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In the framework of QED we evaluat? the cross section for electron-positron pair production by a 
single photon in the presence of the external Aharonov-Bohm potential in first order of perturbation 
theory. We analyze energy, angular, and polarization distributions at different energy regimes: near 
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I. INTRODUCTION 

In the previous paper [l] we investigated the 
bremsstrahlung process for relativistic electrons scattered 
by the external Aharonov-Bohm (AB) potential (mag- 
netic string). This process is supposed to be the most 
significant one among those accompanying the AB scat- 
tering [2]. The AB effect, the influence of magnetic fluxes 
on quantum systems, can be adequately interpreted by 
means of phase factors [3] exp (ie $ A&c,) which pro- 
duce phase shifts in wave functions of charged particles. 
A number of remarkable experiments was made to ob 
serve the resulting interference pattern of an electron 
beam scattered by a thin solenoid. For a comprehensive 
review see [4,5]. In solid state physics the manifestation 
of the AB effect brought new unexpected results [6,7]. 

In addition to the bremsstrahlung process there exist 
other important quantum effects in the presence of the 
external AB field. We consider here in the framework 
of QED the production of an electron-positron pair by a 
single photon in iirst order. This process, as other analo- 
gous quantum processes, is possible only in the presence 
of external fields which provide the necessary momen- 
tum transfer. It happens, for example, in the Coulomb 
field [8] or a uniform magnetic field [g-11]. In these caes 
there are external local forces which influence the motion 
of the created charged particles. In the AB case, how- 
ever, the pair creation seems to be somehow mysterious 

since it happens due to a global, topological reason. In 
fact the AB field provides the violation of the momentum 
conservation law. Therefore the mechanism that permits 
pair production bears some resemblance with processes 
near cosmic strings [12,13]. 

The theoretical study of the AB scattering for the 
D&c electron [14,15] raised a mathematical problem re- 
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lated to the correct description of the behavior of electron 
wave functions on the magnetic string. We do not dis- 
cuss this problem here but refer to [14,15,1]. The issue of 
spin changes slightly the interpretation of the AB effect. 
The interaction between spin and magnetic field leads to 
wave functions of Dirac particles which do not vanish on 
the magnetic string and thus, in a way, a local element 
is added to the nonlocality of the AB effect. 

The paper is organized as follows. In Sec. II we con- 
sider briefly the Dirac equation in the presence of the AB 
potential and work out the electron and positron wave 
functions characterized by quantum numbers of a com- 
plete set of commuting operators. The exact scattering 
wave function for electrons and positrons are expressed in 
terms of partial waves. In Sec. III the matrix element for 
the pair production by a single photon is calculated and 
the effective differential cross section is evaluated. We 
analyze the behavior of the differential and total cross 
section at different energy regimes and discuss their par- 
ticular features for the Dirac electron in Secs. IV and V. 
We use units such that li = c = 1 and take e < 0 for the 
electron charge. 

II. THE ELECTRON AND POSITRON 
SOLUTIONS TO THE DIRAC EQUATION 
IN THE AHARONOV-BOHM POTENTIAL 

The Dirac equation in an external magnetic field reads 

i&$ = HG, H = a&< - eAi) + PM , (1) 

where e is the electron charge. For matrices a and fl we 
use 

In cylindrical coordinates (p, (o, z) the kinetic momenta 
are given by 

np = p, = -ia,, ry = p, - eA, = - %$ - eA,, 
P 

p3 = -ia, , (3). 
2190 0 1996 The American Physical Society 
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case with the operators I?, $3, and j,, when a magnetic 
field of a fixed direction is present.*This can be seen, for 

example, in [19]. We prefer to use S, because in the non- 
relativistic limit, which will be treated below, it describes 
the spin projection along the direction of the magnetic 
field. Its eigenvalue is given by s = zkdm. Solv- 
ing these eigenvalue equations leads to a radial solution 
of Bessel type. 

