson mass in Fig. 4
with Fig. 11 shows the added enhancement the neural net
work provides.

Using network weighting

An alternative approach to using the network cutoff is to
use network weighting. Here one weights the event with the
network response,znet, which lies between zero and one. If
the network has been able to separate signal from back
ground then signal events will be assigned a weight near one
and background events will be assigned a weight near zero

Figure 12 shows thenetwork weightedreconstructed
Higgs boson mass for both the signal and background event
that have passed the lepton cuts, the jet-pair selection with
81,M j j ~full !,101 GeV. The advantage here is that all the
signal events are used~i.e., the relative efficiency is 100%!,
but in this case the network cutoff procedure provides a bet-
ter enhancement of the signal.
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-
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FIG. 9. Shows the enhancement versus the e
ficiency for the training sample of events for the
9-16-8-1 neural network with 305 memory pa-
rameters. Both the ideal case where only on
event at a time enters the detector~no pileup! and
for the case of multiple interactions per beam
crossing~pileup! are shown. Each point in the
plot corresponds to a different choice for the net
work cutoff with the lower efficiencies and higher
enhancements corresponding to larger values
zcut . The network enhancements are compare
with the enhancements arrived at by the use o
Fisher discriminates~no pileup!.
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FIG. 10. Shows the Fisher response,F, for
the sample of signal and background events used
in the training of the neural network. The plot
corresponds to the percentage of events withF
within a 0.3 bin for the Higgs boson→ZZ signal
and theZ1jets background for the ideal case
where only one event at a time enters the detector
~no pileup!. The events have survived the ‘‘zero-
level’’ lepton trigger and the jet-pair selection cri-
terion and have 81,M j j ~full !,101 GeV.
he

as
0

of

d
d
n

er.
e
her
r

ted

e

V. NETWORK ANALYSIS WITH PILEUP

Event generation and cuts

We now consider the case of multiple interactions p
beam crossing.ISAJET is used to generateNpile minimum bias
events along with each Higgs boson→ZZ signal and each
Z1jets background event. The number of pileup interactio
per beam crossing,Npile , that enter the calorimeter is gener
ated according to a Poisson distribution with a mean of abo
29 minimum bias collisions for each Higgs boson orZ1jets
event as shown in Fig. 13. The mean of 29 collisions p
beam crossing was arrived at by using a bunch crossing ti
of 25 ns, a peak luminosity of 1034 cm22 sec21, and the
ISAJETminimum bias cross section at 15 TeV of 116 mb. Ou
mean number is larger than the 20 collisions per beam cro
ing quoted for the LHC@3,4#. However, theISAJET ‘‘mini-
mum bias’’ events are softer than what is expected. To co
pensate for this we have increased that average numbe
pileup interactions per beam crossing to 29.

These pileup interactions greatly increase the partic
multiplicity and the global transverse energy of each eve
Nevertheless, they do not affect the lepton trigger. Table
shows that, as before, roughly 10 000 Higgs boson and ab
2 million background events per year pass the ‘‘zero leve
lepton trigger.

Events are again analyzed by dividing the solid angle in
‘‘calorimeter’’ cells having sizeDhDf50.2315°, but in this
case we ignore all cells withET,1 GeV. This is done to
reduce the number of nonzero cells which saves time a
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improves the jet algorithm. Jets are defined as before, but t
definition of a ‘‘hot’’ cells is changed to 10 GeV. This means
that the minimum jet transverse energy is now 10 GeV~com-
pared to 5 GeV in the analysis without pileup!.

Except for these changes, the jet-pair selection is done
before with similar results. Table II shows that of the 10 00
signal events passing the ‘‘zero level’’ lepton cut about 50%
also pass the jet-pair selection criterion. Also, about 30%
the ordinary Z1jets background events that survive the
‘‘zero level’’ lepton trigger have a jet pair that meets the
selection criterion.

