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We use the world line p&integral approach to the Bern-Kosower formalism for developing a 
new algorithm for the calculation of the sum of diagrams with one spinor loop and s fixed number 
of external and internal photons. The method is based on world line supersymmetry, and on the 
construction of generalized world line Green functions. The two-loop QED ,8 function is calculated 
as an example. 
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I. INTRODUCTION 

In 1992, Bern and Kosower [l] used string theory to 
derive a new formalism for the calculation of one-loop 
amplitudes in ordinary quantum field theory which is 
equivalent to Feynman diagrams [2], but leads to a sig- 
nificant reduction of the number of terms to be computed 
in gauge theory calculations. This property was then suc- 
cessfully exploited to obtain both five-point gluon [3] and 
four-point graviton amplitudes [4]. 

Following this, Strassler [5] showed that, at least for 
scalar and spinor loops, the resulting integral represen- 
tations can be derived in a more elementary way. In 
this approach, one writes the one-loop effective action as 
a (super)particle path integral, and evaluates this path 
integral in analogy to the Polyakov path integral, i.e., 
using world line Green functions appropriate to a one- 
dimensional field theory on the circle. 

This reformulation turned out to be useful for vari- 

ous calculations of one-loop effective actions [6-S] and 
yielded, in particular, a new method for the calculation 
of the inverse mass expansion which is nonrecursive, man- 
ifestly gauge invariant, and suitable to computerization 

l7,91. 
Progress has been made along different lines to gener- 

alize the Bern-Kosower formalism bevond one loorx usine 
methods either based on the c&&ion of higher genus 

string amplitudes [lo], on t,he use of a separate world 
line path integral for every internal propagator [ll], or 
821/96/53~4~/2150~10)/%06.00 3 
on a stringlike reorganization of standard Feynman pa- 
rameter integrals [12]. A Hamiltonian approach has also 
been considered [13]. 

Recently, we proposed [14] a multiloop generalization 
of Strassler’s approach, based on the concept of world line 
Green functions for multiloop diagrams. Those Green 
functions have been explicitly constructed for the general 
two-loop graph and for a loop with an arbitrary number 
of propagator insertions. If &ed with global proper-time 

variables, this allows us to derive integral representations 
combining whole classes of Feynman diagrams into com- 
pact expressions. 

While knowledge of the world line Green functions is, 
in principle, sufficient to treat arbitrary scalar diagrams, 
more work has to be done to obtain the final integral rep- 
resentations for multiloop amplitudes in general quantum 
field theories. 

In the present paper, we take up the study of quan- 
tum electrodynamics, and consider a class of amplitudes 
which is the simplest one for our purpose, namely, the 
N-photon atiplitude with a single spinor loop. 

II. ONE-LOOP AMPLITUDES 

First let us shortly review how one-loop calculations 
are done in this formalism [5, 7, 141. For calculation of 
the one-loop effective action induced by a massive spinor 

loop in a background gauge field, one would start with 
the world line path integral representation [15-191: 
) 
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Here the z?(r)% are the periodic functions from the cir- 
cle with circumference T into D-dimensional spacetime 
and the @‘(?)‘s their antiperiodic Grassmannian super- 
symmetric partners. In the non-Abel& case, which we 
will not consider in this paper, path ordering would be 
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implied. 
For calculation of the effective action, one first splits 

the coordinate path integral into center-of-mass and rel- 

ative coordinates: 

One then Taylor expands the external field at 10, and 
evaluates the path integrals over y and $ by Wick con- 
tractions, as in a one-dimensional field theory on the cir- 
cle. The Green functions to be used are those adapted 
to the (anti)periodicity conditions: 

(Y“(~I)Y”(~~) = --S’“Ge(Tl,n) 
Our normalization is such that, for the free path inte- 

Ph 

The result of this evaluation is the one-loop effective La- 
grangian L(50). 

One-loop scattering amplitudes are obtained by spe- 
cializing to a background consisting of a finite number of 
plane waves. This amounts to the same thing as defining 
the integrated vertex operators 

J oT d7 [iFep - 2ill~ll”k,e,]exp[ik2(7)] (5) 

for external photons of definite momentum and polariza- 
tion, and calculating multiple insertions of those vertex 
operators into the free path integral. 