As independent radial solutions we choose Bessel func- 

tions of the lkst kind of positive and negative orders. 
Then the normalization condition for the partial modes 
with quantum numbers j = (p~,ps, 1, s), 

= 6j,j’ = 6.,.+?qp, -P3’)6(py$), (12) 

I 

fixes the solutions (for electron states with E > 0) of 
these equations for values of 1 outside of the interval -1 < 
1 - 6 < 0 thus removing Bessel functions with negative 
order which are not square integrable. One finds, for 

l# 0, 

where 

1 
u = Jzs‘ 

e3 := sgn(sp3), (16) 

Since the normalization condition method does not ap- 
ply for 1 = 0 this case needs a separate discussion, which 

has been done in [17]. Fortunately it turns out that the 
corresponding solution is of the same form as for 1 # 0. 
Therefore the expressions above are valid not only for 
I # 0 but also for 1 = 0 so that it is allowed to include 
where 

o,=u~cosp++2sin~, 

cr+. = -crI sin ‘p + *2 co8 cp, (4) 

and vi are’ the Pauli matrices. 
The vector potential for the pure AB case (magnetic 

string) has a nonzero angular component [z] 

e-3 -3 4 
eA, = - = __ = _, 

2TP hp p 
(5) 

where @ is the magnetic flux and ao = 2?rtic/]el is the 
magnetic flux quantum. It corresponds to a magnetic 
field with support on the t axis: 

which points to the positive (negative) t direction for 
4 < 0 (4 > 0). Note that it is the fractional part 6 of the 
magnetic flux 4 = N + 6, 0 < 6 < 1 which produces all 
physical effects. Its integral part N appears as a phase 
factor exp(iN~) in solutions of the Dirac equation. 

The exact solution of the Dirac equation for the scat- 
tering problem in the external AB field can be written in 
an integral form as it was done for the SchrGdinger equa- 
tion in the original paper by Aharonov and Bohm [2]. 
For our problem, however, cylindrical modes are more 
convenient. 

For the Dirac equation in the AB field the complete 
set of commuting operators is 

Iz, fis := -id,, $3 := -ilt+,i- ;C,, 

where .y := The corresponding eigenvalue 

equations are given by 

&=E?I,, (8) 

s3$ = Pd > (9) 

.k?j) = All,, (10) 

&?b=s*, (11) 

where E = ,/PT + p$ + M2 is the energy, ps and j, are 
the t coplponents of linear and total angular momen- 
tum, respectiv$y; pl denotes the radial momentum. The 
eigenvalue of $3 is half-integer and we rewrite it by in- 
troducing 1, j, =: 1 + N + l/2. Here 1 is an integer 
number and N is fked as above. Note th$ I + N de- 
notes an integral part of the eigenvalue of J3 in contrast 
to the usual convention. The corresponding separation of 
a factor exp(iNv) in the solutions of the Dirac equation 

will turn out to be convenient in the followi?g calcula- 
tions. We introduced in Eq. (7) the operator ,573 and not 

the h&city operator & = Ci(p; - eAi)/p which is often 

used. Both of these operators commute in the relativistic 
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this case in (17). The critical mode 1 = 0 contains the 
irregular but square integrable Bessel functions of orders 
-6 and -1 + 6. Their inevitable appearance in solutions 

of the Dirac equation is an obvious consequence of the in- 
teraction between spin and magnetic field. This problem 
is a part of a general problem of the self-adjoint extension 
for the Hamilton operator in the presence of a singular 
potential (pure AB case), and it was discussed in the pre- 
vious paper [1] (see also [14,16]). In [17] we presented an 
alternative method of treating the self-adjointness prob- 
lem. 

The complete set of solutions of the Dirac equations 
includes the negative energy electron states. Instead of 

them we introduce positron states & with E > 0 which 
can be obtained from electron states of negative energy 
by the charge conjugation operation 

$ + tic = mransp 1 c = R2 (18) 

and replacing e by -e. $J= obeys the free Dirac equa- 
tion as well as 11 does but with opposite sign of the elec- 
tric charge and has quantum numbers E, -ps, -j,, s. One 

needs to replace ps + -ps, j, + -is (2 + -1- 1) in the 
electron state of negative energy to obtain positron state 

with quantum numbers E,ps,ja, s. 

The electron-positron field operator reads 

with aj and bi being the annihilation operators for the 
electron and positron with given quantum numbers. It 
contains positive frequency functions +. (electron states) 
and negative frequency functions $$ (positron states): 

(20) 

where 
I 

(21) 

(22) 
with 

The expressions (13)-(17) and (20)-(23) present the 
partial electron and positron wave functions in terms of 
cylindrical modes. These states do not describe outgoing 

particles with definite linear momenta at infinity. In or- 
der to calculate the cross section of the pair production 
process we need the electron and positron scattering waste 
functions. In external fields there exist two independent 
exact solutions of the Dirac equation which behave at 
large distances like a plane wave (propagating in the di- 
rection p’ given by p, = pl cos ‘p,, p, = pl sin I,+,, pz) 
plus an outgoing or ingoing cylindrical waves, corre- 
spondingly. For outgoing particles we need to take wave 
functions which contain ingoing cylindrical waves. In this 

case the interaction of the created electron and positron 
with the external magnetic field will be described cor- 
rectly [8]. 