The jet-jet invariant mass for the signal and backgroun
events that have passed the ‘‘zero-level’’ lepton trigger an
the jet-pair selection criterion is shown in Fig. 3. Compariso
with the no pileup case shows that theZ mass peak has
shifted up about 20 GeV and become somewhat broad
This is, of course, due to the pileup interactions which hav
contributed transverse energy and mass to the jet pair. Rat
than trying to subtract out this effect, we simply shift ou
jet-jet mass cut to

100,M j j ~ full !,120 GeV,

whereM j j ~full ! is defined as before withRj j ~full !50.6. As
before, the invariant mass of the jet pair is usedonly in the
selection of events, the Higgs boson mass is reconstruc
from the momentum of the jet pair withM j j set equal toMz .
As can be seen from Table II, in this case about 36% of th
Higgs boson signal passingboth the ‘‘zero-level’’ lepton cut
a

r

FIG. 11. Shows the reconstructed mass of
400 GeV Higgs boson produced in 15 TeV
proton-proton collisions. The plot corresponds to
the number of events per year~with L5105/pb!
in a 25 GeV bin for the Higgs boson→ZZ signal
and theZ1jets background for the ideal case
where only one event at a time enters the detecto
~no pileup!. The events have survived the ‘‘zero-
level’’ lepton trigger and the jet-pair selection cri-
terion with 81,M j j ~full !,101 GeV and have
passed the network cutoff~i.e., haveznet.0.75!.
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FIG. 12. Shows the reconstructed mass of
400 GeV Higgs boson produced in 15 TeV
proton-proton collisions weighted by the networ
output,znet. The plot corresponds to the weighte
number of events per year~with L5105/pb! in a
25 GeV bin for the Higgs boson→ZZ signal and
the Z1jets background for the ideal case wher
only one event at a time enters the detector~no
pileup!. The events have survived the ‘‘zero
level’’ lepton trigger and the jet-pair selection cri
terion with 81,M j j ~full !,101 GeV.
and the jet-pair selection criterion haveM j j within this
range, which is slightly less than the 51% for the no pile
case. About 7% of theZ1jets background events surviving
both the ‘‘zero-level’’ lepton cut and the jet-pair selectio
criterion have a full jet-pair invariant mass in this rang
which is about the same as the no pileup case. This co
sponds to an overall enhancement factor at this stage
about 8 with an overall efficiency of about 19%, which
slightly worse than the no pileup case.

At this stage, Table II shows that there are about 1 5
Higgs events and 14 000 background events per year wi
50 GeV of the true Higgs boson mass that pass the ‘‘ze
level’’ lepton trigger, the jet-pair selection criterion, and hav
100,M j j ~full !,120 GeV. This corresponds to an overall e
hancement factor of about 21 with an overall efficiency
about 15%. With this enhancement, theZ1jets background
is roughly nine times the signal. At this stage, we apply
neural network to improve the signal to background ra
beyond what can be achieved with these standard cuts.

Retraining the network

We use the same nine variables to characterize the eve
but since these variables have changed dramatically, the
work must be retrained. Figure 14 shows the new jet mu
plicities. Figures 15 and 16 show that the fraction of tran
verse energy and mass, respectively, originating in
up
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extended region, 0.6,Rj j,1.0, has greatly increased for
both the signal and background events due to the pileup.
Nevertheless, there are still slight differences between signal
and background that the network can use to distinguish be-
tween the two.

The 9-16-8-1~305! network is retrained on a sample of
2 741 signal and 3 566 background events that include the
pileup interactions. Both signal and background events have
already satisfied the ‘‘zero-level’’ lepton cuts, the jet-pair se-
lection, and have 100,M j j ~full !,120 GeV. To get this train-
ing sample it was necessary to generate 40 000 Higgs boson
events with pileup and 400 000Z1jet events with pileup.
Running with pileup is a lot slower since a large number of
events enter the calorimeter during each beam crossing. Be-
cause of this we are using a very small training sample. We
could do better with a larger sample, but this is sufficient for
what we want to illustrate in this paper. After training, we
achieve axnet

2 50.1797 with a network response for the train-
ing events shown in Fig. 17. Figure 17 also shows the net-
work response~i.e.,znet! for an independent sample of signal
and background eventsnot used in the training. In spite of
the small training sample, the network generalizes fairly
well.

