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We consider a nonrelativistic Chern-Simons theory of planar matter fields interacting with the 
Chern-Simons gauge field in a SU(N)globel~U(l)losol invariant fashion. We find that this model 
admits static zero-energy self-dual soliton solutions. We also present a set of exact solitan solu- 
tions. The exact time-dependent solutions are also obtained, when this model is considered in the 
background of an external uniform magnetic field. 
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Soliton solutions in Chern-Simons (CS) gauge theo- 
ries have received considerable attention over the past 
few years due to their possible relevance to the planar 
condensed matter systems. It is known that the Abelian 
Higgs model with a CS term admits finite eneigy charged 
vortex solutions [l]. Further, the pure CS Higgs theory 
admits static self-dual soliton solutions with a @-type 
scalar potential [2]. Moreover, in the nonrelativistic limit 
of this theory [3], the charge density solves the Liouville 
equation at the self-dual limit, all of whose solutions are 
well known. When this nonrelativistic model is modified 
by including an external magnetic field [4] or a harmonic 
force [5], exact time-dependent soliton solutions can be 
obtained. The self-dual nonrelativistic case for the non- 
Abelian gauge group has also been considered [6], which 
provides a unified dynamical framework for a variety of 
two-dimensional nonlinear equations [i’]. 

In this Brief Report, we consider a nonrelativistic CS 
theory with a gauge group as in the case of semilo- 
cal Nielsen-Olesen strings [S] or semilocal charged vor- 
tices [9,10]. In particular, we consider the Jackiw-Pi 
(JP) model [3] but with the gauge group enlarged to 

SU(N)globalxU(1)1,,,1. We find that this model admits 
static zero-energy self-dual soliton solutions. Interest- 
ingly enough, we are also able to find a set of exact 
soliton solutions. T&se solitons are characterized by 
the magnetic flux + = -cfi(N + I)1 n 1, the charge 

Q = -:.a, and the angular momentum .7 = Q, where n 
is the wmding number and K. and e are two-dimensional 
constants to be discussed below. We also present exact 
time-dependent solutions of the model in the presence of 
an external uniform magnetic field. 

Consider the nonrelativistic Lagrangian 

L = i’P+ (& + ieA’)“Q - &I (a< + ieA;)Q 1’ 

+;(@q)’ + ;?‘“A,&, (1) 

where Q is N component scalar field, i.e., $?+ = 

(d&TQ,..., +&1-l) (here L denotes .complex conjuga- 
tion). The Lagrangian (1) is invariant under a 
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SU(N)global~U(l)locs, transformations. For N = 1, the 
Lagrangian (1) essentially describes the JP model. The 
N = 2 case was previously discussed and some exact solu- 
tions were obtained in Ref. [ll]. Note that the scalar-field 
self-interaction may be attractive or repulsive according 
as g is positive or negative, respectively. However, as we 
will see shortly, the self-interaction is always attractive 
for zero-energy self-dual soliton solutions as in the case 
of JP model. 

The equations of motion which follow from (1) are 

(2) 

(3) 

where the conserved matter current J” is given by 

J” = (p,J”) = 
1 
@Q, &[@(D”q) - (D”@)b]] (4) 

The zero component of (2), i.e., Gauss’ law, implies 
that the solution with charge Q also carries magnetic 
flux + = -IQ. Equation (3) is a (2+1)-dimensional 
gauged nonlinear SchrGdinger equation where the gauge- 
field variables can be expressed solely in terms of the 
matter-field variables with the help of Eq. (2). 

The energy for the Lagrangian (1) is 

E = &(D#D$ - ;(Q’~)2 1 , (5) 

which can be rewritten using the Bogomol’nyi 1121 trick 
as 

E = 

where a surface term has been dropped since it vanishes 
for the well-behaved fie\d variables. Now note that for the 
choice of g as g = rk, the energy satisfies the bound 
2243 0 1996 The American Physical Society 



53 BRIEF REPORTS 2249 
E > 0. The bound is saturated when the following first 
order self-dual equations are satisfied: 

(Ill f iD@ = 0 (7) 

It should be noted that the Eq. (7) is identical to the 
corresponding equation of Ref. [3] except that ‘Z’ now is 
a N component scalar field. 