The corresponding scattering wave functions can be 
obtained by superpositions of the cylindrical modes: 
‘i$(J,t) := xc?’ $$(j,,z) (25) 
n 

with the coefficients 

$’ := e-ilv, ,-igws J$’ := ei(n+w%+*) ,+.d 

(26) 

where J is a collective index for the linear momentum at 
infinity and s. 

In the terms of the wave functions (24) and (25) the 
electron-positron field operator reads 

tir(~,t) = ~&u[K-(J,~)w + q;(J,&l, (27) 

with a.~ and bJ being the annihilation operators for the 
electron and positron with quantum numbers of the scat- 
tering states. 

The external AB field has no influence on the photon 

wwx finction. In cylindrical coordinates it reads 

A:,(b) = 
c?p 

Xe 
-iu,t+iksreikrPco*(p-~r.) 

, (28) 

where the polarization vectors 

dc) := (0, -sin(~k, .cospk, 0) , 

d=) := -$o, -kBCOS(Ok, +sinrpk, kl) ‘, (29) 
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correspond to two linear transversal polarization states. 
In the coordinate frame with k3 = 0 in which we will 
perform all calculations, the polarization vector e(T) is 
directed along the z axis and e(“) is orthogonal to the 

magnetic string. 

III. MATRIX ELEMENTS AND DIFFERENTIAL 
CROSS SECTIONS FOR PAIR PRODUCTION BY 

A SINGLE PHOTON y -+ e- + e+ 

The differential cross section of the pair production 
process describes the distribution of the created parti- 
cles with respect to their quantum numbers. For these 

one may take the angular momenta which correspond to 
cylindrical modes. But usually final states are related 
to plane wave states, and in our case to the scattering 
states (24) and (25). The cyli&ical modes have a van- 
ishing radial flux and therefore do not describe ingoing 

or outgoing particles. They are, however, convenient for 
calculating matrix elements, and we use these matrix el- 
ements as starting point for calculation of the differential 
cross section which refers to scattering states. As far as 

the total cross section is concerned one can use any final 
states. 
A. Matrix elements for cylindrical modes 

The matrix element for pair production of an electron 
with quantum numbers j, = (pl,ps, 1, s) and a positron 
with quantum numbers j, = (qL, 93, IL, T) by a single pho- 

ton with quantum numbers (g, X) for physical states 

X = CT, n has the usual form 

Wi,,i,; 6 4 

= -i(jq,jplSc’)Ii,X) 

whereby gamma matrices are written in terms of Pauli 
matrices as 

Lx= = (32) 

Using expressions (13), (20), and (28) we can rewrite 
the matrix element (30) in the form 
I 

with 

E&i,) = -e ’ exP(-i~(l~l-Inl))6(E,+Ep--k)6(P~+q~-k3)~X 
2@gE& 

(33) 

m,j := 
J 

pdpd$xe’k~pCo*(~-~k) [u’(p)axw(q) +v’(p)ax*y(q)] 

_ -i(l+n+l)vr 

s 
pdpd~ee’klPCoB(‘-‘X)K~(p,~). (34) 

The Dirac equation (1) in the external AB field is invariant under boost transformations along the string direction. 
This means that it is sufficient to treat the case of normal incidence of the photon on the magnetic string, and 
therefore we may perform all calculations in the coordinate system in which kJ = 0. No information will be lost but 
calculations become simpler in this case. 

