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The determination of the QCD running coupling constants u,(m,) and a,(ms) is studied with 
‘heavy quarkonia CE and bi; decays. The decay rates of V + 3g and V + e+e- for V = Jf$ 
and T are given in terms of the Bethe-Salpeter amplitudes. To the first-order relativistic correc- 
tion of on-shell quarks, for the leptonic decay, we have r(V --t e+e-) = (4?raze$/m~)l Jd3q[1 - 

(2a~/37nz,)llls&v> which agrees with the NRQCD result, while for the gluonic decay we find 
r(V --t 39) = [40(n2 - 9)a~(mq)/Slmb]l J’d”q[l - (2,95~‘/m”Q)]~s~~(~~‘. Here l/)sch(g is the Q& 
bound-state wave function in momentum space, and mg is the heavy quark mass. This result clearly 
shows that the relativistic correction (due to the a’/& term in the decay widths) suppresses the 
gluonic decay more severely than the leptonic decay. We then estimate these decay widths by further 
including the first-order QCD radiative corrections (given in the MS scheme and at the heavy quark 
mass scale) on the basis of the factorization assumption, and using the meson wave functions which 
are obtained with a QCD-inspired interquark potential. Using the experimental values of the ratio 
R, z r(V t 3g)/r(V t e+e-) % 10, 32 for V = J/I$, T, respectively, and the calculated 
widths, we find a.(mc) = 0.26-0.29 and a,(m,) = 0.19-0.21 at me = 1.5 GeV and mb = 4.9 GeV. 
These values for the QCD running coupling constant are substantially enhanced, as compared with 
the ones obtained without relativistic corrections, and are potentially consistent with the QCD scale 
parameter Ag a 200 MeV. We emphasize, however, that our numerical results of the running cou- 
pling constant mainly serve as an improved estimate rather than a precise determination for which 
the existing theoretical uncertainties due to higher order relativistic corrections and the scheme de- 
pendence of the radiative corrections should be further clarified, and B first principles estimate of 
the nonperturbative bound-state effects should be further studied. 

PACS number(s): 13.20.Gd, 13.25.Gv, 14.40.G~ 
I. INTRODUCTION 

Determining the QCD running coupling constant as 
at different energy scales is very important in the verify- 
cation of the fundamental theory of strong interactions. 
Among others the heavy quarkonia decays may provide 
very useful information for a. at the heavy quark mass 
scale. Decay rates of heavy quarkonia in the nom&- 
tivistic limit with QCD radiative corrections have been 
studied (see, e.g., Refs. [l-3]). However, the decay rates 
of many processes are subject to substantial relativistic 
corrections. In particular, the rate of .7/$ + 3g and ac- 
cordingly the determination of cu,(m,) through this pro- 
cess depend rather crucially on the relativistic correc- 
tions. Presently the ratios of gluonic to leptonic width 
of J/$ and T have been precisely measured in exper- 
iment. However, if using the nonrelativistic expressions 
for decay widths which, in accordance with the factoriza- 
tion assumption for the long-distance part and the short- 
distance part of the decay amplitudes, are proportional 
to IR8(0)[“, where IR8(0)1 is the radial wave function at 
the origin, and comparing them with the corresponding 
experimental values, one would get [2,3] a,(m,) = 0.19 
556-2821/96/53~1~/221~10~/$06.00 12 
and a.(ms) = 0.17 which are defined in the modified 
minimal subtraction MS scheme. They are substantially 
smaller than the expected values determined from other 
experimental results or the QCD scale parameter (for a 
review on quantum chromodynamics, see Ref. [4]). 

Theoretically, the difficulty probably is mainly due to 
the large relativistic effects ofi the decay widths. It is 
known that there are at least two important sources of 
relativistic effects for these processes, one is from the 
kinematical corrections to decay amplitudes, the other 
is from the bound-state wave-function corrections which 
are concerned with the nonperturbative dynamical effect 
of quark-antiquark interactions. In Ref. [5] the first- 
order relativistic corrections were considered based on a 
phenomenological model. But only the relativistic car- 
rection originated from kinematics was discussed with 
only IRs( involved and no explicit methods with dy- 
namical considerations were given to calculate the decay 
widths. As a result of lack of estimates for relativistic 
corrections to the decay widths in the determination of 
a,(m,) and aY.(ma), either a conjectural parametrization 
for the v2/c2 term is made to get these coupling constants 
enhanced [3], or the v”/c’ term is arbitrarily neglected 
221 ($1996 The American Physical Society 
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but a large effective mass for the gluons is introduced 
[6]. Apparently, a better estimate rather than arbitrary 
guesses for the relativistic corrections is indeed needed, 
though this is certainly a very difficult task without a 
deep understanding of quark confinement. 