Using the world line superfield formalism of [22,18], 
this calculus may be cast into manifestly supersymmetric 
form. Equation (1) then becomes 
r[A] = -2 
J 

“dT -,,,aT 

o Te J 
(6) 
J dbV=l 

The photon vertex operator is rewritten as 

J 
T 

- drd&,DX’exp(ikX], (8) 
0 

and the world line propagators may be combined into a 
superpropagator 

mH,&;%&) = G~(n,n) + &&GF(T~,T~). (9) 
G&i,n) = ZS(7, - ~2) - ; (10) 

(here and in the following, an “overdot” denotes differen- 

tiation with respect to the first variable). The &.B’s can 
always be eliminated by partial integrations on the world 
line, and once this has been done, all contributions from 
fermionic Wick contractions may be taken into account 

by replacing, every closed cycle of GB’S appearing, say, 
GB(T~,,~~,)GB(T~,,T~,). GB(G~,T;~), by its supersym- 
metrization: 

From this superfield formalism, it is not difficult to derive 
the following important “substitution rule” [l, 5,6]. 

Evaluation of the bosonic path integral in general 
leads to an expression consisting of an exponential factor 
exp[& G&~,~j)pipj], multiplied by B polynomial in 
the first and second derivatives of GB: 
Note that the result would vanish if supersymmetry was not broken by the boundary conditions. This substitution 
rule effectively replaces the calculation of Dirac traces. 
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III. SCALAR MULTILOOP AMPLITUDES 

In our treatment of the two-loop scalar diagram [14], the starting point had been to insert into the free one-loop 
scalar path integral 

a scalar propagator 

This propagator was then written in the Schwinger proper-time representation 

(~(~(T,,))c#J(z(T~))) = lm d~PzrP(4,~)-~~exp 

[ 

-I+“) ;,(Tb)12 1 (14) 

The exponent was considered part of the world line Lagrangian for the loop path integral, and absorbed into the 
bosonic world line Green function. This results in a modified Green function 

1 IGdnr~) -G~(~lr~b)l[G~(~~,~,) - Gdn,n)l 
G$)(TI,Tz) = GB(TI,Q) + z 

T + G&o,4 
(15) 

valid for Wick contractions of operators inserted into the loop path integral. 
The procedure generalizes to the case of rn propagator insertions, and leads to modified Green functions 

with a symmetric rn x rn - matrix Acrn) defined by 

A(m)= p- ;I-‘, 

Y&l = T&,, 

Bw = G&ok, ~clz) - GE&~, n> 1 - G&n,, ,~oa) + Gdnx > vv) 

(Tl,. ,!?,,, are the proper-time variables for the inserted propagators). 

(17) 

IV. QED MULTILOOP AMPLITUDES 

For scalar electrodynamics, it is obvious what should replace the propagator insertion, Eq. (13). In this case, the 
one-loop path integral, Eq. (l), reduces to 
(note the deletion of the global factor of -2, which takes 
care of statistics and degrees of i&dam). This expression 
may also be interpreted as a Wilson loop expectation 

value. It is well known, however (se&, e.g., [X3,20, Zl]), 
that the first-order correction to a scalar Wilson loop 
(due to exchange of one internal photon) may be written 
in terms of a world line current-current interaction: 

(19) 

with X = + - 1. 
For scalar electrodynamics, we will therefore insert one 

copy of this expression into the path integral, Eq. (18), 
(20) 

In components the double integral reads, after a bit of 
algebra, 

for every internal photon. The denbminators will be writ- 
ten in the proper-time representation, Eq. (14), which 
leads to the same generalized bosonic two-loop world line 
Green function as in the scalar case; the numerators will 

remain, and participate in the Wick contractions. 
As in the one-loop case, the transition to spinor elec- 

trodynamics may then be accomplished by supersym- 
metrization, which replaces Eq. (19) by 
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(21) 
The simplest way to verify the correctness of this naive 
supersymmetrization is to write the one-loop two-photon 

amplitude in the superformalism, and then sewing to- 
gether the external legs to create an internal photon, us- 
ing Feynman gauge. 