The network performance for the training sample is
shown in Fig. 9 together with the no pileup case. Again we
choose a network cutoff,zcut of 0.75, which in this case for
the training sample corresponds to a relative enhancement of
about 6 with a relative efficiency of about 38%.
FIG. 13. Generated number of minimum bias
interactions per beam crossing. These events en-
ter the calorimeter together with one Higgs
boson→ZZ signal event or oneZ1jets back-
ground event to simulate the case of multiple in-
teractions per beam crossing~pileup!.
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TABLE II. 400 GeV Higgs bosons produced in 15 TeV proton-proton collisions. The table shows the number of events per year~with
L5105/pb! for the Higgs boson→ZZ signal and theZ1jets background for the case of multiple interactions per beam crossing~i.e., with
pileup!. The ‘‘zero-level’’ lepton trigger is used as a reference point and is normalized to 100%. The enhancement factor is defined to
percentage of signal divided by the percentage of background surviving the given set of cuts. Both the overall and relative enhan
factors are shown.

Selection or cut

H→ZZ signal Z1jets background

Bak/
sig

Enhancement

%
Relative

%
Overall

Events/
year

%
Relative

%
Overall

Events/
year Relative Overall

Lepton trigger:
PT(I ).25 GeVPT(II ).100 GeV 100% 100% 10 212 100% 100% 1 973 919 193 1.0 1
Jet pair selection~Rj j,1.6!:
ET( j ).25 GeVPT( j j ).100 GeV 53.3% 53.3% 5 440 33.6% 33.6% 662 850 122 1.6 1
Z-mass cut:
100,MZ,120 GeV 36.3% 19.3% 1 973 6.7% 2.3% 44 693 23 5.4 8.
Higgs boson mass cut:
350,MH,450 GeV 75.5% 14.6% 1 489 30.5% 0.7% 13 615 9.1 2.5 21.
Z-mass and net cut:
100,MZ,120 GeV
znet.0.75

35.3% 6.8% 696 7.2% 0.2% 3 230 4.6 4.9 41.7

Higgs boson mass and net cut:
350,MH,450 GeV
znet.0.75

38.1% 5.6% 568 11.2% 0.1% 1 525 2.7 3.4 72.0
n
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Using the network cutoff

We now analyze anindependentsample of signal and
background events with pileup. Figure 18 shows the rec
structed Higgs boson mass for both the signal and ba
ground events that have passed the lepton cuts, the jet-
selection with 100,M j j ~full !,120 GeV, and the network
cutoff ~with zcut50.75!. Now, there are about 600 Higgs bo
son events and 1500 QCD background events per year wit
50 GeV of the true Higgs boson mass of 400 GeV. Th
corresponds to an overall enhancement factor of about
~see Table II! with an overall efficiency of about 6%. Al-
though the results are not quite as good as the no pileup c
signal and background are again roughly comparable and
network has improved the signal to background ratio b
about a factor of 4.
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VI. SUMMARY AND CONCLUSIONS

We have shown that neural networks are a useful tool i
Higgs boson phenomenology. Using observables that me
sure how transverse energy and mass, respectively, are d
tributed around the away-side jet-jet system, a neural ne
work can help to distinguish the two jet system originating
from theqq̄ decay of a color singletZ boson from a random
jet-pair coming from the ‘‘ordinary’’ QCD gluon bremsstrah-
lung of colored quarks and gluons. We have used the neur
network in conjunguction with the standard Higgs boson cut
to provide additional signal to background enhancement
Our procedure can be summarized by the following series o
selections and cuts: lepton pair trigger, jet-pair selection
jet-jet profile cuts, jet-jet invariant mass cuts, and neural ne
work cutoff. The invariant mass of the jet-pair is usedonly in
the selection of events, the Higgs boson mass is reco
-
r-