In this paper, as an attempt to tackle this problem, we 
will use the Bethe-Salpeter (BS) formalism [7] to derive 
the decay amplitudes and to calculate the decay widths 
of V + e+e- and V --t 39, where V is a vector heavy 
quarkonium state. In this approach, the meson is con- 
sidered as a bound state consists of a pair of constituent 
quark and antiquark (i.e., higher Fock states such as 
[QQg) and IQ&gg) are neglected, which may be justified 
to the first-order relativistic corrections of S wave heavy 
quarkonium decays) and described by the BS wave func- 
tion which satisfies the BS equation. A phenomenological 
QCD-inspired interquark potential will be used to solve 

for the wave functions and to calculate the decay matrix 
elements. These may allow us to give the expressions 
which take into account both relativistic and QCD radia- 
tive corrections to next-to-leading order. We may then 
estimate both kinematical and dynamical relativistic car- 
rations to the decay widths, and determine the QCD 
coupling constant from the calculated and observed ra- 
tios of gluonic to leptonic decay widths. The remainder of 
this paper is organized as follows. In Sec. II we study the 
relativistic corrections to V + e+e- and V -+ 3g widths. 
In Sec. III we discuss the bound-state wave functions and 
determine the coupling constants a,(m,) and a,(ma) de- 
fined in the ?% scheme by comparing the experimental 
values of the gluonic and leptonic widths of J/?i, and T 
with their calculated values. A summary and discussio? 
will be given in the last section, where comparison with 
other theoretical methods will be discussed and theoret- 
ical uncertainties in our calculation such as higher-order 
relativistic corrections and the renormalization scheme 
dependence in QCD radiative corrections will be empha- 
sized. 

II. RELATIVISTIC CORRECTIONS 
TO V + de- AND V + 3g 

It is argued [1,2] that the heavy quarkonium Q& an- 
nihilation into gluons, photons, or lepton pairs can occur 
only at small distances of order *, where mq is the 

heavy quark mass, while the quark confinement becomes 
effective at long distances of the order of meson radius 

TQQ - A, where 2) is the relative velocity of the 

Q and &. For ; < 1, these two length scales are well 
separated, and hence it is expected that the decay rates 
can be factorized into a short-distance part, which can be 
calculated using perturbation theory, and a long-distance 
part, which depends on the nonperturbative dynamics of 
the bound state. In fact, recently this factorization has 
been justified more rigorously based on the nonrelativis- 
tic QCD (NRQCD) effective theory (see Refs. [11,12]). 

Since the short-distance part is governed by the heavy 
quark mass scale, it may be treated as an unbound Q$ 
pair annihilation (i.e., quarks are on their mass shells) 
and calculated perturbatively as an expansion in powers 
of a.. These QCD radiative corrections have been 
calculated in Refs. [1,2] (see also [3]), where the coupling 
constant a. is usually defined in the MS scheme 
(the modified minimal subtraction scheme) at the heavy 
quark mass scale. 

The long-distance part of the decay rates is usually 
assumed to be proportional to IR(O (for S-wave Qa 
states), where R(0) is the radial wave function at the 
origin of the boundstate. However, this is only the lowest 

order result in $. If higher-order corrections in $ are 

considered, other quantities [e.g., V’R(O)] related to the 
bound-state wave function must be involved. In certain 
cases these relativistic effects can be quite substantial 
and have to be taken into account. 

In the following we will estimate these relativistic COP 
rections in the Beth&alp&r formalism, and then give 
expressions for the decay rates with both relativistic car- 
rections and QCD radiative corrections on the basis of 
the factwization assumption. 

A. The V + e+e- decay 

We first consider the leptonic decay for V = J/&and 
T (see also 181). This process proceeds via the QQ an- 
nihilation. Define the Bethe-Salpeter wave function, in 
general, for a Qloz bound state IP) with overall mass 

M and momentum P = (dm, P) 

X(%4 = wThhbum% (1) 

where T represents the time-order product, and trans- 
form it into momentum space 

xp(q) = e--i= 
s 

d%e-“*‘“x(z*,zz). (2) 

Here 41 (ml) is the quark momentum (mass), 42 (mz) 
the antiquark momentum (mass), and p the relative mo- 
mentum, 

x = 7j1121 + ‘Izrz, I = II - 22, 

p = q1 + 92, Q = WA - 17142, (3) 

where ‘li = e (i = 1,2). 

In this formalism the quarkonium annihilation matrix 
elements can be written as 

(0 I GIQ 1% = / d4q TI mA P)XP(Q)I 1 (4) 

where I(q, P) is the interaction vertex df the QQ with 
other fields (e.g., the photons or gluons) which, in gen- 
eral, may also depend on the variable q”. If I(q,P) is 
independent of q” (e.g., if quarks are on their mass-shells 
in the annihilation), Eq. (4) can be written as 

(OIQWP)=/ &Tr[l(Q,P)~pP(P)I, (5) 

where 

wa = J @XP(d (6) 
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is the three-dimensional BS wave function of the Q& me- 
son. Note that in the approximation that the quarks are 
on mass-shells the decay amplitude (5) is greatly sim- 
plified and only the three-dimensional BS wave function 
is needed (but this does not necessarily require the in- 
terquark interaction to be instantaneous). In the BS 
formalism in the meson rest frame, where & = -& = 
q, P = (M, 0), we have 

where ag(y), and *y(<) represent the three- 
dimensional wave functions of O- and l- mesons, re- 
spectively, # = e,,~‘, e, is the polarization vector of l- 
meson, ‘p and f are scalar functions which can Abe ob- 
tained by solving the BS equation for O- and l- mesons, 
and A+(A-) are the positive (negative) energy projector 
operators 