In order to solve Eq. (7), we write down the gauge 
potential Ag in the Coulomb gauge, 

Ai = -$;jc9ix . (8) 

Now it is trivial to check that Eq. (7) can be rewritten 
as 

(01 Zk i&)eFX$j = 0 (9) 

Thus we have the general solution to Eq. (9) in the form 

P31 

4j = e*“fi(z) ) (10) 

where z = I + iy and fj(z)‘s are arbitrary analytic func- 
tions. With the help of Gauss’ law and Eqs. (8) and 
(lo), the decoupled equation for the x is 
where v2 = 4&a,. Note that Eq. (11) reduces to the 
Liouville equation in case the summation on the right 
hand side is equal to .some real constant. However, we 
xe interested here in more general solutions. Let us first 
discuss the simplest case of N = 2, in which case Eq. 
(11) takes the form 

vzx = $*2x (Iml” + I A(z) I”) (12) 

The above equatimi can be solved exactly provided we 
assume a particular form for fi(z) in terms of fe(r). In 
particular, we choose 

I fl(4 I2 = I fo(4 I2 IJfo(+q . 

The solution of Eq. (12) is 

(13) 

where the sign of n in (12) must be opposite to that 

of * and a = 6. Note that for this choice of sign 

g = F& is always positive; and hence ,the scalar- 
field self-interaction is attractive. If one now chooses 

f&) = ncgz”-yz = Te?, ] n I 2 l), then one obtains 
the rotationally symmetric solutions 
where 6 = ] n I(2j - 1). 
As far as we are aware of, for arbitrary N no exact 

analytic solution of Eq. (11) is known and at present we 
do not know how to solve Eq. (11) exactly except in a 
few specific cases. For example, Eq. (11) can be solved 
exactly if one assumes 

] .fj(z) 1’ cNml Ci I .f~(t) I2 I/f~(z)d,l” 3 (16) 

where N-lCj = e. After substituting (16) into 

(ll), we have 

As in the N = 2 car% we fix the convention that the sign 
of n must be opposite to that of f. Now one can check 
that 
x=r~l,[.(l+lJio(~)d~12)] (1’3) 

SOLVES Eq. (17), where a = [&I*. The $j’s xe 

thus given by 

(19) 
It should be mentioned at this point that the fa- 
miliar Liouville solution can be embedded into the 
SU(N)+,balxU(l)loca invariant theory for any N by 
choosing all the fj(z)‘s to be equal. Further, for any 
N’ < N, the solutions as given by (18) and (19) can be 
embedded into the higher N theory. 

The radially symmetric solutions for 2/fj’s can be ob- 
ta&d &rn Eq. (19) by putting f(z) = m&m1 (z = 
mis ). We find 
(20) 
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where b = In I(2j + 1 - N). Note that the single vzd- 
uedness of +i’s demands that I n I necessarily be an in- 

teger. All the pi’s (pi = $l&) vanish at asymptotic in- 

finity as rm2(l”lN-lnlj+‘), implying that the rate of falloff 
is higher for lower values of j, reaching a maximum at 

j = 0. Near the origin pj’s behave as ?{lnl(j++-l) 
so that all the pi’s are nonsingular except po, which is 
nonsingular only when I n I 2 1. We shall therefore re- 
strict ourselves to I n I 2 1, throughout this paper. 

The gauge potential AZ is given by 

Az=q’n’(~+l) [1+(F)+-’ (21) 

Near the origin the gauge potential goes to zero as ?lnl 
and interestingly enough it is independent of N. How- 
ever, at the asymptotic infinity, erA - -I n I(N + l), 
keeping track of the global group structure. In fact, the 
profile of the gauge potential as given in (21) is same 
to the corresponding N = 1 case except for an overall 
multiplication factor of i(N + 1). As a consequence the 
magnetic field B also has the same profile as in the case 
of JP model except for a overall multiplication factor, 
i.e., 

so that the magnetic flux is modified to + = 
-%$$I nl(N+l). Note that thefluxais N dependent 

and I &a I is quantized in terms of (N + 1)l n 1. So the 
flux quantum increases as one considers the higher values 
of N, i.e., enlarges the global symmetry. Also the flux 
quantum is even for odd N, while it can be both even and 
odd for even N. The charge Q and the angular momen- 
tum J are also quantized in this case as they are related 
to the magnetic flux by Q = J = -a+ = %I n. I(N+ 1). 
SO far we have discussed only a set of specific solutions 

of Eqs. (ll), which are expressed in terms of one un- 
known function jo(z). However, one would like to know 
the more general solutions of (11). Though we do not 
know the most general solutions of the Eqs. (ll), one can 
obtain a set of exact solutions in case N = $N’(N’ - 1) 
(where N’ 2 3 , i.e., N=3, 6, 10, 15,. ..) in terms of N’ 
unknown functions. For example, when N = N’ = 3 the 
solution is given by 