For the polarization state X = o we have 

K,,(p, VP) := iR0 [d-,/m Jv, (pLp) J”; (q& e-i(‘+n)(v-vr) 

+ e,en,/~,/~ J,,(pLp)J,;(q~p) e-i(‘+n+2)(9-uh) 
IT 

(35) 

with 

% := & [&Tim - %(p)e3(q)G=TG=T] 

and, for the polarization state X = ?r, 

K&, IP) := iR, [%v’mJ JyI(~~~)Jv:(q~p) 

-61 d-d&%%? Jyl (pip) J,; (q&l e--i(‘+n+l)@-vL) 

(36) 

(37) 
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with 

Integrating over cp we obtain 

It follows from the energy conservation law, wk = EP+EP, that the photon’s radial momentum obeys the inequality 
kl > pl + 41. The excess of radial momentum, kl - (pb + ql), is transmitted to the flux tube. For this case, using 

formulas [6.578(3) and 6.522(14)] of [18], one can see that the integrals over p vanish unless (I + i)(n + 4) < 0. This 
inequality is satisfied at 1 2 0, IL < 0 and n 2 0,1 < 0, and the nonvanishing integrals are of the type 

J(a,P) := lm pdpJ,(p~psinAcosB)J~(qlpcosAsinB)Jp-,(klp) 

= rrkfcos(:$:os(A-B) (f%)= (%)” 

with PL = kl sin A cm B, q1 = kl sin B cos A. 

Denoting 

we have in terms of the integral (41) for the matrix elements (39) 

m 

0 

= 2nie-‘(‘+n+l)~~e”f(l+“)R 

rn {@(z > o)@(n. < 0)(-l)‘+” [d-d- J(2 - 6, -TL - 6) 

+ ,/~~~J(Z+l-6,-n-1-6)] 

+ O(Z < O)@(n 2 0) [,/md- J(-Z+&,n+&)’ 

+ ~~~~J(-Z-l+6,n+1+6)]) 

(41) 

(42) 

(43) 

and, for the matrix element (40), 
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m, = _2?rie-“(‘+n+‘)‘ke”~(‘+n+‘)Q Q(l > O)Q@ < O)(-l)‘+n+l 
{ - 

[~~~~J(l-&-n-1-6) 

+ &==dmJ(l+l-6,-n-6)] 

- @(l< o)Q(n 2 0) [d-d- J(-l + 6,n + 1 + 6) 

+ ~~~~J(-Ll+&,n+6)]} 

= 4&e- i(l+n+l)qk+if ,l-n, sinnJ 

dkt - 2k:(p: + qf) + @: - q:Y 

alli ,+I 

(44) 
The partial wave analysis of the pair production pro- 
cess caused by a photon which passes the AB string shows 
a rather unexpected feature: The process turns out to be 
forbidden unless the quantum numbers 2 and n of the out- 
going electron and positron have opposite signs. This in 
turn implies that (the expectation values of) their kinetic 

angular momentum projections, [ix (p’-eA)]s = -i&,-b 
have opposite signs. (For a detailed discussion see [I].) 
In the framework of a semiclassical picture this means 
that created charged particles need to pass the magnetic 
string in opposite directions. Apparently this is necessary 
for the ingoing photon to give the excess of its radial mo- 
mentum, kl - (pb + ql), to the string and to create a 
real electron-positron pair from the vacuum. 

We draw attention to another characteristic trait of 
the pair creation process. It takes place although the in- 
coming photon is not influenced by the magnetic string 
directly. The process happens since the created charged 

particles interact with the AB potential. The magnetic 
string distorts the states of the virtual electron-positron 
pairs in the vacuum. The incoming photon interacts with 
these virtual pairs, and it can transform them into real 
pairs if the conditions for momentum transfer (and en- 
ergy conservation) are satisfied. 

B. Differential cross section far scattering states 

It is now easy to calculate the matrix element for the 
electron-positron pair production by a photon with re- 
spect to the electron (24) and positron (25) scattering 

states. For an incoming photon with momentum k’ and 
polarization X which creates electron and positron with 
momentapt q’and spins s, T, correspondingly, the matrix 
element of the process reads 

Mx := -i((p;r),(~,i,)]S(‘)l(k3,X)) 

= c CI”“C$’ i&(j,, j,) 

Ln 

eJZsinm3 
= m + 4 - 4 J(P3 + 43) 

&%% ~k~-2k~(p:+q~)+(p:-q~)2 

XRA CA > (45) 

where the coefficients cp” and c$’ are given by Eq. (26) 
and we denote 
r 

C,:=Ct? il~~h+i(n+l)~+ aI’1 bInI 

kn [ 
(ab)-6[O(Z > O)O(n < 0) 

( 
$/&?&/m - a,/-,/- 

> 

- (ab)‘%(l < O)O(n > 0) 
( 

bdw,/m-- &j’wdm)] (47) 

with (ppk := ‘pp - (ok? (Pqk := (04 -(ok. 
Performing the sums over 1, n we obtain, for the polarization state X = 6, 
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and, for the polarization state X = ?r, 