A:@) =A+(&) = ~(E+~“~~&+wo)> 

A?(-3 = A-(&) = &(E - +‘r’. & -my’), 

E=m. (8) 

For the process V --t e+e- with the electron (positron) 
momentum rC,(rC,) and helicity Ta, 

qq, P) = -&, (9) 

which is independent of q”, the amplitude can be written 
as 

T = e’eQ(o 1 &pQ I V)~&~)^l%~(k~)j$, (10) 

where A4 is the meson mass and Ed is the electric charge 
of the quark Q (Q = c, b). Define the decay constant fv 

by 

fvMe, = (0 I &wQ I V) = /& ‘-W,zW~)lr (11) 

where e, is the polarization vector of V meson. Then 
with (7) we can easily find 

22 

fv = 5$ d3q y - & f(Y), 

J i ) 

(12) 

where E = 47 p +m , and & is the color factor. Sum- 
ming over the polarizations of the final state and aver- 
aging over that of the initial state, it is easy to get the 
decay width 

I’(V + e+e-) = $r+,f~/M. (13) 

Including further the first-order QCD radiative correc- 
tion and assuming that the short-distance radiative cor- 
rection and the long-distance relativistic correction can 
be factorized, we then get the following expression for 
the decay width with both relativistic and QCD radia- 
tive corrections: 
4 2 2 6 
Iyv + e+e-) = p eqz 

( 
I- lfk(rnQ) 3?r 

> 
(14) 

Expanding jv in terms of <” /rn’, to the first order we 

get 

Equation (14) with (15) can also be written in the on- 
shell approximation [see (57) and (59) below] where 
quarks are assumed to be on the mass shell and hence the 
meson mass M is replaced by M = 2E = 2dm in 
the integration. In the numerical calculation of the decay 
width, in order to maintain the physical phase space of 
the decay process we will use (14) with (15) or (12) with 
the meson mass M taken to be its observed value (see 
the last section foi further discussions). 

B. The V + 3g decay 

We next study the hadronic decay for V = J/$ and 
T. We consider a Jpc = l-- Qa bound state decaying 
into three gluons. The decay width is given by 

r= & I &Z, 
where the integration J d4 is over the final-state phase 
space. Z is defined by 

z = c IT?, (17) 

where C represents summing over the polarizations of 
the final,&& and averaging over that of the initial state. 
The decay matrix element T is 

T = -is,” ‘WWX) 
I 

d4q~xp(q)l(kl,kz,k3;ql,qz), 

(18) 

where 

8dF3 - i2 + 4kz(d1 - g1 + rn){1 
r(k1’k2’ k3’q1rq2) = ((k, - q2)2 _ m2][(q1 _ k&2 _ &] 

+ all permutations of 1,2,3. (19) 

Here ki and e; (i=1,2,3) represent the momenta and po- 
larizations of the three gluons; T,,‘Z’~,T, are the color 
SU(3) matrices, and a,b,e are the. color indices of the 
three gluons; qI and qz are the momenta of quark and an- 
tiquark, and their time components satisfy qy + q: = M. 
As usual, we assume [1,5] 

q” = qy - q; = 0, qy = q,” = M/2. (20) 

Thus I(kl, kz, ks,ql, qz) is independent of q’, and T be- 
COlUeS 

T = -is.” Tr(T,TaT,) 
I 

@qTr{@;- ($)I(kl, kz, ks; 931. 

(21) 
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Substituting (7) and (19) into (21) and (17), we get the 
expression for Z. In the extremely nonrelativistic limit 
the dependence on <ofA+( A-(@‘), and I(kl,kz,k3;q3 
in Z is neglected and we obtain the usual nonrelativistic 
formula for V 7‘ 39. In order to go beyond the leading 
order result we expand the matrix element T in terms of 
p/72. 

We first consider a special case in which the quarks are 
off-shell by taking qy = qg = M/2 = rn. After performing 
the trace ofy matrix, in this case we get, to the first order 
of v=/c=, 

where f (qJ is the scalar wave function of vector meson 
which comes from (7), and where 

+a + (two other permutations), 

+ (two other permutations), 

2wi 

“‘=M’ z = 1,2,3, 

where wi represents the gluonic energy. The final-state 
phase space is given by 

(24) 

After performing the integration, we find the decay width 
of V + 3g with relativistic corrections to be 

r(v -+ 3g) = 640(n2 - gb%Q)g; 
81M3 ~(25) 

where to the first-order relativistic correction gv is 

sv = /d”q [1- (‘“;;(~;-94”’ - 4 $1 f@j 

=/d3q (l-2.96$) f($. (26) 

