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Thermal effects on the catalysis by a magnetic field 
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We show that the formation of condensates in the presence of a constant magnetic field in 2+1 
dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without 
a chemical potential. The value of the condensate as well as other observable are shown to become 
nonanalytic at finite temperature. 
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I. INTRODUCTION 

Induced quantum numbers in (2+1)-dimensional quan- 
tum field theories have been investigated in detail in the 
past [l-4]. There has been renewed interest in the subject 
[5-71 after the suggestion that in the presence of a con- 
stant magnetic field, in 2+1 dimensions, flavor symmetry 
is broken and fern&ns can generate a mass even at the 
weakest attractive interaction between the fern&ns [5,6]. 
More precisely, it was shown in (61 that in the presence of 
a constant magnetic field, Dirac fermions (with two fla- 
vors combined into a four-component spinor) develop a 
nonzero value for the condensate leading to a breakdown 
of the flavor symmetry. This, however, does not give the 
fern&ms a mass. On the other hand, if one now intro- 
duces an interaction of the Nambu-Jona-Lasinio-type, a 
fermionic mass is shown to be generated for any value of 
the interaction [5,6], which can be physically thought of 
as arising due to the nonzero value of the condensate in 
the presence of the magnetic field. 

The calculation of the condensates involves regulariz- 
ing the in&red modes with a fermidn mass term which is 
taken to zero at the end. In 2fl dimensions, the value of 
the condensate is a discontinuous function of the fermion 
mass parameter and depends on how the zero-mass limit 
is taken. (More explicitly, the condensate depends on 
the sign of the mass term in the Lagrangian.) A nonzero 
value of the condensate implies the breakdown of the fla- 
vor symmetry (chiral symmetry) of the system. In this 
Brief Report, we will show that this formation of the 
condensates is a very unstable phenomenon. The con- 
densates disappear as soon as a heat bath is introduced 
(for any finite temperature) with or without a chemical 
potential. Furthermore, the theory develops a nonana- 
lytic behavior at the zero-temperature limit. The pa- 
per is organized as follows. In Sec. II, we recapitulate 
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E,=fJ2eBn+mZ, n=0,1,2 ,..., (2) 

with a double degeneracy for the TX # 0 modes. The de- 
generacy in the y component of the momentum, p, = 
p is also understood. The orthonormal positive- and 
negative-energy eigenstates can also be worked out in a 
straightforward manner and have the forms 

briefly the calculation of the value of the condensate at 
zero temperature in a manner that extends to a finite- 
temperature analysis naturally. In Sec. III, we show that 
the condensate disappears for any finite value of the tem- 
perature. We point out the nonanalytic structure of the 
condensates in the limit of zero temperature. We discuss 
the behavior of the thermal Bogoliubov transformations 
and show that the generator of these transformations be- 
comes nonanalytic in this limit as well. We present a 
short discussion of this’behavior of the condensates in 
sec. IV. 

II. ZERO TEMPERATURE 

The calculation of the condensate, in the present the- 
ory, is carried out in [6] in a proper time representation 
which is not very suitable for extension to finite temper- 
ature. In this section, therefore, we give an alternate 
derivation of the zero-temperature result which readily 
extends to finite temperature. We follow the notation of 
[6] for simplicity and take the Lagrangian for the theory 
in 2+1 dimensions to be 

L = $[y”(icY, - eA,) - m]Q , (1) 

where ‘X! is a four-component spinor involving two flavors, 
e is the electric charge, and we choose the electromag- 
netic potential to have the form A, = (O,O,Bz) with B 
representing the constant, external magnetic field. The 
Landau levels can be easily calculated [S] and have the 
energy values (in our entire discussions, we will assume 
that eB > 0) 
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$~~+)(n,p,k,t) = Nnex~[-i(l%lt -PY)] 
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where 

N,, = 
1 

t/‘+3,I(IEnI +m) ’ 

I(n,p,x) = ; 
( > 

114 

&y+%+J] 

(4) 

r(n = -l,p,z) = 0 

with the H,,‘s representing the Hermite polynomials. 
There are only two ground-state wave functions as can 
be seen from Eq. (3). Their structure depends on the 
sign of the mass t&n. For example, for rn > 0, the two 
ground-state wave functions have the simpler form 

mP, 2) 

~‘+‘(O,P,~,t) = exp[--i(lEolt -PY)l ( 1 ; , 

0 

(5) 

0 

P(O,p,6t) = ~~P[~(la$ -241 i ) I(O, SF) 
0 
To calculate the condensate, we expand the field oper- 
ator in the basis of these wave functions as 

+b,t(n,p)?l!-)I I 1 (6) 

where the prime in the sum over i represents the fact 
that this sum is only for the n # 0 modes. The creation 
and the annihilation operators for the particle and the 
antiparticles satisfy the standard anticommutation rela- 
tions, e.g., 

[ai(“,p),a,t(“‘,P’)l+ = &js”ds(P-P’) 

= M~>p)>‘$~‘~p’)l+ (7) 

with all others vanishing. It is now straightforward to 
evaluate the condensate which has the value 

where En stands for the positive root given in Eq. (2). 
The second sum on the right-hand side is a Hwwitz C 
function which in the limit of vanishing rn reduces to 
the Riemann 6 function, [x(1/2) [9]. The Riemann C 
function c&s) is an analytic function [lo] in the entire 
complex plane except for a simple pole at s = 1. Its value 
at s = i is known to be &(1/2) = -1.46 [lO,ll]. Thus, 
we see that in the limit of vanishing mass, the condensate 
has the value 

(op!(5t)sqz,t)~o) = -fig (9) 

This is the same value as [6] (except for the missing sign 
of the maas factor there). 

