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Galactic halos as boson stars 
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We investigate a boson star with a self-interacting scalar field as a model of galactic halos. The 
model has slightly increasing rotation curves and allows wider ranges of the mass (rn) and coupling 
(X) of the halo dark matter particle than the noninteracting model previously suggested. The two 

quantities are related by x:(np/m)’ 2 105’. 

PACS number(s): 98.62.Gq, 95.35.+d, 98.8O.Cq 
It is well known that the flatness of the galactic rota- 
tion curves indicates the presence of dark matter around 
galactic halos. However, the properties of dark matte+ 
are still mysterious. For example, why doesn’t the dark 
matter in halos fall towards the center of the galaxy and 
form black holes? The answer to the above question may 
be a good criterion for good halo model. 

There is a thermal distribution model [I] where the 
density profile p - T-’ and a spherical infall model [2] 
where p - T-~=. Recently Sin [3,4] suggested a new 
model of the halos composed of pseudo Nambu-Goldstone 
bosons (PNGB’s). According to the model, the conden- 
sation of ultralight PNGB’s whose Compton wavelength 
x camp = & is about Rhal,, is responsible for the halo for- 
mation. The cosmological role of the ultra light PNGB’s 
was studied in the late time phase transition model [5] 
to reconcile the smoothness in the background radiation 
with the large scale structure. 

Before Sin’s work, an astronomical object which con- 
sists of PNGB dark matter was suggested by some au- 
thors [6]. In their model the force against gravitational 
collapse comes &rn the momentum uncertainty of the 
quantum-mechanical uncertainty principle. Since the 
typical length scale R in this model is the Compton wave- 

lw$h hmp - & of the particle, the typical mass scale 

of the object is M N $ - G. 
Similarly, in Sin’s model galactic halos are the ob- 

jects of the self-gravitating Bose liquid whose collapse 
prevented by the uncertainty principle. 

The typical halo has a radius Rhal0 - 100 kpc- 1Oz4 
cm and a mass M,,alo N 101zi14a - lo‘= g, so one find 
the mass rn of the PNGB whose de Broglie wavelength 
- Rhal is about 10mz6 eV. Note that the de Broglie 
length - ;XC,,~ is more adequate for on purpose. 

The self-gravitating condensed states are described by 
the nonlinear SchrGdinger equation 
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which was known as the equation of the Newtonian limit 
of the boson star fields [7]. The normalization constant 
Mo is chosen to give the total mass of the halo M = 
Mo S dr4?rr21$1’ as in Ref. [3]. The rotation velocity at 
radius r is given by 

where M(r) is the mass within T. 
Integrating Eq. (1) numerically and using Eq. (2) Sin 

found slightly increasing rotation curves and a density 
profile p - T-1.6. 

What happens if there are repulsive self-interactions 
between the dark matter particles? To answer this and 
the stability question it is more desirable to study the 
relativistic field equations than the S&Gdinger equation. 

The cold gravitational equilibrium configurations of 
a massive scalar field were found by solving the Klein- 
Gordon equations with gravity decades ago [SI. We find 
that these configurations, called boson stars [9], are ade- 
quate for the relativistic extension of Sin’s model. 

Consider a self-interacting complex scalar field and 
gravity whose action is given by 

(3) 

Since halos seem to be spherical, we choose the 
Schwarzschild metric 

ds2 = -B(r)dt’ + A(T)dr’ + r2dSl (4) 

and assume spherically symmetric field solutions 

c#+,t) = (47rG)-:c~(r)e+‘~. (5) 

From the action, dimensionless time-independent Ein- 
stein and scalar wave equations appear as in Ref. [lo]: 
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(8) 

where I = mr, 0 = 2, A E [l - 2%]-‘, and A = 

ti. One may take M(z) for the dimensionless mass of 
the boson star for large I. 

Numerical solutions of the above equations have been 
studied by many authors [ll-131. The required boundary 
conditions are M(0) = 0, o’(O) = 0, and B(M) = ,l and 
the free parameters are u(O) and Q. 