This integral will diverge when the wave function f is de- 
termined by the interquark potential which is Coulombic 
at short distances where one gluon-exchange dominates. 
We could introduce a cutoff scale A of order m(v/c) to 
regularize the integral. However, examining the inter- 
action vertex I given in (19) we can easily see that gv 
should be a convergent quantity if all higher-order cor- 
rections are taken into consideration, because in (19) I 
becomes inversely proportional to 6’ as 4” + co. In 
the absence of calculations for higher-order relativistic 
corrections which may involve higher Fock states we will 
take the following expression for the regulation of gv: 

gv=Jd39. (1+2.96$)-l fm, 

which gives the same result as (26) to the first-order rel- 
ativistic correction and differs from (26) only by higher- 
order terms which are difficult to estimate because to 
that order other higher-order Fock states such as IQ&g) 
may be involved as well. Similarly, for the leptonic decay 
the first-order expression of decay constant fv in (15) 
may also be regularized in the same manner, which dif- 
fers from the “full” expression (12) only by higher-order 
terms, and the difference between (12) and the regular- 
ized value is found to be small. 

In connection with (20), a more relevant treatment is 
to take the on-shell condition, which assumes the quark 
and antiquark to be on the mass shell 

q;=q;=M/2=E=dm. (28) 

The advantage of this assumption is that gauge invari- 
ance is maintained for the on-shell quarks but at the price 
of treating the quark and antiquark just as free particles 
in a bound state. An apparent problem in this scheme 
is that with a fixed value of the meson mass M (e.g., 
its observed value) if the quark mass takes a fixed value 
then s2 will be fixed but not weighted by the wave func- 
tion as in the usual bound-state description. In order 
to connect the decay process, which occurs at short dis- 
tances, where quarks are approximately on shell, with 
the bound-state wave function, which is mainly deter- 
mined by the long-distance confinement force, we have 
to make a compromise between the on-shell condition 
and the bound-state description. We will use (28) and 

expand the matrix element (21) and (17) in terms of $ 
and allow 6’ (so the me.son mass accordingly) to vary 
in accordance with the bound-state wave function f(fi 
which is to be determined by the long-distance dynamics, 
or phenomenologically by some dynamical models. With 
this treatment, we get another expression for Z: 

where 
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16 
fm + (two other permutations), 

Then to the first-order relativistic correction we get 

g”=/d%f(P) [‘- (;;;j$ +;> $1 

+%f(;) (l+2.70g)-‘, (31) 

where gv has been regulated in the same manner as (27). 
Including further the first-order QCD radiative correc- 

tion and assuming again that the radiative and relativis- 
tic corrections can be factorized, we then get the follow- 
ing expression for the decay width with both relativistic 
and QCD radiative corrections 

Iyv + 39) = 640(9 - g)a:(mQ) 
81M3 ( 

1 _ c”“o g; 
7r > ’ 

(32) 

where C = 3.7(4.9) for Q = c(b) with rn,(a) = 1.5(4.9) 
GeV [2,3]. In the extremely nonrelativistic limit, the 
<‘/rn’ term is zero, and the scalar wave function f(q) 
satisfies the relation [see (55) below] 

where ti(O) is the nonrelativistic Schradinger wave func- 
tion at the origin in coordinate space;we then get the 
well-known zero-order result [2,3,5] 

Iyv + 39) = 
160(7? - g)a:(mQ) 

81M2 ld4-w. (34) 

With the two expressions (26) and (31), obtained in 
the two different treatments concerning the on-shell con- 
dition, we find that they both give very close results. 
This may largely reduce the uncertainties in our calcula- 
tions associated with the on-shell or off-shell descriptions 
for the quarks which decay at short distances (therefore 
approximately on shell) and are bound together at large 
distances (therefore off shell). 

Comparing (26) and (31) with (15), we see that the 
suppression due to relativistic correction for V + 3g is 
much more severe than for V --t e+e-. This result then 
rules out the conjecture that the relativistic correction to 
J/IJ + 3g may be negligibly small [6]. 

III. DETERMINATION OF cr,(i%f,) 
AND BOUND-STATE WAVE FUNCTIONS 

To calculate the widths of leptonic and gluonic decays2 
we have to know the wave functions f(g for CE and bb 
states, which are determined mainly by the long-distance 
interquark dynamics. In the absence of a deep under- 
standing for quark conf?nement at present, we will follow 
a phenomenological approach by using QCD inspired in- 
terquark potentials including both spin-independent and 
spin-dependent potentials, which are supported by both 
lattice QCD calculations and heavy quark phenomenol- 
ogy, as the interaction kernel in the BS equation. We 
begin with the bound-state BS equation (71 in momen- 
tum space 

(35) 

where q1 and ~2 represent the momenta of quark and an- 
tiquark, respectively, G(P, q-k) is the interaction kernel 
which dominates the interquark dynamics. In solving Eq. 
(35), we will employ the instantaneous approximation 
since for heavy quarks the interaction is dominated by 
instantaneous potentials. This is also because, at present 
we do not know how to reliably include the retardation 
effects of quark conf?nement beyond the static comfine- 
ment potential. Once we know them we could add them 
as higher-order terms to the instantaneous kernel. Mean- 
while, we will neglect negative energy projectors in the 
quark propagators which are of even higher orders. We 
then get the reduced Salpeter equation [7] for the three- 
dimensional BS wave function @p($) defined in (6) 

where G(P, <- i) represents the instantaneous potential. 
We employ the following interquark potentials in- 

cluding a long-ranged cotinement potential (Lorentz 
scalar) and a short-ranged one-gluon exchange potential 
(Lorentz v&or) [El: 