The denominator of Eq. (20) being bosonic, we can 
again use the proper-time representation, Eq. (14), to 
get it into the exponent, and then absorb this exponent 
into the world line stiperpropagator. The algebra is corn- 
pletely identical tothe scalar case, and leads to modified 
superpropagators G(“) which are given by the same for- 

mulas as in Eqs. (15) and (16), with all the one-loop 
Green functions appearing on the right-hand sides re- 
placed by the corresponding one-loop superpropagator 
Eq. (9). The same applies to the determinant factor 

(DetAcm))‘, which gives the ratio of the free Gaussian 
path integral with rn propagator insertions compared to 
the free one-loop path integral 1141. 

To summarize, we can obtain a parameter integral rep- 
resentation for the sum of all diagrams with dne spinor 
loop and fixed numbers of photons, N external and rn in- 
ternal, by Wick contracting N vertex operators, Eq. (8) 

with rn factors of s,’ &rad& Jo* dq,d&DX[DXa,,, using 

the modified superpropagator &‘). 

V. THE TWO-LOOP QED p FUNCTION 

As an illustration, we will use this calculus for a red- 
erivation of the two-loop QED fl function, both for scalar 
and for spinor electrodynamics. We will work in compo- 
nent formalism for transparency. 

As usual, matters much simplify if one is only inter- 
ested in the p-function contribution, as opposed to cal- 
culation of the whole amplitude. The simplest thing for 
us to do is to use the effective action formalism with a 
constant background field Fp”, and read off the fl func- 
tion &am the coefficient of the induced F,,F’” term. 

As a warm up, let us iirst redo the one-loop calculation 
[5,7]. For constant F,,y, we can choose a gauge such that 
A, = izPFpp. Using this A field in the one-loop path 
integral, Eq. (l), and expanding the interaction exponen- 

tial to second order, one obtains 
I 
[we have abbreviated &~(71,7~) by &:B~z, etc.]. The dou- 
ble parameter integral (which is really only a single one, 
as translation invariance can be used to set 71 = 0) gives 

(23) 

To extract the divergent part of the remaining global 
proper-time integral, various regularization methods 
could be employed. Choosing dimensional regularization, 
we obtain 

J -dT -,,,lT+ 

0 re J mdT +,+TZ-o 

0 7” 2 .-+ -;, (24) 

with E = D - 4. Putting things together, the desired 
l+)[F] N 2 
3( 

4+- 21 2 ;” J dxr,F,,F’” 

From this one obtains the one-loop photon wave-function 

renormalization factor 

(Z$ - l)(l) = $ , 

leading to the usual value for the one-loop QED fl func- 

tion, 

Now let us describe the two-loop calculation. In the 
Feynman diagram calculation (see, e.g., [23]), one would 
have to separately calculate the three diagrams of Fig. 
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FIG. 1. Diagrams contributing to the two-loop vac~~rn 
polarization. 

I using some regularization, say, dimensional regulariza- 
tion, and then extract their f poles. Cancellation of the 

5 poles would be found in the sum of the results, in- 
dicating a cancellation of subdivergences due to gauge 
invariance. It will be seen that, in the present formal- 
ism, the three diagrams of Fig. 1 get combined into one 
calculation. 

Let us begin with the purely bosonic contributions, 

which c,orrespond to the scalar QED calculation. Those 
FIG. 2. Definition of the six integration parameters 

are obtained by inserting the world line current-current 
interaction term Eq. (19), into the bosonic one-loop path 
integral. After exponent&ion of the denominator and 
absorption into the world line Green function, this results 
in 
D 

Note the appearance of the two-loop determinant factor [7? + G~(T,,T~)]-“. The Wick contraction of 

m&i,“3/illit.xli6x) (29) 

has now to be done, using the two-loop Green function, Eq. (15) ( care must be taken with Wick contractions involving 

jl,,&, as the derivatives should not act on the 7a,7a explicitly appearing bi that Green function). 
Because of the symmetries of the problem, there are only two nonequivalent contraction possibilities. The result is 

written out in terms of the b+wnic one-loop Green function and its derivatives. As in the one-loop calculation, one 
next eliminates all factors of Gg appearing by partial integrations with respect to ~1~72~7~~76. 