III. FINITE TEMPERATURE 

The transition to finite temperature is now straightfor- 
ward. We use thermofield dynamics [12] for our discus- 
sion. Introducing a tilde field, we note that we can write 
a thermal doublet of fermionic fields as [12-141 

which can be expanded in terms of the wave functions 
derived earlier as 

We can now introduce the thermal Bogoliubov trans- 
formation of the form 



~, _~ 
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U(0) = exp[iG(0)] , (12) 

where the generator of the transformation is given by 

G(0) = i c c ’ / dp[b’,!+)(n)(c?;a< - a$,!) 
n iA,2 

and 

+e,!-‘(n)(iibi - b,tif)] , (13) 

sin’ O,!+‘(n) = np(E,) , 

sin’e,!-l(n) = 1 - nR(-En) , (14) 

nF(&) = 
1 

=P[P(JL - P)] + 1 
Here 0 = l/kT and p represents the chemical potential. 
The thermal vacuum can now be defined as 

IO,P) = wm4 (15) 

The thermal creation and annihilation operators, simi- 
larly, can be obtained through the Bogoliubov transfor- 
mation to be 

and similarly for bi and &. 
Given these, we can now calculate the value of the 

condensate in the thermal vacuum simply as 
I 

exPlPlml - fd + 1 - exPlo(lml + !J)l + 1 

1 

=PKW - dlf 1 - ex~[P(% + dl + 1 
(17) 

1 1 
It is clear now that, in the limit rn + 0 (for finite p), 

wlwo>P) = 0 (1% 

That is, the condensate vanishes for any finite, nonzero 
temperature. 

It is also clear now that the structure of the condensate 
exhibits a nonanalyticity at finite temperature. This is 
best seen by setting p = 0. In this case, we note that we 
can take the limit 

rn-0, p+m, lmlfl=a. (19) 

Then, the value of the condensate, in this limit, can be 
obtained from Eq. (17) to be 

Tbis shows that the order of the limits rn + 0 and 0 + rn 
is not commutative. That is, the condensate is not an- 
alytic at T = 0. Finite-temperature field theories are 
known to exhibit nonanalyticity 115,161 in the energy- 
momentum variables, but this is a nonanalyticity in the 
value of the condensate at the origin in the (rn, 2’) plane. 
We would like to point out here that similar nonanalyt- 
icity has also been noted earlier in the study of induced 
quantum numbers at finite temperature [17]. 

To understand the peculiar behavior of the conden- 
sate as well as the nonanalyticity at finite temperature, 
we analyze next the structure of the Bogoliubov trans- we analyze next the structure of the Bogoliubov trans- 
formation in Eqs. (12) and (13). And to simplify the formation in Eqs. (12) and (13). And to simplify the 
analysis, we set the chemical potential Jo = 0. The first analysis, we set the chemical potential Jo = 0. The first 
simplification that occurs in tbis case is that simplification that occurs in tbis case is that 

e!+)(n) = e!-)(n) e!+)(n) = e!-)(n) 1 1 

and from Eq. (14), we note that there is really OIX 0 for 
every mode satisfying 

he(n) = exp(-DE-/Z) (21) 

The generator of the Bogoliubov transformation, in this 
case, has the form 

G(B) = ix c ‘J dpe(n)(ti& - l&t 
” i=1,2 

+&bi - bfi;f) (22) 

For rn # 0, this indeed has the right behavior in that, as 

P-tw 

tane(n) = 0 3 e(g = 0 (23) 

so that the Bogoliubov transformation simply reduces 
to the identity operator. However, for any finite fl or 
temperature, if we let rn + 0, we note from Eq. (21) as 
well as f?om the definition of E,, that 

tane(n=0)=1~e(n=0)=n/4. (24) 
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It is, of course, the ground state that contributes to the 
condensate in the vanishing mass limit and we see that 
for this mode 0 has the unique value of r/4. The thermal 
states generated by the Bogoliubov transformations can 
be thought of as squeezed states [IS] which in some sense 
are polarized states. More specifical!y, for a four-mode 
system, as is the case here, (a, &, b, b), it can be easily 
checked that in a squeezed state parametrized by an angle 
8: 

(elata - bb+le) = - cos 28 (25) 

Consequently, for t’ = 7r/4, the squeezed state acts as a 
crossed polarizer for the expectation value of this oper- 
ator which vanishes. (This is the operator expectation 
value for the lowest mode which is responsible for the 
value of the condensate and this is how the value of the 
condensate vanishes.) 

Let us also note that in the limit of Eq. (19), all the 
f?(n)‘s vanish except for the lowest-energy mode which 
gives 

tanecn = 0) = exp (-g) =s ecn = 0) = eta) (26) 

That is, in this case, the Bogoliubov transformation does 
not reduce to the identity operator and, in fact, depends 
on how the zero-temperature and the zero-mass limit is 
taken. This is the nonanalyticity in the condensates that 
we discussed earlier and we see that in this case, the gen- 
erator of the Bogoliubov transformation, itself, becomes 
nonanalytic. Consequently, not only is the value of the 
condensate nonanalytic at the origin in the (m,T) plane, 
but most observables are likely to be. 

IV. CONCLUSION 

In this paper, we have pointed out that the formation 
of condensates in a (2+1)-dimensional field theory, in the 
presence of a constant, external magnetic field, is a highly 
unstable phenomenon. As soon as a heat bath is intro- 
duced, the value of the condensate vanishes for any finite 
temperature. The thermal expectation value appears to 
average over domains with opposite values for the con- 
densate (very much like the double-well example), lead- 
ing to a vanishing value for the condensate. Furthermore, 
as we have pointed out, the theory develops a nonanalyt- 
icity in this case in that most observable including the 
value of the condensate appear to be nonanalytic at the 
origin in the (rn, T) plane. 
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