For the case A = 0 [12] it was found that there is a 

maximum mars M,,,, = 0.633% for the zero node so- 
lution. We will focus on the nonzero node solutions, be- 
came the rotation curve of the zero node solution falls too 
fast to explain the flatness of the rotation curves of many 
galaxies(see Ref. [4] for more arguments). This raises the 
stability problem of higher node solutions, which Will be 
discussed later. 

Maximum rnaase~ for higher node solutions are propor- 
tional tb the nbde number n and about the same order 
as for the zero node case for small n. This with J&lo 

gives us rn .5 1O-22 eV. 
Another constraint comes from the maximum center 

density stable against small radial perturbation [13], pc = 
2.1 x 109*m2 g/cm3 > 10mz4 g/c&, which is equivalent 

to rn 2 1O-28 eV for the zero node solutions. So for the 
zero node solutions lo-‘* eV 5 rn 5 10-” eV. 

For the case A # 0, a new scale appears because of 
the repulsive force preventing the halo from gravitational 
collapse. In this case the typical length scale is R N 
Ai /rn, thus the typical mass scale is g N A:m$/m; 
which is also of the order of the maximum mass as in the. 
A=Ocase. 

A numerical study [lo] shows that Mma = 0.22A: G 
for zero node solutions. From the fact that Mm, > 
Mhalo we find 

This is a relation between the mass and coupling of the 

halo dark matter particle. For the perturbative case (X 5 

1) the above relation implies rn 5 lo3 eV. 
To treat particles as a classical field, we require that 

the interparticle distance should be smaller than their 

Compton wavelength. This gives rn s 1Om2 eV. 
Note that A = Xm$/4mn2 is very large even for very 

small X due to the smallness of rn relative to mp; hence, 
the self-interaction effect is non-negligible. 

Are there any realistic particle physics model satisfy- 
ing the above relation? Unfortunately, the usual cosine 
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FIG. 1. Rotation velocities as a function of rescaled I for 
the parameters A = 0 (thin line) and A = 300 (thick line). a is 
0.9. The real values of the I end are 80 and 220, respectively. 

potential V(b) = #[l-cos($/f)] for PNGB’s is inappro- 
priate for our study, because the sign of the quartic cou- 
pling constant is negative in the Taylor expansionabout 
the potential minima and 4 is real. A real scalar field 
such as an axion may form an oscillating soliton star [14] 
rather than a boson star. 

Instead, we consider the potential 

Inserting the rnam and quartic coupling from the above 

potential into the relation in Eq. (9), we get O.l(~)” 2 

i05” and equivalently p 5 10’ eV. 
We also solve the equations numerically and find the 

dimensionless rotation v;lo;ity which is given by V.,, = 
FEd ==A$! - A- )]i. The results are shown in 

1 
Figure 1 shows rotation velocity curves for the cases 

A = 0 and A = 300. The parameters are B(0) = 0.641, 
a(O) = 0.1, and B(0) = 0.781, a(O) = 0.01, respectively. 
Figure 2 shows o and a rotation velocity curve of the 
eight-node solution (n = 9). 

It is interesting that the line connecting the minimum 
points of the rotation velocity is almost straight. For 
large n and A > 1 the xmss profile is p N ~-l.‘. The 
rotation curves are slightly increasing regardless of the 
self-interactions. 
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FIG. 2. Rotation velocity azd 10~ as a function of posi- 
tion I for the n = 9 solution. The parameters are A = 300, 
Cl = 0.9, B(0) = 0.780, and m(O) = 0.01. 
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Including the visible matter may change the slope of 
the curves and explain the variety of the observed galaxy 
rotation curves as shown in Ref. [4]. 

We will now study the Newtonian limit of our model. 
The strength of the gravity of the halo, GM~a~o/R~s~o, 
is comparable to that of Earth. Therefore we can use 

the Newtonian limit 52 = z = da + 1, which 

is comparable to the Newtonian gravity approximation 
2M(r)/z < 1. Collecting terms to O(t’ = (k)“) one 
finds that for A = 0 the equations of motion are [15] 

V% = yr, 01) 
v7 = 202, (12) 

wherey=l-$. 
Integrating Eq. (12) and inserting the result into Eq. 