As the next step, all fermionic contributions are included by applying the one-loop substitution rule, replacing, for 
example, 

The integrations must then be carried out. At this stage, what we have is the desired contribution to the two-loop 

effective action in the form of a sixfold integral (see Fig. 2): 

The function P (whose bosonic part Pb,. is given in Appendix A) is a polynomial in the various GB+, &~;j, GF<~, 

multiplied by powers of [‘? + G~(T.,T~)]-~. In particular, the integrations over ~~,72 are polynomial, and can be 

performed easily, either by computer, or using a set of relations of the type 

I 
1 1 

0 
du&nGms = 2Gim - ~7 

(32) 
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which may be derived from the master identities 

I 

1 
duz du&&B23.. c? 

0 
~n(n+~j = -$&(I UI - zl,+&w”(ul- ++I), 

I 

1 

dw . ..&.GmGm . ..GF”(.+I) = ~ 2n-1 En-I(] 
0 (n - l)! 

UI- ~+~I)sgn~(w - G+I) (33) 

In writing those identities, we have scaled down to the unit circle again (7; = Tug). B,, denotes the nth Bernoulli 
polynomial, and E, the nth Euler polynomial. Because of the fact that those polynomials can be rewritten as 

B,(z) = P,,(z’ - 2) (n even), 

B,+) =P,,(z’ - cz)(z - $) (n odd), (34) 

with another set of polynomials P,(z) [the same property holds true for E”(r)], the right hand sides can always be 

reexpressed in terms of GB, &:B, and G.v, so that explicit u;‘s will never appear in those relations. Those integrals 
needed for the present calculation are listed in Appendix B (for the spinor-loop case); a proof of the general identities 
of Eqs. (33) is given in Appendix C.’ 

Next we perform the T integration, which is trivial: 

Irn 
dp[F + Gm] 

-4-h 
= G’-+-” Bob 

s+k-1 
(k = 1,2). 

0 
(35) 

Collecting terms, we get 

~-dT~Td~~~Td72P(T,~,7,,~*,71,72) = $( (D -4)(D - l)G;;fT + (LI -2)(D- 7)G;;fj. (36) 

Let us also give the corresponding expression for scalar QED, which is obtained by using only the bosonic part Pb,,. 
of the function P: 

~-d~~‘dnJd3 
D 

d72P~or(T,~,7=,~*,~~,~~)=~(D-l)G~~~T’+(D-l) 

+&2)(D-7)G;$ (37) 

Setting 7. = 0, the integration over n, produces a couple of Euler p functions: 

T T 

I I 
dr, d~bG;$=B(k+l-;,k+l-~)Ta+r-~ (38) 

0 0 
As in the one-loop case, the remaining electron proper- 
time integral just gives a r function: 

I 

w dT 

re 
-mZTT4-D = q4 - qm2P-4) (39) 

0 

Combining terms and performing the E expansions for 
the effective Lagrangians, we obtain 

IFor the traces of the left hand sides, recursion relations had 
already been derived in [6]. 
So far this is a calculation of the bare regularized effec- 
tive action. What about renormalization? The counter- 
diagrams due to electron wave-function and vertex renor- 
malization need not be taken into account, as they cancel 
by the QED Ward identity (2, = 22). However, we have 
used the electron ma~s as an infrared regulator for the 
electron proper-time integral, Eq. (39); mass renormal- 
ization must therefore be dealt with. 

Generally, we do not know, at present, how to perform 
renormalization completely in terms of world line con- 

cepts; we have to refer to standard field theory for this 
part of the calculation. 

Our calculation corresponds to a Feynman calculation 
in dimensional regularization and Feynman gauge, and 
so we need to know the corresponding one-loop mass 
renormalization counterterms, both for scalar and spinor 

QED. This is a simple textbook calculation, of which we 
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give the result only: 

lh= --p = ;e2(47q2, 
%cal 

hpin _ 6 2 

mspin 
;e (4*)-Z. (41) 

Insertions of those counterterm into the one-loop path 

integral produce the following contributions to the two- 
loop effective Lagrangians: 

Arg,[P] = CM .c+$r9Fi 

"z;" 
l 4(4r)-4/ dq,F,,F~” + O(&‘), 

Ar$p] = hpi.&r~~~,[~] 

- $4(4x)-4 J dz~Fp,,Pv + O(E”) 

(42) 