VS(T) = Ar (1 -;f-‘), 

4%(7) -al Vv(v) = -iye , 

where the introduction of the factor eeap is to regulate 
the infrared divergence and also to incorporate the color 
screening effects of the dynamical light quark pairs on 
the Q& linear confinement potential 191. In momentum 
space the potentials become [S] 
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G(p) = G&, + y,, @ y@Gv(i+, 

Gs(?;) = -$“(;) + $ -2 ’ 
(P +a+ 

2 h(P) 
GV(~) = -s‘2 

P +a2’ 
(33) 

where a,(p) is the quark-gluon running coupling con- 
stant and is assumed to become a constant of O(1) as 
22 
P +o: 

a.(‘i;) = $ 
1 

ln(a + i$&) 

The constants A, a, a, and Agco are the parameters that 
characterize the potential. 

Substituting (7) and (38) into Eq. (36), one derives 
the equation for the l- meson wave function f (3 in the 
meSOn rest ftame 
~JR Epi = ,/Gf, Eki = d%iij (i = 1,2), 

(41) 

The normalization condition J d3qTr{@t(ai)m(p3} = 
(2~r)-~2M for the BS wave function leads to [S] 

J 
dsqh +%)(mz + Ed ,f(93,z = M 

8EqlEqz (q?r)3. (42) 

Equation (40) looks complicated since higher-order terms 
in vz/cz are all involved. To leading order in the nomel- 
ativistic limit, Eq. (40) is just the ordinary nomelativis- 
tic Schradinger equation with simply a spin-independent 
linear plus Coulomb potential. To the tist order of 
u”/c”, Eq. (40) becomes the well-known Breit equation 
with both spin-independent and spin-dependent poten- 
tials from vector (one-gluon) exchange and scalar (con- 
finement) exchange. 

For the heavy quark&urn CE and bg systems, ml = 
rnrn2 = rn, Eq. (40) can be greatly simplified. By solving 
Eq. (40) we can find the wave functions for the l- mesons 
(see, e.~., Ref. 181). 

and (14), we then get 
Substituting & obtained BS wave functions into (12) 

~?(J/$J + e+e-) = 5.6 keV, (43) 

where we have used 

rn, = 1.5 GeV, X = 0.23 GeV’, AQcD = 0.18 GeV, 

a = 0.06 GeV, a = e = 2.7183. (44) 

With ,these parameters the 2S - 1s spacing and J/$J - Q 
splitting are required to fit the data. Our result is 
in agreement with the experimental value of r(J/$ -+ 
e+e-) = 5.36 rt 0.29 keV [4]. Here in the above calcu- 
lations the value of a,(m,) in the QCD radiative’cor- 
rection factor in (14) is chosen to be 0.29 131, which is 
also consistent with our determination from the ratio of 
B(J/qj --) 39) to B(J/+ -$ e+e-) (see below). 
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Using the experimental data [4] 

r(J/?1, + 39) _ 1o 
Rg = r(J/+ --f dc) - ’ (45) 

and the calculated widths from (14), (31), and (32) we 
find 

a,(m,) = 0.29, (46) 

as compared with the value without relativistic correc- 
tions (but with QCD radiative corrections) 

&rn,) = 0.19. (47) 

Clearly, it is the strong suppression due to the relativistic 
correction to J/G + 3g that substantially enhances the 
value of a,(m,). [Note that a slightly larger value for 
a,(m,) could be obtained if using (27) rather than (31).] 

In comparision we have chosen two other groups of 
parameters and solved the BS equation for CE states by 
requiring again both their 2S - 1.9 spacing and J/G - qc 
splitting fitting the data. By the same procedure we get 
two values of a.(m,) corresponding to the obtained two 
new wave functions of J/t). With rn, = 1.4 GeV, X = 
0.24 GeV2, and other parameters unchanged (the heavy 
quarkonia mass spectra are not sensitive to a and a for 
a 5 0.06 GeV) we get a.(m3 = 0.29. With rn, = 1.6 
GeV, X = 0.22 GeV2, and other parameters unchanged 
we get a,(m,) = 0.28. 

Meanwhile, we have also solved the nonrelativistic 
Sctidinger equation for the scalar wave function f in the 
nonrelativistic limit by using the same potentials and pa- 
rameters as (38) and (44), but neglecting all first-order 
and higher-order spin-independent and spin-dependent 
terms in Eq. (40), we obtain 

a.(m,) = 0.28. (48) 

Note that in this limit the spin symmetry between the l- 
and O- mwons is restored and all the relativistic correc- 
tion from the dynamical source is eliminated, and that 
with relativistic corrections the BS wave function falls 
more slowly in momentum space than the nonrelativis- 
tic Schrijdinger wave function and consequently gives a 
slightly larger a. [see (46)] than the SchrGdinger wave 
function [see (48)). 