Iz := 
1 1 

1 _ a &.p. 1 - b e-“W 

Equation (45) together with (46)-(50) contain results for the pair production matrix elements with respect to 

scattering states. 
Based on the matrix element (45) we evaluate the differential probability of electron-positron pair production by a 

single photon per unit length of the magnetic string and unit time 

where 

(51) 

Calculating 

RZ = 1+ w-3 + d 1 - sarg R2 1 - %va 

q,2+M2T’ 

= 

+ 
43” - 1+ Q3TQ 

rn 2 7T 2 q3+M2 2 2 ’ 

(52) 

(53) 

where .ss = sgn s, ~3 = sgn 1‘ and sorting terms with respect to the flux parameter 6, 

lC# = (ab)-26Pi-) + (ab)26Pi+) + I’!“’ , 

we find 

(54) 

P;-’ = [b2(Ep + sM)(Ep + TM) + a2(Ep - sM)(Ep -TM) - 2abplqJ ICI’, 

Pi+’ = \a’(E, + sM)(Ep + TM) + b’(E, - sM)(Ep -TM) - 2abplqJ JC)‘, 

Pp’ = [-2ab(E,E, + srMZ) + (a2 + b’)plql] ICl’ F(q), 

Pi-’ = [(E, + sM)(E, -TM) + a2b2(E, - SM)& + TM) - 2abplq.J ]E[‘, 

P,$+) = [a”b2(Bp + sM)(Ep - TM) + (Ep - sM)(Ep + TM) - 2abplql] ]C[‘, 

P!“’ = [-2ab(EpEP - srM2) + (1 + a2b2)pLql] IX]’ F(p) , (55) 

where 

IW = (1 + 
1 

d - 2a cos (ppk)(l + b2 - 2b ~0s ‘ink) ’ (58) 

F(rp) := [2a - (I+ 2) COS(O~~][~~ - (1 + bZ)cos(ppk] - (I- a”)(1 -b2) sin’PpbSin(Oqk 

(l+az-2acos(pp~)(l+b~-2bcosv.& (58) 

The differential probability of the pair production process with respect to the variables p’, $ is given by Eqs. 

(51)-(58). 
The complete information about energy, angular, and polarization distributions of created electrons and positrons 
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is contained in the effective differential cross section: 

dox = e* sin’nb Rz IC;l’ 

d~&$wb 321r4 u&q; + M2) ’ 
(59) 

These distributions can be observed in experiments. Instead of pl and 91 we made use of more convenient variables 

- the positron (electron) energy Ep (EP) and the z component of the positron (electron) momentum qs (-pa). They 

are, obviously, related by the equalities EP + E, = wk, ps + ps = 0. 
We rewrite the cross section (59) in a more detailed form 

with 

dux e2 si2d 

dQh&pdqa = 128~4 

,-asp + ,sg+) + $0 

w,# + Mz)(Ep - PL c-wJ(Eq - a C-P+) 
(60) 

(EP - dm)(E, - dm) 

’ := (ab)2 = (EP + dm)(E, + dv) 

and pl = dw, q1 = ,/w. 

Then we have, for the polarization state 6, 

si’) = (li w&J: + M2) [E; + E,” - 2(q,” + M’) F sz(q: + M2)(E, - E,2)] + (1 - w3)q:(EP - E9)‘(1 f ss), 

(62) 

S?) = -(li w+pm(d + M2)FW > (63) 

and, for the polarization state n, 

Si’) = (I- ws)(q: + M2)w;(l rl: 8s) + (li sm)q; [E; + E,” - 2(q; + M’) 7 SQ(E; - E,2)] , (64) 

s: = (li w3)2P.Lq1q:F((P) 1 (65) 
with s3 := sgns and TQ := sgnr. 
Equation (60) together with (61)-(65) and (58) gives 

the final expression for the effective differential cross sec- 
tion for the pair production process. We will discuss it 
at different energies of the incoming photon. 

IV. THE CROSS SECTION FOR PAIR 
PRODUCTION AT DIFFERENT 

PHOTON ENERGIES 

In this section we will analyze the angular and polariza- 
tion distributions of the created electrons and positrons 
and find the total pair producti& c&s section at differ- 
ent energies of the incoming photon. 

A. Angular md polarization diStributions 

The angular distributions for created electrons and 
positrons are of a fairly complicated nature. They sim- 
plify considerably at low and high photon energies. 