Here I$:!” denotes the one-loop path integral, Eq. (22), 

and l?l$ its scalar QED counterpart. 
Extraction of the &function coefficients proceeds in 

the usual way. From the total effective Lagrangians 

&F] + A&[P]- Ae4 e (47r)-4F#“F”“, 

d2! [F]+ AL@? [F]- k? spnl SP1" ~ (47r)-4FpyY, (43) 

one obtains the two-loop photon wave-function renormal- 
ization factors, and from those the standard results for 
the two-loop p-function coefficients [24,25]: 

&(a) = p’? (cl) = Jf-. SP1” 2+ (44) 

Observe that in the spinor loop case, the integrand 

after performance of the first three integrations, Eq. (36), 
has only one term which would be divergent for D = 

4 when integrated over 7b. Moreover, the coefficient of 
this term vanishes for D = 4. This suggests that this 
calculation can be further simplified by using some four- 
dimensional regularization scheme. And, indeed, if we 
do the spinor-loop calculation in four dimension, then 
instead of Eq. (36) we find simply 

Now there is no dependence on 7,,% left, so that one 
immediately gets 

L(2) = (4r)-4$ 
/ 

-dT _ 
m2TF,,,F’Y. (46) 

0 77 

It is only the final electron proper-time integral that 
now needs to be regularized. This can be done by intro- 
ducing a proper-time cutoff To at the lower integration 
limit, which replaces Eq. (39) by 

I 

O” dT 

To r” 

-,,,a= 
N -ln(w?T$ (47) 

(Pauli-Villars regularization could be used as well, 
though proper-time regularization appears more natural 
in the world line formalism.) With this regulator, the 

two-loop effective Lagrangian becomes 

f$$,[F] N -ln(m2To)(4?r)-4e4F,,F’y + finite 

(48) 

In spite of the apparent suppression of subdivergences, 
there is again a contribution from mass renormalization, 
which can be determined by comparison with the corre- 

sponding Feynman calculation. On-shell renormalization 
of spinor QED using a proper-time cutoff has been stud- 
ied in Refs. [26,27]. It leads to a one-loop mass renor- 
malization counterterm 

6m 
- = 31n(m2To)e2(4?r)-2 + finite 
rn 

(49) 

Insertion of this counterterm into the one-loop path in- 
tegral gives 

- 21n(m2To)(4n)-4e4 / dxoF,,F“” + finite, 

(50) 

so that mass renormalization now just amounts to a sign 
change for the effective Lagrangian: 

LC’Lij,[F] + AL'$,[F] N ln(m2To)(4n)-4e4F,,F~y. 

(51) 

The extraction of the (still scheme-independent) 0. 

function coefficient @!,,(a) is again standard [27], and 

leads back to Eq. (44). 
Proper-time regularization could, of course, also be ap- 

plied to the corresponding scalar QED calculation. How- 
ever, here one either has to regulate both the electron 
and the photon proper-time integrals, or to switch to 

Landau gauge, where the ~6 integral again becomes finite 
in D = 4 (as we have verified). 

A word of explanation may be in place for our use of 
the one-loop substitution rule, Eq. (30), in the two-loop 
context. The continued validity of the substitution rule 
at the multiloop level is a consequence of the compatibil- 
ity of the superfield formalism with the mentioned sewing 
procedure, as will be explained in more detail elsewhere 

[31]. As an explicit check, we have performed this calcu- 

lation in yet another way, namely, by writing the one-loop 
four-photon amplitude in the Bern-Kosower representa- 
tion, and then sewing together two of the photon legs 
to create the two-loop vacuum polarization amplitude. 
Albeit requiring considerably more work, this procedure 
ultimately yields exactly the same parameter integrals as 
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the use of the two-loop world line Green function. 
Moreover, the calculation in the dimensional scheme 

has been checked in detail [28] against a Feynman cal- 
culation using the second-order Feynman rules of [29]. 

Let us summarize the properties of this calculation: 
(i) Neither momentum integrals nor Dirac traces had to 
be calculated; (ii) only simple one-dimensional integrals 

were encountered; (iii) the three diagrams of Fig. 1 were 
combined into one calculation (in fact, in this formalism 
it is somewhat easier to compute the sum than any single 
one of them); (iv) in the spinor-loop case, introduction of 
a regulator could be avoided, except for the final electron 
proper-time integration. 