In order to see further the sensitivity of the value of 
a,(m,) to the wave functions, we have also naively tried 
the Gaussian function 

where N is the norm&&ion factor, and q$ is the mean 
value of the momentum squared of the quark inside the 
meson, which may be roughly estimated by using the 
scaling law qi = rnCl2 (C = 0.73 GeV) found for heavy 
quarkonia (see, e.g., Ref. [lo]). Then with rn, = 1.5 
GeV we find that while the gluonic and leptonic decay 
widths both become smaller (owing to the fact that the 
Gaussian wave function has a smaller value at the origin 
in coordinate space than the wave function determined by 
the linear plus Coulomb potential), the ratio of the two 
widths does not change very much and gives a.(m,) = 
0.26. 

The results (46) and (48) indicate that the determi- 
nation of a.(m,) is not sensitive to the dynamical rela- 
tivistic corrections to the wave functions, and the result 
with (49) may further indicate that it is even not very 
sensitive to the form of wave functions (within a reason- 
able range of choice for the wave functions), and the most 
important effect comes from the kinematic corrections. 

For the b6 system, with a similar calculation for the de- 
cay rates of T + 3g and T + e+e- with both relativistic 
and QCD radiative corrections taken into account, and 
using the observed value ,of the ratio [4] 

R 
g 
~ v ‘39) 

r(T -+ e+e-) 
a 32, 

we find 

a.(m*) = 0.19 - 0.20, (51) 

where 0.20 is obtained with the BS wave function while 
0.19 with the Gaussian wave function, and the nonrela- 
tivistic SchrGdinger wave function gives a value between 
0.19 and 0.20 (all for ms = 4.9 GeV). If without relativis- 
tic corrections (but with QCD radiative corrections), we 
would get az(mb) = 0.17. Moreover, with both relativis- 
tic and QCD radiative corrections, and a,(ma) = 0.20, 
we get 

r(T + e+e-) = (0.5 - 1.3) keV, (52) 

where 1.3 keV is obtained with the BS wave function, 
which is’in agreement with data [4], while 0.5 keV is ob- 
tained with the Gaussian wave function, which indicates 
that the Gaussian wave function significantly underesti- 
mates the wave function at the origin and then leads to 
a smaller leptonic width. The Schrcdinger wave function 
gives’l.l keV for the leptonic width. 

We may then conclude that by estimating the rela- 
tivistic corrections to the gluonic and leptonic decays of 
heavy quarkonia, we find that the relativistic effects sub- 
stantially suppress the V --t 3g decays, and consequently 
the determined values of the QCD running coupling con- 
stant at the heavy quark mass scale can get enhanced, 
and can be potentially consistent with other theoretical 
and experimental results. In particular, for the T with 
estimated small value of v2/c” = 0.08-0.09 the higher 
order relativistic corrections should be small and there- 
fore the result (51) for the b quark should be more reli- 
able than (46) and (48) for the c quark. From (51) and 
(52) we see again that although the values of leptonic 
and hadronic widths themselves are sensitive to the wave 
functions, the value of a,(ma) is not, and only varies in a 
very narrow range. Then with (51) a.(p) = 0.19-0.20 at 
p = mb = 4.9 GeV and with the relation between a,(@) 

and A”’ to two-loop accuracy, MS 
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where po = 11 - $nr, p1 = 102 - y!nf, and nf is the 

number of light quark flavors, we find Ax = 220 - 260 
MeV. Here experimental errors are not inc uded. “‘i 

IV. SUMMARY AND DISCUSSION 

In this paper we calculated the first-order relativistic 
corrections to V + e+e- and V + 3g for the vector 
heavy quarkonia V = J/$J and T, based on the BS for- 
malism for the decay amplitudes and bound-state wave 
functions. We then combine the relativistic corrections 
with the known QCD radiative corrections to give the 
decay widths to the next to leading order. We derived 
the coefficients of the v”/c” term in the decay rates with 
two different treatments regarding the on-shell condition 
of bound quarks, and obtained very similar values for 
the coefficients. These results may largely reduce the 
uncertainty in our calculations concerning the on-shell 
condition in these decay processes. To maintain gauge 
invariance in the decay amplitudes, the on-shell quarks 
are certainly better than off-shell quarks, and this is also 
justified by the fact that the annihilation can take place 
only at short distances. The large negative value of the 
coefficient in the <‘/rn’ term [see (31)] in the V + 3g 
width may encourage us to conclude that the relativis- 
tic effects suppress V + 3g decays much more severely 
than V + e+e- decays, therefore can make the coupling 
constants cr.(m,) and ol.(mb) substantially enhanced, as 
compared with the values obtained without relativistic 
corrections. 