(11) we find 

which is a dimensionless version of Eq. (1). Here E is an 
integration constant. Therefore one may treat the Bose 
liquid model as a boson star inodel. 

It is useful to study the scaling properties of Eq. (11) 
and Eq. (12) for analyzing numerical solutions. Rescal- 
ing the total number of charges N = & x Jo2s2dx 1 
times increases the mass 2 times. Equations (11) and 
(12) are invariant under this rescaling when 

I + lr’2, 0 + Pu, 7 + 127, (14) 

which is consistent with the model in Ref. [3]. So one may 
say that for the noninteracting case the heavier halos are 
smaller in size. 

It is difficult to find the scaling properties for the case 
A # 0. 

For the case A > 1 further rescaling U. = uh”‘, 2, = 
d-1/z, and M, = Mh-‘j2 neglecting terms to O(A-‘) 
yields the wave equations 

CI: = (Ciz/B - 1) = -7, (15) 

M: = ;2:(3~?/B + l)(@/B - l), (1’5) 

B’ 
- - $(l -A-‘) = ;(flz/~ - 1)2, 
ABx. . 

(17) 

which are also shown in Ref. [lo]. Following the same 
procedure as in the A = 0 case, we get the Newtonian 
limits of Eq. (16) and Eq. (17), 

V27 = 2u,” = -27, 

whose solutions are 

(18) 
sin(v%.) 

y = -^(O Jzs. 
(19) 

and 

(2(: 

where 70 = /7(O)]. 
The above approximation is invalid when I* is large 

and n > 1. 
As expected, the typical length scale is m-1A1/2. 

These solutions do not show a simple scaling property; 
however, numerical study indicates that, when the cen- 
tral density is less than the critical value corresponding 
to Mmax, a heavier halo has a smaller radius for both the 
A = 0 and A # 0 cases [ll]. 

Note the facts that the above arguments are valid when 
the node number is fixed and both the mass and radius 
of the boson star are increasing functions of the node 
number. 

Now, let us discuss the stability of higher node solu- 
tions. There are studies [12,13] indicating that nonzero 
node solutions with A = 0 are unstable against fission 
and small radial perturbation. Since higher node solu- 
tions are unstable, they must be long lived to explain the 
age of galaxies. 

One possible decay mechanism for the nonwro node 
solutions to the zero node solution is gravitational ra- 
diation [IS]. The power of the gravitational radiation 
P is about G(d31/dt3)‘, where the quadrapole moment 
I - Mha&&lo. The available time scale is T - 

(RL,l~Ml.Lp, which is given by the virial theorem. 
The parameter a G GMhs,,,/Rhalo indicates how much 
halo is relativistic. 

So we can find a crude estimate of the power P N 
G4(Mh,l,/Rh,~o)5 - a5/G - a5 x 10” ergs/s. Since a - 
lo-’ for the halo, P - 10z4 erg/s. The potential energy 
of halo, GM&,JRhalo, is about 105* erg, and therefore 
the time scale of decay by the gravitational radiation is 
much longer than the age of galaxies - 10” yr- 10” s. 

For the A # 0 case, there is work indicating that higher 
node solutions are stable against the perturbation with 
fixed particle number [19]. However, there seems to be 
no work on the stability against a more general pertur- 
bations. Since it is still unclear that the higher node 
solution with A # 0 is stable, we must again estimate 
the lifetime of the halo against gravitational radiation. 
From Eq. (15) we get A# = -702, which indicates that 
in the Newtonian limit the energy of the repulsive force is 
comparable to the gravitaional potential energy. So the 
energy distribution in the halo is not so different from the 
A = 0 case. Therefore we argue that the same procedure 
for calculating the gravitational radiation is applicable 
to the A # 0 case and the halo is long lived against the 
gravitational radiation. 

Another cooling mechanism, the evaporation and col- 
lapse procedure, is also inefficient 131. 

In conclusion, we find that self-interactions between 
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the particles, even if weak, may play an important role 
in the boson star model of halos. Our work can easily be 
extended to the boson-fermion star [16] and the Q star 
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