Property (iii) is a general property of the formalism, 
which should become increasingly important at higher 
orders. Property (iv) may well be accidental to the two- 

loop case, as far as Feynman gauge is concerned. How- 
ever, we expect it to hold true in general for the recur- 
sively determined gauge where Z1 = 2, = 1 1301. 

VI. CONCLUSIONS 

To conclude, we have shown that the generalization of 
the Bern-Kosower formalism proposed in (141 holds con- 
siderable promise as a tool for multiloop calculations in 

quantum electrodynamics. It allows to write down com- 
pact integral representations combining all Feynman dia- 
grams with one spinor loop and a fixed number of internal 
and external photons (the extension to an arbitrary num- 
ber of spinor loops is straightforward, as will be shown 
elsewhere [31]). This kind of sum of diagrams, however, 
isknown to be afflicted with extensive cancellations be- 
tween diagrams. Those cancellations are clearly related 
to gauge-invariance, and to the fact that the Feynman 

diagram calculation splits a gauge-invariant amplitude 
into non-gauge-invariant pieces. For instance, it is a well- 
known fact that, at any fixed loop order, the higher-order 
poles cancel and only the $ pole persists in the sum of 
all single-spinor-loop Feynman diagrams contributing to 
the vacuum polarization. Moreover, individual Feynman 
diagrams in this sum contribute transcendental numbers 
to the p-function coefficients, which happen to cancel 
out for those few coefficients which have been calculated 
[32,33]. While the cancellation of higher-order poles is 
a well-understood consequence of gauge invariance [30], 
no convincing explanation has been given, so far, for the 

cancellation of transcendentals.2 We hope that the for- 
malism developed in this paper will serve to shed new 
light on this old problem. 
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APPENDIX A 

We give here the purely bosonic part Pb,, of the func- 
tion P(T,~,T,,~,T,,Q) appearing in Eq. (31). The full 
P is obtained from this by application of the substitu- 
tion rule, Eq. (11). In writing this polynomial, we have 
used symmetry with regard to interchange of 71 and 72 

to combine some terms, and omitted some terms which 
are total derivatives with respect to J dq or J dT2 (those 
terms are easy to identify at an early stage of the calcu- 
lation): 

Pbos=y?{12 62 G 7 Bob L2 + 32~&&~~&&~~~ 

+3Y~:Bi&:Ba&:B1&:B20 - bsza] 
APPENDIX B 

Integrals occurring in the calculation of the two-loop spinor-QED 0 function: 

(BI) 

(‘32) 

(B3) 

(B4) 

‘Very recently, concepts from knot theory have been used to establish a link between both types of cancellations [34]. 
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APPENDIX C 

To prove the first of the identities in Eq. (33), observe that, by construction, $6:~ is the integral kernel inverting 
the first derivative 3~ acting on periodic functions. We may therefore write 

1 -K(w - gn+l) := J . dw d~,G~nGszs G~n(n+l) 0 = 2nbl 1 a,-= I un+d. (Cl) 

This leads to the recursion relation 

&K&-u’) = 2-(u 1 8,j-(n-1) 1 u’) = 2K,,-l(u - u’). 

We want to show that the same recursion relation is fulfilled by the polynomial km, 

iin(i-d) := -~B(lu-u’l)sgnn(21--‘). 

Explicit differentiation yields 

(C2) 

(C3) 

gkn(u - IL’) = -$&?k(lu - u’])sgn(u - u’)sgn*(u - IL’) 

= -&Bm-l(Iu - u’l)sgn”+‘(u -21’) 

=2&-&-u’). (C4) 

Here the recursion relation for the Bernoulli polynomials was used, B;(z) = n&-l(z). An additional term arising 
by differentiation of the signum function for n odd can be deleted due to the fact that 

+)%(I 2 I) = q~)&(o) = 0 (C5) 

for n odd, n > 1. The proof is completed by checking that the master identity works for n = 1 [BI(z) = z - i], and 
on the diagonal u1 = u,,+l for any n (this special case has already been proven in Ref. [7]). 

The proof of the second master identity proceeds in a completely analogous way. 
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