At low photon energy, just above the pair production 
threshold 2M, w - 2M < 2M, we have 
and 

It means that electron-positron pair of low energies are 
created mainly fkm~ x-polarized photons, and the differ- 
ential cross section for pair production above the tbresh- 
old reads in this case 

c-y1 + s3) + cb(l - 33) 

M3 

The angular distributions for electrons and positrons of 
low energies are uniform in the plane perpendicular to 
the magnetic string but their dependence on the polar 
angle 19 is rather intricate. 

The polarizations of the electron and the positron de- 
pend strongly on the photon polarization state. Note 
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that we are in the nonrelativistic limit and that sQ 

(TX) now agrees with the spin projection of the electron 
(positron). Created particles have spin projections of 
opposite signs, and electrons with positive spin projec- 
tions (antiparallel to the magnetic string) are produced 
by Ir-polarized photons predominantly since e < 1. Their 
fraction increases with the flux parameter 6. In this case 
the intizaction of the magnetic moments with the string 
magnetic field is attractive for both the electron and the 
positron, and their wave functions are localized near the 

string. The a-polarized photon, on the other hand pos- 
sesses a polarization vector perpendicular to the mag- 
netic string and creates particles with spin projections s3 
and ~3 of equal signs which implies that their magnetic 
moments have opposite directions. Because of the inter- 
action of the magnetic moment with the magnetic field 
of the string therefore only one of the created particles, 
either the electron or the positron, is attracted to the 
string, which leads to an enhancement of the wave func- 

tion near the string., This means that one of the particles 
is located near the string while the other one is located at 
a certain distance and, in a heuristic picture, it is unlikely 
that the u-polarized photon creates an electron-positron 
pair. 

With increasing photon energies the dependence on the 
photon polarization disappears since also larger orbital 
momenta contribute to the cross section. This can be 
seen from Eqs. (43) and (44). 

At high photon energies, w > M, the angular dis- 
tributions are very simple. In this case the electron 
and positron are emitted predominantly in the forward 
direction, within a narrow cone surrounding the direc- 
tion of motion of the photon. Because of the pres- 

ence the factors EP - pL cos LP,~, E4 - qI cos ‘P+, and 
qi + M2 N E,” as2 0 in the denominator of (60) their 
angular distributions have sharp maxima in this direc- 

tion (vpk - LP+ - 0, 9 N r/Z) and the effective angular 
aperture of the cone is given in order of magnitude by 

Mb&. 

B. The total cross section 

Let us now analyze the energy behavior of the total 
cross section. Integration of the differential cross section 
(60) over the azimuthal angles (op, cp* leads to an addi- 
tional factor 4n2/(q$ + M2) and removes the term with 

Sr’ from the cross section: 

df-74 _ 2 sin’ n6 cm6S~-’ + c”$+’ 

dE.&qs 32x2 w;(q$ + My . 
(67) 

Performing the sums over polarizations of created elec- 
tron and positron we obtain 

do x 2 si27r6 c-6 + c6 
-= 
dE&s 8n2 w;(q; + M2)2 ‘A 638) 

with 

C, := (4.32 + M’)[E; + E,” - 2(q,2 + M’)] 

+d(Ep -GA’, 

C,, := (q: + M’)w; + q:[E, + E,” - 2(q: + M’)]. (69) 

Since the variables pl and q1 are both positive the 
variable q3 ranges from -qy to qya* where qym = 

min (,/G, ,/w) Introducing new sari- 

ables 

E=IE*-E~I, I= 
J 

q$+MZ, (70) 

we obtain the general expression for the total cross sec- 
tion for pair production by a photon of the energy wk 
and polarization X: 
I 

(71) 
where 

c = (&)2 = (Wk - w - 2 
(Wk + 2z)Q - &2 ’ 

C&z) = $z”(w; + 6’ - 41’) + (z2 - M2)e2, (73) 

C&z) = z”w; + ;(z” - M’)(w: + e2 - 42’). (74) 

The remaining integrals over E and 3: cannot be found 
analytically for arbitrary values of the flux parameter 6. 
Even for the symmetric case 6 = i we have a rather 
complicated integral 
(75) 

But the general expression (71) for the total cross section 
of pair production simplifies considerably at low and high 
photon energies to which we turn now. 