-

FIG. 14. Shows the multiplicity of jets for 400
GeV Higgs bosons produced in 15 TeV proton
proton collisions. The plot corresponds to the pe
centage of events withN jets with ET greater
than 10 GeV for the Higgs boson→ZZ signal and
the Z1jets background for the case of multiple
interactions per beam crossing~pileup!. The
events have survived the ‘‘zero-level’’ lepton trig
ger and the jet-pair selection criterion with
100,M j j ~full !,120 GeV.
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FIG. 15. Shows the fraction of transverse en-
ergy coming from calorimeter cells within the
‘‘halo’’ region 0.6,Rj j,1.0 surrounding either
of the away-side jets. The plot corresponds to the
percentage of events with the jet-jet transverse
energy fraction within the 0.025 bin for the Higgs
boson→ZZ signal and theZ1jets background for
the case of multiple interactions per beam cross-
ing ~pileup!. The events have survived the ‘‘zero-
level’’ lepton trigger and the jet-pair selection cri-
terion and have 100,M j j ~full !,120 GeV.

FIG. 16. Shows the fraction of invariant mass
coming from calorimeter cells within the ‘‘halo’’
region 0.6,Rj j,1.0 surrounding either of the
away-side jets. The plot corresponds to the per-
centage of events with the jet-jet invariant mass
fraction within the 0.05 bin for the Higgs
boson→ZZ signal and theZ1jets background for
the case of multiple interactions per beam cross-
ing ~pileup!. The events have survived the ‘‘zero-
level’’ lepton trigger and the jet-pair selection cri-
terion and have 100,M j j ~full !,120 GeV.

FIG. 17. Shows the network response,znet,
for the sample of signal and background events
used in the training and for an independent
sample of signal and background events. The plot
corresponds to the percentage of events withznet
within a 0.05 bin for the Higgs boson→ZZ signal
and theZ1jets background for the case of mul-
tiple interactions per beam crossing~pileup!. The
events have survived the ‘‘zero-level’’ lepton trig-
ger and the jet-pair selection criterion and have
100,M j j ~full !,120 GeV.



2308 53FIELD, KANEV, TAYEBNEJAD, AND GRIFFIN
FIG. 18. Shows the reconstructed mass of a
400 GeV Higgs boson produced in 15 TeV
proton-proton collisions. The plot corresponds to
the number of events per year~with L5105/pb!
in a 25 GeV bin for the Higgs boson→ZZ signal
and theZ1jets background for the case of mul-
tiple interactions per beam crossing~pileup!. The
events have survived the ‘‘zero-level’’ lepton trig-
ger and the jet-pair selection criterion with
100,M j j ~full !,120 GeV and have passed the
network cutoff~i.e., haveznet.0.75!.
structed from the momentum of the jet pair withM j j set
equal toMz . We are able to obtain an overall signal to bac
ground enhancement of around 10 with the standard Hi
boson cuts. The neural network provides an additional
hancement of 4–5 beyond what can be achieved with
standard data cuts resulting in an overall enhancemen
about 50. We believe that we could further improve the n
work performance by using larger training samples and
increasing the number of input variables to include ad
tional global information such as the number of forward je
in the event, etc.
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Our method works even with a large number of interac-
tions per beam crossing. This shows that some jet physics
can be done even in the large pileup environment of theLHC.
Although this paper is not a detailed simulation, experiments
at the LHC should be able to do as well or better than our
analysis. Furthermore, our procedure can be applied toW
bosons and should help enhance the Higgs
boson→WW→ ln j j signal at hadron colliders as well.
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