For a more accurate estimate of relativistic corrections, 
the higher orders, e.g., (v”/c”)” terms should be taken 
into account, but this is difficult in our approach within 
the IQ&) sector, since to the higher orders the effects 
of dynamical gluons, e.g., the IQog) and 1Qagg) Fock 
states may be involved. In connection with the uncer- 
tainty of higher-order corrections, we have regularized 
the singularity associated with the derivative of the wave 
functions at the origin in a simple manner, as shown in 
(26), (Zi’), and (31). It is evident that (27) and (31) 
are valid to the first order of v”/c” but are uncertain to 
higher-order corrections, which are not only concerned 
with higher-order terms in (18) and (19), but also with 
the contribution of, e.g., the IQ&g) component in the 
meson wave function. Clearly, the lack of estimate of 
higher-order relativistic corrections is one of the main 
theoretical uncertainties in our approach, especially for 
the cc system. Fortunately this should not be too trou- 
blesome for the T, since its v2/c2 is only about 0.09, 
small enough to make the higher order v’fc” corrections 
unimportant. Consequently, the result for ab should be 
more reliable for bottomonium than for charmonium. 

We have solved the BS equation for the bound-state 
wave functions with QCD inspired interquark potentials 
(linear confinement potential plus one gluon exchange po- 
tential) as the BS kernel. With some popular parameters 
for the potentials we obtained the wave functions and 
used them to calculate the gluonic and leptonic decay 
widths and their ratios and then determine the strong 
coupling constants. By comparing the BS wave func- 
tions with nonrelativistic SchrGdinger wave functions and 
Gaussian-type wave functions, we find that the coupling 
constants are not very sensitive to the dynamical rela- 
tivistic effects on the wave functions (note that this is 
partly because the coupling constant is approximately 
proportional to the cube root of the ratio of gluonic and 
leptonic widths). We may then conclude that the rela- 
tivistic effects on the ratio of the widths and the strong 
coupling constant mainly originate from the kinematic 
part of decay amplitudes. This may allow us to obtain a 
reasonable range for the values of the coupling constant, 
despite of the uncertainty in the estimate of the dynami- 
cal relativistic effects. Indeed, it is difficult to control the 
systematic accuracy within the potential model. In par- 
ticular, the spin-independent relativistic correction to the 
confinement potential and the retardation correction con- 
nected with confinement are far from being thoroughly 
understood. This also causes an uncertainty in the esti- 
mate of decay widths and values of the strong coupling 
constant. Nevertheless, from (51) and (52) it can be seen 
that three very different wave functions (Le., the BS wave 
function, the SchrGdinger wave function, and the Gaus- 
sian wave function) lead to very different leptonic widths 
(and gluonic widths accordingly) but give very close val- 
ues for oi,(ma). This might indicate that at least in the 
case of bb the uncertainty in the bound state wave func- 
tions would not cause a large uncertainty in a.(ma). 

Despite the theoretical uncertainties mentioned above, 
our results for the first-order relativistically corrected 
gluonic and leptonic widths [in particular (31) and (15), 
respectively] are useful for an improved estimate of the 
strong coupling constant as compared with that obtained 
without relativistic corrections. Using the experimen- 

tal values of the ratio R, z $$$$$j bi 10, 32 for 

V = J/G, r, respectively, and the calculated widths 
with both relativistic and QCD radiative corrections to 
the first order, we found a.&) = 0.26 - 0.29 and 
a.(mb) = 0.19 - 0.20 in the MS scheme. The numeri- 
cal uncertainties due to the potential parameters and the 
different choices of wave functions within our approach 
have been included in above values (experimental errors 
are not included). These values for the QCD running cou- 
pling constant are potentially consistent with the QCD 

scale parameter A.‘4’ MS = 200 MeV. In particular, with 

a.(ma) = 0.19-0.20, which is a more reliable estimate 

than for charm&urn, we get A’4’ = 220-260 MeV. 
Recently, there has been sig%cant progress in the 

study of heavy quarkonium decays based on a more fun- 
damental approach of the nonrelativistic QCD (NRQCD) 
effective theory (see [11,12]). The factorization theorem 
was further discussed, and some important issues (e.g., 
the infrared divergences in the P-wave state decay rates) 
were clarified in this study. It will be interesting to corn- 
pare their results with ours in connection with the gluonic 
and leptonic decay widths and the determination of the 
strong coupling constant at the heavy quark mass scales 
from these decays. 

In fact, our (14) combined with (15) can be written in 
terms of the standard Schr6dinger wave function (with 
relativistic corrections) +seh as 
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16m2e2 
Iyv+e+e-)= M2 Q l- 

( 

1Wmq) 3~ 
> 

(54) 

where &h(qj is related to j(q3 through the normaliza- 
tion condition (42) which leads to 

(55) 

Our (32) combined with (31) can also be written as 
qv + 3g) = 1’W2 - g)a:(mQ) 
81M2 

1 _ Ccr,o 
?r > 

Here in (54) and (56), which are essentially the formu- 
las used for ow calculations, the meson mass M, which 
originates from the phase space of the decay process, is 
taken to be the observed physical value. If we further 
use the on-shell condition (28): M = 2E = 2,/m, 
to replace the observed value of the meson mass M then 
(54) and (56) will become 
I 

qv + 39) = 
40(?r2 - 9)&mQ) 

81m2 

It is easy to see that to the first order of $, in coordinate space (57) and (58) can be expressed as 

r(v + e+e-) = 

r(v + 3g) = 10(T2 - gb3(mQ) 
81~x2 

) (IW’)l” + &Re[R’(o)V2R(o)l) > 

IR(O + ?$Re[ R*(0)V2R(O)]) , 

(57) 