At low energies, near the pair creation threshold, wk - 

2M < M we have C, < C, FZ 4M2. Therefore we will 
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consider only the polarization state rr. It is then 

Dropping in (71) the term cs < cd6 and introducing new 
dimensionless variables t and y by 

wk-2M 
E= (wk-2z)t, I= M+ 2 y, 

we obtain 

xB(l-&l-6) B&i -26) 

=,;~rr6 (wki;M):-z6 

xB(1 -S,I -6) B(;,2-26) , (76) 

where TO = & is the classical electron radius and the 

constant B(p, u) is the Euler’s integral of the first kind. 
After integration over a small energy interval A above 
the threshold, 2M 2 wk _< 2M(l+ A) the integral cross 
section for pair production reads 

m(l+a) 
I := 

s 
6&Jk) h& = 

e2 sin’& A%-26 

2M 2&r g,-2s 

xB(1 - 6,1- 6) B&2 - 2s). (77) 

This quantity determines the output of electron-positron 
pairs produced by a photon per unit length of the mag- 
netic string per unit time within the given energy inter- 
val. At b = i we find 

At high photon energies, wk > M, the parameter c 
behaves like c N I. In this case we have 

Calculating the integral over E we find that the main con- 
tribution to the asymptotic behavior of the cross section 
at wk > M arises from values of z - M. Performing 
integration over z we obtain 

with a, = $ and a, = 1. 
At high photon energies the total cross section of the 

pair production tends asymptotically to constant values 
for both photon polarizations. This energy dependence 
is compatible with unitarity. (One might have expected 

that the singular pure AB potential leadg to an increasing 
cross section and causes the violation of the perturbative 
theory at high energies, in a similar way as in the case of 
the idealized, infmitely thin cosmic string [12].) 

However, we do not consider the high energy AB pair 
production as a realistic subject for experimental inves- 
tigation. For a realization one needs to take much care 
about coherence of the high energy photon beam. We 
are going to estimate the possibility of the experimental 
observation of the AB pair production effect in a subse- 
quent paper. 

V. CONCLUSION 

We have analyzed the electron-positron pair produc- 
tion by a single photon under the influence of a magnetic 
string in first-order perturbation theory, which, as other 
quantum processes connected with the AB effect, leads 
to rather unexpected results. Photons do not interact 
directly with magnetic fields, and the process which was 

considered here happens due to the interaction of the 
created charged particles in the final states with the AB 
potential. 

In addition to the AB interaction, resulting from the 
nonintegrable phase factors, which all quantum particles 
suffer, spin particles interact with the magnetic field via 
their magnetic moments. Tbis strongly influences their 
behavior near the flux tube. In the idealized case of an 
infinitely thin magnetic string their wave functions do 

not vanish on the string and the nonlocality of the AB 
effect is modified by a local interaction. This interaction 
leads to a specific behavior of the cross section. 

We evaluated the differential cross section for the pair 
production, which contains complete information about 
energy, angular, and polarization distributions of the cm- 
ated particles, as well as the total cross section and ana- 
lyzed them for different energy regimes. For low photon 
energies, just above the pair production threshold, elec- 
trons and positrons are produced predominantly by the 
?r-polarized photons with polarization vectors directed 
along the magnetic string. This result may be the most 
interesting one with regard to possible experimental ob- 

servations of the AB pair production process. 
Of course, the observation of the AB effect, which 

is done by means of electron interference and electron 
holography [5], is not a simple task, and the experiments 
with photons which interact with the magnetic string and 
create electron-positron pairs requires a careful discus- 

sion. For these photons of rather high energies there 
exist additional effects which can obscure the AB pair 
production. In particular, this is the pair production by 
the photon in collision with material of the tube carrying 
the magnetic flux. 

We draw attention to a remarkable feature which is 
characteristic for quantum processes in the presence of 
the AB string both for spinless and for ‘spin particles. 
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The pair production process happens if the created elec- 
trons and positrons have angular momentum projection 
of opposite signs. In a sense the virtual charged particles 
need to circle the AB string to transform to real ones. In 
this case the photon can transmit a part of its perpendic- 
ular momentum to the string. We analyzed in detail how 
the total cross section of the process depends on the pho- 
ton polarization. This analysis may be very important 
because it enables us to distinguish the pure effect from 
interfering effects accompanying the AB pair production 

process. 
Finally we point out the analogy to the pair production 
process in the presence of a cosmic string [12]. In this case 
an additional term appears in the Dirac equation which 
results from the spin connection. It corresponds to the 
vector potential term in the AB case. 
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