(23) 

where f&z)% are chosen as 

The restriction on the solution (23) is that the analytic 
functions &(z)‘s have no common zeros and are arbitrary 
otherwise. Hence in this case no rotationally symmetric 
solution is possible. However, if one assumes any one 
of the three bi(Z)‘5 is equal to unity, then it is possible 
to have rotationally symmetric solution analogous to Eq. 
(19). Notice from Eqs. (ll), (23), and (24) that there is 
a freedom in choosing fi(z)‘s in terms of Wik(t) as the 
requirement to have exact solution is 

The particular choice in Eq. (24) is for notational con- 
venience. Similar solutions can also be written down for 
other values of N (6, 10, 15, . .) using the identity 
(26) 

where W<i(,z) is defined as in Eq. (24), but now with i,j = 1,2,. . , N’. Note that the first sum on the right side of 

Eq. (26) contains N = ,kN’(N’ - 1) number of terms of the form I w,(t) 1’. 
Let us now discuss tnne-dependent solutions of Eq. (1) in the case when it is considered in the background of a 

uniform magnetic field. To this end notice that the action (1) is invariant under dilation, 

x + x’ = W’x, t + t’ = a-%, ‘D + ‘2’ = CX’(t,x), A& --f AI, = QAk, A,, --t A; = fizA,,, (27) 

where 0 is a constant. However, when the action (1) IS considered in the background of an external magnetic field 
B, only the Hamiltonian remains a conserved quantity. This fact was utilized in Ref. [4] to construct time-dependent 
solutions for the JP model (N=l) in the presence of B by starting from the static soliton solutions with !3 = 0. We 
find that the same conclusions are also valid for arbitrary N. In particular, the Lagrangian (1) in the presence of an 
external uniform magnetic field can be written as 
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where a; = - zE<jTj and 6, = &. One can easily check 
that under the transformations (with w = 2) 

A&,x) = gA.(l,%), 
3 = / Ed35 is transformed into the action without the 
magnetic field S = s Ld3z where L is as given by (1). 
Thus Eq. (29) is not a symmetry transformation of the 

action 3. However, it relates the soliton solutions of (1) 
to that of the (28). Using the exact rotationally sym- 
metric soliton solutions of the Lagrangian (1) as given 
in Eqs. (20) and (21), it is now straightforward to write 
down the time-dependent soliton solutions for the field 
variables ?i;j, A”, and & with the help of Eq. (29). The 
whole analysis goes through even when the solitons of 
(1) are considered in the background of a harmonic force 

[5,141. 
Finally, the following comments are in order. 
(i) For N = 2, the Lagrangian studied here can be ob- 

tained by taking the nonrelativistic limit of a relativistic 
semilocal theory considered in Ref. 191. In fact, the La- 
grangian of [9] but with the SU(N),eb,lxU(l),,,,~ sym- 
metry reduces to Eq. (1) in the nonrelativistic limit. 

(ii) It is known that the relativistic N = 2 theory 
admits semilocal topological as well nontopological soli- 
ton solutions [9] (actually this is also true for arbitrary 
N). However, as we have shown, in the nonrelativistic 
limit only semilocal nontopological vortices are admis- 
sible. Can one extend the model (1) and also obtain 
semilocal topological solitons? We have checked that if 
the term evoAo is added to the Lagrangian (1) and the 
potential - $ (*‘t’Z’)’ is modified to i (@a - ~0)’ where 
u. is a constant, then semilocal self-dual topological soli- 

ton solutions can be obtained for g = j& by follow- 
ing the discussion of Ref. [15]. These self-dual solutions 
are characterized by nonzero energy E = 2” unlike the 
semilocal nontopological solitons. Further, one finds that 
the decoupled equations for the matter fields are 

j=O,l,Z ,..., N-l. (30) 

For the special case of N = 2 [and when the constant 

f2”1 on the right side of (30) is positive] these equations 
are=identical to those obtained in 116,171, and hence their 
analysis about the solutions [17] as well as the stability 
[16] goes through in this case. 

(iii) Recently, Knecht et al. [18] have done the Painlevl! 
analysis of the JP model and have shown that the model 
is not integrable, although it naturally admits integrable 
reductions which are the familiar Liouville and 1 + 1 non- 
linear SchrGdinger equations. It would be interesting to 
repeat the same exercise for the SU(N)global~U(l)local 
case. 
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