(58) 
where R(0) is the SchrGdinger radial waw function at 
the origin of the V (V = J/$, T) meson. Equation (59) 
is exactly the same as that given in Ref. [ll] with the 
NRQCD effective theory, if we identify our bound-state 
wave functions with their regularized operator matrix el- 
ements, i.e.: 

R(0) = 
r 

FL (olx+ow), 

02R(0)=-~~.(Ol~t~(~~)2~,V) 

~’ x[l + O(vZ/cZ)]. (62) 

In our calculations we have used (54) and (56) (with also 
a regularization procedure) in which the observed phys- 
ical value for the meson mass M is taken to maintain 
the physical phase space. Of course, we may also use 
(57) and (58) to determine a.(mQ). Since a.(mQ) iS es- 
sentially determined by the ratio of the gluonic width to 
the leptonic width, use of (57) and (58) will not lead to 
much of a difference from the use of (54) and (56). E.g., 
instead of (51), use of (57) and (58) with the same poten- 
ital parameters as before gives a.(ma) = 0.20 - 0.21 for 
mb = 4.9 GeV, while the obtained gluonic and leptonic 
widths themselves become slightly smaller. 

Our results (54)-(60) differ from Ref. [5] in two re- 
spects. First, to the first order of v2/c2 we have two in- 
dependent nonperturbative quantities R(0) and V’R(O), 
whereas in Ref. [5] (and other earlier treatments on the 
factorization of quarkonium decays) only one quantity, 
i.e., R(0) is considered. Second, these two quantities 
can be calculated in our approach based on a QCD- 
inspired quark potential model by solving the Bethe- 
Salpeter equation. Although this is not a first principle 
theory and it is difficult to control the systematic uncer- 
tainty in the potential model calculation, it may provide 
a rather useful estimate of these quantities, since not only 
the zeroth order spin-independent potential but also the 
first-order spin-dependent potential, i.e., the Br&t-Fermi 
Hamiltonian, which stems ftom one gluon exchange and 
has a good theoretical and phenomenological basis, are 
considered in the calculation, and different wave func- 
tions are also chosen to estimate the uncertainties in the 
calculation. Nevertheless, for more reliable estimates we 
hope that these nonperturbative quantities of the bound 
states can be eventually calculated f&n more fundamen- 
tal theoretical methods, e.g., the lattice QCD simula- 
tions. 

We have used the QCD radiative corrections given in 
the m scheme [l-3]. However, as pointed out in Ref. 
[13] that the renormalization scheme dependence of per- 
turbative QCD will plague attempts to make high preci- 
sion tests of the theory, and the inclusive hadronic width 
of vector quark&urn does have a serious scheme ambi- 
guity. In the so-called effective charge scheme [being es- 
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sentially the m scheme but with a specific scale p = Q’ 
at which all the dependence on the light flavor numbers 
is absorbed into the leading term of a.(p)] ~proposed in 
Ref. [13] the ratio of gluonic and leptonic widths of J/$ 
or T can even be negative. This may indicate that per- 
turbative QCD is risky for describing these decays. The 
scheme ambiguity problem in QCD has been discussed 
in Ref. 1141 where various schemes are extensively com- 
pared and it is argued that there is no known “correct” 
answer to the question which scheme, among all the in- 
finite number of possible schemes, should be chosen in 
order to best compare the truncated finite order QCD 
predictions with experimental results. The renormaliza- 
tion scheme problem has also been discussed in Ref. [15]. 
Presumably, while the effective charge scheme in Ref. 
[13] is physically motivated, the lack of a clean resolu- 
tion of the scheme ambiguity at present might allow one 
to try other schemes. In fact the MS scheme (with a scale 
around the heavy quark mass) has been widely used in 
the studies concerning the determination of QCD cou- 
pling constant from the inclusive hadronic widths (and 
the leptonic widths) of vector heavy quark&a (see, e.g., 
Re&. [3,4,14,15] and references therein). Nevertheless, 
this does not mean that the use of it is really justified 
and one should keep in mind that there is possibly a large 
uncertainty due to the scheme ambiguity in the first or- 
der radiative corrections to the inclusive hadronic widths, 
and hopefully the explicit calculation of higher order ra- 
diative corrections will further clarify this ambiguity. 
Recently there has been significant progress in lattice 
QCD toward the determination of QCD coupling con- 
stant a. and other fundamental parameters from heavy 
quarkonium spectra and decay rates (16-181. Lattice sim- 
ulations of the 1%1P or 1%2s energy spacings of heavy 
quark&a, compared with their observed values, can de- 
termine the inverse lattice spacing, a-‘. This informa- 
tion can be converted to the determination of a. in the 
MS scheme when both nonperturbative simulations and 
perturbative expansions for some short-distance quanti- 
ties are used. This approach gives a well-defined meaning 
of ag and other fundamental parameters from first prin- 
ciple calculations. The average over Fermilab [16] and 
NRQCD [li’] results (especially for the new unquenched 

method) for a. seems close to our estimate Ag = 220- 
260 MeV. 
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